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Abstract. Algebraic structure of codes over Fq , closed under arbitrary abelian group G of
permutations with exponent relatively prime to q, called G-invariant codes, is investigated using a
transform domain approach. In particular, this general approach unveils algebraic structure of quasi-
cyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate
special cases. Dual codes of G-invariant codes and self-dual G-invariant codes are characterized. The
number of G-invariant self-dual codes for any abelian group G is found. In particular, this gives the
number of self-dual l-quasi-cyclic codes of length ml over Fq when (m, q) = 1. We extend Tanner’s
approach for getting a bound on the minimum distance from a set of parity check equations over an
extension field and outline how it can be used to get a minimum distance bound for a G-invariant
code. Karlin’s decoding algorithm for a systematic quasi-cyclic code with a single row of circulants
in the generator matrix is extended to the case of systematic quasi-abelian codes. In particular,
this can be used to decode systematic quasi-cyclic codes with columns of parity circulants in the
generator matrix.
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1. Introduction. Codes with rich algebraic structure are of strong interest to
coding theorists because such codes are easy to design and decode. Classical families of
cyclic codes, such as Bose–Chaudhuri–Hocquenghem (BCH) codes and Reed–Muller
codes, were the center of attention for a long time. For a cyclic code, the code’s
permutation group contains a cyclic subgroup generated by the cyclic permutation.
A cyclic code can also be viewed as an ideal of the group algebra on the cyclic group
of order n (length of the code). More generally, ideals of group algebras on abelian
groups are known as abelian codes.

A different direction of generalization gives another class of codes: quasi-cyclic
codes. A code of length n is said to be l-quasi-cyclic for some l|n if every l times cyclic
shift of a codeword is also a codeword. Thus an l-quasi-cyclic code can be viewed as
a submodule of the l-dimensional free module (FqCn

l
)l over the group algebra FqCn

l
,

where Cn
l

is a cyclic group of order n
l .

A more general, but less popular, class of codes is the class of quasi-abelian codes
[15]. For a finite abelian group G and its subgroup H, an FqH-submodule of FqG is
called a G−H quasi-abelian code. In fact, for an abelian group H and any positive
integer t, any submodule of (FqH)

t
can be considered a quasi-abelian code. In that

case, any abelian G ⊇ H with |G| = t|H| can be used to define quasi-abelian codes, as
in [15]. Thus, such codes will be called H-quasi-abelian codes. When t = 1, this class
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specializes to abelian codes and, when H is a cyclic group, specializes to the class of
quasi-cyclic codes.

Transform techniques for cyclic codes and abelian codes are well known [1, 13].
Transform techniques for repeated root cyclic codes were discussed in [10]. Recently,
quasi-cyclic codes were studied in the transform domain [5, 9]. Tanner [14] introduced
ways to transform a group invariant parity check matrix into a parity check matrix
over an extension field, and he used this technique to get a lower bound on the
minimum distance of group invariant codes.

In this paper, the algebraic structure of codes closed under any arbitrary abelian
subgroup G of Sn (the group of permutations of n elements) is investigated. We call
this class G-invariant codes. When special types of G are taken, G-invariant codes
coincide with the class of quasi-abelian codes, and thus with the classes of quasi-
cyclic codes and abelian codes. Figure 1 shows the relation between different classes
of codes.

Quasi−cyclicAbelian

Codes

Codes
G : Arbitrary
G − Invariant Codes

Codes

G : Cyclic

Cyclic
Codes

t = 1
G : Cyclic

t = 1( ) ( )
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Quasi−abelianG −

Fig. 1. Different families of codes and their defining groups of permutations.

Following are a few examples of some types of permutation groups G shown in
Figure 1.

Example 1.1. For any a, b ∈ Fq, a �= 0, let σa,b denote the permutation σa,b : x �→
ax+ b. Then G = {σa,b|a ∈ F ∗

q , b ∈ Fq} is a subgroup of Sq and is called the group of
affine permutations. For q > 2, G is nonabelian and the G-invariant codes are known
as affine invariant codes.

Example 1.2. Figure 2 (ignore the solid, dashed, and dotted boxes for now) shows
the cycle structure of the generator σ of a permutation group G = 〈σ〉 ⊆ S16. Here
G is abelian, and G-invariant codes cannot be seen as G-quasi-abelian codes.

Example 1.3. Consider a permutation group G = 〈σ1, σ2〉 ⊆ S54. Figure 3 shows
the cycles of σ1 with solid lines with arrows and the cycles of σ2 with dashed lines
with arrows. Here G is abelian, and G-invariant codes are the same as G-quasi-abelian
codes of length 54.

All abelian codes on an abelian group G are decomposable as a direct sum of
minimal abelian codes if and only if the exponent of G is relatively prime to q. The
same is true for l-quasi-cyclic codes if and only if n

l is relatively prime to q [2]. It will
be shown that this is true for any G-invariant code (G abelian); i.e., for an abelian
subgroup G ⊆ Sn, any G-invariant code of length n can be decomposed as a direct
sum of minimal G-invariant codes if and only if the exponent of G is relatively prime
to q.
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Fig. 2. Cycle structure of the generator of G in Example 1.2.
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Fig. 3. Cycle structure of the generators of G in Example 1.3.

Karlin [7] showed a way to decode a class of one-generator quasi-cyclic codes.
Heijnen and van Tilborg [6] proposed another decoding technique for the class of one-
generator quasi-cyclic codes, which uses the same basic idea as Karlin’s technique but
achieves some computational advantages by better usage of the quasi-cyclic property
of the code. In this paper, Karlin’s approach is extended to a class of quasi-cyclic
codes, not necessarily one-generator. When restricted to one-generator quasi-cyclic
codes, this method reduces to Karlin’s method. Moreover, this method also applies
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to a class of quasi-abelian codes specified in subsection 7.1.
In section 2, the DFT on abelian group is reviewed, and in section 3 is used to

define a DFT for G-invariant codes for any abelian group G of permutations with
exponent relatively prime to q. Such G-invariant codes are characterized in the trans-
form domain, and their structural properties are investigated in section 4. Dual codes
of G-invariant codes and self-dual G-invariant codes are characterized in section 5.
The number of G-invariant self-dual codes for any abelian group G is also found. In
section 6, we extend Tanner’s approach for getting a bound on the minimum distance
from a set of parity check equations over an extension field and outline how it can
be used to get a minimum distance bound for G-invariant codes. Quasi-abelian codes
are discussed in section 7, and Karlin’s approach [7] for decoding systematic quasi-
cyclic codes with parity circulants in a single row is extended to the case of systematic
quasi-abelian codes. In particular, this approach can be used to decode systematic
quasi-cyclic codes which are not necessarily one-generator, which was the case left
open by Karlin.

2. Review of the DFT for abelian codes. Let G be an abelian group with
exponent ν such that (ν, q) = 1. Let r be the smallest positive integer such that
ν|(qr − 1). Then the group of all distinct Fqr -characters of G is isomorphic to G. In
fact, an isomorphism x �→ ψ(x) can be chosen (see, for example, [3] and the references
therein) such that ψ(x)(y) = ψ(y)(x). We denote ψ(x)(y) as ψ(x, y), considering it a
map ψ : G×G → Fqr . It satisfies the following properties:

ψ(x, yz) = ψ(x, y)ψ(x, z),(1a)

ψ(x, y) = ψ(y, x),(1b)

(ψ(x, y) = ψ(x′, y) ∀y ∈ G) ⇐⇒ x = x′,(1c) ∑
x∈G

ψ(x, y) =

{
|G| if y = 1,
0 if y �= 1,

(1d)

where |G| and 1 denote, respectively, the cardinality of G and the identity element in
G.

The DFT of any element a =
∑

x∈G axx ∈ FqG is defined as A =
∑

x∈G Axx ∈
FqrG such that Ax =

∑
y∈G ψ(x, y)ay. The inverse DFT is obtained as ax =

|G|−1
∑

y∈G ψ(x, y)−1Ay.

3. DFT for G-invariant codes. We consider codes of length n over Fq with
components indexed by a set I. Let G ⊆ Perm(I) be an abelian subgroup of the
group of permutations of I. Let the characteristic of Fq be p.

Suppose I1, . . . , It are the orbits of I under the action of G. Let us denote Gk =

{g(k)|g ∈ G} for k = 1, . . . , t, where g(k) �
= g|Ik ∈ Perm(Ik) is the permutation g

restricted to Ik. Since Gk is abelian and acts on Ik faithfully and transitively, the
stabilizer of any i ∈ Ik is {1k} (1k denotes the identity element of Gk). Thus, for
any i1 ∈ Ik, there is a unique g ∈ Gk, such that i1 = g(i). This defines a one-to-one
correspondence between Gk and Ik. Using this, the symbols can be indexed by the
elements of Gk instead of Ik by first associating a fixed element i ∈ Ik with the identity

element 1k. Hence, the code symbols are indexed by G �
= ∪t

i=1Gi instead of I. Then

the element g of G acts on G as x
g�→ g(k)x when x ∈ Gk. For any a = (ax)x∈G ∈ FG

q ,

g ∈ G acts on a as a
g�→ b = g(a) such that bx = ag(k)−1x when x ∈ Gk. Henceforth,

we’ll use the letters f, g, and h, possibly with subscripts, to denote elements of G,
and use the letters x, y, and z to denote elements of G.
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Let the exponent of G, exp(G) = lcm ({exp(Gk)|k = 1, . . . , t}) be relatively prime
to q, and let r be the smallest positive integer such that exp(G) divides (qr−1). Then
on each orbit, DFT is defined as discussed in the last section; i.e., the DFT of a ∈ FG

q

is defined as A = (Ax)x∈G ∈ FG
qr , where

Ax =
∑
y∈Gk

ψk(x, y)ay ∀x ∈ Gk, ∀k.

Here ψk is as defined in the last section for Gk. For any two x, y ∈ G, define

Ψ(x, y) =

{
ψk(x, y) when x, y ∈ Gk for some k,
0 when x ∈ Gk1 and y ∈ Gk2 , s.t. k1 �= k2.

With this notation, the DFT can be rewritten as Ax =
∑

y∈G Ψ(x, y)ay∀x ∈ G.
Clearly, A satisfies Axq = Aq

x ∀x ∈ G. For any h ∈ G and x ∈ G, we define the symbol

〈h, x〉 �
= ψk(h

(k), x) when x ∈ Gk.(2)

It follows from this definition that the DFT of b = h(a) is given by Bx = 〈h, x〉Ax.
Suppose h1, h2 ∈ Gk. Then using (1a) and (1c), we have 〈g, h1〉l = 〈g, h2〉 ∀g ∈ G if
and only if hl

1 = h2.
For any element x ∈ G, it is in Gk for some k, and thus a cyclotomic coset of x

is defined as [x]q
�
= {y ∈ Gk|y = xqt for some nonnegative t}. Cardinality of [x]q will

be denoted as rx. For any subset S ⊆ G, we define [S]q
�
= ∪s∈S [s]q.

Corollary 3.1. For any x ∈ G, rx is the smallest positive integer such that
〈g, x〉qrx = 〈g, x〉 ∀g ∈ G. Thus, rx is the least common multiple (lcm) of the lengths
of the conjugacy classes of 〈g, x〉 ∀g ∈ G.

The residue class of x ∈ G is defined as x̃
�
= {x1 ∈ G|〈g, x1〉 = 〈g, x〉 for each g ∈

G}. Cardinality of x̃ will be denoted by ex. For any subset X = {x1, x2, . . . , xk} ⊆ G,
AX denotes the ordered tuple (Ax1 , Ax2 , . . . , Axk

) with an arbitrary fixed order in
X. In particular, for any residue class ỹ1 = {y1, y2, . . . , yl}, we denote by A

ỹ
the

ordered l-tuple (Ay1
, Ay2

, . . . , Ayl
) with an arbitrarily chosen fixed order on ỹ. For

some ordered tuples T1 = (t1,1, . . . , t1,j1), . . . , Tl = (tl,1, . . . , tl,jl) the concatenated
tuple (t1,1, . . . , t1,j1 , . . . , tl,1, . . . , tl,jl) is denoted (T1, . . . , Tl).

The cyclotomic residue class of x ∈ G is defined as (x)
q �

= {x1 ∈ G| for some non-

negative t, 〈g, x1〉q
t

= 〈g, x〉 ∀g ∈ G} = [x̃]q. Figure 4 shows the relation between a
cyclotomic residue class and the cyclotomic cosets and residue classes in it. By the
conjugacy constraint, the values of the DFT components in one residue class determine
the values of the other transform components in the same cyclotomic residue class.

To be specific, A
x̃qi

= Aqi

x̃
for any a ∈ FG

q , where the power of the vector A
x̃

is taken

componentwise. Thus, the values of the transform components in one representative
residue class from each cyclotomic residue class specify a vector completely.

Example 3.1 (continuation of Example 1.2). The index set has four orbits under
the action of G and G1  G2  Z3, and G3  G4  Z5. Let a set of generators of the
groups G1, G2, G3, and G4 be g1, g2, g3, and g4, respectively. If α ∈ Fqr is an element
of order 15, then we define DFT in F 16

q  FG
q with respect to the maps ψk defined

by ψ1(g1, g1) = ψ2(g2, g2) = α5, ψ3(g3, g3) = ψ4(g4, g4) = α3. The residue classes in
G are shown in Figure 2 with dashed boxes. The figure shows the cyclotomic cosets
with solid boxes and the cyclotomic residue classes with dotted boxes for q ≡ 2 mod
3, q ≡ 4 mod 5 (e.g., q = 29, 59).
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Fig. 4. A generic cyclotomic residue class (x)q.

4. Transform domain characterization of G-invariant codes. A linear
code C ⊆ FG

q is G invariant if for every codeword a ∈ C and h ∈ G, h(a) ∈ C. The
equivalent condition in the transform domain is that for any h ∈ G, A = DFT (a)
for some a ∈ C and B ∈ FG

qr with Bx = 〈h, x〉Ax ∀x ∈ G ⇒ B = DFT (b) for some
b ∈ C.

For any ordered tuple (x1, x2, . . . , xl) on G, we say (Ax1
, Ax2

, . . . , Axl
) takes values

from {(Ax1
, Ax2

, . . . , Axl
) |a ∈ C} for C. If for C, (Ax1

, Ax2
, . . . , Axl

) takes values from
V ⊆ F l

qr and U ⊆ V , then the subcode {a ∈ C| (Ax1
, Ax2

, . . . , Axl
) ∈ U} will be

referred to as the subcode obtained from C by restricting (Ax1 , Ax2 , . . . , Axl
) to U .

Lemma 4.1. For any G-invariant code C and x ∈ G, A
x̃

takes values from a
subspace of F ex

qrx .
Proof. Suppose A

x̃
takes values from an Fq-subspace (since the code is linear)

V ⊆ F ex
qrx for C. When any element g ∈ G acts on a codeword a, A

x̃
is multiplied

by 〈g, x〉. Since the code is G-invariant, 〈g, x〉v ∈ V for each g ∈ G and v ∈ V .
Thus, V is closed under multiplication by elements of SpanFq (〈{〈g, x〉|g ∈ G}〉) =
Fq [{〈g, x〉|g ∈ G}] = Fqrx .

For any G-invariant code C and x ∈ G, suppose A
x̃

takes values from a subspace
V ⊆ F ex

qrx . Then for any subspace U ⊆ V , the subcode obtained by restricting A
x̃

to
U is also G-invariant. For a linear code C, suppose, A

x̃
takes values from a subspace

V ⊆ F ex
qrx , and V = V1 + V2. If the subcodes obtained by restricting A

x̃
to V1 and V2

are, respectively, C1 and C2, then C = C1 + C2.
Definition 4.2. Let X1, X2, . . . , Xl be some disjoint subsets of G and suppose

RXj
= {AXj

|a ∈ C} for j = 1, 2, . . . , l. The sets of transform components {Ax|x ∈
Xj}, 1 ≤ j ≤ l, are said to be unrelated in C if {(AX1

, AX2
, . . . , AXl

) |a ∈ C} =
RX1 ×RX2 × · · · ×RXl

. They are said to be related if they are not unrelated.
Let x̃1, x̃2, . . . , x̃l be a set of representative residue classes of all the distinct

cyclotomic residue classes. Suppose we fix arbitrary subspaces Vi , i = 1, 2, . . . , l,
of F

exi

qrxi
, i = 1, 2, . . . , l, respectively, and consider the code C =

{
a ∈ FG

q |Ax̃i
∈

Vi for i = 1, 2, . . . , l
}
. Clearly, the code is G-invariant. But it is not clear whether

any G-invariant code can be obtained this way by choosing suitable Vi , i = 1, 2, . . . , l.
That is, are A

x̃i
, i = 1, . . . , l, unrelated for any G-invariant code? Theorem 4.6 will
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answer this question in the affirmative.
If, in a G-invariant code, two transform components Ax and Ay are unrelated,

then consider the subcodes C1 and C2 obtained by restricting, respectively, Ax and
Ay to {0}. Clearly, the original code is the sum of the codes C1 and C2. Suppose
S1, . . . , Sl are some disjoint subsets of the index set such that x, y ∈ ∪l

i=1Si. Then
the transform components in S1, . . . , Sl are unrelated in C if and only if they are
unrelated in C1 and C2. This process can be continued on C1 and C2 and repeated
on the resulting subcodes to get a set of subcodes whose sum is C and in each of
which either there is only one nonzero transform component or any pair of nonzero
transform components is related. So, if the transform components in S1, . . . , Sl are
related in C, then there is a G-invariant subcode of C, where two transform components
Ax, Ay, x ∈ Si, y ∈ Sj , i �= j, are related.

Suppose, in a G-invariant code, two transform components Ax and Ay are related.
Then they must take values from Fqrx and Fqry , respectively. The relation must be
by a bijection (so rx = ry) σ : Fqrx → Fqrx since the subcode obtained by restricting
Ax or Ay to {0} is G-invariant. Since the code is linear G-invariant, σ must be an
Fq-linear isomorphism satisfying

σ(〈g, x〉v) = 〈g, y〉σ(v) ∀g ∈ G, ∀v ∈ Fqrx .(3)

For a map σ of a finite field, we denote by fσ(X) a polynomial which induces σ,
that is, σ(a) = fσ(a).

Lemma 4.3. Let α, β ∈ Fql be such that the length of the Fq-conjugacy class of
α is l1. Suppose a ∈ F ∗

ql and σ : aFql1 −→ Fql is an Fq-linear nonzero map. Then σ

satisfies σ(αb) = βσ(b) ∀b ∈ aFql1 if and only if β = αqj and fσ(X) = cXqj for some
unique c ∈ Fql and j < l1.

Proof. The reverse implication is obvious. For the forward implication, let us

consider the Fq-linear map σ′ : Fql1 → Fql ; σ
′ : x �→ σ(ax)

σ(a) . Clearly, σ′(αi) = βi for

i ≥ 0. Thus, σ′ is a field isomorphism of Fq[α] onto Fq[β]. So for some j, σ′(x) = xqj

∀x ∈ Fq[α] = Fql1 . Therefore,

σ(x) = σ(a)σ′
(x
a

)
= σ(a)a−qjxqj for any x ∈ aFql1 .

Lemma 4.4. Let α, β, and l1 be as in Lemma 4.3 and V be an h-dimensional
Fql1 -subspace of Fql . Suppose σ : V −→ Fql is a nonzero Fq-linear map. If σ satisfies

σ(αb) = βσ(b) ∀b ∈ V , then β = αqj and fσ(X) =
∑h−1

i=0 ciX
qil1+j

for some unique
ci ∈ Fql for 0 ≤ i ≤ h− 1.

Proof. Suppose V = ⊕h−1
i=0 Vi, where Vi = siFql1 . Since σ is nonzero, its restriction

on at least one of Vi, 0 ≤ i ≤ h − 1, is nonzero, and thus by Lemma 4.3, the first
statement follows. Suppose σi = σ|Vi

. Then, fσi
(X) = c′iX

qj for some unique c′i.
Thus,

fσ(X) =

h−1∑
w=0

cwX
qwl1+j

⇔ c′i(sia)
qj =

h−1∑
w=0

cw(sia)
qwl1+j ∀a ∈ Fql1 , ∀i ∈ [0, h− 1]

⇔ c′is
′
i =

h−1∑
w=0

cw (s′i)
qwl1 ∀i ∈ [0, h− 1], where s′i = (si)

qj
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⇔

⎛⎜⎜⎜⎜⎝
s′0 s′q

l1

0 s′q
2l1

0 · · · s′q
(h−1)l1

0

s′1 s′q
l1

1 s′q
2l1

1 · · · s′q
(h−1)l1

1
...

...
...

. . .
...

s′h−1 s′q
l1

h−1 s′q
2l1

h−1 · · · s′q
(h−1)l1

h−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c0
c1
...

ch−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c′0s

′
0

c′1s
′
0

...
c′h−1s

′
h−1

⎞⎟⎟⎟⎠ .(4)

Now, {s0, s1, s2, . . . , sh−1} are linearly independent over Fql1 since Vj = ⊕h−1
i=0 siFql1 .

Thus, {s′0, s′1, s′2, . . . , s′h−1} are also linearly independent over Fql1 ⇒ the h×h matrix
in (4) is nonsingular, and thus there exists a unique solution of (4) for
c0, c1, . . . , ch−1.

Lemma 4.5. Let αi , 1 ≤ i ≤ k, be some elements of Fql with length of conjugacy
classes li , i = 1, . . . , k, respectively. Suppose l′ = lcm(l1, . . . , lk) and σ : Fql′ −→ Fql

is a nonzero Fq-linear map. If σ satisfies σ(αib) = βiσ(b) ∀b ∈ Fql′ for some βi ∈
Fql , i = 1, . . . , k, then there exists an integer j ≥ 0 such that βi = αqj

i for i = 1, . . . k,

and fσ(X) = cXqj for some unique c ∈ Fql .

Proof. Suppose l′i = l′

li
, i = 1, . . . , k. By Lemma 4.4, βi = αqji

i for some nonneg-

ative ji , i = 1, . . . , k. Now, ∃ a unique polynomial fσ(X) of degree < ql
′
. Applying

Lemma 4.4 for each i, we see that σ is induced by fi(X) =
∑l′i−1

hi=0 ci,hi
Xqhili+ji

, where
chi , 0 ≤ hi ≤ l′i − 1, are some unique constants. Since all the polynomials fi(X) are

of degree < ql
′
, they have to be the same. In particular, their smallest degree terms

are the same, and that means, say, j = h1l1 + j1 = · · · = hklk + jk. Now, if there
is any nonzero monomial other than Xqj , then such a monomial is of degree, say,
j′ = h′

1l1 + j1 = · · · = h′
klk + jk. Thus,

(h′
1 − h1)l1 = · · · = (h′

k − hk)lk

⇒ l′ = lcm(l1, . . . , lk)|(h′
1 − h1)l1.

This contradicts the fact that (h′
1 − h1) < l′1 = l′

l1
. Thus, fσ(X) = cXqj for some

unique constant c and αi = βqj

i , i = 1, . . . , k.
By (3) and Lemma 4.5, for a linear G-invariant code, two transform components

cannot be related unless they are in the same cyclotomic residue class. Thus, we have
the following theorem.

Theorem 4.6. Let (xi)
q , i = 1, 2, . . . , k, be the distinct cyclotomic residue

classes. Then for any linear G-invariant code, {Ax|x ∈ (xi)
q} , i = 1, 2, . . . , k, are

unrelated.
Corollary 4.7. Let (xi)

q , i = 1, 2, . . . , k, be the distinct cyclotomic residue
classes. Then, any linear G-invariant code C is

C =

k⊕
i=1

C(xi)q ,(5)

where C(xi)q denotes the subcode of C obtained by restricting all the transform compo-
nents outside (xi)

q to zero.
For quasi-cyclic codes, this gives the primary components of a code [8], and for

cyclic and abelian codes, these subcodes, when nonzero, are minimal cyclic and abelian
codes, respectively.

A nonzero linear G-invariant code is called minimal if it does not have any non-
trivial linear G-invariant subcode. For a minimal G-invariant code, transform com-
ponents in only one cyclotomic residue class (x)q are nonzero and A

x̃
takes values
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from a one-dimensional subspace of F ex
qrx . Since any vector space is a direct sum of

one-dimensional vector spaces, we have the following theorem.
Theorem 4.8. Any G-invariant code is a direct sum of minimal G-invariant

codes.
However, the decomposition of a G-invariant code in terms of some minimal G-

invariant codes is not unique, though for the special case of abelian codes, such a
decomposition (as a direct sum of minimal abelian codes) is unique.

It is known that if (exp(G), q) �= 1, then there are abelian codes on that group,
which cannot be decomposed as a direct sum of minimal abelian codes. If (exp(G), q)
�= 1, then for some k, (exp(Gk), q) �= 1. Then we can take an abelian code on Gk,
which cannot be decomposed as a direct sum of minimal abelian codes. That code
can be padded with zeros in all other orbits to get a G-invariant code, which is not
decomposable as a direct sum of minimal G-invariant codes.

Theorem 4.9 (transform domain characterization). Let G be an abelian group
of permutations with order relatively prime to q. Then a code is G-invariant if and
only if the following hold:

(i) For any x ∈ G, A
x̃

takes values from a subspace of F ex
qrx .

(ii) If x1, . . . , xk are representatives of the distinct cyclotomic residue classes of
G, then A

x̃1
, . . . , A

x̃k
are unrelated.

5. Duals of G-invariant codes. To characterize duals of G-invariant codes,
some generalizations of Euclidean and Hermitian dual codes are needed. Let v =
(v1, . . . , vl) ⊆ F l

q be a vector with each component nonzero. For any two vectors

a,b ∈ F l
q, the v-weighted Euclidean inner product (or Ev-inner product) of a and b

is defined as

Ev(a,b) =

l∑
x=1

vxaxbx.(6)

Similarly, for any v ∈ F l
q, the v-weighted Hermitian inner product, or Hv-inner

product, of a ∈ F l
q2 and b ∈ F l

q2 is defined as

Hv(a,b) =

l∑
x=1

vxaxb
q
x.(7)

When v is an “all-ones” vector, the v-weighted Euclidean inner product and v-
weighted Hermitian inner product reduce to the usual Euclidean and Hermitian inner
products, respectively.

Two vectors are called orthogonal w.r.t. an inner product if the inner product of
the vectors is zero. Two linear codes C1 and C2 are called the dual of each other with
respect to an inner product if C2 is the set of all the vectors which are orthogonal to
every vector in C1. When no inner product is specified, it is assumed to be a Euclidean
inner product. A code is called self-dual when it is the dual of itself.

For any x ∈ G, τx will denote the cardinality of the orbit containing x. For any
residue class x̃, τ

x̃
will denote the ex-tuple with components τy , y ∈ x̃, in the same

order as Ay in A
x̃
. With abuse of notation, τ−1

x̃
will denote the componentwise inverse

(in Fp ⊆ Fq) of τ
x̃
.

Theorem 5.1. For a G-invariant code C, a vector b ∈ FG
q is orthogonal to C if
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and only if ∀a ∈ C,∑
y∈x̃

τ−1
y AyBy−1 = 0 ∀ cyclotomic residue classes (x)q.(8)

Proof. Clearly, b is orthogonal to C if and only if

a ⊥ b∀a ∈ C ⇐⇒
∑
y∈G

ayby = 0 ∀a ∈ C

⇐⇒
∑
y∈G

τ−1
y AyBy−1 = 0 ∀a ∈ C

⇐⇒
rx−1∑
i=0

∑
y∈x̃

τ−1
y AyqiB(yqi)

−1 = 0 for each (x)q, ∀a ∈ C(9)

⇐⇒
rx−1∑
i=0

⎛⎝∑
y∈x̃

τ−1
y AyBy−1

⎞⎠qi

= 0 ”

⇐⇒ TrFqrx /Fq

⎛⎝∑
y∈x̃

τ−1
y AyBy−1

⎞⎠ = 0 ”

⇐⇒
∑
y∈x̃

τ−1
y AyBy−1 = 0 ” .(10)

To get (9), we use the fact that the transform components in different cyclotomic
residue classes are unrelated for a G-invariant code, and to obtain (10) we use the
fact that A

x̃
takes values from a subspace of F ex

qrx .
Note that if (8) is satisfied for a residue class x̃, then it is also satisfied for any

other residue class in the same cyclotomic residue class. Thus, it is sufficient to
consider only one representative residue class in each cyclotomic residue class. When

two residue classes x̃ and x̃−1 are considered, compatible orders are taken in them;
i.e., if we take

A
x̃

=
(
Ax, Ax1

, . . . , Axex−1

)
,

then we also take

A
x̃−1

= (Ax−1 , Ax−1
1
, . . . , Ax−1

ex−1
).

Let {x1, x2, . . . , xl} be a set of representatives of the distinct cyclotomic residue
classes of G. Suppose, for the codes C1 and C2, A

x̃
takes values from Vx and Ux,

respectively. Then Vx and Ux can also be considered linear codes of length ex over
Fqrx . Using Theorem 5.1, the dual code of a G-invariant code can be characterized
as follows.

Theorem 5.2. Two G-invariant codes C1 and C2 are the dual of each other if
and only if for each xi , i = 1, 2, . . . , l, Vxi and Ux−1

i
are the Eτ−1

x̃i

-dual of each other.

5.1. Self-dual G-invariant codes. Let us classify the cyclotomic residue classes
into the following three types:
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1. Type A: Self-inverse cyclotomic residue classes (x)q with x = x−1. In this
case, suppose x = x−1 ∈ Gk, i.e., x2 = 1k. Then either x = 1k or order of Gk is even
⇒ q is odd (since (q, |Gk|) = 1) ⇒ xq = x ⇒ rx = 1.

2. Type B: Self-inverse cyclotomic residue classes (x)q with x �= x−1. In this
case,

x−1 = xqi for some i < rx, i �= 0.

Thus,

x =
(
x−1

)−1
=
(
xqi
)−1

=
(
x−1

)qi
= xq2i ⇒ rx|2i ⇒ 2|rx and i =

rx
2
.

3. Type C: Cyclotomic residue classes (x)q which are not self-inverse, i.e., x−1 �∈
(x)q.

The cyclotomic cosets are also assigned a “type” based on the type of cyclotomic
residue classes they are in. Let us denote the distinct cyclotomic residue classes as

Type A: (x1)
q, . . . , (xi1)

q,

Type B: (y1)
q, . . . , (yi2)

q,

Type C: (z1)
q, (z−1

1 )q . . . , (zi3)
q, (z−1

i3
)q.

Theorem 5.3. Let C be a G-invariant code, where A
x̃i

, A
ỹj

, A
z̃k

, and A
z̃−1
k

take

values from the subspaces Vxi , Vyj , Vzk , and Vz−1
k

, respectively, for i = 1, . . . , i1 , j =

1, . . . , i2 , k = 1, . . . , i3. The code is self-dual if and only if
(i) Vxi

is an Eτ−1

x̃i

-self-dual code for i = 1, . . . , i1.

(ii) Vyj is an Hτ−1

ỹj

-self-dual code for j = 1, . . . , i2.

(iii) Vzk is the Eτ−1

z̃k

-dual code of Vz−1
k

for k = 1, . . . , i3.

Proof. If the code is self-dual, then by Theorem 5.2, Vyj
is the Eτ−1

x̃i

-dual of Vy−1
j

.

Now,

Vyj
is Eτ−1

x̃i

-dual of Vy−1
j

⇐⇒ Vyj
=

{
v ∈ F

eyj

q
ryj

|Eτ−1

x̃i

(v,u) = 0 ∀u ∈ Vy−1
j

}
.

But,

Vy−1
j

=

{(
uq

ryj
2

1 , . . . , uq

ryj
2

eyj

) ∣∣∣∣u ∈ Vyj

}
.

Thus,

Vyj is Eτ−1

x̃i

-dual of Vy−1
j

⇐⇒ Vyj =

{
v ∈ F

eyj

q
ryj

|Hτ−1

x̃i

(v,u) = 0 ∀u ∈ Vyj

}
⇐⇒ Vyj is Hτ−1

ỹj

self-dual.

The rest of the proof follows directly from Theorem 5.2.
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Let NEv(q, l) and NHv(q, l) denote the number of, respectively, Ev-self-dual codes
and Hv-self-dual codes of length l over Fq. Also, let N(q, l) denote the number of
subspaces of F l

q. All these numbers are known [11, 12] when v is all-ones and the
values are as given below.

N(q, l) =

l∑
i=0

i−1∏
j=0

ql − qj

qi − qj
,(11)

NE1(q, l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏ l
2−1
i=1 (qi + 1) for q and l even,

2
∏ l

2−1
i=1 (qi + 1) for q ≡ 1 mod 4, l even,

2
∏ l

2−1
i=1 (qi + 1) for q ≡ 3 mod 4, l is divisible by 4,

0 otherwise,

(12)

NH1(q, l) =

{∏ l
2−1
i=0 (qi+

1
2 + 1), when l is even,

0, otherwise.
(13)

Theorem 5.3 directly gives Theorem 5.4.
Theorem 5.4. The number of self-dual G-invariant codes over Fq is

i1∏
i=1

NE
τ
−1

x̃i

(qrxi , exi)

i2∏
j=1

NH
τ
−1

ỹj

(qryj , eyj )

i3∏
k=1

N(qrzk , ezk),

where the empty product is 1 by convention.
When |G1| ≡ |G2| ≡ · · · ≡ |Gt| mod p, the Eτ−1

x̃i

-duality and Hτ−1

ỹj

-duality are the

same as the Euclidean and Hermitian dualities, respectively. So in that case,

NE
τ
−1

x̃i

(qrxi , exi) = NE1(q
ryj , exi),

NH
τ
−1

x̃i

(qryj , eyj ) = NH1(q
ryj , eyj ).

Example 5.1 (continuation of Example 3.1). In the following, the number of
self-dual G-invariant codes is found for different q s.t. |G1| ≡ |G2| ≡ · · · ≡ |Gt| mod
p.

q ≡ 1 mod 3, q ≡ 4 mod 5, and 3 ≡ 5 mod p (e.g., q = 4): Different types of
cyclotomic residue classes are Type A {11, 12, 13, 14}; Type B {g2

3 , g
2
4 , g

3
3 , g

3
4}, {g3, g4,

g4
3 , g

4
4}; and Type C {g1, g2}, {g2

1 , g
2
2}. So the number of self-dual G-invariant codes

over Fq is NE(q, 4)N(q, 2)(NH(q2, 2))2.
The number of self-dual G-invariant codes over Fq for other values of q can be

calculated similarly as follows.
q ≡ 1 mod 3, q ≡ 1 mod 5, and 3 ≡ 5 mod p (e.g., q = 16): NE(q, 4) (N(q, 2))

3
.

q ≡ 2 mod 3, q ≡ 2 or 3 mod 5, and 3 ≡ 5 mod p (e.g., q = 2, 8): NE(q, 4)NH(q2, 2)
NH(q4, 2).

The values of NEv(q, l) and NHv(q2, l) are not known for arbitrary v. The fol-
lowing theorem allows computation of these quantities for certain cases.

Theorem 5.5. If either all components of v ∈ F l
q are quadratic residues in Fq

or all components are quadratic nonresidues in Fq, then (1) NEv(q, l) = NE(q, l) and
(2) NHv(q2, l) = NH(q2, l).
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Proof. If all the components of v are quadratic nonresidues in Fq, then this
vector can be divided by one of its components to get a scalar multiple of the vector,
in which each component is a quadratic residue. So, it is sufficient to assume that the
components of v are quadratic residues. Suppose v = (v1, . . . , vl) = (s2

1, . . . , s
2
l ).

We shall give a one-to-one correspondence between the Ev-self-dual codes and
the Euclidean self-dual codes to prove the first part of the result. Let U ⊆ F l

q be
an Ev-self-dual code of length l over Fq. Then it will be shown that the subspace

W
�
= {(s1a1, . . . , slal)|a = (a1, . . . , al) ∈ V } is a Euclidean self-dual code. Suppose

(s1a1, . . . , slal), (s1b1, . . . , slbl) ∈ W . Then,
∑l

i=1 viaibi = 0 ⇒
∑l

i=1(siai)(sibi) = 0.
Thus, any two vectors in W are orthogonal w.r.t. the Euclidean inner product, and
since the dimension of W is the same as the dimension of V , which is l

2 , W is a
Euclidean self-dual code. The second part follows similarly.

Corollary 5.6. If G is such that |G1| ≡ · · · ≡ |Gt| mod p and there is a self-
inverse cyclotomic coset [x]q ⊆ G with ex odd, then there is no self-dual G-invariant
code over Fq.

Proof. Both NE1(q
rx , ex) and NH1(q

rx , ex) are 0 when ex is odd, and thus the
result follows.

Corollary 5.7. If G is such that |G1| ≡ · · · ≡ |Gt| mod p and the number t of
orbits is odd, then there is no self-dual G-invariant code.

Proof. The result follows by applying Corollary 5.6 to the cyclotomic residue class
{0j |j = 1, . . . , t}.

6. Minimum distance of G-invariant codes. Tanner used a BCH-like ar-
gument [14] to estimate minimum distance bounds from the parity check equations
over an extension field. The same concept was used to get minimum distance bounds
for quasi-cyclic codes from the transform domain description of Fq-linear cyclic codes
over Fqm [4]. A natural generalization of the results is given here. This can be used
to guarantee some minimum distance by viewing the code as a shortened code of
an abelian code. For s vectors v1,v2, . . . ,vs over Fqr of lengths n1, n2, . . . , ns, re-
spectively, let v1 � v2 � . . . � vs denote the n1 × n2 × · · · × ns array, known as the
Kronecker product of v1,v2, . . . ,vs, with (i1, i2, . . . , is)th element v1,i1v2,i2 . . . vs,is .
The following theorem is available in [4] for the special case of s = 1. Here, power of a
vector will mean the componentwise power, and Il will denote the set {0, 1, . . . , l−1}.

Theorem 6.1. Let r be an arbitrary positive integer and the components of
each of the vectors v1,v2, . . . ,vs of lengths n1, n2, . . . , ns, respectively, be nonzero
and distinct. If the components of a code C can be arranged in an n1 × n2 × · · · × ns

array, and if S is a subset of Isqr−1 such that for each k = (k1, . . . , ks) ∈ S, the array

vk1
1 � vk2

2 � . . . � vks
s is in the span of a set of parity check equations over Fqr , then

the minimum distance of the code is at least that of the s-dimensional cyclic code

Cc =

{
f(X1, . . . , Xs) ∈

Fqr [X1, . . . , Xs]

((Xqr−1
1 − 1), . . . , (Xqr−1

s − 1))
|f(βk1 , . . . , βks) = 0

∀(k1, . . . , ks) ∈ S

}
,

where β is a primitive element of Fqr .
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Proof. Suppose vl = (vl,0, vl,1, . . . , vl,nl−1) with vl,i = βλl,i , where λl,i �= λl,j for
i �= j , ∀l. For any a ∈ C with weight ωH(a) = d, we construct

a′ =
∑

(j1,...,js)∈Is
qr−1

aj1,...,jsX
j1
1 . . . Xjs

s ∈ Cc

as

a′λ1,i1
,...,λs,is

= ai1,...,is for (i1, . . . , is) ∈ In1
× In2 ,× · · · × Ins ,

a′j1,...,js = 0 when (j1, . . . , js) �= (λ1,i1 , . . . , λs,is) ∀(i1, . . . , is) ∈ In1
× In2

,× · · · × Ins
.

Clearly, ωH(a′) = d. Now,

a ∈ C ⇒
n1−1∑
i1=0

· · ·
ns−1∑
is=0

ai1,...,isv
k1
1,i1

. . . vks
s,is

= 0 ∀ (k1, . . . , ks) ∈ S

⇒
qr−1∑
j1=0

· · ·
qr−1∑
js=0

a′j1,...,jsβ
j1k1 · · ·βisks = 0 ”

⇒ a′ ∈ Cc.

If (x1)
q, . . . , (xk)

q denote the distinct cyclotomic residue classes, then we know
that any G-invariant code C is specified by the subspaces Vx1

, . . . , Vxk
of

F
ex1

qrx1
, . . . , F

exk

q
rxk

,

respectively, from which A
x̃1
, . . . , A

x̃k
take values. Now, each Vx , x = x1, . . . , xk, can

be considered a linear code over Fqrx of length ex. Thus, Vx is determined by a set of
parity check equations. Suppose x̃ = {y1, . . . , yl}, where x = yi for some i and l = ex.

Let
∑l

i=1 ciAyi
= 0 be a parity check equation of Vx. Then,

∑
y∈G

(
l∑

i=1

ciΨ(y, yi)

)
ay = 0.

Clearly, this gives a parity check equation of C over Fqrx . The componentwise con-
jugate vectors of the parity check vectors obtained this way and the vectors in their
span are also parity check vectors of the code.

Although Theorem 6.1 gives a way to get a minimum distance bound of any linear
code, for which a set of parity check equations over an extension field is known, it
is very difficult to know which arrangement of the code components, in how many
dimensions, and what choice of vl will give the maximum bound on the minimum
distance. Even for the one-dimensional (s = 1) case it is very difficult to choose the
best v1 and arrangement of code components because of the huge number of choices.

7. Quasi-abelian codes. For any abelian group G, the G-quasi-abelian codes
of length t|G| (which are submodules of (FqG)

t
) are closed under the action of G

on the coordinates. So such codes are invariant under the coordinate permutations
induced by the elements of G. However, this case has a more organized structure
in that all the orbits of the coordinates under the action of G are of the same size
|G|, and there are t such orbits. This raises the following natural reverse question:
For a given abelian group G of permutations on code coordinates, when can we view
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the G-invariant codes as G-quasi-abelian codes? The following theorem answers this
question.

Theorem 7.1. The G-invariant codes are G-quasi-abelian codes, i.e., they can
be viewed as submodules of (FqG)t for some t if and only if |G| = |Gk|∀k.

Proof. The forward implication is obvious. If |G| = |Gk|, then g �→ g(k) is an
isomorphism of G onto Gk. Thus, any G-invariant code can be viewed as a submodule
of (FqG)

t
.

Note that to see the G-invariant codes as G-quasi-abelian codes, Gk1
 Gk2

∀k1,
k2 ∈ It, is not sufficient.

Example 7.1. Consider the group of permutations G = 〈{σ1, σ2}〉 of {1, 2, . . . , 54},
where σ1 and σ2 are as shown in Figure 5. The solid lines with arrows represent the
cycles of σ1 and the dashed lines with arrows represent the cycles of σ2. The order
of the group G is 81, whereas the two groups G1 and G2 of restricted permutations
are isomorphic to each other and of order 27. So, G-invariant codes cannot be seen
as G-quasi-abelian codes in this case.

2

28 31 34

29

30

32

33

35

36

37 40 43 46 49 52

38 41 44 47 50

39 42 45 48 51

25

26

27

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

22

53

54

Fig. 5. Cycle structures of σ1 and σ2 of Example 7.1.

For G-quasi-abelian codes, we can index the coordinates in different orbits by
copies G1, . . . , Gt of the same group G. Thus, for any element g ∈ G, we have an
element g(i) ∈ Gi for each i. So every residue class is of the form {g(1), . . . , g(t)}.
We’ll denote it by g̃ instead of g̃(i).

If, for a G-quasi-abelian code, symbols in some orbits form a set of information
symbols and the symbols in the other orbits are the parity check symbols, then the
code is called a systematic G-quasi-abelian code. For a systematic G-quasi-abelian
code C ⊆ (FqG)

t
of dimension k|G| (k ≤ t), without loss of generality we can assume

that the first k orbits are information symbols and the rest are parity check symbols.
Then there exist some cl,j ∈ FqG , l = 1, . . . , t − k, , j = 1, . . . , k, such that each
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codeword is of the form⎛⎝a1,a2, . . . ,ak,

k∑
j=1

ajc1,j ,

k∑
j=1

ajc2,j , . . . ,

k∑
j=1

ajct−k,j

⎞⎠ ∈ (FqG)
t
.

If the DFTs of aj and ci,j are denoted by Aj and Ci,j , respectively, then each code-
word in the transform domain is of the form⎛⎝A1,A2, . . . ,Ak,

k∑
j=1

Aj � C1,j ,

k∑
j=1

Aj � C2,j , . . . ,

k∑
j=1

Aj � Ct−k,j

⎞⎠ ∈ (FqG)
t
,

where � represents the componentwise product.

7.1. Decoding of systematic quasi-abelian codes. For a systematic G-
quasi-abelian code with one information orbit, there are cj ∈ FqG , j = 1, . . . , t − 1,
such that every codeword is of the form (a, c1a, c2a, . . . , ct−1a). For quasi-cyclic
codes, i.e., for cyclic G and when cj is a unit in FqG for j = 1, . . . , t − 1, Karlin [7]
used alternate syndromes based on cj , j = 1, . . . , t − 1, and their inverses to gain
considerable reduction in decoding operations. In the following, Karlin’s approach is
extended for systematic G-quasi-abelian codes with multiple information orbits. This
is a two-step generalization of Karlin’s algorithm: from quasi-cyclic codes to quasi-
abelian codes and from one information orbit, i.e., one-generator codes to multiple
generator codes.

For a systematic G-quasi-abelian code C ⊆ (FqG)
t

of dimension k|G| (k ≤ t),
there exist some cl,j ∈ FqG , l = 1, . . . , t − k, j = 1, . . . , k, such that each codeword

is of the form a = (a1,a2, . . . ,ak,ak+1, . . . ,at) ∈ (FqG)
t
, where ak+i =

∑k
j=1 ajci,j .

We restrict our attention to the case where ci,j , i = 1, . . . , t− k, j = 1, . . . , k, are such
that any k × k submatrix of the transposed generator matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

c1,1 c1,2 · · · c1,k

c2,1 c2,2 · · · c2,k

...
...

. . .
...

ct−k,1 ct−k,2 · · · ct−k,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is invertible over FqG. That is, any k orbits form a set of information symbols. For
any subset X ⊆ [1, t], the |X| × k submatrix comprising the corresponding rows of M
is denoted by MX . Similarly, aX will denote the vector of length |X| comprising the
components ai ∈ FqG , i ∈ X. We denote the complement [1, t] \X by X̄. Thus, if
we know k components of a codeword a, i.e., aX for some X of size k, then we can
solve uniquely for the others as aX̄ = MX̄M−1

X aX .
Suppose a = (a1,a2, . . . ,at) is the transmitted codeword and the received vector

is a′ = (a′
1,a

′
2, . . . ,a

′
t). Let e = (e1, e2, . . . , et) = a′ − a denote the error vector.

Suppose the code’s known minimum distance is 2l + 1 and a vector is received with
at most l errors, that is, the Hamming weight of the error,

∑t
i=1 wtH(ei) ≤ l. Then
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the transmitted vector is the only vector of the form⎛⎝a1,a2, . . . ,ak,

k∑
j=1

ajc1,j ,

k∑
j=1

ajc2,j , . . . ,

k∑
j=1

ajct−k,j

⎞⎠
having distance from the received vector ≤ l.

Given a received vector a′, for each X ⊆ [1, t] of size k a syndrome SX =
MX̄M−1

X a′
X + a′

X̄
= MX̄M−1

X (aX + eX) + aX̄ + eX̄ = MX̄M−1
X eX + eX̄ can be

computed. Thus, given eX , eX̄ can be calculated as eX̄ = SX −MX̄M−1
X eX . Now,

if the error is of weight less than l, then there is at least one subset X of size k such
that the weight of eX is at most �kl

t �. Thus, if we presume an eX of weight at most

�kl
t �, and wtH

(
eX , SX −MX̄M−1

X eX
)
≤ l, then eX and eX̄ = SX −MX̄M−1

X eX give
the actual error.

Now, any eX ∈ (FqG)|X| can be considered as a vector of length |X||G| over

Fq. If e
(1)
X , e

(2)
X ∈ (FqG)|X| are such that e

(1)
X = e

(2)
X g for some g ∈ G, then we call

them equivalent. Let us call the equivalence classes the G-quasi-abelian equivalence
classes. All the elements of an equivalence class have the same Hamming weight.
If we compute MX̄M−1

X eX for one representative of an equivalence class, then for
any e′X = eXg in the same equivalence class, MX̄M−1

X e′X = gMX̄M−1
X eX can be

computed from MX̄M−1
X eX just by permuting its components.

Using these concepts, the decoding algorithm can be performed as follows.
1. For each subset X ⊆ [1, t] of size k calculate SX .
2. For i = 0 to �kl

t �
3. For each subset X ⊆ [1, t] of size k
4. For each G-quasi-abelian equivalence class of Hamming weight i, take a rep-

resentative eX . Compute MX̄M−1
X eX .

5. For each g ∈ G
6. Compute eX̄ = SX − gMX̄M−1

X eX
7. Check if Hamming weight of eX̄ is less than or equal to t − i. If so, take

(eX , eX̄) as the error and quit. Otherwise, continue with the loops.
The number of syndromes (in (FqG)t−k) calculated by this algorithm is

(
t
k

)
. If k = 1

and G is cyclic, then it specializes to the algorithm proposed by Karlin [7] and Heijnen
and van Tilborg [6] for decoding systematic quasi-cyclic codes with a single row of
circulants in the generator matrix, i.e., one-generator systematic quasi-cyclic codes.
For t = 2, it further specializes to the single parity circulant case.

8. Discussion. The class of codes considered in this paper is a generalization
of cyclic codes, quasi-cyclic codes, abelian codes, and quasi-abelian codes. All these
special families of codes are defined as codes closed under one or more permutations
of the code components. The algebraic structures of these special families of codes
were investigated by different authors and, in all the cases, there seemed to exist some
common structure. It is shown in this paper that such structures are not specific to
those codes, but these structures are present in the family of G-invariant codes for
any abelian group G of permutations with order of G relatively prime to q.

Also, a twofold extension of Karlin’s decoding algorithm for quasi-cyclic codes is
given. It is an extension from the case of one-generator systematic quasi-cyclic codes
to arbitrary systematic quasi-cyclic codes and also from the case of quasi-cyclic codes
to quasi-abelian codes. However, since the algebraic structure of G-invariant codes for
any arbitrary abelian G (with order relatively prime to q) is only as complex as that
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of quasi-cyclic codes and quasi-abelian codes, it would be interesting to see whether
this decoding algorithm can be extended to cover this general class of codes.

The results of section 5 give as special cases all the results of [9] regarding existence
and enumeration of self-dual quasi-cyclic codes. Theorem 5.4 gives the number of self-
dual G-invariant codes in terms of the number of weighted self-dual codes and weighted
Hermitian self-dual codes. Theorem 5.5 enables computation of these numbers in
terms of the known numbers for some special cases of weight vectors. It remains an
open problem to compute the values of NEv(q, l) and NHv(q, l) for arbitrary weight
vector v, and thus enable computation of the number of self-dual G-invariant codes
for arbitrary abelian group G of permutations.

Acknowledgments. The authors are very grateful to the anonymous referees
for their very careful reading of the manuscript and for their constructive comments
towards improving the final version.
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IMPROVED COMPACT VISIBILITY REPRESENTATION OF
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Abstract. Let G be an n-node planar graph. In a visibility representation of G, each node of G
is represented by a horizontal line segment such that the line segments representing any two adjacent
nodes of G are vertically visible to each other. In the present paper we give the best known compact
visibility representation of G. Given a canonical ordering of the triangulated G, our algorithm draws
the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained
from Schnyder’s realizer for the triangulated G yields a visibility representation of G no wider than⌊

22n−40
15

⌋
. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for

four-connected components and four-block trees required by the best previously known algorithm of

Kant. Our result provides a negative answer to Kant’s open question about whether
⌊

3n−6
2

⌋
is a

worst-case lower bound on the required width. Also, if G has no degree-three (respectively, degree-

five) internal node, then our visibility representation for G is no wider than
⌊

4n−9
3

⌋
(respectively,⌊

4n−7
3

⌋
). Moreover, if G is four-connected, then our visibility representation for G is no wider than

n − 1, matching the best known result of Kant and He. As a by-product, we give a much simpler
proof for a corollary of Wagner’s theorem on realizers due to Bonichon, Le Saëc, and Mosbah.

Key words. visibility representation, planar graph algorithm, graph drawing, realizer, canonical
ordering
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1. Introduction. In a visibility representation of a planar graph G, the nodes of
G are represented by nonoverlapping horizontal line segments, called node segments,
such that the node segments representing any two adjacent nodes of G are vertically
visible to each other. (See Figure 1.1.) Computing compact visibility representations
of planar graphs is not only fundamental in algorithmic graph theory [31, 9] but also
practically important in VLSI layout design [27].

Without loss of generality the input G can be assumed to be an n-node plane
triangulation. Following the convention of placing the endpoints of node segments on
the grid points, one can easily see that any visibility representation of G can be made
no higher than n − 1. Otten and van Wijk [25] gave the first known algorithm for
visibility representations of planar graphs, but no width bound was provided for the
output. Rosenstiehl and Tarjan [26], Tamassia and Tollis [30], and Nummenmaa [24]
independently proposed O(n)-time algorithms whose outputs are no wider than 2n−5.
Kant [15, 17] improved the required width to at most

⌊
3n−6

2

⌋
by decomposing G into

its four-connected components and then combining the visibility representations of
the four-connected components into a visibility representation of G. Kant left open
the question of whether the upper bound

⌊
3n−6

2

⌋
on the width is also a worst-case

lower bound. In the present paper we provide a negative answer to Kant’s question by

∗Received by the editors January 4, 2003; accepted for publication (in revised form) November
22, 2003; published electronically July 2, 2004. A preliminary version of this paper appeared in
Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, H. Alt and
M. Habib, eds., Lecture Notes in Comput. Sci. 2607, Springer-Verlag, Berlin, 2003, pp. 14–25.

http://www.siam.org/journals/sidma/18-1/42074.html
†Institute of Information Science, Academia Sinica, Taiwan, Republic of China (hil@iis.sinica.

edu.tw, www.iis.sinica.edu.tw/˜hil/). The research of the second author was supported in part by
NSC grants NSC-91-2213-E-001-028 and NSC-92-2213-E-001-006.

19



20 CHING-CHI LIN, HSUEH-I LU, AND I-FAN SUN

4

9

1

2

3

6

8

7 5

10

12

11

(b)(a)

11

10
12

2

1

7
6

3

4
5

9
8

Fig. 1.1. A plane triangulation and one of its visibility representations.

presenting an algorithm that always produces a visibility representation for G whose
width is at most

⌊
22n−40

15

⌋
.

Our algorithm, just like that of Nummenmaa [24], is based upon the concept
of canonical ordering for plane triangulations. Specifically, our algorithm draws G
incrementally in a greedy manner according to any given canonical ordering of G. An
arbitrary canonical ordering of G may yield a visibility representation with width 2n−
O(1). Rosenstiehl and Tarjan [26] even conjectured that selecting a node ordering to
minimize the area of the corresponding visibility representation is NP-hard. We show
that the required width can be bounded by

⌊
22n−40

15

⌋
using the best one out of the three

canonical orderings obtained from Schnyder’s realizer [29, 28] for G. Our algorithm
can easily be implemented to run in O(n) time, bypassing the complicated subroutines
of finding four-connected components and four-block trees [14] required by the best
previously known algorithm of Kant [15, 17]. Also, for the case that G has no degree-
three (respectively, degree-five) internal node, the output visibility representation of
our algorithm is no wider than

⌊
4n−9

3

⌋
(respectively,

⌊
4n−7

3

⌋
). Moreover, for the case

that G is four-connected, the output visibility representation of our algorithm is no
wider than n− 1, matching the best known result due to Kant and He [18, 19].

Schnyder’s realizer [29, 28] for plane triangulation was invented for obtaining com-
pact straight-line drawing of plane graphs. Researchers [5, 7, 8, 11, 12, 13, 16, 19]
also obtained similar and other graph-drawing results using the concept of canon-
ical ordering for triconnected plane graphs. Nakano [23] attempted to explain the
hidden relation between these two concepts. Recently, Chiang, Lin, and Lu [4] pre-
sented a new algorithmic tool, the orderly spanning tree, that extends the concept
of st-ordering [10] (respectively, canonical ordering and realizer) for plane graphs not
required to be biconnected (respectively, triconnected and triangulated). The orderly
spanning tree has been successfully applied to obtain improved results in compact
graph drawing [4, 20, 3], succinct graph encoding with query support [4, 6], and de-
sign of compact routing tables [22]. Recently, Bonichon, Gavoille, and Hanusse [1]
obtained the best known upper bounds on the numbers of distinct labeled and un-
labeled planar graphs based on the well orderly spanning tree, a special case of the
orderly spanning tree. As a matter of fact, we first successfully obtained the results of
this paper using the orderly spanning tree and then found out that Schnyder’s realizer
suffices.
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Our analysis requires an equality (see Lemma 2.3) relating the number of internal
nodes in the three trees of a realizer R of G and the number of faces of G intersecting
with all three trees of R. The equality was proved very recently by Bonichon, Le Saëc,
and Mosbah [2] as a corollary of the so-called Wagner’s theorem [32] on Schnyder’s
realizers. Their proof requires a careful case analysis for 32 different configurations.
As a by-product, we give a much simpler proof for the equality without relying on
Wagner’s theorem on realizers.

The remainder of the paper is organized as follows. Section 2 gives the preliminar-
ies. Section 3 describes and analyzes our algorithm. Section 4 discusses the tightness
of our analysis. Section 5 concludes the paper with an open question.

2. Preliminaries. Let G be the input n-node plane triangulation, a planar graph
equipped with a fixed planar embedding such that the boundary of each face is a
triangle. Clearly, G has 2n − 5 internal faces. Let I consist of the internal nodes of
G. Let R = (T1, T2, T3) be a realizer of G, which is obtainable in O(n) time [28, 29].
That is, the following properties hold for R:

• The internal edges of G are partitioned into three edge-disjoint trees T1, T2,
and T3, each rooted at a distinct external node of G.

• The neighbors of each node v in I form six blocks U1, D3, U2, D1, U3, and
D2 in counterclockwise order around v, where Uj (respectively, Dj) consists
of the parent (respectively, children) of v in Tj for each j ∈ {1, 2, 3}.

For each index i ∈ {1, 2, 3}, let �i be the node labeling of G obtained from the counter-
clockwise preordering of the spanning tree T̄i of G consisting of Ti plus the two external
edges of G that are incident to the root of Ti. (Each T̄i is, as a matter of fact, an
orderly spanning tree [4] of G.) Let �i(v) be the label of v with respect to �i. For exam-
ple, Figure 2.1 shows a realizer of the plane triangulation shown in Figure 1.1(a) with
labeling �1. The counterclockwise preordering of T̄2 is 2, 12, 10, 11, 5, 9, 4, 3, 6, 8, 7, 1;
and that of T̄3 is 12, 1, 7, 8, 11, 10, 9, 6, 3, 5, 4, 2.

Lemma 2.1 (see, e.g., [4, 24, 6]). The following properties hold for each index
i ∈ {1, 2, 3}, where u1 and u2 are the nodes with �i(u1) = 1 and �i(u2) = 2.

1. The subgraph Gk of G induced by the nodes v with 1 ≤ �i(v) ≤ k is bicon-
nected. The boundary of Gk’s external face is a cycle Ck containing u1 and
u2.

2. If v is the node with �i(v) = k, then v is on Ck, and the neighbors of v in
Gk−1 form an interval with at least two nodes on the path Ck−1 −{(u1, u2)}.

3. The neighbors of v in G form the following four blocks in counterclockwise
order around v: (1) the parent of v in Ti, (2) the node set consisting of the
neighbors u in G− Ti with �i(u) < �i(v), (3) the children of v in Ti, and (4)
the node set consisting of the neighbors u in G− Ti with �i(u) > �i(v).

A labeling � of G that labels the external nodes by 1, 2, and n and satisfies
Lemmas 2.1(1) and (2) is a canonical ordering of G (e.g., see [24, 16, 8]). Therefore,
�1, �2, and �3 are all canonical orderings of G.

For each node v of G, let deg(v) denote the degree of v, i.e., the number of
neighbors of v in G. For each index i ∈ {1, 2, 3}, let deg−i (v) (respectively, deg+

i (v))
be the number of neighbors u of v in G with �i(u) < �i(v) (respectively, �i(u) > �i(v)).
Clearly, we have deg(v) = deg−i (v) + deg+

i (v). For each node v in I, let

scorei(v) = min{deg+
i (v),deg−i (v)};

score(v) = score1(v) + score2(v) + score3(v).
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Fig. 2.1. A realizer for the plane triangulation shown in Figure 1.1(a), where (3, 5, 9) and
(6, 9, 8) are the only two cyclic faces with respect to this realizer. The orientation of each edge is
from a child to its parent in the corresponding tree.

For example, if �1 is the labeling obtained from the tree T1 consisting of the thick edges
shown in Figure 2.1, then we have score1(v8) = 2, score1(v9) = 1, score1(v10) = 2,
and score1(v11) = 1. Let

scorei =
∑
v∈I

scorei(v).

Let [π] be 1 (respectively, 0) if condition π is true (respectively, false). Let Li

consist of the leaves of Ti. For each node v ∈ I, let

int(v) =

3∑
i=1

[v �∈ Li].

Let B consist of the internal nodes v of G with int(v) = 2 and deg(v) = 5. We have
the following lemma.

Lemma 2.2. For each node v in I, we have score(v) ≥ 3 + 2 · int(v) − [v ∈ B].
Proof. By the definition of realizer and Lemma 2.1(3), it is clear that

score1(v) = min{|D3| + 2, |D1| + |D2| + 1};
score2(v) = min{|D1| + 2, |D2| + |D3| + 1};
score3(v) = min{|D2| + 2, |D1| + |D3| + 1}.

We may assume without loss of generality that |D1| ≥ |D2| ≥ |D3| ≥ 0. One can verify
the lemma by examining the inequality for all possible values {0, 1, 2, 3} of int(v). For
example, if v ∈ B, then we know score(v) = 2 + 2 + 2 = 6 by |D1| = |D2| = 1 and
|D3| = 0. Also, if int(v) = 2 and v �∈ B, then we have score(v) ≥ 2 + 2 + 3 = 7
by observing |D1| ≥ 2, |D2| ≥ 1, and |D3| = 0. The other cases can be verified
similarly.

An internal face of G is cyclic if its boundary intersects with all three trees T1, T2,
and T3. An internal face of G is acyclic if it is not cyclic. For example, in Figure 2.1,
faces (3, 5, 9) and (6, 9, 8) are cyclic; all the other internal faces are acyclic. Let c
be the number of cyclic faces of G. The following lemma was recently proved by
Bonichon, Le Saëc, and Mosbah [2] in an equivalent form. Our alternative proof is
much simpler.
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Fig. 2.2. Three different kinds of nodes v in B.
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Fig. 2.3. If u1 and u2 are two nodes of B that are adjacent in G, then at least one of faces
(u1, u2, u3) and (u1, u2, u4) is cyclic.

Lemma 2.3 (see [2]).
∑

v∈I int(v) = n + c− 4.
Proof. For each index i ∈ {1, 2, 3}, let inti be the number of internal nodes in Ti.

Clearly,
∑

v∈I int(v) =
∑3

i=1 inti−3. For each node v ∈ I, let pi(v) denote the parent
of v in Ti. For each v ∈ Li, one can verify that Fi(v) = (v, pj(v), pk(v)) is an acyclic
face of G, where {i, j, k} = {1, 2, 3}. By the orientations of the three edges, one can
see that for each acyclic face F , there is exactly one pair (i, v) such that v ∈ Li and
F = Fi(v). Since G has 2n− 5 internal faces, the bijection between leaves and acyclic

faces shows
∑3

i=1 |Li| = 2n− c− 5. Therefore,
∑3

i=1 inti = 3(n− 2)− (2n− c− 5) =
n + c− 1.

Lemma 2.4.

1. If G has no degree-three internal nodes, then
∑3

i=1 scorei ≥ 5n− 15.

2. If G has no degree-five internal nodes, then
∑3

i=1 scorei ≥ 5n− 17.

3. If G is unrestricted, then
∑3

i=1 scorei ≥ 23n
5 − 16.

Proof. By Lemma 2.2 we know that if node v in I has degree more than 3, then
score(v) ≥ 5. By |I| = n−3, statement 2.4 holds. It follows from Lemmas 2.2 and 2.3

that
∑3

i=1 scorei =
∑

v∈I score(v) ≥
∑

v∈I 3 + 2 · int(v) − [v ∈ B] = 3(n− 3) + 2(n +

c − 4) − |B|. Therefore,
∑3

i=1 scorei ≥ 5n + 2c − |B| − 17, which implies that (a)
statement 2.4 holds (by observing that each node of B has degree five in G), and (b)
statement 2.4 can be proved by ensuring |B| − 2c ≤ 2n

5 − 1 as follows.
Let k be the number of connected components in the subgraph G[B] of G induced

by B. Since each of those 2n−5 internal faces of G is incident to at most one connected
component G[B], and each connected component in G[B] is incident to at least five
internal faces of G, we have 5k ≤ 2n− 5.

Let u1 and u2 be two adjacent nodes of B such that (u1, u2) is an incoming edge
of u1. (That is, u1 is the parent of u2 in some tree Ti of R.) Let (u3, u1, u2) and
(u4, u1, u2) be the two faces of G that contain edge (u1, u2). One can see that at least
one of faces (u1, u2, u3) and (u1, u2, u4) is cyclic by verifying, with the assistance of
Figure 2.2, that (a) both edges (u1, u3) and (u1, u4) have to be outgoing from u1,
and (b) at least one of edges (u3, u2) and (u4, u2) is incoming to u2, as illustrated by
Figure 2.3. Let F be an arbitrary spanning forest of G[B], which clearly has |B| − k
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edges. Each cyclic face contains at most two edges of F , and each edge of F is incident
to at least one cyclic face. Thus, we have |B| − k ≤ 2c.

3. Our algorithm. Let �i be a given canonical ordering of the input n-node
plane triangulation G. For each k = 1, 2, . . . , n, let vk be the node with �i(vk) = k
and let Gk be the subgraph of G induced by v1, v2, . . . , vk. Clearly, G3 is a triangle and
v1, v2, and vn are the external nodes of G. Our algorithm initially produces a visibility
representation of G3, as shown in Figure 3.1, and then extends that into a visibility
representation of G = Gn in n− 3 iterations as follows: For each k = 4, 5, . . . , n, the
(k − 3)rd iteration obtains a visibility representation of Gk from that of Gk−1 by

1. extending the visibility representation of Gk−1 in a greedy manner until the
node segment of each neighbor of vk is visible from above, and then

2. placing the shortest possible node segment representing vk from above that
yields a visibility representation of Gk.

For example, if G is as shown in Figure 1.1(a) and �i is as specified by the node labels,
then the visibility representations for G3, G4, . . . , G11 are as shown in Figure 3.1, and
the resulting visibility representation of G = G12 is as shown in Figure 1.1(b). The
correctness of our algorithm follows from the fact that �i is a canonical ordering of G,
which therefore satisfies Lemma 2.1(1)).

A naive implementation of our algorithm takes O(n2) time. However, it is not
difficult to implement our algorithm to run in O(n) time using basic data structures
like doubly linked lists to support O(1)-time operations such as determining whether
a node segment is visible from above and inserting a new column of grid points. More
specifically, one can represent each column of grid points by an object in the data
structure. A sequence of consecutive columns can then be linked together through a
doubly linked list such that the column to the right (respectively, left) of column c can
be accessed by right col(c) (respectively, left col(c)). Clearly, one easily can insert a
new column of grid points between columns c and right col(c) in O(1) time by calling
subroutine insert column(c). For each node vi of G, we use left end(i) (respectively,
right end(i)) to specify the column that contains the left (respectively, right) end of
the node segment for vi. We also use left cover(i) (respectively, right cover(i)) to
specify how far from the left (respectively, right) the node segment for vi is covered
by other node segments from above. Clearly, whether the node segment for vi is
visible from above can be determined in O(1) time by the condition left cover(i) �=
left col(right cover(i)). Let leftmost nbr(i) (respectively, rightmost nbr(i)) denote the
leftmost (respectively, rightmost) neighbor of node vi on the boundary of the external
face of Gi−1. A linear-time implementation of the greedy algorithm is as shown in
Figure 3.2.

Theorem 3.1. Any n-node plane triangulation G with n > 3 has an O(n)-time
obtainable visibility representation whose width is at most

1.
⌊

4n−9
3

⌋
if G has no degree-three internal nodes;

2.
⌊

4n−7
3

⌋
if G has no degree-five internal nodes; or

3.
⌊

22n−40
15

⌋
if G is unrestricted.

Proof. By Lemma 2.4 and the fact that a realizer is obtainable in linear time, it
suffices to show that the width of the output visibility representation by our algorithm
is at most 3n − 8 −

∑
v∈I scorei(v). For each k = 4, 5, . . . , n, consider the iteration

that produces the visibility representation of Gk. Let vj be any neighbor of vk in
Gk. In the first half of the iteration, if the node segment of vj does not contain any
grid point that is visible from above, then a new column of grid points is inserted
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Fig. 3.1. The intermediate steps of our algorithm for obtaining the visibility representation for
the plane triangulation shown in Figure 1.1(a) with respect to the canonical ordering specified by its
node labels.

to ensure that the node segment for vj is visible from above; otherwise, the number
of grid points on the node segment of vj that are visible from above stays the same.
In the second half of the iteration, if vk is the neighbor of vj with the largest index,
then the node segment of vj can no longer be visible from above for the remaining
iterations of our algorithm; otherwise, the number of grid points on the node segment
of vj that are visible from above decreases by exactly one. Moreover, the node segment
of vk contains at least deg−i (vk) grid points that are visible from above in the resulting
visibility representation of Gk. Therefore, in the first half of those deg+

i (vk) iterations,
one for each neighbor v� of vk with � > k, at most deg+

i (vk)− scorei(vk) new columns
of grid points are inserted. Note that n > 3 implies scorei(v3) ≥ 1. It follows
that the resulting visibility representation for Gn = G has width at most 2 + (−3 +∑n−1

k=1 deg+
i (vk)) − (1 +

∑n−1
k=3 scorei(vk)) ≤ 3n− 8 −

∑
v∈I scorei(v).
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algorithm greedy

1 initialization;
2 for i = 3 to n do {
3 for each neighbor vj of vi in Gi do
4 if left cover(j) = left col(right cover(j)) then
5 insert column(left cover(j));
6 let left end(i) = left col(right cover(leftmost nbr(i)));
7 let right end(i) = right col(left cover(rightmost nbr(i)));
8 let left cover(i) = left col(left end(i));
9 let right cover(i) = right col(right end(i));
10 let right cover(leftmost nbr(i)) = left col(right cover(leftmost nbr(i)));
11 let left cover(rightmost nbr(i)) = right col(left cover(rightmost nbr(i)));
12 }
13 assign coordinates;

subroutine initialization

1 create two columns leftmost col and rightmost col with
left col(rightmost col) = leftmost col and
right col(leftmost col) = rightmost col;

2 call insert column(leftmost col) three times;
3 let temp col = left cover(1) = leftmost col;
4 let temp col = right col(temp col);
5 let left end(1) = left cover(2) = temp col;
6 let temp col = right col(temp col);
7 let right end(1) = right cover(1) = left end(2) = temp col;
8 let temp col = right col(temp col);
9 let right end(2) = temp col;
10 let right cover(2) = rightmost col;

subroutine assign coordinates

1 let x(leftmost col) = 0;
2 let temp col = right col(leftmost col);
3 while temp col �= rightmost col do {
4 let x(temp col) = x(left col(temp col)) + 1;
5 let temp col = right col(temp col);
6 }
7 for i = 1 to n do
8 draw vi between grid points (x(left end(i)), i) and (x(right end(i)), i);

Fig. 3.2. A linear-time implementation of the greedy algorithm.

Remark. As pointed out by an anonymous reviewer, an alternate and possibly
quicker way to see the last inequality in the proof of Theorem 3.1 is by the fact that
the output of our greedy algorithm is no wider than some constant plus

∑
v∈I

max
(
deg+

i (v) − deg−i (v), 0
)

=
∑
v∈I

(
deg+

i (v) − min
(
deg−i (v),deg+

i (v)
))

=
∑
v∈I

(
deg+

i (v) − scorei(v)
)
.
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Fig. 3.3. An example showing that our analysis on the required width is almost tight.

The following result was first obtained by Kant and He [18, 19] and is based upon
their linear-time algorithm for obtaining a canonical ordering �i for any n-node four-
connected plane triangulation such that deg+

i (v) ≥ 2 and deg−i (v) ≥ 2 hold for n− 4
out of the n−3 internal nodes v of G. We can alternately prove the theorem in a much
simpler way as follows: According to the proof of Theorem 3.1, the width of the output
visibility representation by our algorithm is at most 3n− 8−

∑
v∈I scorei(v) ≤ n− 1.

Theorem 3.2 (see [18, 19]). If G is an n-node four-connected plane triangulation,
then there is an O(n)-time obtainable visibility representation for G whose width is at
most n− 1.

4. Near tightness of our analysis. The following lemma shows that our anal-
ysis on the required width is almost tight.

Lemma 4.1. For any n > 3, there exists an n-node plane triangulation Hn such
that any visibility representation of Hn obtained by our algorithm with respect to any
canonical ordering of Hn has width at least

⌊
4n−9

3

⌋
.

Proof. We prove the lemma by induction on n. Let H3 (respectively, H4 and H5)
be a plane triangulation with 3 (respectively, 4 and 5) nodes. Clearly, any visibility
representation of H3 (respectively, H4 and H5) has width at least 2 (respectively,
3 and 4), so the lemma holds for n = 3, 4, 5. For each index k ≥ 3, let Hk+3 be
the (k + 3)-node plane triangulation obtained from Hk by adding three new external
nodes and triangulating the faces as shown in Figure 3.3(a). By Lemma 2.1(1), if �
is a canonical ordering of Hk+3, then the ordering �′ with �′(v) = �(v) − 2 for each
node v of Hk remains a canonical ordering of Hk. As illustrated in Figure 3.3(b),
it is not difficult to see that the visibility representation for Hk+3 produced by our
algorithm with respect to any canonical ordering of Hk+3 is at least four units wider
than that of Hk produced by our algorithm with respect to any canonical ordering of
Hk. Therefore, the lemma is proved.

5. Concluding remarks. Very recently, Zhang and He [33] showed a linear-time
algorithm that produces a visibility representation with height no more than

⌈
15n
16

⌉
.

It would be interesting to see if combining their techniques and ours could reduce the

worst-case area of a visibility representation to significantly less than 22n2

15 − Θ(n).
Whether our upper bound 22n

15 −Θ(1) on the required width is worst-case optimal
remains open. We conjecture that any n-node plane graph G admits an st-ordering
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with which the greedy algorithm produces a visibility representation for G that is no
wider than 4n

3 + O(1). We also believe that the worst-case width could be further
reduced to n + O(1) if the plane embedding of the input graph could be altered.

Acknowledgment. We thank the anonymous reviewers for their helpful com-
ments.
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Abstract. We give a new proof showing that it is NP-hard to color a 3-colorable graph using
just 4 colors. This result is already known [S. Khanna, N. Linial, and S. Safra, Combinatorica, 20
(2000), pp. 393–415], but our proof is novel because it does not rely on the PCP theorem, while
the known one does. This highlights a qualitative difference between the known hardness result for
coloring 3-colorable graphs and the factor nε hardness for approximating the chromatic number of
general graphs, as the latter result is known to imply (some form of) PCP theorem [M. Bellare, O.
Goldreich, and M. Sudan, SIAM J. Comput., 27 (1998), pp. 805–915].

Another aspect in which our proof is novel is in its use of the PCP theorem to show that 4-
coloring of 3-colorable graphs remains NP-hard even on bounded-degree graphs (this hardness result
does not seem to follow from the earlier reduction of Khanna, Linial, and Safra). We point out that
such graphs can always be colored using O(1) colors by a simple greedy algorithm, while the best
known algorithm for coloring (general) 3-colorable graphs requires nΩ(1) colors. Our proof technique
also shows that there is an ε0 > 0 such that it is NP-hard to legally 4-color even a (1 − ε0) fraction
of the edges of a 3-colorable graph.
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1. Introduction. The graph coloring problem is to assign colors to vertices of
a graph G such that no two adjacent vertices receive the same color; such a coloring
is referred to as a legal coloring of G. The minimum number of colors required to
perform a legal coloring is known as the chromatic number of G and is denoted χ(G).
Graph coloring is a fundamental and extensively studied problem. In addition to its
theoretical significance as a canonical NP-hard problem [17], it also arises naturally
in a variety of applications including register allocation and timetable/examination
scheduling.

Since coloring a graph G with the minimum number χ(G) of colors is NP-hard [17],
we shift our focus to efficiently coloring a graph with an approximately optimum num-
ber of colors. Garey and Johnson [10] proved that it is NP-hard to approximate the
chromatic number within a factor of (2− ε) for any ε > 0. The best known algorithm
for general graphs appears in [14] and colors a graph using a number of colors that is
within a factor of O(n(log log n)2/ log3 n) of the optimum (here and elsewhere, n refers
to the number of vertices in the graph). There is strong evidence that one cannot
do substantially better than this for general graphs, as the recent connection between
probabilistically checkable proofs (PCPs) and hardness of approximations [7, 2, 1]
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has led to strong hardness results for graph coloring also. The first such result was
established by Lund and Yannakakis [20], who proved that chromatic number is hard
to approximate within nε for some constant ε > 0. Feige and Kilian [8], using the
powerful PCP constructions due to H̊astad [15], prove that, unless NP ⊆ ZPP, one
cannot approximate the chromatic number within a factor of n1−ε for any constant
ε > 0.

However, none of these inapproximability results apply to the case when the
input graph is k-colorable for some small constant k. Indeed, better performance
guarantees are known in this case. For instance, a polynomial time algorithm that
colors 3-colorable graphs using Õ(n3/14) colors is known [23, 5, 16, 6]. It is known
that for every constant h, there exists a large enough constant k such that coloring
k-colorable graphs using kh colors is NP-hard [20, 19]; it is, however, not known if
the order of quantifiers above can be reversed. Khanna, Linial, and Safra [19] proved
that it is NP-hard to color a 3-colorable graph using only 4 colors, and to this date
no improvement to this hardness result has been obtained.

Our results. Our main result in this paper is a new proof of the above result of
[19]. Our result is stated formally below.

Theorem 1.1 (main theorem). It is NP-hard to color a 3-colorable graph with
only 4 colors.

The proof of Khanna, Linial, and Safra [19] uses the result that Max Clique is
NP-hard to approximate within a factor of two, a consequence of the PCP theorem [2,
1]. An important distinguishing aspect of our proof is that it does not require the
PCP theorem and only relies on the NP-hardness of the Max Clique problem. The
hardness for 3-colorable graphs is the most intricate of the results in [19] and has not
been improved upon or simplified ever since. Our work represents the most progress
made on this important problem after the result of [19], and we hope our work will
spur further improvements. Not relying on PCP machinery implies that this hardness
result could have been obtained almost three decades ago, long before the arrival of
the PCP theorem. In contrast, the hardness result (for approximating within nε, for
example) for general graph coloring implies some form of PCP [3]; our result therefore
also highlights a qualitative difference between the hardness of general graph coloring
and the hardness of coloring 3-colorable graphs.1

As in essentially all previous reductions showing hardness of graph coloring, our
reduction too starts from the hardness of Independent Set (Max Clique): it
transforms an instance G of Independent Set to an instance H of graph coloring
such that a large independent set in G translates into a small collection of (in our case,
three) independent sets in H, which together cover all vertices in H. But in addition,
our proof is based only on local gadgets and easily leads to the hardness of 4-coloring
even bounded-degree instances of 3-colorable graphs, albeit only by resorting to the
PCP theorem.

Theorem 1.2. There is a constant ∆ such that given a 3-colorable graph with
maximum degree at most ∆, it is NP-hard to color it using just 4 colors.

Note that, since such graphs can be colored using O(1) colors (in fact, (∆ + 1)
colors) by a simple greedy algorithm, while the best algorithm for general 3-colorable

1From a strictly logical point of view, the PCP theorem is true, so every result implies it, including
our hardness result for 4-coloring 3-colorable graphs. When we say a hardness of approximation result
implies a nontrivial PCP, we mean that one can get such a PCP result, via a simple reduction from
the inapproximability result, without going through the steps of the current complicated proof of the
PCP theorem. We hope this does not cause any confusion for the reader.
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graphs uses nΩ(1) colors, this hardness result is stronger than that of Theorem 1.1.
Another strengthening of Theorem 1.1, which the degree-bounded result enables us
to deduce, is the following.

Theorem 1.3. There is a constant ε0 > 0 such that it is NP-hard, given a graph
G, to distinguish between the case when G is 3-colorable and when any 4-coloring of
G miscolors at least an ε0 fraction of its edges.

Both of these results do not seem to follow from the proof technique of [19] and
therefore appear to be new. Note that the latter claim also generalizes the result of
Petrank [22] which shows that there is an ε > 0 such that it is NP-hard to legally
color a (1 − ε) fraction of the edges of a 3-colorable graph using only 3 colors.

Inapproximability results and PCPs. In light of our main result, it is natural
to ask how far nonPCP techniques can go in proving hardness results for coloring 3-
colorable graphs. It turns out that an inapproximability factor of Ω(logn) does imply
a nontrivial PCP verifier for languages in NP. This follows from a result of Blum [4]
(see also [3]), which shows that if coloring a 3-colorable graph using c log n colors is
hard for every constant c, then for every ε > 0, it is hard to approximate Max Clique

within a factor of n1−ε; using the “reversal” of the FGLSS connection presented in
[3], this implies the PCP theorem (in fact a very strong version of it; see [3] for
details).2 However, it seems possible that any o(log n) hardness bound can be proved
for coloring 3-colorable graphs without resorting to PCP techniques.3

Expanding the scope of our investigation, it is natural to ask which inapproxima-
bility results really require PCPs. It is known, for example, that PCPs are inherent
in obtaining strong hardness results for approximating Max Sat, Max Clique,
chromatic number, and vertex cover. Concretely, inapproximability results for these
problems imply, via a simple reduction, a nontrivial PCP verifier for NP languages.
Recent work in [12] and [18] proves strong (in fact near-tight) inapproximability results
for disjoint paths and longest path problems without requiring PCPs; prior results
for these problems always began with the PCP theorem and yet turned out to be
weaker. Together with our result, these raise similar questions about the hardness
results for certain other fundamental problems like set cover, nearest codeword prob-
lem, shortest vector problem, etc. In each of these cases it is interesting to see if a
reverse connection to PCPs exists or if PCPs are only an artifact of the current proof
techniques.

Notation. We use the standard notation to denote graph-theoretic parameters.
For a graph G, we denote by χ(G), α(G), ω(G), and θ(G) the chromatic number of
G, the size of a largest independent set in G, the size of a largest clique in G, and the
clique cover number of G (the minimum number of cliques to cover all the vertices of
G), respectively. Clearly α(G) = ω(Ḡ) and χ(G) = θ(Ḡ), where Ḡ is the complement
of the graph G.

Organization. We present the proof of our main theorem (Theorem 1.1) in
section 2. Section 3 describes the hardness result for bounded-degree 3-colorable
graphs and sketches the proof of Theorem 1.3.

2Since the reduction from 3-coloring to finding large cliques is only a Turing reduction, strictly
speaking, we can only conclude that every language in NP Turing reduces to a language in a certain
PCP class.

3Actually, such a hardness result does imply the existence of very good covering PCPs, a notion
recently introduced in [13] for the purpose of studying minimization problems like coloring. Con-
structing a “good” covering PCP without resorting to the PCP theorem appears very difficult, so
such a PCP-free hardness result for coloring 3-colorable graphs might be hard to come by.
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Fig. 1. High-level structure of each Ti.

2. Proof of the main theorem. We describe a reduction from the Indepen-

dent Set problem. Specifically, we start with instances of the following form: We
are given a graph G along with a partition of the vertices of G into r cliques Ri,
1 ≤ i ≤ r, each with exactly k vertices. Clearly, α(G) ≤ r. It is NP-hard to deter-
mine if α(G) = r on instances with this structure even when the partition into the
Ri’s is given as part of the input. This hardness even holds with k = 3—the standard
reduction for NP-hardness of Independent Set in fact produces such instances [11].
Thus the proof of Theorem 1.1 only requires us to consider the case k = 3. However,
we will present here a construction for any arbitrary k. This is because the starting
point for Theorems 1.2 and 1.3 are Independent Set instances that are generated
by PCP constructions, and k is a suitably large constant in this case.

Starting with such an instance G, we construct (in polynomial time) a graph H
which will have the property that χ(H) = 3 if α(G) = r and χ(H) ≥ 5 otherwise.
This will clearly prove Theorem 1.1.

2.1. Overview of the reduction. Let G be a graph with vertices partitioned
into r cliques Ri, 1 ≤ i ≤ r, with exactly k vertices in each clique; i.e., let Ri =
{vi,0, . . . , vi,k−1} for 1 ≤ i ≤ r. The graph H is comprised of r “tree-like” structures,
say T1, . . . , Tr, one for each clique Ri of G, together with a specific interconnection
pattern between the leaves of the different tree structures based on the adjacency of
vertices in G. The following are two key properties satisfied by the construction of
the Ti’s:

• Any 4-coloring of a Ti can be interpreted as “selecting” a unique vertex vi,p
in the clique Ri of graph G (section 2.2).

• The edges between the Ti’s are such that no 4-coloring is feasible if 2 vertices
that are adjacent in G are selected from 2 different trees (section 2.3).

In other words, any 4-coloring of H can be interpreted as selecting a vertex in
each of the r cliques Ri of G such that the selected vertices induce an independent
set of size r in G, ensuring that if α(G) < r, then in fact χ(H) > 4. The other part,
namely, that H is 3-colorable if α(G) = r, will also be easily seen to hold for our
reduction.

2.2. The structure of each Ti. Each Ti will have the structure of a binary
tree with k leaves, {vi,j : 0 ≤ j < k}, one for each of the k vertices of G in the clique
Ri (see Figure 1). It also has (k − 1) additional internal nodes {ti,j : 0 ≤ j < k − 1}
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1

Fig. 2. The basic template.

with ti,0 being the “root” ri; by ti,k−1 we mean the leaf node vi,k−1. (The subscript
i is omitted in Figure 1 for the sake of readability. The exact “shape” of the tree Ti

is not important; any binary tree with k leaves and with all internal nodes having
exactly two children will suffice for our purposes.) Each individual node of Ti is made
up of the template shown in Figure 2. This basic template, denoted Hbasic, may
be viewed as a 3 × 3 grid such that the vertices in each row and in each column of
the grid induce a 3-clique. The vertices in the first column of any such template are
referred to as ground vertices and are in fact shared across all such templates in all
the tree-structures. Since the ground vertices form a clique, any legal coloring will
assign 3 distinct colors to them; we refer to these colors as 1, 2, and 3.

The connection pattern between the template at an internal node ti,p and its
children, templates vi,p and ti,p+1, is best understood by the schematic depicted in
Figure 3. (Nodes P , L, and R will play the roles of ti,p, vi,p, and ti,p+1, respectively.)
In addition to the templates at these nodes, there are two 3-cliques that are connected
to templates at ti,p, vi,p, and ti,p+1 via appropriate edges. All nodes in the schematic
are labeled as 3-tuples of the form 〈xyz〉, where x, y, z ∈ {1, 2, 3}. The edges (not
shown) between the various vertices are given by the following simple rule: Two
vertices are adjacent if and only if their labels differ in all three coordinates.

2.2.1. Node selection. A node of the tree is called selected if at least one of
the three rows in its template has colors which, reading from left to right, form an
even permutation of {1, 2, 3} (i.e., the first row has colors 1, 2, 3; the second has 2,
3, 1; or the third has 3, 1, 2). Similarly, we say that a node is not selected if at least
one of the three rows in its template has colors which, reading from left to right, form
an odd permutation. It is easy to see that, in any legal 4-coloring, a node can never
be simultaneously selected and not selected. Moreover, in any 4-coloring a node is
always either selected or not selected.

2.2.2. Enforcing selection of a leaf node. Our goal now is to enforce that,
for any legal 4-coloring of the tree-structure Ti, at least one leaf node is selected.
Broadly speaking, our approach here will be to “hardwire” the selection of the root
node and then introduce gadgets to ensure that, whenever a node is selected, one
of its two children is selected as well. In other words, our construction propagates
selection from the root to some leaf node. While one can imagine, at least for the case
k = 3, that one can construct a “direct” 1-out-of-3 gadget, which will ensure that 1
of 3 nodes is always selected, this “top-down” approach works for any value of k and
is also more modular and easier to present.
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                  Two nodes are adjacent iff their labels differ in every coordinate.

Fig. 3. The connection pattern between the templates at a node and its children.
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Fig. 4. Enforcing selection at a root.

Root selection. In each tree Ti, 1 ≤ i ≤ r, we enforce selection of the root
using the gadget shown in Figure 4. It is obtained by adding, for each j ∈ {1, 2, 3},
edges from the ground vertex colored j to the first vertex in row (j mod 3 + 1) of the
copy of Hbasic at the root node ri of Ti. This ensures that, in any 4-coloring of H,
there will be 1 row of (each) root which will be selected (and hence the root itself will
be selected). Indeed, there must exist 1 row whose vertices are not colored using 4,
say, for concreteness, the third row. But since we added an edge between the ground
vertex colored 2 and the first vertex in the third row, this vertex cannot be colored 2,
and it follows that the third row of the root must be colored (3, 1, 2), as desired.
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Propagating the selection. Next, we show how the selection of a node in the
tree can be propagated to at least one of the node’s children. This ensures that, in
each tree, at least one leaf node must be selected. Consider again the schematic in
Figure 3 and assign the following interpretation to the node labels:

• Colors in the first coordinate of each node correspond to the situation in
which ti,j is selected and these colors correspond to selection at vi,j .

• Colors in the second coordinate of each node correspond to the situation in
which ti,j is selected and these colors correspond to selection at ti,j+1.

• Colors in the third coordinate of each node correspond to the situation in
which ti,j is not selected and these colors correspond to both vi,j and ti,j+1

not being selected.
It is tedious but straightforward to verify that, for any l ∈ {1, 2, 3}, if we assign colors
1, 2, and 3 to the nodes as specified by their lth coordinate, then a feasible coloring
is formed. Moreover, for any choice of a leaf node to be selected in Ti, coloring
the nodes along the unique root-leaf path as selected (i.e., coloring the 3 rows of
the corresponding templates as {1, 2, 3}, {2, 3, 1}, and {3, 1, 2}), and the remaining
nodes in Ti as not selected (i.e., coloring the 3 rows of the corresponding templates as
{1, 3, 2}, {2, 1, 3}, and {3, 2, 1}), yields a legal 3-coloring of Ti. The following is thus
evident for our construction.

Lemma 2.1. For each i, 1 ≤ i ≤ r, and for all j, 0 ≤ j < k, there is a 3-coloring
of the vertices in the tree-structure Ti such that the leaf corresponding to vi,j is the
only selected leaf in Ti.

We can now establish the following key lemma.
Lemma 2.2. In any 4-coloring of a tree Ti, whenever an internal node is selected,

one of its 2 children must be selected.
Proof. Consider again the schematic of Figure 3, with P being the parent whose

selection we argue implies the selection of one of its children L and R. We consider
the following two cases.

Case 1. Both vertices in 1 of the pairs {〈112〉, 〈113〉}, {〈221〉, 〈223〉}, and
{〈331〉, 〈332〉} receive color 4 in the 4-coloring of H.

Suppose it is the pair {〈331〉, 〈332〉} that receives color 4. Since P is selected, the
third row of P must be colored (3, 1, 2) in this case. We now claim that 1 of L and R
will in fact be selected with their third row being colored (3, 1, 2). Indeed, none of the
vertices 〈122〉, 〈211〉, 〈212〉, and 〈121〉 (which are the third row nonground vertices
of L and R) receive the color 4 as they are all adjacent to 〈331〉 or 〈332〉. Thus if
neither L nor R is selected, 〈122〉, 〈212〉 get colored 2 and 〈211〉, 〈121〉 get colored 1.
Now it is easy to see that each of the vertices 〈123〉, 〈231〉, and 〈312〉 has color 1
as well as color 2 neighbors. Specifically, 〈123〉 is adjacent to 〈211〉 and 〈212〉, 〈231〉
is adjacent to 〈112〉 and 〈122〉, and 〈312〉 is adjacent to 〈121〉 and 〈221〉 (recall that
〈112〉 is colored 1 and 〈221〉 is colored 2 since the third row of P is colored (3, 1, 2)).
Thus, all 3 vertices must be colored either 3 or 4. But this is impossible because these
3 vertices form a clique. Therefore, L or R must be selected.

Similar arguments will hold if both vertices 〈112〉, 〈113〉 receive color 4 or if both
vertices 〈221〉, 〈223〉 receive color 4. So it remains to consider the following case.

Case 2. At most 1 of the vertices in each of the pairs {〈112〉, 〈113〉}, {〈221〉, 〈223〉},
and {〈331〉, 〈332〉} receives color 4 in the 4-coloring of H.

In this case we first claim the following.
Claim 1. At least one of the vertices 〈112〉, 〈113〉 gets colored 1, one of 〈221〉, 〈223〉

gets colored 2, and one of 〈331〉, 〈332〉 gets colored 3.
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To see this, note that P is selected, so we may assume, without loss of generality,
that the third row of P is colored (3, 1, 2). Thus, the above claim is trivially verified
for colors 1 and 2 (since 〈112〉 is colored 1 and 〈221〉 is colored 2). Now if neither
〈331〉 nor 〈332〉 is colored 3, then in fact both must be colored 4 (since, for instance,
〈332〉 cannot be colored either 1 or 2 because it is adjacent to both 〈111〉 and 〈221〉).
But this contradicts the hypothesis of this case, and therefore our claim holds.

We are now ready to finish the proof for Case 2. Suppose P is selected, but
neither L nor R is selected. We will call a row of a node pure if none of its vertices
are colored 4. Clearly, at least one of the rows of both L and R is pure. Since the
entire gadget is totally symmetric, assume for definiteness that the third row of L is
pure so that it is colored (3, 2, 1) (recall that L is not selected, so it cannot be colored
(3, 1, 2)). Now if the third row of R is pure, then it will also be colored (3, 2, 1), and
we will get a contradiction exactly as we obtained in the analysis of Case 1. So one
of the first or second rows of R is pure; say, again without loss of generality, that the
first row of R is pure so that it is colored (1, 3, 2). The upshot of all this is that the
vertices 〈122〉, 〈211〉, 〈323〉, 〈232〉 receive colors 2, 1, 3, 2, respectively.

Now consider the vertex 〈231〉. It is adjacent (among other vertices) to 〈122〉
(which is colored 2), to 〈323〉 (which is colored 3), and to both 〈112〉 and 〈113〉, one of
which is colored 1 by Claim 1. It follows therefore that 〈231〉 is colored 4. A similar
argument shows that 〈123〉 must also be colored 4—indeed 〈123〉 is adjacent to 〈211〉
(colored 1), to 〈232〉 (colored 2), and to both 〈331〉 and 〈332〉, one of which is colored
3 by Claim 1. But now both 〈231〉 and 〈123〉 are colored 4 and are adjacent, which
is a contradiction. This completes the analysis for Case 2, and the proof is now
complete.

2.3. The structure across the trees. We now specify how the nodes across
different Ti’s are connected. For every pair of leaf nodes vi,p ∈ Ti and vj,q ∈ Tj such
that vi,p and vj,q are adjacent in G, we insert a gadget (actually a combination of
more than one gadget) that prevents both of these leaf nodes from being selected
simultaneously in any legal 4-coloring of H. Observe that this would immediately
imply that if H is 4-colorable, then there must be an independent set of size at least
r in G. This follows from Lemma 2.2 which shows that, in any 4-coloring of H, every
tree has at least one selected leaf, and no two vertices of G corresponding to selected
leaves can be adjacent in G.

The leaf-level gadget consists of two parts, as shown in Figures 5 and 6. Given
two nodes, each a copy of the basic template Hbasic, we use two kinds of gadgets. The
first kind, shown in Figure 5, prevents both nodes from being selected because of the
same row (for example, because the third row of both nodes is colored (3, 1, 2))—we
use three such gadgets, one for each row. It is easy to check that the gadget in Figure 5
is 3-colorable as long as at least one of the two third rows is colored (3, 2, 1), but the
gadget is not even 4-colorable if both the third rows are colored (3, 1, 2).

The second kind of leaf-level gadget, shown in Figure 6, ensures that the two
nodes are not both selected because of different rows, and this gadget is even simpler
than the first. Once again it is completely straightforward to check that the gadget
works as desired; for instance, for the gadget shown, there exists a valid 3-coloring as
long as either the third row of the left-hand-side node is (3, 2, 1) or the first row of the
right-hand-side node is (1, 3, 2) (i.e., at least one is not selected), but there is no valid
4-coloring if these rows are colored (3, 1, 2) and (1, 2, 3) (i.e., if both are selected).

The preceding discussion has thus established the following.
Lemma 2.3. If the graph H constructed as above is 4-colorable, then α(G) = r.
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Fig. 5. The leaf-level gadget: “Same row kind.”
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Fig. 6. The leaf-level gadget: “Different rows kind.”

Lemma 2.4. If α(G) = r, then H is 3-colorable.
Proof. Let K = {vi,pi : 1 ≤ i ≤ r} be an independent set of size r in G, where

0 ≤ pi < k for each i. By Lemma 2.1, we can legally color all the vertices of the tree-
structures Ti using only three colors such that, for each tree Ti, the leaf corresponding
to vi,pi is the only one that is selected. It remains only to color the vertices used in the
leaf-level gadgets. By the argument above we can color the vertices of any leaf-level
gadget using just three colors, provided at least one of the two leaf nodes it “connects”
is not selected. But this condition is met for every leaf-level gadget in our case, since
K is an independent set, and therefore there is no leaf-level gadget between any two
of our selected leaf nodes. The entire graph H is thus 3-colorable.

Theorem 1.1 now follows from Lemmas 2.4 and 2.3 since the construction of H
can be clearly accomplished in polynomial time.

Tightness of our analysis. We point out here that the graph H constructed in
the reduction above is always 5-colorable. Our analysis of the reduction is therefore
tight in this regard. Indeed, by letting exactly one arbitrarily chosen leaf node of
each tree-structure be selected, we can legally color all vertices in the tree-structures
using three colors, say 1, 2, and 3. We claim it is now possible to legally color all the
vertices in the leaf-level gadgets using only two more colors. Indeed, there are only
two new nodes in the leaf-level gadgets of the “different rows kind” (Figure 6), and
thus they can be colored 4, 5 arbitrarily. For the leaf-level gadgets of the “same row
kind” (Figure 5), we need only worry about the situation where the two leaf nodes
to which the gadget connects are both selected. This follows from our “completeness”
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analysis (Lemma 2.4), where we showed that the vertices in the leaf-level gadgets can
be properly colored using just colors 1, 2, and 3 when at most one of the two leaf
nodes are selected. The case when both leaf nodes are selected is exactly the situation
depicted in Figure 5, and it is easily seen that in this case the three new vertices in
the leaf-level gadget concerned can be properly colored using the colors 3, 4, and 5.

3. Hardness for degree-bounded 3-colorable graphs. We now show that
the result of Theorem 1.1 holds even if the input graph G has degree bounded by some
constant ∆, thus establishing Theorem 1.2. Unlike Theorem 1.1, however, we do not
see how to prove the result below without using the PCP theorem. Specifically, we use
Proposition 3.1 below, which follows from the PCP theorem and MAX SNP-hardness
of Max 3-Sat instances, where each variable appears in at most a constant number
of, say five, clauses [21].

Proposition 3.1. For every constant t > 1 there exist constants q,∆ such that,
given a graph G whose vertices can be partitioned into r cliques each containing exactly
q vertices and in which each vertex has degree at most ∆, it is NP-hard to distinguish
between the cases α(G) = r and α(G) < r/t.

Proof of Theorem 1.2. We employ (essentially) the same reduction as in the proof
of Theorem 1.1, except that we now start from a hard instance of Independent Set,
as in Proposition 3.1, with a “gap” (in independent set size) of t = 24. The graph H
thus constructed will satisfy χ(H) = 3 if α(G) = r, while χ(H) ≥ 5 if α(G) < r. By
the nature of the reduction presented in section 2, and the fact that the maximum
degree of G is at most ∆, it is easy to see that all vertices in H have very small
degree except the three ground vertices, which are shared across all the r tree-like
structures in H (that correspond to the r cliques in G). We get around this by simply
using a distinct set of three ground vertices in each of the r tree-structures to give
a new degree-bounded graph H ′. By a pigeonhole argument, since there are only
24 different colorings of a (labeled) 3-clique using 4 colors, there are at least r/24 of
the tree-structures whose ground vertices in rows 1, 2, 3 are colored using the same
three colors c1, c2, c3; we just label these colors as 1, 2, 3, respectively. Now, applying
the argument used in the proof of Lemma 2.3 to the subgraph of G induced by the
vertices in the r/24 cliques corresponding to these tree-structures, we conclude that,
if H ′ is 4-colorable, then α(G) ≥ r/24. Of course in the case when α(G) = r, the
same coloring used to establish Lemma 2.4 with all copies of the ground vertices being
colored as 1, 2, 3 properly implies that H ′ is 3-colorable. Combining this reduction
with Proposition 3.1, therefore, gives us our claimed result.

It turns out that the above argument also suffices to establish Theorem 1.3.
Proof of Theorem 1.3. Use the same reduction to get a graph H as in the above

proof, except now start from a hard instance of Independent Set with a “gap” of
t = 48. If n,m are, respectively, the number of vertices and number of edges in H, then
we have n = O(r), and since H is degree-bounded, m = O(n). Thus m = O(r) ≤ c0r
for some absolute constant c0. Now define ε0 = 1/4c0. If a 4-coloring of H miscolors
at most ε0m edges, then since ε0m ≤ r/4, there are at least r/2 tree-like structures
such that they, and the leaf-level gadgets associated with them, are all legally colored
using only 4 colors. Arguing as in the proof of Theorem 1.2, we can now conclude
α(G) ≥ r/48. Thus when α(G) < r/48, every 4-coloring of H legally colors at most
(1 − ε0) fraction of the edges.
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1. Introduction. Finding the smallest k-edge connected spanning subgraph is
a natural problem in network design. Since the problem is NP-complete even for
k = 2, a large number of approximation algorithms have been developed. This paper
provides an algorithm for k = 3 that has improved accuracy and runs in almost-linear
time.

We begin by surveying the most relevant past work. Throughout this paper all
graphs are undirected and parallel edges are allowed. n and m always denote the
number of vertices and edges of the given graph, respectively.

Khuller and Raghavachari [8] give a 1.85 approximation algorithm for the smallest
k-edge connected spanning subgraph for any k. A simpler version of that algorithm
[7] achieves ratio 2 − 1/k and runs in linear time. For k = 3 this gives ratio 5/3, the
best previous accuracy bound for our problem. Fernandes [4] shows the 5/3 bound is
tight. She also improves the general bound to 1.75 (1.7 for large enough k) when the
graph is simple.

Cheriyan and Thurimella [3] give more accurate algorithms for simple graphs.
The performance bound is 1 + 2/(k + 1). For k = 3 this is 3/2. The time for the
algorithm for k = 3 is O(

√
nm + n2). As pointed out in [3], the analysis relies on

properties of simple graphs that need not hold for multigraphs. Indeed, [5] exhibits a
family of multigraphs for every k ≥ 2 where the approximation ratio of the algorithm
is 2.

For k = 2 Vempala and Vetta approximate the smallest k-edge connected span-
ning subgraph to the ratio 4/3 [10]. As in [3], their approach is based on matching.

We use a simpler depth-first search approach. The approximation ratio is ≤ 3/2
and the running time is O(mα(m,n)) where α is the inverse Ackermann function.
The starting point of our approach is the observation that, in an ear decomposition of
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21, 2003; published electronically July 2, 2004. A preliminary, abbreviated version of this paper
appeared in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, ACM, New York, 2002, pp. 84–93.

http://www.siam.org/journals/sidma/18-1/40547.html
†Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430

(hal@cs.colorado.edu).

41



42 HAROLD N. GABOW

a 2-edge connected graph, the ends of each ear are 3-edge connected. Cheriyan, Sebő,
and Szigeti [2] use ear decomposition to approximate the smallest 2-edge connected
subgraph.

Our lower bound is based on a generalization of the component lower bound
introduced in [6]. We use a new operation,“breaking off,” to strengthen that bound.
We provide a simple proof that our algorithm has approximation ratio at most 14/9,
and a more involved proof of the 3/2 accuracy bound. The latter requires combining
three lower bounds (each one an instance of the component lower bound) and keeping
track of the slack in those bounds. We give an example in which the algorithm has
approximation ratio 17/12, i.e., 1/12 below our upper bound.

After the initial writing of this paper, we presented in [5] an improved analysis of
the above-mentioned algorithm of Khuller and Raghavachari for the smallest k-edge
connected spanning subgraph. The performance ratio of that algorithm is shown to
be < 1.61 for any k > 1. To achieve this for odd values of k requires using the ear
decomposition algorithm presented here as the base case. Furthermore, the analysis
of [5] requires a stronger version of the performance ratio of the ear decomposition
algorithm. The proof of the stronger version uses some parts of the argument for the
3/2 bound of this paper. For that reason the proof of the stronger version has been
added as an appendix to this paper.

Section 2 gives basic facts that are used in the ear decomposition algorithm.
Section 3 presents the algorithm. Section 4 gives a simple analysis showing that the
approximation ratio is ≤ 14/9. Section 5 refines the analysis to show the desired 3/2
bound. Section 6 shows the time bound. Appendix A gives the stronger version of
the approximation ratio that is needed by [5] for general k. This section closes with
our terminology and a background review. We use much of the notation of [2].

We often denote a singleton set {x} by x. When we say a set is partitioned into
subsets, each subset is required to be nonempty. For a family S of pairwise disjoint
sets of vertices, the graph G/S is formed by contracting each set of S to a single
vertex. We retain parallel edges but not loops.

We denote edges by juxtaposing the two vertices, e.g., vw. If vw is a tree edge
or back edge of a depth-first search, the order of the vertices is significant: For a tree
edge, v is the parent of w; for a back edge, v is a descendant of w. If the edge is not
known to be a tree or back edge, the order is irrelevant.

In a graph G = (V,E) with degree function d, if X and Y are disjoint sets of
vertices, then d(X,Y ) is the total number of edges joining X and Y. d(X) stands for
d(X,V − X). If H is a subgraph, then dH denotes its degree function. (Sections 3
and 6 use the function d to denote depth in a tree, but this is clearly indicated.)

Two vertices are k-edge connected if they are joined by k edge-disjoint paths.
Equivalently, the two vertices remain connected after deleting any < k edges. This
binary relation is an equivalence relation. A graph is k-edge connected if every two
distinct vertices are k-edge connected. k-ECSS stands for k-edge connected spanning
subgraph. For any k,

εk = the minimum number of edges in a k-ECSS.

Throughout this paper we abbreviate ε3 to ε.
We assume paths are simple, but they can be open or closed. A closed path has

a distinguished vertex that plays the role of both endpoints. For a path P , I(P )
denotes the internal vertices of P , i.e., all the vertices except the endpoints. The
symbol P denoting a path may reference the vertex set or the edge set of the path,
as determined by context.
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An ear decomposition of a graph is a partition of the edges into paths Pi, i =
0, . . . , q, such that P0 is a single vertex r and, for i > 0, each Pi has its ends and no
other vertices in common with previous paths, i.e., V (Pi) ∩ (

⋃i−1
j=0 V (Pj)) = V (Pi) −

I(Pi) for i = 1, . . . , q. A graph is 2-edge connected if and only if it has an ear
decomposition [11]. For any vertex v the first ear containing v is denoted Pv. Any
v �= r has v ∈ I(Pv) (and for v = r, I(Pr) = ∅). An ear is short if its length is one,
i.e., it has no internal vertices, otherwise the ear is long.

Given a spanning tree, a nontree edge covers every edge in its fundamental circuit.
In a rooted tree we distinguish between ancestor and proper ancestor, the former
relation being reflexive and the latter irreflexive. These distinctions hold similarly for
descendant and proper descendant.

Khuller and Vishkin [9] define a (dfs) tree carving for any depth-first spanning
tree T as follows. Do a bottom-up traversal of T , constructing a set of back edges B
according to the following rule: When backing up from a vertex v to its parent p, if
the tree edge pv is not covered by an edge of B, then add to B the back edge c that
goes from a descendant of v to a vertex closest to the root. Edge c exists and covers
pv, assuming G is 2-edge connected.

Each tree edge pv that forces a back edge to be added to B is a carving edge.
Deleting the carving edges from T gives a forest called the dfs tree carving. Define

γ = the number of carving edges.

Khuller and Vishkin show that for any k,

εk ≥ kγ.

This follows from the fact that no back edge covers two carving edges.

2. Basic facts. We increase the edge-connectivity by one using the following
proposition, a slight strengthening of Lemma 3.1 of [8]. Let G be k-edge connected.
Let K be a (k− 1)-ECSS of G. Let S be a partition of V , each set of which is k-edge
connected in K (i.e., any two vertices of the same set have ≥ k edge-disjoint paths
between them). Let F be a maximal spanning forest of the graph (G−K)/S.

Proposition 2.1. K + F is k-edge connected.
The next lemma gives our basic relation between an ear decomposition and 3-edge

connectedness. (See Figure 1.) Consider an ear decomposition Pi, i = 0, . . . , q, of a 2-
edge connected graph. For any vertex v let the “closure” Cl(v) be the smallest subset
of {Pi} that defines an ear decomposition of a (not necessarily spanning) subgraph
containing v. (Closure can be defined inductively: For P0 = {r}, Cl(r) = P0. For
v �= r, if Pv goes from a to z, then Cl(v) = {Pv} ∪ Cl(a) ∪ Cl(z).)

Lemma 2.2. Consider an ear decomposition of a 2-edge connected graph.
(i) The two endpoints of an ear are 3-edge connected.
(ii) If an ear has endpoints a and z, then each endpoint of an ear in Cl(a)⊕Cl(z)

is 3-edge connected with a and z.
Proof. Let P be an ear joining a and z.
(i) Let H be the subgraph Cl(a) ∪ Cl(z). a and z are 2-edge connected in H.

Hence H contains two edge-disjoint az-paths. No edge of P belongs to H. This makes
three edge-disjoint az-paths.

(ii) By symmetry it suffices to show that an arbitrary endpoint v of an ear in
Cl(a) − Cl(z) is 3-edge connected with z. Let H be the 2-edge connected graph
Cl(z) ∪ Cl(v). The ears in Cl(a) − Cl(v) contain a path Q from v to a. Combining
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z

a

Fig. 1. Illustration of Lemma 2.2: Cl(a) includes the 3 solid ears but not the 2 dashed ears.
The 4 hollow vertices are the endpoints of ears in Cl(a)⊕Cl(z) and so are 3-edge connected with a
and z.

Q with the given ear P gives a path from v to z that is edge-disjoint from H. As in
part (i), v and z are 3-edge connected.

Our algorithm forms an ear decomposition based on depth-first search. Let G be
2-edge connected and let T be a dfs tree of G. We shall construct ears consisting of a
tree path followed by a back edge. We use the triple of vertices a, y, z to identify the
ear consisting of the tree path from a to y followed by the back edge yz. Here z is an
ancestor of a, which is an ancestor of y. (If a = y, the ear is short.)

To construct the ear decomposition for T let the first ear be r, the root of T .
Suppose we have constructed a number of ears that collectively contain vertices X ⊂
V . Choose a tree edge ab with a ∈ X, b /∈ X. Choose a back edge yz that covers ab.
(yz exists since G is 2-edge connected.) The next ear is defined by the triple a, y, z.
Adding this ear enlarges X by the vertices in the tree path from a to y. Repeat this
step until X = V . Finally, make any back edge that is not yet in an ear into a short
ear.

For the rest of this paper all ear decompositions are constructed in this manner.
We use Figure 2 to illustrate various concepts involving ear decompositions.

We focus on the first vertex of an ear, i.e., vertex a in a, y, z. For each vertex x
let f(x) be the first vertex of ear Px. f is represented by F , a tree on vertex set V :
The root of F is r. The parent of a vertex x �= r is f(x). In Figure 2 the first three
proper ancestors of j in F are i, d, and a.

In this paper we use both the dfs tree T and the first vertex tree F . By default
all tree terminology refers to T . For instance, we use “ancestor” (referring to T ),
“ancestor in T” (when there is danger of confusion), and “ancestor in F .” r always
denotes the root of T (r is also the root of F ). It is easy to see that the proper
descendants of x in F are the vertices that, in T , descend from a child x′ of x with
x′ /∈ Px.

Corollary 2.3. For an ear a, y, z, vertex z is 3-edge connected with every vertex
that, in F , is an ancestor of a but not f(z).

Remark. It is possible that a is the only ancestor satisfying the conditions of the
corollary.

Proof. If p is the parent of vertex x in T , then obviously Cl(p) ⊆ Cl(x) (equality
holds if p �= f(x)). Iterating shows that any ancestor b of x has Cl(b) ⊆ Cl(x). Thus
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Fig. 2. Schematic figure illustrating four long ears. Each horizontal or vertical line represents
the tree path of one ear. Back edges of ears are not drawn. For example, one ear consists of the
path from a to e followed by a back edge from e to an ancestor of a.

in the statement of the corollary, Cl(z) ⊆ Cl(a). In fact we get Cl(a) from Cl(z) by
adding ears whose first vertices are the vertices that, in F , are proper ancestors of
a but not proper ancestors of z. (Example: In Figure 2 we get Cl(k) from Cl(c) by
adding two ears, with first vertex d and i, respectively.) Lemma 2.2 now implies the
corollary.

Garg, Santosh, and Singla [6] introduced the “component lower bound” for 2-
ECSS. It was refined in [2]. We use the following generalization to k-ECSS. For any
graph H let c(H) be the number of connected components of H.

Lemma 2.4 (component lower bound). For any integer k let G = (V,E) be
k-edge connected. For any partition S of V , εk ≥ (k/2)

∑
S∈S c(G− S).

Remark. The degree lower bound εk ≥ kn/2 amounts to the special case of the
lemma where each S ∈ S consists of one vertex. The tree carving lower bound εk ≥ kγ
is the special case where each S is a set of the tree carving.

Proof. Let H be a k-ECSS with εk edges. For any set S, each connected compo-
nent of G− S is joined to S by ≥ k edges of H. Hence

2εk =
∑
v∈V

dH(v) =
∑
S∈S

∑
v∈S

dH(v) ≥
∑
S∈S

kc(G− S).

The rest of this section presents a method for strengthening the component lower
bound. It is only used in section 5, so readers interested in just the 14/9 upper bound
can skip this material.

We first give the idea and then a formalization. Suppose a set S ⊆ V can be
partitioned into sets S0, S1 so that ≤ 1 connected component of G− S is adjacent to
both S0 and S1. Then

c(G− S0) + c(G− S1) ≥ c(G− S) + 1.

This follows since, for i = 0 or 1, a component of G − S that is adjacent only to Si

contributes to c(G− Si). So ≤ 1 component of the right-hand side is not counted by
the left-hand side. In addition, each G − Si has a component containing a vertex of
S1−i, which is also counted by the left-hand side.

We now define a configuration in which this principle can be applied repeatedly.
Definition 2.5. Consider a partition of a set S ⊆ V into sets Si, i = 0, . . . , h,

where each index i, 0 < i ≤ h has a “parent” index p(i), 0 ≤ p(i) < i. An edge joining
Si and Sp(i) is a bridging edge. A component of G−S that is adjacent to both Si and
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Sp(i) but no other set Sj is a bridging component. The partition is an enhancement
(of S) if the following two conditions hold:

(i) Every edge joining two distinct sets Sj is a bridging edge.
(ii) Every component of G − S adjacent to two or more distinct sets Sj is a

bridging component. Furthermore, at most one bridging component joins any two
distinct Sj’s.

Note that the definition allows any number of components of G−S to be adjacent
to a single set Si. We also remark that the following lemma remains valid for a slightly
broader definition of enhancement, but Definition 2.5 suffices for our purposes.

Lemma 2.6. If S ⊆ V has an enhancement Si, i = 0, . . . , h, then

h∑
i=0

c(G− Si) ≥ c(G− S) + h.

Proof. The proof is by induction on h. The above argument shows

c(G− (S − Sh)) + c(G− Sh) ≥ c(G− S) + 1.

So if h = 1, we are done. For h > 1 we claim that the partition of S − Sh into
Si, i = 0, . . . , h − 1, is an enhancement. This claim implies

∑h−1
i=0 c(G − Si) ≥

c(G − (S − Sh)) + h − 1 by induction. Together with the preceding inequality, this
completes the inductive step.

To prove the claim, use the same parent function. Obviously condition (i) holds.
The components of G − (S − Sh) can be derived from the components of G − S as
follows: Let C be the family of components of G − S that are adjacent to Sh and
no other set Si. Let B be the bridging component for Sh and Sp(h), if it exists.
The components of G − (S − Sh) are those of G − S with C and B replaced by one
component, Sh ∪B ∪

⋃
C. Since this new component is adjacent only to Sp(h) (or to

no set Si, i < h), condition (ii) continues to hold.
We form enhancements by starting with set S and repeatedly replacing it by

S − Si, where Si is the next set of the enhancement. We call this operation breaking
off the set Si. So the enhancement of Definition 2.5 corresponds to breaking off sets
Sh, Sh−1, . . . , S1 in that order. Details of the breaking off operation employed in this
paper are given in section 5.2.

An enhancement of a partition S of V is formed by enhancing each set of S.
Suppose we do a total of β break off operations in various sets of S. Lemmas 2.4
and 2.6 imply

εk ≥ (k/2)

(∑
S∈S

c(G− S) + β

)
.(1)

The analysis of section 5 uses the degree lower bound, the carving lower bound,
and (1). Furthermore, it analyzes the slack in these three lower bounds. We now
present the version of (1) with slack terms.

Fix a k-ECSS H with εk edges. We will apply (1) to the graph H, not G. Start
with a partition S of V . Form an enhancement, in H, by doing a total of β break off
operations. An edge of H is nonbridging if it joins two vertices in the same set Si of
the enhanced partition; for any S ∈ S, a component of H − S is nonbridging if it is
adjacent (in H) only to vertices in one set Si of the enhanced partition. The reader
should not forget that an enhancement may be valid in H but not in G. For instance,
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a component may be nonbridging in H but may have neighbors in many different sets
Si in G.

Say that a component has s surplus edges if k + s edges of H leave it. Define

θa = the total number of surplus edges for all nonbridging components of H;
θb = the number of nonbridging edges of H.

Note that θa is computed by summing, for every S ∈ S, the number of surplus edges
for all connected components of H − S that are adjacent to only one set Si of the
enhancement. Introducing the terms θa and θb in the proof of Lemma 2.4 and using
Lemma 2.6 gives

εk ≥ (k/2)

(∑
S∈S

c(H − S) + β

)
+ θa/2 + θb.(2)

3. Approximation algorithm. Assume the given graph G is biconnected. If
not, each block of G is 3-edge connected, and it suffices to run our approximation
algorithm on each block. The algorithm consists of three phases that collectively
construct a 3-ECSS A. The most involved part is Phase II. We begin by stating all
three phases, and then we describe Phase II in detail.

Phase I does a depth-first search to construct a dfs tree carving. Let T denote
the depth-first search tree and let r be its root. Phase I sets A to T . Let C ⊆ T be
the set of carving edges and write γ = |C|.

Phase II adds γ back edges to A, making A 2-edge connected. These back edges
are chosen to also make a large number of pairs of vertices 3-edge connected. This is
done by building A in the form of an ear decomposition. To create even more 3-edge
connected pairs, additional back edges are added to A as short ears.

Phase III makes A 3-edge connected. This is done by adding a maximal forest of
edges that span the 3-edge connected components of A, as described in Proposition 2.1.

The details of Phases I and III are straightforward. The rest of this section is
devoted to Phase II, which is given by the pseudocode of Figure 3. The routines of
Figure 3 use an auxiliary procedure Multi-Merge and an associated data structure
to keep track of 3-edge connected pairs. We now describe both of these.

The data structure is a partition of V into sets of vertices that are known to be
3-edge connected in A. For x ∈ V , t(x) denotes the set containing x. Thus x is 3-edge
connected to every vertex of t(x) in the subgraph A. The sets t(x) are called t-sets and
the corresponding partition of V is called the t-partition. The algorithm maintains
the t-partition using the disjoint-set data structure, with operations Union(x, y) and
Find(x) [1].

Phase II builds the first vertex tree F (defined in section 2) as it builds the
ear decomposition of A. Say that an ear from a to z (with z an ancestor of a)
traverses the set t(z) and all the sets t(x) where, in tree F , x is an ancestor of a but
not an ancestor of f(z). For instance, in Figure 2 an ear i, k, b traverses t(i), t(d),
and t(b). In general, all the traversed sets can all be merged together according to
Corollary 2.3. The purpose of Multi-Merge(a, z) is to execute this merge. Specifically,
Multi-Merge(a, z) performs Union(z, x) for every distinct set t(x) �= t(z) traversed
by the ear from a to z. Observe that an ear traversing s distinct t-sets causes exactly
s− 1 union operations.

We turn to Figure 3. Let s be the child of r in the dfs tree T . (The root has a
unique child since G is biconnected.) Here and throughout this section, d(v) denotes
the depth of vertex v in T .
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Phase II

1. Long Ear(s);
2. Short Ear(s, 3);
3. Short Ear(s, 2);

Long Ear(b)
1. let a be the parent of b in T ;
2. choose an edge c ∈ C that descends from edge ab and is covered by a back

edge yz with y descending from c and z an ancestor of a;
3. choose the above yz so

(i) z /∈ t(a) if possible /∗ merging ear ∗/
(ii) subject to (i), the depth d(y) is maximal;

/∗ the new ear Pb consists of the tree path from a to y followed by edge yz ∗/
4. add the back edge yz to A;
5. Multi-Merge(a, z);
6. for each tree edge xx′ with x ∈ I(Pb), x

′ /∈ Pb do Long Ear(x′);

Short Ear(b, i)
1. for each tree edge xx′ with x ∈ I(Pb), x

′ /∈ Pb do Short Ear(x′, i);
2. for each x ∈ I(Pb) do
3. if some back edge xz traverses > i distinct t-sets then { /∗ short ear ∗/
4. let xz be such an edge with minimum depth d(z);
5. add xz to A;
6. Multi-Merge(x, z) }

Fig. 3. Algorithms for Phase II.

Phase II has three main steps (see the top of Figure 3). It starts with every
vertex being a singleton t-set. Long Ear enlarges A from the dfs tree T to a 2-edge
connected graph. This is done in a top-down traversal of T , as described in section 2,
determining the back edges of A that form long ears. Next, the first execution of
Short Ear enlarges A with back edges that form short ears, each one causing ≥ 3
unions by Multi-Merge. This is done in a bottom-up traversal of T . Then the second
execution of Short Ear adds short ears that cause 2 unions by Multi-Merge.

The recursive procedure Long Ear(b) starts by constructing a new ear whose first
internal vertex is b. To do this, in lines 2–3 we choose the back edge yz of the new
ear a, y, z. The back edge yz covers a carving edge c. It is easy to see that if ab /∈ C,
then the carving edge c descends from b; on the other hand, if ab ∈ C, then c = ab.
The existence of carving edge c and back edge yz is guaranteed by the definition of
tree carving.

A long ear is classified as merging if z /∈ t(a) in line 3(i); otherwise it is nonmerging.
It is clear that the call to Multi-Merge (line 5) performs one or more unions if the
ear is merging. The remark after Lemma 4.1 shows that no union is performed for a
nonmerging ear.

Line 3(ii) ensures that the depth d(y) is maximal; i.e., if a, y, z is nonmerging,
then no ear a, y′, z′ with y′ properly descending from y is possible, and if a, y, z is
merging, then no merging ear a, y′, z′ with y′ properly descending from y is possible.



SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 49

Line 4 updates the tree F when it adds yz to A. Specifically, each vertex of I(Pb) is
made a child of a. Finally, line 6 of Long Ear grows the rest of the ear decomposition
in recursive calls.

Short Ear(b, i) starts by recursively processing the ears descending from Pb. Then
it adds short ears that have their deeper vertex in I(Pb) and cause i or more unions.
(In line 3, it makes sense to speak of the t-sets traversed by back edge xz since xz is
an ear.) Note that in line 4, xz is not already in A since a back edge of A traverses at
most two distinct t-sets. Also note that xz need not be the back edge with minimum
d(z). For instance, in Figure 2 if t(a) = {a, b, d}, then the back edge jc traverses more
t-sets than ja or jb.

We note that the call to Short Ear(s, 3) is irrelevant to section 4: All results
in that section hold if the call is omitted. We also note that section 5.1 adds some
natural rules for choices made in the algorithm of Figure 3.

Figure 4 illustrates the algorithm on a family of graphs in which the approximation
ratio approaches 17/12. (The illustration obeys the rules given in section 5.1 too.)
First we describe the graph. The number of vertices is divisible by 4, so we write
n = 2h with h even. The vertices are identified by the integers 0, . . . , n − 1. All
arithmetic on vertex numbers is done modulo n. It is convenient to describe the edges
as a union of five sets. An important property is that no two even-numbered vertices
are adjacent. Figure 4(a) illustrates the first edge set,

H = {(2i, 2i− 1), (2i, 2i + 1), (2i, 2i + 3) : 0 ≤ i < h}.

It is easy to see that the edges of H induce a 3-edge connected graph. Since each
vertex has degree 3, H is a smallest 3-ECSS. The second edge set constitutes the dfs
tree shown in Figure 4(b)–(c),

T = {(2i− 1, 2i + 1) : 1 ≤ i < h} ∪ {(2h− 1, 2i) : 0 ≤ i < h}.

The third edge set, shown in Figure 4(b), contains the back edges that complete
merging ears,

M = {(2i, 2h− 2i− 3) : h/2 − 1 ≤ i ≤ h− 2}.

The fourth edge set consists of the back edges that form short ears, shown in Fig-
ure 4(c). Writing a = 3h/2, the set is

S = {(2i, 3h− 2i− 3) : a/2 − 1 ≤ i ≤ h− 2}.

The last edge set forms the spanning forest added to A in Phase III,

F = {(1, 2i) : 0 ≤ i ≤ a/2 − 2 or i = h− 1} ∪ {(1, 2i + 1) : a/2 ≤ i ≤ h− 2}.

Since no two even-numbered vertices are adjacent, T is a valid dfs tree of the
entire graph. Phase I constructs T as the dfs tree. The carving edges are the h edges
incident to the leaves of T . In Phase II, Long Ear works as follows (Figure 4(b)):
The first ear is 1, 3, 5, . . . , 2h − 1, 2h − 2, 1. (The back edge comes from H.) The
remaining long ears each have first vertex 2h− 1. First, h/2 merging ears are formed
using the back edges of M . These ears build up a t-set of h/2 + 1 vertices, drawn
black in Figure 4(b), t(1) = {2i − 1, 2h − 1 : 1 ≤ i ≤ h/2}. All other t-sets are
singletons. Next, h/2 − 1 nonmerging ears are formed using back edges contained in
H, (h − 4, h − 3), . . . , (2, 3), (0, 1). (The choice of the second vertex of these edges
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Fig. 4. Execution of Phase II on an example graph. (a) Minimum 3-ECSS. (b) Subgraph A
after Long Ear. Dfs tree edges are solid. Back edges of long ears are dashed. (c) Dfs tree with
the edges added in Short Ear. The parameters of section 4 for this example are γ = h, µ = µ =
h/2, σ = h/4, ν = h, χ = 0, κ = 3h/4.

is not crucial.) Observe that no merging ear is possible for any of the corresponding
carving edges.

Figure 4(c) illustrates the rest of Phase II, i.e., the two executions of Short Ear.
Short Ear(s, 3) does nothing. Short Ear(s, 2) adds the edges of S as h/4 short ears.
These add h/2 vertices to t(1), drawn black. No short ears are added from vertices
a− 4, . . . , 2, 0, since each back edge from these vertices traverses only two t-sets.

Phase III adds the forest F to A, joining each hollow vertex of Figure 4(c) to
vertex 1. Phases I, II, and III add 2h − 1, h + h/4 = 5h/4, and h − 1 edges to A,
respectively. The approximation ratio is (17h/4 − 2)/3h, which approaches 17/12 as
h → ∞.

Returning to our general discussion, it is clear that Phase II works correctly,
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and in fact the whole algorithm correctly produces a 3-ECSS. We note one further
property of Phase II.

Lemma 3.1. If a nonmerging ear has exactly one internal vertex, that vertex is
a leaf.

Proof. Consider a nonmerging ear P whose first edge is ab. Assume ab is a carving
edge; otherwise, obviously P has > 1 internal vertex. P is created in Long Ear(b).
Assume b is not a leaf of T . Hence b has a child v. Since b is not an articulation point,
some back edge e joins a descendant of v to an ancestor of a. Since P is nonmerging,
e can be chosen in line 3(ii), which is a contradiction. Hence P has > 1 internal
vertex.

4. Basic analysis. This section proves some basic properties of the algorithm,
leading to the conclusion that the approximation ratio is ≤ 14/9. We begin by
bounding the size of the algorithm’s subgraph A. Define the following quantities that
satisfy (3):

µ = the number of merging ears,
µ = the number of nonmerging ears.

γ = µ + µ.(3)

By definition, a merging ear does at least one nontrivial union operation in
Multi-Merge. A short ear does at least two nontrivial union operations. All other
unions executed by Multi-Merge are called surplus unions. So an ear causes s surplus
unions if it is a merging ear causing 1 + s unions, or a short ear (in Short Ear(s, 3))
causing 2 + s unions. Define the following quantities that satisfy (4):

σ = the number of short ears,
ν = the total number of unions,
χ = the number of surplus unions.

ν = µ + 2σ + χ.(4)

These quantities are illustrated in Figure 4.
Phase I adds n − 1 tree edges. Phase II adds γ back edges for long ears and

σ edges that are short ears. Phase III adds ≤ (n − 1) − ν edges to make A 3-edge
connected. Thus the number of edges added by the algorithm is

|A| ≤ (n− 1) + γ + σ + (n− 1) − ν = 2(n− 1) + µ− σ − χ.

We turn to lower-bounding ε. We first prove a structural property of the t-
partition: At any point in time, any set t(x) contains f(x) if it contains an ancestor
of f(x). In fact, we prove the following more general property.

Lemma 4.1. At any point in time, any set t(x) contains any ancestor of x in F
that has an ancestor in T belonging to t(x).

Example. In Figure 2, if t(j) contains a proper ancestor of a, then it contains i, d,
and a. The lemma is not true if we change F to T ; e.g., we may have b ∈ t(j), but
c, f /∈ t(j).

Proof. We claim the following.
Claim. At any point in time for any vertex x, t(x) contains f(x) if it contains a

vertex not descending (in T ) from I(Px).
This implies the lemma as follows: Suppose a ∈ t(x) is an ancestor in T of f(x).

The claim implies f(x) ∈ t(x). Iterating this argument gives the lemma.
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We will use this simple consequence of the claim: Call a vertex x ancestral if every
vertex of t(x) descends (in T ) from I(Px). The claim implies that if f(x) /∈ t(x), then
x is ancestral.

We now prove the claim by contradiction. Consider the first time the claim fails,
say, as a result of the operation Multi-Merge(y, z). The new t-set τ formed by this
operation must violate the claim. τ is the union of all t-sets traversed by the ear from
y to z. Specifically, if W is the set of vertices that, in F , are ancestors of y but not
f(z), τ = t(z) ∪

⋃
x∈W t(x). (Throughout this argument the notation t(u) refers to

the t-set of u immediately before Multi-Merge(y, z).) Let w be the vertex of W that
is shallowest in F . Since some back edge goes from a descendant of y to z, w is a
descendant of z; also f(w) = f(z).

We now show that τ consists of t(z), t(w), and some descendants of w in T . A
vertex u ∈ τ − t(w) − t(z) comes from a set t(x), where x ∈ W − t(w) and, without
loss of generality, f(x) /∈ t(x). The latter implies that x is ancestral. This implies u
descends from f(x) in T . Since f(x) descends from w in F it descends from w in T .
Hence u descends from w in T , as desired.

To show the claim actually is not violated, consider a vertex v ∈ τ with f(v) /∈ τ .
Clearly f(v) /∈ t(v), so v is ancestral. We first show that v ∈ t(w) ∪ t(z). Suppose
not. Let x ∈ W ∩ t(v) with f(x) /∈ t(v). (x exists since t(v) �= t(w).) f(x) gets added
to τ since f(x) ∈ W . Furthermore, f(x) = f(v) since both v and x are ancestral. But
this contradicts f(v) /∈ τ .

We have shown either v ∈ t(z) or v ∈ t(w). Also note that v is ancestral, so every
vertex in t(v) descends from I(Pv). We consider four cases depending on how f(z)
relates to t(w) and t(z).

Suppose f(z) ∈ t(w)−t(z). (This is possible even though w descends from z: recall
the above example.) Thus every vertex of t(z) descends from I(Pz), v ∈ t(w) − t(z),
and every vertex of t(w) ∪ Pz descends from I(Pv). The latter implies that every
vertex of τ descends from I(Pv). Thus the claim holds.

The three other possibilities are f(z) /∈ t(w) ∪ t(z), f(z) ∈ t(z) − t(w), and
f(z) ∈ t(w)∩ t(z) (i.e., t(w) = t(z)). The argument for each is similar to the one just
given.

The lemma justifies the term “nonmerging ear”: It is easy to see that Multi-Merge
does not perform any unions for a nonmerging ear.

For the rest of this paper, all sets t(a) refer to their value at the end of Phase
II unless explicitly stated otherwise. The (component) cluster of an ear P with first
vertex a consists of all descendants in F of vertices in I(P ) − t(a). For example, in
Figure 2 if Pb ∩ t(a) = {a, c, e}, then the cluster of Pb is {b, d, f, i, j, k}. A cluster
can be empty; i.e., we can have I(P ) ⊆ t(a). For instance, any short ear has an
empty cluster. We will be interested only in nonempty clusters, which occur only for
long ears. The next lemma gives basic properties of clusters; the term “cluster” is
motivated by property (ii).

Lemma 4.2. Let K be the cluster of an ear with first vertex a.
(i) K ∩ t(a) = ∅.
(ii) K is a union of connected components of G− t(a).
Proof. Let K be the cluster of ear P .
(i) Suppose y ∈ K ∩ t(a). In F , y has an ancestor x ∈ I(P ) − t(a). Now t(y)

contains a, an ancestor of x, but not x itself. This contradicts Lemma 4.1.
(ii) By part (i), it suffices to show that every edge leaving K goes to t(a). A tree

edge leaving K must be an edge of P . Since P ⊆ K ∪ t(a), the edge goes to t(a). Now
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suppose a back edge yb (with b an ancestor of y) leaves K but does not go to t(a).
There are two possibilities.

Case 1. y ∈ K and b /∈ K ∪ t(a).
b /∈ P since P ⊆ K ∪ t(a). Hence b is a proper ancestor of a. Edge yb traverses

t(y), t(a), and t(b). These sets are distinct at the end of Phase II. (b /∈ t(a) by
Case 1, y /∈ t(a) by part (i), and b /∈ t(y) by Lemma 4.1 with a /∈ t(y).) Hence the
sets are distinct when line 2 of Short Ear is executed with x = y and i = 2. Thus
lines 4–5 add a back edge yz with z an ancestor of b. The subsequent execution of
Multi-Merge(y, z) merges t(y) and t(a), which is a contradiction.

Case 2. y /∈ K ∪ t(a) and b ∈ K.
The definition of K implies that b ∈ P . Let x be the deepest ancestor of y in P .

Since y /∈ K, x ∈ t(a). Thus b is a proper ancestor of x. Edge yb traverses t(y), t(x),
and t(b). These sets are distinct at the end of Phase II. (y, b /∈ t(x) = t(a) by Case 2
and b /∈ t(y) by Lemma 4.1 with x /∈ t(y).) Now the argument follows Case 1: Lines
4–5 of Short Ear add a back edge yz with z an ancestor of b, and Multi-Merge(y, z)
merges t(y) and t(x) = t(a), which is a contradiction.

Define

κ = the total number of nonempty clusters.

(See Figure 4.) Call an ear depleted if all its vertices belong to the same t-set. Equiv-
alently, ear P defined by a, y, z is depleted if I(P ) ⊆ t(a) (since we always have
z ∈ t(a)). Thus κ equals the number of nondepleted ears.

Lemma 4.3. ε ≥ (3/2)(n− 1 + κ− ν).
Proof. Use the t-partition in the component lower bound. Consider a set t(a).

Let κa nondepleted ears have their first vertex in t(a). Each of these ears gives a
nonempty cluster. All of these clusters for t(a) are pairwise disjoint (Lemma 4.2(i)).
Hence c(G− t(a)) ≥ κa. This gives a total of ≥ κ components in the component lower
bound.

If r /∈ t(a), then t(a) has at least one more component. To prove this, it suffices
to show that r does not belong to any cluster of t(a). This follows since r, as the root
of F , does not descend (in F ) from any internal vertex of any ear.

The number of distinct sets t(a) is n decreased by the number of union operations,
n−ν. So the previous observation gives n−ν−1 more components in the component
lower bound. We conclude that the total number of components in the component
lower bound is ≥ κ + n− ν − 1. This gives the lemma.

The following inequality has some slack in it, but see the remark after Lemma 4.5.
Lemma 4.4. κ ≥ µ− ν/2.
Proof. Consider a nonmerging depleted ear P with first vertex a. Since each

internal vertex gets merged into t(a), we can associate |I(P )| unions with P . We will
prove |I(P )| ≥ 2. Since a nonmerging ear is either depleted or nondepleted, we get
2µ ≤ ν + 2κ as desired.

We need only show that a nonmerging ear P with one internal vertex is not
depleted. Let P be a, y, z. Lemma 3.1 shows that y is a leaf of T . So it suffices
to prove the following claim. The claim drops the assumption that a, y, z has one
internal vertex, since we need this more general fact in section 5.

Claim. A nonmerging ear a, y, z with y a leaf has t(y) a singleton.
To prove this, we need only show that Phase II does not add a back edge yw as

a short ear. When ear a, y, z is created, any back edge yw has w either descending
from a or belonging to t(a). So Lemma 4.1 (with x = a) shows that yw only traverses
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two distinct sets, t(y) and t(w). Thus line 5 of Short Ear does not add a back edge
from y, even when i = 2.

We can now bound the approximation ratio.
Lemma 4.5. The algorithm has approximation ratio ≤ 14/9.
Proof. Define the quantity δ to satisfy

µ− σ − χ = (2/3)γ + δ.(5)

Thus |A| ≤ 2(n− 1) + (2/3)γ + δ. We will show that

(4/3)ε ≥ 2(n− 1) + δ.

The tree carving lower bound ε ≥ 3γ implies (2/9)ε ≥ (2/3)γ. Thus |A| ≤ (4/3 +
2/9)ε = (14/9)ε as desired.

If δ ≤ 0, then the degree lower bound ε ≥ (3/2)n implies (4/3)ε ≥ 2n ≥ 2(n −
1) + δ as desired. Hence we assume δ > 0. Lemmas 4.3 and 4.4 combined give
ε ≥ (3/2)(n− 1 + µ− 3ν/2).

Some algebra shows µ − 3ν/2 ≥ 3δ as follows: Substitute (3) into (5) to get
µ/3 − σ − χ = 2µ/3 + δ or, equivalently,

µ = 2µ + 3(σ + χ + δ).

Combining with (4),

µ− 3ν/2 = µ/2 + 3χ/2 + 3δ ≥ 3δ.

We have shown ε ≥ (3/2)(n + 3δ − 1). Hence (4/3)ε ≥ 2(n + 3δ − 1) ≥ 2(n− 1)
+δ.

As already mentioned, Lemma 4.4 has some slack. However, the interested reader
can check that even if we replace the term µ with γ in that lemma, an argument similar
to the above does not yield a lower approximation ratio.

5. Sharper analysis. This section proves that a natural implementation of the
algorithm has approximation ratio ≤ 3/2. Section 5.1 states three rules we require in
the implementation; it also introduces some basic concepts for the analysis. Section 5.2
discusses how we use the breaking off operation. Section 5.3 proves the 3/2 bound,
assuming a key inequality. Finally, section 5.4 proves the key inequality.

5.1. Algorithm rules and basic notions. We begin with some additional
terminology. We often designate an ear a, y, z as a, z. The last internal vertex of a
long ear (y) is its tip. Each vertex v is uniquely classified as a tip or nontip since
Pv is unique. We often apply terminology for an ear to its tip; e.g., a merging tip is
a tip whose ear is merging. The main issue of section 5 is bounding the number of
nonmerging depleted ears (recall the proof of Lemma 4.4). Towards this end, let Y
denote the set of all nonmerging depleted tips. A child ear of vertex x is a long ear
whose first edge goes to a child of x.

To prove the upper bound, we incorporate several rules specifying choices made
by the algorithm. For each rule, we specify the line number to which it applies.

Rule 1 (line 3(ii) of Long Ear). Once y is chosen, z is chosen so a merging ear
from y merges as many t-sets as possible.

Rule 2 (line 6 of Long Ear). Vertex x progresses through the internal vertices of
Pb in order; i.e., x moves from b to y.
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r

P
x

Fig. 5. t(x) contains the two solid vertices but not the first vertex of P . The root cluster of
t(x) consists of all vertices except the ones on the two heavy paths.

Rule 3 (line 6 of Long Ear). The first child ear of vertex x is merging if possible.
Rule 3 refers to the first child ear created at vertex x. We also call this the first

merging ear at x (Lemma 5.10).
The following simple consequence of line 3(ii) is useful.
Proposition 5.1. Consider a back edge xz, where x properly descends from a

tip y.
(i) If y is nonmerging, then z is a proper descendant of f(y).
(ii) If y is merging, then z descends from f(y) or belongs to t(f(y)).
The analysis of section 4 uses the notion of a cluster of an ear, and the proof of

Lemma 4.3 shows there are additional components containing the root. We will call
these “root clusters,” defined formally as follows. Consider a vertex x �= r that is the
shallowest vertex in t(x). Every vertex in t(x) has an ancestor in t(x) ∩ I(Px). (This
follows from the claim of Lemma 4.1.) The root cluster of t(x) consists of all vertices
that do not descend in F from I(Px) ∩ t(x). (Contrast this with the definition of ear
cluster in section 4; see Figure 5.) Equivalently, the root cluster consists of all vertices
that do not descend in F from a vertex of t(x).

In addition we use the term clusters of t(x) to refer to all clusters associated with
the set t(x); specifically the term refers to the root cluster of t(x) plus the cluster of
each ear a, y, z that has a ∈ t(x).

We will bound the number of nonmerging depleted ears by associating various
sets with them. The following notions are used to accomplish this.

Definition 5.2. For a vertex y ∈ Y ∪ r, Ty denotes the set of all vertices that
descend from y but no deeper vertex of Y ∪ r. The representative vertex of a set is

• for an edge, its deeper vertex;
• for an ear, its first vertex;
• for the cluster C of an ear, the shallowest vertex of C;
• for the root cluster of t(a), the shallowest vertex of t(a);
• for a component C of a t-set, the representative of the cluster containing C.

A set with representative vertex v ∈ Ty is launched by any ancestor of v in Ty. The
set is properly launched if v ∈ Ty − y.

Note that the representative of a short ear e is the same when we consider e to
be an ear or an edge. In the last bulleted item, a component C of t-set t(a) refers to
a connected component of G− t(a) (recall the proof of Lemma 4.3).

Any set S with a representative vertex is launched by exactly one vertex of Y ∪ r.
So S is launched by at most one tip y ∈ Y. This is our mechanism for establishing
“ownership” of sets. Note that, in such an ownership relation, we cannot rely on any
particular relationship between t(y) and any t-set associated with S. For instance, if
S is a cluster of t(a) that is launched by tip y ∈ Y, we might hope that t(y) = t(a),
but this is not true in general.
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Throughout this entire section we fix a smallest 3-ECSS H of G for the analysis.

5.2. Breaking off operation. Our analysis starts with the t-partition of V
and forms an enhancement, called the t∗-partition, by doing a number of break off
operations. This section describes these operations. It also proves a lemma, allowing
us to enhance the t-partition to the t∗-partition yet carry out the subsequent analysis
by referring only to t-sets.

Section 2 defined the operation of breaking off in general. Now we specify this
operation for our analysis. Initially the t∗-partition is identical to the t-partition. Let
b be a vertex with parent p. To break off vertex b means to replace t∗(p) with t∗(p)−B
and B, for B the set of descendants of b belonging to t∗(p). Vertex b is breakable if

(i) t(p) contains at least one descendant of b;
(ii) at most one component of H − t(p) is adjacent (in H) to both descendants

and nondescendants of b;
(iii) b or p is a tip;
(iv) b /∈ Y.

Conditions (iii)–(iv) can be weakened, but they suffice for our purposes.
The t∗-partition is formed by breaking off zero or more breakable vertices of each

t-set. Let us describe how a t-set, say t(a), gets partitioned into t∗-sets. Choose a
as the shallowest vertex in t(a). Suppose we break off h vertices bi whose parent pi
belongs to t(a), i = 1, . . . , h. The set t(a) gets partitioned into h+1 t∗-sets, specifically
the vertices of t(a) that descend from bi but no deeper bj , for i = 0, . . . , h. Here we
take a to be b0. It is easy to see that condition (i) implies each of these t∗-sets is
nonempty. In Definition 2.5 the parent of the t∗-set of bi is t∗(pi) (i ≥ 1).

Lemma 5.3. Suppose the t∗-partition is defined by breaking off ≤ 1 breakable
vertex in each set Ty.

(i) The t∗-partition is an enhancement of the t-partition (in graph H).
(ii) If no vertex of Ty is broken off, then an edge properly launched by y with both

ends in the same t-set is a nonbridging edge (of the t∗-partition).
(iii) Suppose y launches a bridging component C of H − t(a) for some vertex a.

Then a vertex b ∈ Ty whose parent belongs to t(a) was broken off and C is adjacent
to both descendants and nondescendants of b.

Proof. For any y ∈ Y ∪ r, let T y be the set Ty enlarged at its leaves; i.e., add to
Ty each w ∈ Y having f(w) ∈ Ty. Let Xy = I(Py)∪T y. (For y = r recall I(Pr) = ∅.)

Claim 1. For any vertex a, t(a)∩Xy is contained either in one t∗-set or in some
t∗-set and its parent set.

Proof. The only possible breakable vertices of Xy are the breakable vertices b of
Ty and the first vertex b′ of I(Py) (recall (iii)–(iv) of the definition). If we break off
b′, t(a)∩Xy is still contained in one t∗-set. If we break off a vertex b ∈ Ty with parent
p, the t∗-set changes only if p ∈ t(a). In that case, t(a) ∩Xy is contained in a t∗-set
descending from b and its parent set t∗(p).

Claim 2. An edge vz with deeper vertex v ∈ t(z) either has both ends in the same
t∗-set or joins a t∗-set and its parent set.

Proof. Choose y so v ∈ T y − y. Proposition 5.1(i) shows z ∈ Xy. Together with
Claim 1 this implies Claim 2.

Claim 2 gives condition (i) of Definition 2.5 for the t∗-partition. It also gives (ii)
of the current lemma.

Claim 3. Consider a cluster C of t(a) with representative vertex c. Suppose
c ∈ Ty − y for y ∈ Y ∪ r. Then any edge with exactly one end in C has the other end
in Xy.



SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 57

Proof. We remind the reader that C is either a root cluster or an ear cluster. Our
assertions must be checked in both cases! For root clusters it is convenient to refer to
Figure 5.

We begin by noting that vertex y of the claim always exists; this is equivalent to
c /∈ Y ∪ r. Pc is not depleted (for both cluster types). This implies c /∈ Y. c �= r
follows from the fact that r is not the representative of any cluster (of either type).

Now let vz be an edge, with deeper vertex v, having exactly one end in C. (That
end can be v or z.) Suppose v is a proper ancestor of c. If C is an ear cluster, this
implies v, z /∈ C. If C is a root cluster, it implies v, z ∈ C. In both cases, vz violates
its definition. So assume that v descends from c.

Since c �= y, we have v �= y. If v ∈ T y − y, then z ∈ Xy (Proposition 5.1(i)) and
the claim holds (regardless of which vertex is in C). So assume that v is a proper
descendant of some w ∈ T y ∩ Y − y.

Let b be the first vertex of I(Pw). We show that (a) b is an ancestor of z, (b) b /∈ Pc,
and (c) b descends from c. (a) follows from the definition of b and Proposition 5.1(i).
(b) follows since Pc is not depleted but Pw is. For (c), recall our assumption that v
descends from c. The tree path from v to c enters Ty along Pw and then goes to Pc.
(c) follows.

(b) and (c) imply either that all descendants of b belong to C or that none do
(for either ear type). With (a) this makes vz violate its definition.

Now consider a component C of H−t(a). Since C is contained in a cluster, Claims
3 and 1 show that all the neighbors of C belong either to the same t∗-set or to some
t∗-set and its parent. Together with condition (ii) of the definition of breakable, this
gives condition (ii) of Definition 2.5. It also gives (iii) of the current lemma.

5.3. The approach. In the following definitions we fix a t∗-partition formed
according to Lemma 5.3. If a cluster of t(x) contains 1 + s connected components of
H − t(x), it has s surplus components. If 3 + s edges of H cover an edge e ∈ C, then
e is redundantly covered s times. Define

κ = the number of nondepleted ears,
plus the number of surplus components in clusters;

β = the number of break offs that form the t∗-partition;
θa = the total number of surplus edges for all nonbridging components of H;
θb = the number of nonbridging edges of H;
θc = the number of edges of H not covering an edge of C

or redundantly covering an edge of C;
θd = the number of vertices that have degree > 3 in H.

(Subscript b stands for “both ends,” c stands for “carving,” and d stands for “degree.”)
Our new definition of κ generalizes the definition in section 4. β, θa, and θb are defined
as at the end of section 2.

The next section bounds the number of nonmerging ears, showing

µ ≤ κ + χ + β + θd + (θa + 2θb + θc)/3.(6)

We now demonstrate that this implies the approximation ratio is ≤ 3/2.
We use the following three lower bounds:

ε ≥ 3γ + θc;(7)

ε ≥ (3/2)n + θd/2;(8)

ε ≥ (3/2)(n− 1 + κ + β − ν) + θb + θa/2.(9)
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It is clear that (7) and (8) are true. To prove (9), recall that Lemma 4.3 is proved
using the component lower bound. Instead use (2), which is our extension of the
component lower bound. Inequality (9) follows easily.

Define the quantity δ to satisfy

µ− σ − χ = γ/2 + δ.(10)

(δ may be positive, negative, or 0.) Thus

|A| ≤ 2(n− 1) + γ/2 + δ.

Combining 1/6 times (7) with 4/3 times (8) gives (3/2)ε ≥ 2n+γ/2+ θc/6+(2/3)θd.
Hence we can assume

δ > θc/6 + (2/3)θd

since otherwise we are done. To handle this case we will show that (7) and (9) imply

(3/2)ε ≥ 2(n− 1) + γ/2 + 4δ − 2θd − θc/2.(11)

Inequality (11), together with our assumption 3δ > θc/2 + 2θd, implies the desired
result.

We begin by reexpressing µ as follows: Substitute (3) into (10) to get µ/2−σ−χ =
µ/2 + δ or, equivalently, µ = µ + 2(σ + χ + δ). Combining with (4), we have

µ− ν − χ = 2δ.

Combining this with (6) gives

κ + β − ν ≥ µ− χ− ν − θd − (θa + 2θb + θc)/3 = 2δ − θd − (θa + 2θb + θc)/3.

Thus (9) gives

ε ≥ (3/2)(n−1+2δ−θd−(θa+2θb+θc)/3)+θb+θa/2 = (3/2)(n−1+2δ−θd−θc/3).

Combining 4/3 times this inequality with 1/6 times (7) gives the desired inequality
(11).

5.4. Bounding |Y|. We begin by noting that this section is concerned with both
the given graph G and the fixed 3-ECSS H. Proposition 5.4 and Lemmas 5.5–5.9 are
properties of G alone. The last three results, Lemmas 5.10–5.12, depend on H.

Proposition 5.4. Let a 3-edge connected graph G = (V,E) have degree function
d. Suppose sets X,X ′, and x form a partition of V, and d(x) = 3. Then d(X,X ′) ≥ 2.

Proof. Without loss of generality, assume d(x,X) ≤ 1. Hence 3 ≤ d(X) =
d(X,X ′) + d(X,x) ≤ d(X,X ′) + 1 as desired.

A long ear is tight if its last tree edge is a carving edge. Otherwise the ear is
loose. Every pendant edge of T is obviously tight. The following lemma generalizes
this fact.

Lemma 5.5. The tip of a loose ear has a merging child ear.
Proof. Let the loose ear contain the carving edge vw, and let its last edge be xy.

Thus y is the ear’s tip; possibly w = x. Consider the depth-first search of Phase I that
finds carving edges. Edge xy does not force a back edge to be added. So the search
added a back edge uz from a descendant u of y to an ancestor z of x. Furthermore,
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the tree path from y to u contains a carving edge. When Long Ear constructs Py,
y, u, z is a possible merging ear at y. So Rule 3 shows y has a merging child.

We note a related property for use in Lemma 5.9. A tight ear has only nonmerging
children. This follows since a back edge covers at most one carving edge.

Lemma 5.6. Let y be a nonmerging tip. An ear of A with its first vertex descend-
ing from y has its last vertex properly descending from f(y).

Proof. Let the ear be a, u, z and, for the sake of contradiction, assume z is an
ancestor of f(y). Since u is a descendant of y, Proposition 5.1(i) implies u = y. Since
u descends from a, we get a = y; i.e., the ear is short. But the algorithm never adds
a short ear originating at a nonmerging tip (this is proved in the claim of Lemma
4.4).

The next lemma consists of two similar parts. After stating the lemma we give
an example showing that a plausible generalization is false.

Lemma 5.7. Let an ear P have first vertex a and tip u.
(i) The first ear that adds a vertex of I(P ) to t(a) is launched by a.
(ii) The first ear that adds a proper ancestor of u to t(u) is launched by u.
Example 1. For an arbitrary vertex x, the first ear that adds a proper ancestor

of x to t(x) need not be launched by x. In Figure 2 take x to be d. Let e ∈ Y. After
the short ear h, c is added the short ear g, d adds c to t(d). But g, d is launched by
e and is not launched by d. A similar example uses merging ears: The first merging
ear goes from e to c and the second from e to d.

Proof. (i) Consider the first execution Multi-Merge(b, z) that adds a vertex of
I(P ) to t(a). b descends from I(P ) and z is an ancestor of a. We claim that ear b, z
was launched by the first vertex of I(P ). (This is slightly stronger than the lemma.)
We prove this by showing that the tree path from a to b does not contain a vertex
w ∈ Y − a.

Suppose w exists. f(w) is a descendant of a (possibly equal to it). So Lemma 5.6
shows z is a proper descendant of a, which is a contradiction.

(ii) Consider the first execution Multi-Merge(b, z) that adds a proper ancestor of
u to t(u). b descends from u and z is a proper ancestor of u. Suppose the tree path
from u to b contains a vertex w ∈ Y − u. Since u is a tip, f(w) is a descendant of u
(possibly equal to it). So Lemma 5.6 shows that z is a proper descendant of u, which
is a contradiction.

Remark. The stronger version of the lemma that we proved leads to a stronger
version of Lemma 5.8, but we do not require it.

A surplus ear is a merging or short ear that causes a surplus union (i.e., a union
counted in χ).

Lemma 5.8. Suppose y ∈ Y does not launch a surplus ear and some back edge
xz has x ∈ Ty − y.

(i) If z is an ancestor of f3(x), then f3(x) launches a merging ear.
(ii) If z is a proper ancestor of f2(x) and f2(x) is a tip, then f2(x) launches a

merging ear.
Remark. A plausible common generalization of (i)–(ii) fails: Assuming the lemma’s

hypothesis, z can be a proper ancestor of f2(x) without f2(x) launching a merging
ear. For instance, let xz be the back edge jc in Figure 2, and assume the merging
ear scenario of Example 1.

Proof. Proposition 5.1(i) shows that z is a proper descendant of f(y). Hence any
vertex f i(x) that descends from z, properly or not, belongs to Ty, e.g., i ≤ 3 in (i)
and i ≤ 2 in (ii).
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(i) Suppose f3(x) does not launch a merging ear. We prove the lemma by showing
y launches a surplus ear. Lemma 5.7(i) shows that x, f(x), f2(x), and f3(x) are in
distinct t-sets at the end of Long Ear. Hence Lemma 5.7(i) implies f3(x) launches a
surplus ear during Short Ear(s, 3)—either before x is scanned or when a back edge
at x (e.g., xz) is added as a short ear.

(ii) The argument is similar to (i). Suppose f2(x) does not launch a merging ear.
We show y launches a surplus ear. Lemma 5.7(i)–(ii) shows that x, f(x), f2(x), and
z are in distinct t-sets at the end of Long Ear. Hence Lemma 5.7(i)–(ii) implies that
f2(x) launches a surplus ear during Short Ear(s, 3)—either before x is scanned or
when a back edge at x (e.g., xz) is added as a short ear.

An ear P with first vertex a is penetrated if I(P ) ∩ t(a) �= ∅.
Lemma 5.9. A nonleaf tight tip either launches a surplus ear or has a penetrated

child ear.
Proof. Let u be a nonleaf tight tip. In this proof, say that t(u) is enlarged by

ear b, z if the execution Multi-Merge(b, z) changes t(u) from a singleton set to a
nonsingleton. Clearly, in this case z is an ancestor of u, which is an ancestor of b.
If b �= u, then some vertex x with f(x) = u gets added to t(u). This makes Px a
penetrated child ear of u.

The rest of the argument is in three cases. First suppose t(u) is enlarged by a
merging ear b, z. No child ear of u is merging (as remarked after Lemma 5.5). So b
properly descends from u. The opening remark gives the lemma.

Suppose t(u) is enlarged during Short Ear(s, 3) by a short ear b, z. Either b �= u
or u launches a surplus ear. In both cases the lemma holds.

Finally, suppose t(u) is a singleton at the end of Short Ear(s, 3). Let P be the first
child ear of u. Some back edge xz joins a descendant x of I(P ) to a proper ancestor z
of u, since G has no articulation point. Since Short Ear(s, 2) works bottom-up, some
short ear launched by a descendant of I(P ) enlarges t(u). (This either occurs before
x is scanned or when a back edge at x, e.g., xz, is added as a short ear.) Again the
lemma holds.

Lemma 5.10. Suppose y ∈ Y does not launch a surplus component or a surplus
ear. If the first merging ear at a given vertex of Ty is depleted and its tip u is a leaf,
then u is breakable.

Proof. Let a = f(u). Thus a ∈ Ty ∩ t(u). We claim u is adjacent to at most one
cluster C of t(u); furthermore

C ∩ Pa �= ∅

if C exists. This claim implies the lemma. To prove this, we need only verify condition
(ii) of the definition of breakable. (For condition (i) note that the parent of u belongs to
t(u).) Assume C exists; otherwise, condition (ii) is vacuous. The above set inequality
makes Pa nondepleted (since it contains vertices of two t-sets). Hence f(a) ∈ Ty,
and C (root cluster or ear cluster) is launched by y. Now the lemma’s hypothesis
shows that C consists of exactly one component of H − t(u). Hence (ii) holds and u
is breakable.

To prove the claim, first suppose f(a) /∈ t(u). So any ancestor of u belongs to
t(u) or to the root cluster C of t(u). Since f(a) ∈ C, we have C ∩ Pa �= ∅, and the
claim holds.

Next suppose f(a) ∈ t(u). Consider an edge uz with z /∈ t(u), and suppose z
does not descend from f(a). When ear Pu is created, t(a) is a singleton by Rules
2–3. Hence a, f(a), and z are in distinct t-sets at that time. (Note that at the end
of Phase II, t(u) = t(a) = t(f(a)), so z /∈ t(f(a)).) Rule 1 shows Pu is a surplus ear.
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But the lemma assumes this is not the case (recall a ∈ Ty). Hence z descends from
f(a). We conclude that cluster C of Pa is the only cluster of t(u) that is adjacent to
u. Obviously C ∩ Pa �= ∅ if C �= ∅.

For any y ∈ Y define

κ(y) = the number of merging nondepleted ears launched by y
plus the number of surplus components launched by y;

χ(y) = the number of surplus ears launched by y;
β(y) = the number of breakable vertices in Ty − y;
θa(y) = the number of surplus edges of H leaving components launched by y;
θb(y) = the number of edges of H properly launched by y

having both ends in the same t-set;
θc(y) = the number of edges of H launched by y not covering a carving edge

or redundantly covering a carving edge launched by y;
θd(y) = the number of vertices of Ty having degree > 3 in H.

χ(y) is the only one of the above quantities that is a function of G, not H. None of
the quantities involve the t∗-partition. The definitions of κ(y), θa(y), and θb(y) differ
slightly from their counterparts in section 5.3. The differences are reconciled in the
last argument of this section.

Lemma 5.11. For y ∈ Y let u ∈ Ty be the tip of a depleted ear. Suppose u does
not launch a merging ear and u has a penetrated child ear. Then either

(i) u has a breakable child belonging to Ty, or
(ii) θa(y) + 2θb(y) + θc(y) ≥ 3, or
(iii) κ(y) + χ(y) + θd(y) ≥ 1.
Proof. The argument is illustrated in Figure 6. Lemma 5.5 shows u is tight. Let

U be the set of proper ancestors of u. Consider the components of H − t(u). For an
arbitrary ear X, CX denotes the cluster of X (which may be empty). For S ⊆ V , S
denotes V − S. We assume the lemma is false and derive a contradiction.

Claim 1. If S is the set of all descendants of a child of u, then dH(S,U) ≥ 2.
Furthermore each edge from S to U is launched by y.

Proof. For the first part we have dH(u) = 3, since otherwise θd(y) ≥ 1 and (iii)
holds. Now Proposition 5.4 shows dH(S,U) = dH(S, S − u) ≥ 2.

For the second part, an edge e from S to U is launched by y since u is tight and
e cannot cover two carving edges.

Remark. If u has ≥ 3 children, the claim shows θc(y) ≥ 3 and we are done.
However, we do not use this principle.

The rest of the argument focuses on P , a penetrated child ear of u. Let p be the
tip of P . Let D be the set of all descendants of the child of u that belongs to P .

Claim 2. Let xz be an edge of G with x ∈ D, z ∈ D.
(a) z ∈ t(u).
(b) Suppose x is a proper descendant in F of a vertex w ∈ P . Then w �= p, the

tree path from w to x contains no carving edge, and x ∈ Ty.
(c) x belongs to P or a child ear of I(P ). In the latter case z = u.
Proof. (a) Since u is depleted, this part follows from Proposition 5.1(i)–(ii).
(b) Since P is nonmerging, w �= p by Proposition 5.1(i). Hence w ∈ Ty. The

lemma’s hypothesis shows w is not the first vertex of a merging ear. So Rule 3 implies
there is no carving edge on the tree path from w to x. This makes x ∈ Ty.

(c) First suppose x is a proper descendant of a child ear of I(P ). (b) implies
x ∈ Ty. Now Lemma 5.8(i) and the hypothesis of our lemma show y launches a
surplus ear. Thus χ(y) ≥ 1, and (iii) holds.
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Fig. 6. Proof of Lemma 5.11. Hollow vertices are not in t(u). Heavy lines denote carving edges.

Next suppose x belongs to a child ear of I(P ) and z ∈ U . As before, x ∈ Ty.
Since u is a tip, Lemma 5.8(ii) and the hypothesis of our lemma show y launches a
surplus ear. This gives (iii).

Claim 3. P is nondepleted and tight. Hence cluster CP is nonempty.
Proof. If P is depleted, then by Claims 2(a) and 2(c) the two edges of Claim 1

have both ends in t(u). The deeper end of each edge belongs to Ty − y since u is
tight and no edge covers two carving edges. This makes θb(y) ≥ 2, so (ii) holds. We
conclude P is nondepleted.

This implies p ∈ Ty. Hence p does not have a merging child. Lemma 5.5 shows
P is tight.

Claim 4. H has an edge with deeper end in D ∩ Ty that does not cover a carving
edge. So θc(y) ≥ 1.

Proof. The child of u on P is not breakable (otherwise (i) holds). Since P is
penetrated, this means ≥ 2 components of H − t(u) are adjacent (in H) to both D
and D. Since CP is launched by y, it does not contain a surplus component (otherwise
κ(y) ≥ 1 and (iii) holds). So another cluster of t(u), root or ear, is adjacent to both
D and D. Claim 2(a) shows the cluster is CQ for an ear Q descending from I(P ).
Claim 2(c) shows Q is a child ear of I(P ) and a vertex q ∈ CQ ∩ Q is adjacent to u
in H. Since P is tight, Claim 2(b) shows qu does not cover a carving edge. It also
shows q ∈ Ty. Hence θc(y) ≥ 1. Claim 4 follows.

Claim 5. Every edge from D to D in H goes from a cluster of t(u).
Proof. Let xz be an edge of H with x ∈ D and z ∈ D. Assume x ∈ t(u); otherwise

we are done. Claim 2(a) shows z ∈ t(u). Now it suffices to show x ∈ Ty. For that
makes θb(y) ≥ 1 which, with θc(y) ≥ 1 (Claim 4), gives (ii).

If x ∈ P , then Claim 3 shows x ∈ Ty. If x /∈ P , then Claims 2(b) and 2(c) show
x ∈ Ty.

Claim 6. dH(CP , U) ≥ 2. dH(CP , D − CP ) ≥ 2. Hence θa(y) ≥ 1.
Proof. Claim 1 shows that at least two edges e of H join D and U . Claim 5 shows

each e has exactly one end in a cluster C of t(u) with C ⊆ D. Now Claim 2(c) shows
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C = CP . So the two edges e give the first assertion of Claim 6.
For the second assertion, first note that D − CP �= ∅ since P is penetrated. We

have already assumed dH(u) = 3. By the preceeding paragraph, an edge of H leaving
D−CP does not go to U . Since V is partitioned into sets D−CP , X = V−(D−CP )−u,
and u, Proposition 5.4 shows dH(D − CP , CP ) = dH(D − CP , X) ≥ 2.

We turn to the third assertion of Claim 6. CP is launched by y, and we have
already noted that it does not contain a surplus component (Claim 4). Hence θa(y) ≥
1.

Claim 7. u has only one child. dH(U, u) ≤ 1.
Proof. Suppose either part of the claim is false. We first show at least four edges

of H launched by y cover the carving edge of Pu. If u has two children, this follows
from Claim 1. If dH(U, u) ≥ 2, it follows from these two edges plus Claim 1 applied
to D.

Now Claim 4 shows θc(y) ≥ 2. With θa(y) ≥ 1 (Claim 6) we get (ii).
Claim 8. dH(D,u) ≤ 1.
Proof. Claim 5 shows dH(D,u) =

∑
{dH(C, u) : cluster C ⊆ D}. First consider

C = CP . If dH(CP , u) ≥ 1, then five edges leave CP (Claim 6) so θa(y) ≥ 2. With
θc(y) ≥ 1 (Claim 4), we get (ii). We conclude dH(CP , u) = 0.

Next consider C �= CP . Claim 2(b) shows that an edge from C to u does not
cover a carving edge and, further, C is launched by y. If H contains two such edges,
then θc(y) ≥ 2, and θa(y) ≥ 1 (Claim 6) gives (ii). We conclude there is only one such
edge, as desired.

Claims 7 and 8 show dH(u) ≤ 2, the desired contradiction.
Lemma 5.12. Any tip y ∈ Y has

(κ + χ + β + θd)(y) + (θa + 2θb + θc)(y)/3 ≥ 1.

Proof. Assume κ(y) = 0; otherwise we are done. Hence any merging ear launched
by y is depleted. Choose vertex u ∈ Ty to be the tip of a depleted ear as follows. If y
does not launch a merging ear, then u = y. In the opposite case, choose u as the tip
of a merging ear a, u, z, where a ∈ Ty has the greatest depth possible. If two merging
ears have the same first vertex a, choose u on the first merging ear at a.

Vertex u belongs to Ty. Hence it does not launch a merging ear. Lemma 5.5
shows u is tight. Now consider two cases.

First suppose u is a leaf. Pu is merging since a nonmerging depleted tip is not a
leaf (by the claim of Lemma 4.4). Assume χ(y) = 0; otherwise we are done. Since
κ(y) = 0, Lemma 5.10 shows that u is breakable. Hence β(y) ≥ 1.

Now suppose u is not a leaf. Since we are assuming χ(y) = 0, Lemma 5.9 shows
that u has a penetrated child ear. Now the desired conclusion follows from Lemma
5.11.

We can now achieve the goal of proving inequality (6). Recall the definitions
of all the right-hand quantities from section 5.3. Apply Lemma 5.12 to each y ∈ Y.
Define the t∗-partition by breaking off a breakable vertex in Ty−y whenever β(y) ≥ 1.
Lemma 5.3(i) shows that this gives a valid enhancement. This defines the quantity β
of (6).

Clearly ∑
{χ(y) : y ∈ Y} ≤ χ.

(Inequality may hold since we ignore surplus ears launched by r and, further, we do
not count the total number of surplus unions.) Analogous inequalities hold for θc and
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θd. Lemma 5.3(ii) shows ∑
{θb(y) : y ∈ Y, β(y) = 0} ≤ θb.

Lemma 5.3(iii) shows the analogous inequality for θa. Let µn be the number of
nonmerging nondepleted ears. Then∑

{κ(y) : y ∈ Y} ≤ κ− µn.

Since |Y| = µ− µn, Lemma 5.12 implies

µ− µn ≤ κ− µn + χ + β + θd + (θa + 2θb + θc)/3.

This amounts to (6).

6. Efficient implementation. This section presents an implementation of the
algorithm that runs in time O(mα(m,n)). It is straightforward to find the bicon-
nected components and implement Phases I and III in linear time. So we limit our
attention to Phase II. The implementation must incorporate Rules 1 and 3 of section 5
(Rule 2 is trivial). This section first describes how the t-partition is maintained and
manipulated. Then it describes how long ears are constructed. The remaining details
of Figure 3 are obvious.

6.1. The t-partition. We maintain the t-partition using the following proper-
ties of F . For any vertex x, let �(x) be the ancestor of x in F that belongs to t(x) and
has minimum depth. Lemma 4.1 shows that t(x) contains every vertex on the path in
F from x to �(x). Write fl(x) for f(l(x)). Note that every y ∈ t(x) has f�(y) = f�(x).
(Recall Figure 5.) In the following lemma assume f(r) = r.

Lemma 6.1. For any i ≥ 0, a back edge xz traverses > i+1 distinct t-sets if and
only if z is an ancestor of [f�]i(x) in T and z /∈ t([f�]i(x)).

Proof. If r /∈ t(x), then the deepest ancestor of x in F not belonging to t(x) is
fl(x). Hence for i ≥ 1, if r /∈ t([fl]i−1x), then the path in F from x to [fl]i(x) con-
tains vertices in exactly i + 1 distinct t-sets. If z is an ancestor (in T ) of [fl]i(x)
but not [fl]i+1(x) and z /∈ t([fl]i(x)), then an edge xz traverses exactly i + 2
t-sets.

The t-partition is maintained by a disjoint-set data structure. In addition, each
set t(x) is labelled by the node f�(x). As already noted, this label is well defined. The
labels allow Multi-Merge to be implemented using a number of finds proportional to
the number of unions. Line 3 of Short Ear is implemented using Lemma 6.1. It
performs O(1) finds per back edge, since i equals 2 or 3. Line 3(i) of Long Ear uses
one find per back edge.

To implement Rule 1 in line 3(ii) of Long Ear, tentatively choose the back edge yz
from y that has z /∈ t(a) and minimum d(z). (Throughout this section d(v) denotes
the depth of vertex v in tree T , as in section 3.) Find the maximum index i with
vertex v = [fl]i(a) descending from z. A merging ear with tip y merges at most i+ 2
t-sets. Any back edge yz′ with z′ an ancestor of v and z′ /∈ t(v) gives such an ear. If
no such z′ exists, the back edge yz gives an ear merging i + 1 t-sets, the maximum
possible in this case. In either case, Multi-Merge performs at least i unions for this
ear.

We conclude that the disjoint-set data structure performs a total of O(m) find
operations in a universe of n elements. Thus the total time for manipulating the
t-partition is O(mα(m,n)) [1].
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6.2. Constructing long ears. This section describes how lines 2–3 of Long Ear

find edge c ∈ C and back edge yz to construct the new ear. We accomplish this in
linear time, implying the desired time bound for Phase II.

At any point during the execution of Long Ear, let R be the subtree of edges of
T that already belong to long ears. The idea of the implementation is to maintain an
“active” subtree S, R ⊆ S ⊆ T . When xx′ is chosen in Long Ear (line 6), the subtree
of S rooted at x′ will lead to the edges of C that can be covered by new ears having
xx′ as their first edge. We now provide the details.

Phase I labels each back edge e with the carving edge c[e] covered by e, if it exists;
if not, then c[e] = Λ. It is easy to do this labelling in linear time after identifying the
connected components of T − C.

In Phase II, say that vertex x gets visited the first time it is reached in line 6 of
Long Ear. Also, as we have implicitly done, say that a back edge is directed to its
shallower vertex. Long Ear maintains a list L[c] for each c ∈ C, defined by

L[c] = {e : e is a back edge covering c and directed to an already visited vertex}.

Subtree S is maintained according to the following invariant.
S-Invariant. The pendant edges of S − R are precisely the edges of c ∈ C − R

with L[c] �= ∅.
Long Ear constructs L lists and grows S as follows. When line 6 visits x, it first

does some processing, described below, that implements Rule 3. Then it scans each
back edge e directed to x. If c[e] �= Λ, do the following: Add e to L[c[e]]. If c[e] is not
in S, join it into S by the tree path to its first ancestor already in S.

This procedure maintains the definition of L. It also preserves the S-Invariant,
since the definition of tree carving shows the edges added to S do not descend from
a pendant edge of S −R.

In order to implement Rule 3, we use another variable, edge c∗. If c∗ is defined,
then it is used as edge c of line 2 to form the merging ear required by Rule 3. We
define c∗ when visiting x. The complete procedure for visiting x is as follows.

When x is first reached in line 6, if x already has descendants in S not in Px,
follow a path in S from x to a pendant edge. Take that pendant edge to be c∗. Then
scan the back edges directed to x, as described above. Finally, if c∗ is defined, choose
x′ (for the first child ear at x) as the child of x that is an ancestor of c∗. Otherwise
choose x′ arbitrarily.

Note that when this procedure begins, all proper ancestors of x have been visited
(by Rule 2) but no descendant of x has been visited. Hence for every edge c ∈ C −R
descending from x, L[c] contains precisely the edges that can be used to form a
merging child ear at x (by the definition of L). If such a c exists, the procedure’s edge
c∗ qualifies, since the S-Invariant guarantees that c∗ ∈ C and L[c∗] �= ∅.

Now we describe the implementation of lines 2–3 of Long Ear(b). The purpose of
line 2 is to define c. If c∗ is defined, then c = c∗. This gives a merging ear, satisfying
Rule 3.

If c∗ is not defined, then follow a path in S from b to a pendant edge of S. Take
that edge as c. The S-Invariant guarantees that c ∈ C and L[c] �= ∅. Furthermore,
any edge of L[c] can be used to form an ear Pb. This follows from the definition of
L[c], since a and all its ancestors have been visited, but no descendant of b has been
visited.

Next we describe line 3. If L[c] contains an edge yz with z /∈ t(a), choose one with
maximum d(y) to define a merging ear. Otherwise choose any edge yz ∈ L[c] with
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maximum d(y) to define a nonmerging ear. In both cases, 3(ii) is satisfied. Note that
for merging ears the procedure described in section 6.1 determines the final merging
ear. Finally, line 4 adds the tree path from b to y to both R and S.

Appendix A. Analysis for k-edge connectivity. This appendix extends the
analysis of section 5 to k-edge connectivity. Specifically, let B denote the set of nontree
edges in the approximation algorithm’s solution graph. (B consists of all edges added
after Phase I.) We show that for any integer k ≥ 3,

|B| ≤ (5/2k) εk.(12)

(It is easy to see that this implies |A| ≤ (9/2k)εk. So for k = 3 we again have a 3/2
performance ratio.) This result is used in [5] to get an approximation algorithm for
k-ECSS. We still assume Rules 1–3 of section 5.1 are used in the algorithm, but there
are no other additional rules.

The core of the derivation is a new version of Lemma 5.11. (Taking k = 3, the
new version can replace the one in section 5, but the new argument is slightly longer.)
There are a number of additional changes, but all changes are in sections 5.3 and 5.4.
The new versions of these sections are Appendices A.1 and A.2, respectively.

A.1. The approach for general k. We make some small changes in the def-
initions of our fundamental quantities as follows: If k + s edges of H cover an edge
e ∈ C, then e is redundantly covered s times. A vertex with degree k + s in H has
surplus degree s. Quantities κ, β, θa, θb, and θc are defined exactly as before. (For θc
use the new definition of redundant covering.) The new definition of θd is

θd = the total surplus degree of all vertices in H.

We modify the key inequality (6) in two ways, changing a factor 3 to k and changing
the term involving θd as follows:

µ ≤ κ + χ + β + (θa + 2θb + θc + θd)/k.(13)

The proof that this inequality implies (12) is entirely analogous to the proof given in
section 5.3. For completeness, the rest of this section gives all the details.

Our three lower bounds are

εk ≥ kγ + θc;(14)

εk ≥ (k/2)n + θd/2;(15)

εk ≥ (k/2)(n− 1 + κ + β − ν) + θa/2 + θb.(16)

It is obvious that (15) holds for the new definition of θd. The two other inequalities
are the same as in section 5.3 with the factor 3 changed to k.

For convenience we restate here the previous equation defining δ as follows:

µ− σ − χ = γ/2 + δ.(17)

The definition of B gives

|B| ≤ γ + σ + (n− 1 − ν) = n− 1 + µ− σ − χ = n− 1 + γ/2 + δ.

Combining 1/(2k) times inequality (14) with 2/k times inequality (15) gives (5/2k) εk ≥
n + γ/2 + θc/(2k) + θd/k. Hence we can assume

δ > θc/(2k) + θd/k
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since otherwise we are done. To handle this case, we will show that (14) and (16)
imply

(5/2k) εk ≥ n− 1 + γ/2 + 2δ − θc/(2k) − θd/k.(18)

Inequality (18), together with our assumption on δ, implies the desired result.
Reexpress µ exactly as in section 5.3 as follows: Substituting (3) into (17) and

using (4) gives

µ− ν − χ = 2δ.

Combining this with (13) gives

κ + β − ν ≥ µ− χ− ν − (θa + 2θb + θc + θd)/k = 2δ − (θa + 2θb + θc + θd)/k.

Thus (16) gives

εk ≥ (k/2)(n−1+2δ−(θa+2θb+θc+θd)/k)+θa/2+θb = (k/2)(n−1+2δ−(θc+θd)/k).

Combining 2/k times this inequality with 1/(2k) times (14) gives the desired inequality
(18).

A.2. Bounding |Y| for general k. As in section 5.4, we still deal with the
given graph G and the fixed 3-ECSS H. We do not use Proposition 5.4. Lemmas 5.5–
5.9 are properties of G alone and do not involve the connectivity of G, so they are
still valid. Lemma 5.10 involves H but not its connectivity, so it is still valid. Our
analogue of Lemma 5.11 uses the same quantities κ(y), χ(y), β(y), θa(y), and θb(y).
The two remaining quantities are defined slightly differently as follows:

θc(y) = the number of edges of H launched by y not covering a carving edge
or redundantly covering the carving edge of an ear launched by y;

θd(y) = the total surplus degree of vertices of Ty in H.

The new definition of θd(y) makes it consistent with θd. The definition of θc(y) differs
from section 5.4 in a substantive way: It associates a carving edge vw that has v ∈ Ty

and w ∈ Y with y rather than with w as in section 5.4.
Lemma A.1. For y ∈ Y let u ∈ Ty be the tip of a depleted ear. Suppose u does

not launch a merging ear and u has a penetrated child ear. Then either
(i) u has a breakable child belonging to Ty, or
(i) θa(y) + 2θb(y) + θc(y) + θd(y) ≥ k, or
(iii) κ(y) + χ(y) ≥ 1.
Proof. As in Lemma 5.11, we argue by contradiction. As in that lemma, u is

tight. We use the same notation U , CX , S, P , p, D with one change noted at the
beginning of Case 2 below. We use Claims 2 and 4 but no others. Their proofs are
unchanged. The proof of Claim 4 shows that there is an ear Q with first vertex in P ,
nonempty cluster CQ, and vertex q ∈ CQ ∩Q ∩ Ty adjacent to u in H. Furthermore,
edge qu does not cover a carving edge. Throughout this proof we write d for the
degree function in H, dH .

Case 1. P is depleted.
We show that (ii) holds in this case, more specifically, 2θb(y) + θd(y) ≥ k. Claim

2(c) and the fact that H is k-edge connected implies these two inequalities:

d(D) = d(P,U) + d(D,u) ≥ k,
d(D + u) = d(P,U) + d(u,D) ≥ k.
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Fig. 7. Proper child ear R.

Adding them gives 2d(P,U)+d(u) ≥ 2k. With θd(u) = d(u)−k this gives 2d(P,U)+
θd(y) ≥ k. Now it suffices to show that every edge xz ∈ E(H) from P to U is counted
in θb(y). This requires that (a) x and z belong to the same t-set, and (b) xz is properly
launched by y, i.e., x ∈ Ty − y. For (a) observe that Claim 2(a) shows z ∈ t(u), and
P depleted shows x ∈ t(u). For (b) observe that x �= p since otherwise edge xz covers
two carving edges (recall Figure 6).

Case 2. P is nondepleted.
As in Claim 3, the assumption implies P is tight. Consider (see Figure 7) a child

ear R of P whose first vertex is a and whose carving edge is vw (with v the parent
of w as usual). Say R is a proper child ear of P if a �= p, u, v. For instance, the ear Q
from Claim 4 is proper, by Claim 2(b).

Now consider a proper child ear R of P . Redefine D to be the set of all descendants
of I(R). (We will manipulate this new D in a manner analogous to the original D
in Case 1.) Let θc(D) denote the contribution to θc(y) of all edges that have at least
one end in D.

Observation 1. θc(D) ≥ k/2.
Proof. Partition D into two sets: A consists of all vertices that descend in F from

a vertex of I(R) that precedes (or equals) v; B consists of all vertices that descend
in F from a vertex of I(R) that follows (or equals) w. Both sets are nonempty
(v ∈ A,w ∈ B). Claim 2(c) and H k-edge connected imply

d(D) = d(A,P ) + d(B,P ) ≥ k,
d(A) = d(A,P ) + d(A,B) ≥ k.

Adding the inequalities gives 2d(A,P ) + d(B) ≥ 2k. Equivalently, d(A,P ) + (d(B) −
k)/2 ≥ k/2. So it suffices to show θc(D) ≥ d(A,P ) + (d(B) − k).

d(B) equals the number of edges covering the carving edge vw. Hence d(B)−k is
the number of times vw is redundantly covered. This is included in θc(D) because R
is launched by y. (Note that this is not true if we use the original definition of θc(y).)

It remains to show that every edge xz ∈ E(H) from A to P is counted in θc(y).
For this it suffices to prove (a) xz does not cover a carving edge, and (b) xz is launched
by y, i.e., x ∈ Ty.

We prove (a) by contradiction. Suppose xz covers e ∈ C. Let s be the deepest
vertex of R that is an ancestor of x. We will show that e descends from s in F .
x ∈ A shows that the tree path from s to f(s) does not contain the carving edge of
R. R proper and P tight implies that the tree path from f(s) to z does not contain
the carving edge of P . Hence the carving edge e covered by xz must descend from
s in F .
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Now Rule 3 shows that R has a child ear, launched by u, that is merging. This
follows since, after Long Ear has constructed ear R, the possible ear s, x, z is merging
(as s �= z). But the existence of such a merging ear contradicts the hypothesis of
Lemma A.1.

The contradiction proves (a). It is easy to see that (a) implies (b).
Consider again the child ear Q of Claim 4. Edge qu is not a short ear (since

q /∈ t(u)). Hence f(q) ∈ t(u) when Short Ear(·, 2) scans q (i.e., when line 2 of
Short Ear has x = q and i = 2). Consider the first ear that adds a vertex of I(P )
to t(u). Since Short Ear works bottom-up, Claim 2(c) implies this ear is a short ear
xu for some vertex x internal to a child ear R of P . Claim 2(b) shows that x is an
ancestor of the carving edge of R, so R is a proper child.

Case 2.1. R �= Q.
Observation 1 applies to both R and Q, since both are proper. Write D(R) for

the set of all descendants of I(R) and, similarly, write D(Q). No edge contributes
to both θc(D(R)) and θc(D(Q)). (More generally, let Q′ range over all child ears of
P except R. An edge leaving D(R) does not leave D(Q′) or cover any edge of Q′.
Similarly, an edge covering an edge of R does not leave D(Q′) or cover any edge of
Q′.) Now Observation 1 shows θc(y) ≥ k/2 + k/2 = k. Hence Lemma A.1(ii) holds.

Case 2.2. R = Q.
For consistency we refer to the ear as R. Let vw be the carving edge of R. Recall

vertices x ∈ I(R) ∩ t(u) and q ∈ I(Q) − t(u), both adjacent to u. This implies x �= q,
and both vertices are proper ancestors of w (Claim 2(b)).

Let D denote the set of all descendants of I(R). Partition D into three sets:
A (C) consists of all vertices that descend in F from the first (last) vertex of I(R),
respectively; B consists of all vertices that descend in F from a vertex of I(R) other
than the first or last. (For the remainder of the proof we are discarding the use of
“C” as the set of carving edges.) All three sets are nonempty: Since R = Q is tight,
w ∈ C. Since x and q are proper ancestors of w in I(R), A,B �= ∅.

Claim 2(c) and H k-edge connected imply

d(A) = d(A,P ) + d(A,B) + d(A,C) ≥ k,
d(B) = d(B,P ) + d(B,A) + d(B,C) ≥ k,
d(D) = d(A,P ) + d(B,P ) + d(C,P ) ≥ k.

Adding the inequalities gives 2d(A ∪ B,P ) + 2d(A,B) + d(C) ≥ 3k. Equivalently,
d(A ∪ B,P ) + d(A,B) + (d(C) − k)/2 ≥ k. We will show θc(y) ≥ d(A ∪ B,P ) +
d(A,B) + (d(C) − k), giving Lemma A.1(ii) as desired.

As in the proof of Observation 1, d(C) − k is the number of times the carving
edge vw is redundantly covered, and it is included in θc(y) since R is launched by y.
Similarly, the proof of Observation 1 shows that every edge xz ∈ E(H) from A∪B to
P is counted in θc(y). Finally, we must show the same for edges from A to B. This
follows by the same argument as in Observation 1.

The analogue of Lemma 5.12 is that any tip y ∈ Y has

(κ + χ + β)(y) + (θa + 2θb + θc + θd)(y)/k ≥ 1.

This is proved by exactly the same argument as before, using Lemma A.1 in place of
Lemma 5.11. The desired inequality (13) is then proved by the argument for (6) in
section 5.4.
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[2] J. Cheriyan, A. Sebő, and Z. Szigeti, Improving on the 1.5-approximation of a smallest
2-edge connected spanning subgraph, SIAM J. Discrete Math., 14 (2001), pp. 170–180.

[3] J. Cheriyan and R. Thurimella, Approximating minimum-size k-connected spanning sub-
graphs via matching, SIAM J. Comput., 30 (2000), pp. 528–560.

[4] C. G. Fernandes, A better approximation ratio for the minimum size k-edge-connected span-
ning subgraph problem, J. Algorithms, 28 (1998), pp. 105–124.

[5] H. N. Gabow, Better performance bounds for finding the smallest k-edge connected spanning
subgraph of a multigraph, in Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2003, pp. 460–469.

[6] N. Garg, V. S. Santosh, and A. Singla, Improved approximation algorithms for biconnected
subgraphs via better lower bounding techniques, in Proceedings of the 4th Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 1993,
pp. 103–111.

[7] S. Khuller, Approximation algorithms for finding highly connected subgraphs, in Appoxima-
tion Algorithms for NP-hard Problems, D. S. Hochbaum, ed., PWS Publishing, Boston,
MA, 1997 pp. 236–265.

[8] S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform connec-
tivity problems, J. Algorithms, 21 (1996), pp. 434–450.

[9] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, J. ACM, 41
(1994), pp. 214–235.

[10] S. Vempala and A. Vetta, Factor 4/3 approximations for minimum 2-connected subgraphs,
in Approximation Algorithms for Combinatorial Optimization, K. Jansen and S. Khuller,
eds., Lecture Notes in Comput. Sci. 1931, Springer-Verlag, Berlin, 2000, pp. 262–273.

[11] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper Saddle River, NJ,
2001.



COUNTING STRINGS WITH GIVEN ELEMENTARY SYMMETRIC
FUNCTION EVALUATIONS II: CIRCULAR STRINGS∗

C. R. MIERS† AND F. RUSKEY‡

SIAM J. DISCRETE MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 71–82

Abstract. Let α be a string over an alphabet that is a finite ring, R. The kth elemen-
tary symmetric function evaluated at α is denoted Tk(α). In a companion paper we studied the
properties of SR(n; τ1, τ2, . . . , τk), the set of length n strings for which Ti(α) = τi. Here we
consider the set, LR(n; τ1, τ2, . . . , τk), of equivalence classes under rotation of aperiodic strings in
SR(n; τ1, τ2, . . . , τk), sometimes called Lyndon words. General formulae are established and then
refined for the cases where R is the ring of integers Zq or the finite field Fq .

Key words. elementary symmetric function, combinatorial enumeration, integers mod q, Lyn-
don word, Möbius inversion, multinomial coefficient, finite field
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1. Introduction. The main purpose of this paper is to count certain equiva-
lence classes of strings over Zq, the ring of integers mod q, and over the finite field Fq.
The equivalence classes contain all strings that are rotationally equivalent (sometimes
called conjugate [7]) and that achieve specified values when regarded as the parameters
of elementary symmetric functions. Aside from the intrinsic interest of the enumera-
tive formulae and the techniques used to derive them, this paper can be viewed as part
of a program to enumerate certain classes of polynomials with coefficients in a finite
ring and whose coefficients are prescribed. In [2], degree n monic irreducible polyno-
mials over F2 with prescribed coefficients for xn−1 and xn−2 were enumerated. If such
a polynomial is factored in a splitting field, these coefficients can be interpreted as the
first and second elementary symmetric functions evaluated at the string of coefficients
in the factorization. The techniques in [2] (and in [11]) rely on the relationship be-
tween Lyndon words and irreducible polynomials. The relationship between strings,
polynomials, and elementary symmetric functions generalizes. If a string α has its
alphabet in a finite commutative ring R, we can evaluate the kth elementary symmet-
ric function Tk at α. This evaluation depends on the profile k = 〈k1, k2, . . . , k|R|−1〉,
where ki is the frequency with which ring element xi occurs in α. The relationship
between strings, polynomials, and elementary symmetric functions is contained in the

map α �→ Ak(z) =
∏|R|−1

j=1 (1+xjz)
kj , since Tm(α) = [zm]Ak(z). In [8] we exploit this

relationship to compute SZp(n; τ1, τ2, . . . , τt), the number of strings over Zp of length
n for which Tm(α) = τm. Related results can be found in [5], [9], [11].

2. Notation and preliminaries. In what follows we will assume R is a finite
commutative ring with identity, denoted 1. In this case R has a characteristic c which
is the least positive integer such that the c-fold sum 1 + 1 + · · · + 1 = 0. If d ∈ Z

+,
then d ∈ R, where d is the d-fold sum 1 + 1 + · · · + 1mod(c).
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We consider strings α = a1a2 · · · an, where each ai ∈ R, and we define the k-trace
of α, denoted Tk(α), as the sum

Tk(α) =
∑

1≤i1<i2<···<ik≤n

ai1ai2 · · · aik .

These are the elementary symmetric functions of a1, a2, . . . , an. Occasionally we will
call T1 the trace, T2 the subtrace, and T3 the subsubtrace. The trace terminology is
used, in analogy with the theory of finite fields, since (−1)kTk(α) is the coefficient of
zn−k in the polynomial (z − a1)(z − a2) · · · (z − an) (see [10]).

By SR(n; τ1, τ2, . . . , τk) we denote the number of strings α over R of length n for
which Ti(α) = τi for i = 1, 2, . . . , k. Obviously if k = 0, then SR(n) = qn, where q is
the number of elements in R. It is also true that SR(n; t) = qn−1 for any t ∈ R, since
T1(αx) takes on distinct values for each x ∈ R; we use here only the fact that R is an
additive group.

The notation [[P ]] for a proposition P has the value 1 if P is true and the value 0
if P is false. This is “Iverson’s convention,” as used in [6].

The numbers SR(n; τ1, τ2, . . . , τk) satisfy the following recurrence relation. If n=
1, then SR(n; τ1, τ2, . . . , τk) = [[τ2 = · · · = τk = 0]], and for n > 0,

SR(n; τ1, τ2, . . . , τk) =
∑
x∈R

SR(n− 1; ρ1, ρ2, . . . , ρk),(2.1)

where ρ0 = 1, and ρj = τj − ρj−1x for j = 1, 2, . . . , k. This recurrence relation holds
even if R is not commutative. It allows us to evaluate SR(n; τ1, τ2, . . . , τk) in O(nrk)
ring and integer operations (by, in effect, creating a size nrk table of SR evaluated
on all strings of length at most n on all possible values of the first k k-traces). The
properties of SZp

for p prime are studied in [8].
A rotation of a string α is any string β that can be written as β = γδ, where

α = δγ. A string α is aperiodic if there are no nonempty strings γ and δ such that
α = γδ = δγ. Let AR(n; τ1, τ2, . . . , τk) denote the number of aperiodic strings α
over R of length n for which Ti(α) = τi for i = 1, 2, . . . , k. Since every rotation of
an aperiodic string is distinct, AR(n; τ1, τ2, . . . , τk) is divisible by n. The number
LR(n; τ1, τ2, . . . , τk) = (1/n)AR(n; τ1, τ2, . . . , τk) is the number of equivalence classes
of aperiodic strings under rotation. The lexicographically least representatives of
these equivalence classes are often called Lyndon words [7].

Lemma 2.1. For all k ≥ 1 and d ≥ 1,

Tk(α
d) =

∑
ν1+2ν2+···+kνk=k

(
d

ν1, . . . , νk, d−(ν1+ · · ·+νk)

)
T1(α)ν1T2(α)ν2 · · ·Tk(α)νk .

Proof. From the string αd = α1α2 · · ·αd, where αi = α for all i, we need to
select k positions in all possible ways. We classify those ways according to the
distribution (ν1, ν2, . . . , νk), where νj is the number of αi’s containing j of the se-
lected positions. Such an αi will contribute a multiplicative factor of Tj(α) to the
sum, with T1(α)ν1T2(α)ν2 · · ·Tk(α)νk being the total contribution for a given dis-
tribution and selection of the αi’s. There are

(
d

ν1,... ,νk,d−(ν1+···+νk)

)
ways to asso-

ciate a distribution with particular αi’s. Finally, a distribution is valid if and only if
ν1+2ν2+ · · ·+kνk = k.

Note that the multinomial coefficient can be written as(
d

ν1, . . . , νk, d−Vk

)
=

(
d

ν1

)(
d− V1

ν2

)
· · ·

(
d− Vk−1

νk

)
,(2.2)
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where Vj = ν1 + ν2 + · · · + νj .
If t = (t1, t2, . . . , tk) ∈ Rk = R × R × · · · × R and d is a natural number, define

the map θd : Rk → Rk as θd(t) = u, where u = (u1, u2, . . . , uk) has the value, mod c,

uj =
∑

ν1+2ν2+···+jνj=j

(
d

ν1, . . . , νj , d−(ν1+ · · ·+νj)

)
tν1
1 tν2

2 · · · tνj

j(2.3)

=
∑

ν1+2ν2+···+jνj=j

d(ν1+ν2+···+νj)
tν1
1

ν1!

tν2
2

ν2!
· · ·

t
νj

j

νj !
.(2.4)

We use in (2.4) the notation d(m) = d(d−1) · · · (d−m+1) for the falling factorial.
In light of Lemma 2.1, since every periodic string is the repeated concatenation of an
aperiodic string,

SR(n;u) =
∑
d|n

∑
t∈Rk

[[θd(t) = u]]AR

(n
d

; t
)
.(2.5)

In principle (2.5) may be inverted recursively as long as all the solutions t to the
equations u = θd(t) can be determined. That is, when d = 1, the only solution is
tj = uj for j = 1, 2, . . . , k, giving the term AR(n; t1, t2, . . . , tk). All other terms have
the first parameter less than n. However, our aim is to invert (2.5) explicitly whenever
possible.

In what follows it often happens that the equation u = θd(t) has at most one
solution for particular values of n and u; i.e., if it has a solution, then t = θ−1

d (u).
Then (2.5) becomes

SR(n;u) =
∑
d|n

[[θ−1
d (u) exists]]AR

(n
d

; θ−1
d (u)

)
.(2.6)

Let us explicitly write out (2.4) for k = 1, 2, 3, 4 as a preparation for some exam-
ples to follow and to better understand the nature of the equation.

u1 = dt1,(2.7)

u2 = dt2 +

(
d

2

)
t21,(2.8)

u3 = dt3 + d(d− 1)t1t2 +

(
d

3

)
t31,(2.9)

u4 = dt4 + d(d− 1)t1t3 +

(
d

2

)
t22 + (d− 2)

(
d

2

)
t21t2 +

(
d

4

)
t41.(2.10)

Next we state a fundamental multiplicative property of the mapping θ.
Lemma 2.2. For all natural numbers a and b,

θa(θb(t)) = θab(t).

Proof. Let hd(z) =
∑

n≥1 unz
n =

∑
n≥1(n!un)zn/n!. Then hd(z) = fd(g(z)),

where

fd(z) =
∑
n≥1

d(n) z
n

n!
=

∑
n≥1

(
d

n

)
zn and g(z) =

∑
n≥1

n!tn
zn

n!
=

∑
n≥1

tnz
n,
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by the Faà di Bruno formula (see Comtet [3, pp. 137–138]). Our lemma then reduces
to the statement that fa(fb(g(z))) = fab(g(z)), which we can prove by showing that
fa(fb(z)) = fab(z). But this is a trivial substitution since fa(z) = (1 + z)a − 1.

Note that the lemma holds where a and b are formal variables; but we will use it
only when they are members of Zq.

For fixed k and q, we will be interested in the period of the sequence
(
n
k

)
mod q

for n = 0, 1, 2, . . . . The value of this period has been determined by Zabek [12], and
we state this result below.

Theorem 2.3 (Zabek). Let the prime factorization of q be

q = pn1
1 pn2

2 · · · pne
e ,

where the pi’s are distinct primes and the ni’s are positive integers. The period of the
sequence (

(
0
j

)
,
(
1
j

)
,
(
2
j

)
, . . . ) mod q is denoted q′j and is equal to

q′j =

e∏
i=1

pni+di
i , where di = �logpi

j�.

Corollary 2.4. If p is prime, then the period of the sequence (
(
0
j

)
,
(
1
j

)
,
(
2
j

)
, . . . )

mod p is p1+�logp j�.
We note that Zabek’s theorem (together with (2.2)) implies that θa(t) : Rk → Rk

is periodic in the sense that

θa+q′k
(t) = θa(t).(2.11)

Hence we will consider the integer subscripts of θa as integers mod q′k; i.e., a ∈ Zq′k
.

By Z
∗
q we denote the group of units (invertible elements) of Zq.

Corollary 2.5. If a ∈ Z
∗
q′k

, then θa is invertible and θ−1
a = θa−1 .

Proof. This follows from the fact that θ1 is the identity mapping and from
Lemma 2.2.

3. A generalized Möbius inversion. In this section we prove a generalized
Möbius inversion that is very useful in obtaining expressions for AR(n; τ1, τ2, . . . , τk)
and LR(n; τ1, τ2, . . . , τk), when R = Zq or R = Fq. In this section q can be any
positive integer. In the expressions below the reader should be careful about the
context in which d is used. We use, here and throughout the remainder of the paper,
the notation d ≡ x(q) to mean d ≡ xmod q.

Lemma 3.1. If nmod q ∈ Z
∗
q , then∑

x∈Z∗
q

∑
d|n

d≡x(q)

µ
(n
d

)
= [[n = 1]].

Proof. The defining recurrence relation for the Möbius function is
∑

d|n µ(d) =

[[n = 1]] (see, e.g., [6]). The lemma follows from this and the observation that if
nmod q ∈ Z

∗
q and d|n, then dmod q ∈ Z

∗
q .

The following theorem was proven for q = 2 in [4] and for q = 4 in [2].
Theorem 3.2. Let fx and gx be sets of functions indexed by x ∈ Z

∗
q . The

following two statements are equivalent. For all x ∈ Z
∗
q ,

fx(n) =
∑
a∈Z∗

q

∑
d|n

d≡a(q)

gax

(n
d

)
.(3.1)
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For all x ∈ Z
∗
q ,

gx(n) =
∑
a∈Z∗

q

∑
d|n

d≡a(q)

µ(d)fax

(n
d

)
.(3.2)

Proof. Let X be the right-hand side of (3.1), and assume that (3.2) is true. Then

X =
∑
a∈Z∗

q

∑
d|n

d≡a(q)

gax

(n
d

)

=
∑
a∈Z∗

q

∑
d|n

d≡a(q)

∑
b∈Z∗

q

∑
d′|(n/d)

d′≡b(q)

µ(d′)fabx

(
n/d

d′

)
.

We now make the substitutions dd′ = m and ab = c and interchange the order of
summation to obtain

X =
∑
c∈Z∗

q

∑
b∈Z∗

q

∑
m|n

m≡c(q)

∑
d|m

d≡cb−1(q)

µ
(m
d

)
fcx

( n

m

)

=
∑
c∈Z∗

q

∑
m|n

m≡c(q)

fcx

( n

m

) ∑
b∈Z∗

q

∑
d|m

d≡cb−1(q)

µ
(m
d

)

=
∑
c∈Z∗

q

∑
m|n

m≡c(q)

fcx

( n

m

)
[[m = 1]]

= fx(n).

The second equality above uses Lemma 3.1, noting that the condition m ≡ c(q) on
the second summation implies that mmod q ∈ Z

∗
q .

Verification in the other direction is similar and is omitted.

4. General results. In this section we present some results that apply over
various finite commutative rings. We assume throughout that R has r elements and
prime characteristic p.

The following formula for AR(n) is well known and depends only on the number
of elements in the ring and not on its algebraic structure.

AR(n) =
∑
d|n

µ
(n
d

)
rd =

∑
d|n

µ(d)rn/d.(4.1)

The following two lemmas will be useful in simplifying certain later sums.
Lemma 4.1. Let a be a natural number, let b and j be positive integers, and let

f be a function from the positive integers to a commutative ring with identity. Then∑
d|n

d≡ja(jb)

f(d) = [[j|n]]
∑
d|n

j
d≡a(b)

f(jd).(4.2)

Proof. The condition d ≡ ja(jb) implies that j|d. Let d = jd′. Observe that

[[d|n]][[d ≡ ja(jb)]] = [[jd′|n]][[jd′ ≡ ja(jb)]] = [[j|n]]

[[
d′|n

j

]]
[[d′ ≡ a(b)]].
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Summation index d is used on the left-hand side of (4.2), and d′ is used on the
right-hand side.

In the arguments to follow, we will use Lemma 4.1 with two sets of values for
j, a, b. First, in the next lemma we use j = q, a = 0, and b = 1. In this case the
congruence in the right-hand sum becomes d ≡ 0(1) which is vacuously satisfied and
can be omitted. Later, we will use j = 2, a = 1, and b = 2.

Lemma 4.2. Let n and q be positive integers. Then∑
d|n

d≡0(q)

AR

(n
d

)
= [[q|n]]

∑
d|nq

AR

(
n/q

d

)
= [[q|n]]rn/q.

Proof. The first equality follows from Lemma 4.1 and the second from the fact
that every string is the repeated concatenation of some aperiodic string.

Lemma 4.3. Let R have prime characteristic p. If k < p (and 0 is the k-tuple
(0, 0, . . . , 0)), then

SR(n;0) =
∑
d|n

d≡0(p)

AR

(n
d

)
+

∑
d|n

d�≡0(p)

AR

(n
d

;0
)

= [[p|n]]rn/p +
∑
d|n

d�≡0(p)

AR

(n
d

;0
)
.

Proof. The second equality follows from Lemma 4.2. To prove the first equality,
take (2.5) and break the sum into two parts depending on whether or not d ≡ 0(p).
Recall (2.4).

Consider first the case where d ≡ 0(p). From p|d and j ≥ 1 it follows that
p|d(ν1+ν2+···+νj). Since νi ≤ k < p, we have p � ν1!ν2! · · · νj !. Thus p divides
d(ν1+ν2+···+νj)/(ν1!ν2! · · · νj !), from which it follows that uj = 0 irrespective of the
values of t. Thus∑

t∈Rk

[[θd(t) = 0]]AR

(n
d

; t
)

=
∑
t∈Rk

AR

(n
d

; t
)

= AR

(n
d

)
.

Now consider the case where d �≡ 0(p). In the notation of Theorem 2.3, q′k = p
since k < p. Since d ∈ Z

∗
p, by Corollary 2.5 the function θd is invertible, and θ−1

d =
θd−1 . Thus t = θd−1(0) = 0, and hence∑

t∈Rk

[[θd(t) = 0]]AR

(n
d

; t
)

=
∑
t∈Rk

[[t = 0]]AR

(n
d

; t
)

= AR

(n
d

;0
)
.

Corollary 4.4. If R is a ring of prime characteristic p with k < p, then

LR(n;0) =
1

n

∑
d|n

d�≡0(p)

µ(d)
(
SR

(n
d

;0
)
− [[pd|n]]rn/(pd)

)
,

where R contains r elements and 0 is the k-tuple (0, 0, . . . , 0).
Proof. Note that the sum in Lemma 4.3 is over {1, 2, . . . , p−1} = Z

∗
p for prime p.

Apply Theorem 3.2 with fx(n) = SR(n;0) and gx(n) = AR(n;0) for all x.

5. Strings over the ring Zq. In [9] we showed that

LZq (n; t) =
1

qn

∑
d|n

gcd(d,q)|t

µ(d) gcd(d, q)qn/d.(5.1)
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From this the next lemma follows.
Lemma 5.1. If gcd(q, t) = gcd(q, t′), then LZq

(n; t) = LZq
(n; t′).

Note that x ∈ Z
∗
q if and only if x ∈ Z

∗
q′k

since gcd(x, q) = 1 if and only if

gcd(x, q′k) = 1.
Lemma 5.2. For all n ≥ 1 and primes p∑

d|n
d�≡0(p)

AZp

(n
d

; 1
)

= pn−1.(5.2)

Proof. This follows from the equation

pn−1 = S(n; 1) =
∑
d|n

∑
de=1

AR

(n
d

; e
)

=
∑
e∈Z∗

p

∑
d|n

AR

(n
d

; e−1
)
.

Let us say that a parameter pair (n; t) is unit invertible if the equation u = θd(t)
has a unique solution for all d ∈ Z

∗
q′k

and has no solution if d �∈ Z
∗
q′k

. For example,

(n; t) is unit invertible if t1 ∈ Z
∗
q or if n ∈ Z

∗
q .

Theorem 5.3. If (n; t) is unit invertible, then

LZq
(n; t) =

1

n

∑
r∈Z

∗
q′
k

∑
d|n

d≡r−1(q′
k
)

µ(d)SZq

(n
d

; θr−1(t)
)
.(5.3)

Proof. Under the stated hypotheses we can write (2.6) as

S(n; t) =
∑

a∈Z
∗
q′
k

∑
d|n

d≡a(q′
k
)

A
(n
d

; θ−1
a (t)

)
.(5.4)

By Corollary 2.5, we have θ−1
a (u) = θa−1(u). Substitute t = θx(u) in (5.4), and

use the multiplicative property θa−1(θx(u)) = θa−1x(u) to obtain

S(n; θx(u)) =
∑

a∈Z
∗
q′
k

∑
d|n

d≡a(q′
k
)

A
(n
d

; θa−1x(u)
)
.(5.5)

Written in this form we can apply Theorem 3.2 with fx(n) = S(n; θx(u)) and gx(n) =
A(n; θx−1(u)) to obtain (5.3).

Example. If q = k = 3, then q′k = 9, and θd−1(1, 0, 0) takes on the values

{(1, 0, 0), (2, 1, 0), (1, 0, 1), (2, 1, 1), (1, 0, 2), (2, 1, 2)}

for d = 1, 2, 4, 5, 7, 8. The number, LZ3
(n; 1, 0, 0), of length n Lyndon words over Z3

with (t1, t2, t3) = (1, 0, 0) is therefore equal to

1

n

∑
j∈Z3

⎛⎜⎝ ∑
d|n

d≡(3j+1)−1(9)

µ(d)SZ3

(n
d

; 1, 0, j
)

+
∑
d|n

d≡(3j+2)−1(9)

µ(d)SZ3

(n
d

; 2, 1, j
)⎞⎟⎠ ,

giving rise to the sequence of numbers 1, 1, 1, 1, 1, 1, 6, 36, 141, 422, 1062, 2371,
4995, 11082, 29230, 90735 for n = 1, 2, . . . , 16.
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According to the results of [8], over Z3 the traces (t1, t2, t3) determine the traces
t4 and t5 so that LZ3(n; 1, 0, 0) = LZ3(n; 1, 0, 0, 0, 0). Furthermore, the SZ3 numbers
can be expressed as sums of multinomial coefficients; e.g., for SZ3

(n; 1, 0, 0) we have

SZ3
(n; 1, 0, 0) =

∑
k0+k1+k2=n

k2≡0(3)
k1−k2≡1(9)

(
n

k0, k1, k3

)
.

6. Strings over the ring Fq.

6.1. The field Fq for q odd. In this section we consider the computation of
the number of strings in the various classes over Fq, where q = pm, with p an odd
prime.

In [9] we reproved a result of Carlitz [1] that, if t �= 0, then

LFq
(n; t) =

1

qn

∑
d|n
p�d

µ(d)qn/d.(6.1)

Here we generalize this to the first p− 1 traces.
Theorem 6.1. If q = pm, where p is an odd prime and k < p, then

LFq
(n; t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

n

∑
d|n
p�d

µ(d)
(
SFq

(n
d

;0
)
− [[pd|n]]qn/(pd)

)
if t = 0,

1

n

∑
d|n
p�d

µ(d)SFq

(n
d

; θd−1(t)
)

otherwise.

Proof. The t = 0 case follows from Corollary 4.4. In the other case there is
some index j ≤ k such that t1 = · · · = tj−1 = 0 and tj �= 0. Consider the equation
t = θd(u) in (2.5). If d ≡ 0(p), then we must have t = 0. Thus d �≡ 0(p). Hence
u1 = u2 = · · · = uj−1 = 0 and tj = duj so that uj = d−1tj . Repeated substitution
will give unique values for uj , uj+1, . . . , uk. We can therefore use (2.6) and write

SFq
(n; t) =

∑
d|n

d�≡0(p)

AFq

(n
d

; θd−1(t)
)

=
∑
x∈Z∗

p

∑
d|n

d≡x−1(p)

AFq

(n
d

; θx−1(t)
)
,

which can then be inverted by Theorem 3.2 to obtain the stated result.
The case where p = 2 will be handled in the next section.

6.2. The field F2m . In this section p = 2. Since p = 2, if k < p, then k = 0 or
k = 1. However, the value of LZ2m

(n; t) is known for k = 0, 1 ((4.1) and (6.2)), so
unlike in the previous subsection here we have k ≥ p. In this section we will consider
in detail the k = 3 case, which is the largest value for which p′k = 22 = 4. In other
words, we derive a formula for LF2m

(n; t1, t2, t3). We also state without proof the
result for LF2m

(n; t1, t2).

Here the values of
(
d
2

)
mod 2 follow the pattern 0,0,1,1 mod 4 and the values of(

d
3

)
mod 2 follow the pattern 0,0,0,1, so we consider the value of d mod 4 in (2.7),
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(2.8), and (2.9) taken mod 2 (but with the roles of u and t reversed). If d ≡ 0(4),
then t1 = t2 = t3 = 0, but u1, u2, and u3 are unrestricted. If d ≡ 1(4), then u1 = t1,
u2 = t2, and u3 = t3. If d ≡ 2(4), t1 = 0, u2

1 = t2, and t3 = 0. Fortunately, in a field
of characteristic 2, square roots always exist and are unique, so we can set u1 =

√
t2.

Finally, if d ≡ 3(4), then u1 = t1, u2 = t2 + t21, and t3 = u3 + t31. Thus,

SF2m
(n; t1, t2, t3) = [[t1 = 0]][[t2 = 0]][[t3 = 0]]

∑
d|n

d≡0(4)

AF2m

(n
d

)
+

∑
d|n

d≡1(4)

AF2m

(n
d

; t1, t2, t3

)
+ [[t1 = 0]][[t2 = 0]]

∑
d|n

d≡2(4)

AF2m

(n
d

;
√
t2

)
+

∑
d|n

d≡3(4)

AF2m

(n
d

; t1, t2 + t21, t3 + t31

)
.

We now consider the different values of the trace, subtrace, and subsubtrace. If
t1 = t2 = t3 = 0, then

SF2m
(n; 0, 0, 0) =

∑
d|n

d≡0(4)

AF2m

(n
d

)
+

∑
d|n

d≡2(4)

AF2m

(n
d
, 0
)

+
∑
d|n

d odd

AF2m

(n
d
, 0, 0, 0

)
.

(6.2)

If t2 �= 0 but t1 = t3 = 0, then

SF2m
(n; 0, t2, 0) =

∑
d|n

d≡2(4)

AF2m

(n
d

;
√
t2

)
+

∑
d|n

d odd

AF2m

(n
d

; 0, t2, 0
)
.(6.3)

If t1 = 0 but t3 �= 0, then

SF2m
(n; 0, t2, t3) =

∑
d|n

d odd

AF2m

(n
d

; 0, t2, t3

)
.(6.4)

The equations where t1 �= 0 come in parameter pairs, (t1, t2, t3) and (t1, t2 +
t21, t3 + t31). The quantity SF2m

(n; t1, t2, t3) is equal to∑
d|n

d≡1(4)

AF2m

(n
d

; t1, t2, t3

)
+

∑
d|n

d≡3(4)

AF2m

(n
d

; t1, t2 + t21, t3 + t31

)
.(6.5)

We can use Theorem 3.2 to invert the pairs (6.5) to obtain

LF2m
(n; t1, t2, t3) =

1

n

∑
d|n

d≡1(4)

µ(d)SF2m

(n
d

; t1, t2, t3

)

+
1

n

∑
d|n

d≡3(4)

µ(d)SF2m

(n
d

; t1, t2 + t21, t3 + t31

)
.
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To invert (6.3) we will need the following lemma and corollary. The lemma holds
over general finite fields.

Lemma 6.2. Let q = pm with p prime. For all n ≥ 1,∑
d|n

d�≡0(p)

AFq

(n
d

; 1
)

= qn−1, and(6.6)

∑
d|n

d�≡0(p)

AFq

(n
d

; 0
)

= qn−1 − [[p|n]]qn/p.(6.7)

Proof. To prove (6.6) consider the equation below, where y ∈ Z
∗
p.

qn−1 = SFq (n; y) =
∑
d|n

∑
dx≡y

AFq

(n
d

;x
)

=
∑
d|n

d∈Z∗p

AFq

(n
d

; d−1y
)

=
∑
d|n

d∈Z∗p

AFq

(n
d

; 1
)
.

The second equality is a restatement of (2.5). The equation dx = y has a solution
only if d ∈ Z

∗
p = {1, 2, . . . , p− 1}, namely, x = d−1ymod p, giving the third equality.

The equalities SFq
(n; y) =

∑
d|n

d∈Z∗p
AFq

(nd ; d−1y) can be inverted by Theorem 3.2 to

obtain

AFq (n; y) =
∑
d|n

d∈Z∗p

µ(d)SFq

(n
d

; d−1y
)
,(6.8)

thereby implying that AFq (n; y) = AFq (n; 1) for all y ∈ Z
∗
p and justifying the last

equality.

The following corollary generalizes Lemma 5 from [2].

Corollary 6.3. Let m be a positive integer. Then∑
d|n

d≡2(4)

AF2m

(n
d
, 1
)

= [[n even]](2m)n/2−1,(6.9)

∑
d|n

d≡0(4)

AF2m

(n
d

)
+

∑
d|n

d≡2(4)

AF2m

(n
d
, 0
)

= [[n even]](2m)n/2−1.(6.10)

Proof. To prove (6.9) we first use Lemma 4.1 with j = b = 2 and a = 1. This
produces a sum of the form of (6.6), except with n/2 substituted for n, and 2m

substituted for q.

To prove (6.10), note that the first term of the left-hand side is [[4|n]](2m)n/4

by Lemma 4.2 with q = 4. By Lemma 4.2 the second term of the left-hand side is
equal to [[n even]]

∑
d|(n/2),d
≡0(2) A(n/(2d), 0). By Lemma 6.2 this is in turn equal

to [[n even]]((2m)n/2−1 − [[2|(n/2)]](2m)n/4). Adding the two terms together, we get
[[n even]](2m)n/2−1.

Note from (6.1) that AF2m
(n; 1) = AF2m

(n;
√
t2) for any t2 �= 0. In view of Corol-

lary 6.3, for any t2, we can write

SF2m
(n; 0, t2, 0) = [[n even]](2m)n/2−1 +

∑
d|n

d odd

AF2m

(n
d

; 0, t2, 0
)
.
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This equation can be inverted using the Möbius inversion of Theorem 3.2 to obtain

LF2m
(n; 0, t2, 0) =

1

n

∑
d|n

d odd

µ(d)
(
SF2m

(n
d

; 0, t2, 0
)
− [[n/d even]](2m)n/(2d)−1

)
.

The various cases are summarized in the following theorem.
Theorem 6.4. If q = 2m, then the value of LFq

(n; t1, t2, t3) is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

n

∑
d|n

d odd

µ(d)
(
SFq

(n
d

; 0, t2, 0
)
− [[r = 0]]

[[
2|n
d

]]
qn/(2d)−1

)
if t1 = 0,

1

n

∑
d|n

d odd

µ(d)SFq

(
n

d
; t1, t2 +

d−1

2
t21, t3 +

d−1

2
t31

)
if t1 �= 0.

By similar arguments, or by summing over t3 in the preceding theorem, we obtain
the theorem below.

Theorem 6.5. If q = 2m, then

LFq (n; t1, s1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

n

∑
d|n

d odd

µ(d)
(
SFq

(n
d

; 0, t2

)
−
[[n
d

even
]]
qn/(2d)−1

)
if t1 = 0,

1

n

∑
d|n

d odd

µ(d)SFq

(
n

d
; t1, t2 +

d−1

2
t21

)
if t1 �= 0.

7. Final remarks. Tables of some of the numbers discussed in this paper for
k = 1, 2 may be accessed from the page www.theory.cs.uvic.ca/∼cos/inf/trs/. There
are many relevant sequence numbers in Neil J. Sloane’s online encylopedia of inte-
ger sequences. For example, over Z3 it contains LZ3

(n; 0, 0) = A053548, LZ3
(n; 0, 1) =

A053560, LZ3(n; 0, 2) = A053561, LZ3(n; 1, 0) = LZ3(n; 2, 0) = A053562, LZ3(n; 1, 1) =
LZ3

(n; 2, 1) = A053563, LZ3
(n; 1, 2) = LZ3

(n; 2, 2) = A053564.
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Abstract. In this paper, we study the complexity of recognizing powers of chordal graphs and
its subclasses. We present the first polynomial time algorithm to recognize squares of proper interval
graphs and give an outline of an algorithm to recognize kth powers of proper interval graphs for
every natural number k. These are the first results of this type for a family of graphs that contains
arbitrarily large cliques. On the other hand, we show the NP-completeness of recognizing squares of
chordal graphs, recognizing squares of split graphs, and recognizing chordal graphs that are squares
of some graph.
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1. Introduction. Root and root finding are concepts familiar in most branches
of mathematics. In graph theory, H is a root of G = (V,E) if there exists a positive
integer k such that x and y are adjacent in G if and only if their distance in H is at
most k. If H is a kth root of G, then we write G = Hk and call G the kth power of
H. Note that the terms “power” and “root” are used because of the close relationship
with matrix multiplication. Graph roots are associated with problems in distributed
computing [26] and computational biology [31, 24], where graph roots are useful in
the reconstruction of phylogeny.

For any class of graphs, recognition is a fundamental structural and algorithmic
problem; in this paper, we study recognition problems on graph powers. Generally,
it is a difficult task to determine whether a given graph G has a kth root or not.
In 1967, Mukhopadhyay [30] characterized general graphs that possess a square root,
and in the following year Geller [13] solved the problem for general digraphs. In 1974,
Escalante, Montejano, and Rojano [9] characterized graphs and digraphs with a kth
root. However, all of these characterizations on powers of general graphs are not
polynomial in the sense that they do not yield a polynomial time algorithm. The
complexity of graph power recognition was unresolved until 1994, when Motwani and
Sudan [29] proved the NP-completeness of recognizing squares of graphs. About the
same time, Lin and Skiena [25] gave a linear time algorithm for recognizing squares
of trees. Somewhat surprisingly, until very recently, trees were the only nontrivial
family of graphs where the square recognition problem is known to have a polynomial
time algorithm. (For classes of graphs with diameter at most 2, such as the class
of cographs, the square recognition problem is trivial since the square is always a
clique.) In [22], Lau presented a polynomial time algorithm to recognize squares of
bipartite graphs. (It is worth noting that Motwani and Sudan [29] believed that this
problem would be NP-complete.) In this paper, we give a polynomial time algorithm
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to recognize squares of proper interval graphs. This is the first class of graphs that
does not contain trees and furthermore allows graphs with arbitrarily large cliques.
(The algorithms for trees and bipartite graphs are very dependent on the existence of
no cliques of size > 2.) An obvious extension of the square recognition problem is that
of kth power recognition. For k > 2 it was solved for trees in polynomial time [18]; for
bipartite graphs it is NP-complete [22]. In this paper we show that for proper interval
graphs it is in P, for every fixed k. In [16], Harary and McKee introduced the closed-
neighborhood intersection multigraph as a useful multigraph version of the square of
a graph. They characterized those multigraphs that are squares of chordal graphs
and they gave an algorithm to go from the squared chordal graph back to its unique
square root. In this paper, we show the NP-completeness of recognizing squares of
chordal graphs. Also, we prove the NP-completeness of recognizing squares of split
graphs and recognizing chordal graphs that are squares of some graph. Flotow [11]
studied a related problem to graph powers recognition; he gave sufficient conditions
for a graph whose power is a chordal graph (or an interval graph).

1.1. Overview of this paper. In this paper, we study the complexity of rec-
ognizing powers of chordal graphs and its subclasses. In section 2, we present the
first polynomial time algorithm to recognize squares of proper interval graphs, and
we sketch an outline of a polynomial time algorithm to recognize kth powers of proper
interval graphs for every natural number k. Our approach is based on a nontrivial
use of dynamic programming. In section 3, we prove the NP-completeness of recog-
nizing squares of chordal graphs, recognizing squares of split graphs, and recognizing
chordal graphs that are squares of some graph. Note that split graphs and bipartite
graphs have a similar partitioning structure but squares of bipartite graphs can be
recognized in polynomial time [22]. Before presenting our results we survey some
important results concerning graph powers and give our terminology.

1.2. Related work. The literature is rich with results on graph roots and pow-
ers. Given a graph G with property P , does Gk have property P? Substantial work has
been done on closure properties of powers of special classes of graphs, such as chordal
graphs [1, 8], interval graphs [33], cocomparability graphs [6], strongly chordal graphs
[27, 34, 2], circular arc graphs [34], and AT-free graphs [33, 3]. Given a graph G, what
can be said about the properties of Gk? Since the number of edges increases with the
index of the power of a graph, it is natural to expect that sufficiently large powers
do possess some Hamiltonian-type properties. For instance, Fleischner [10] proved
that the square of every 2-connected graph is Hamiltonian, and Sekanina [36] proved
that the cube of every nontrivial connected graph is Hamiltonian connected. Besides
the mathematical property questions on graph powers, the following is an obvious
question to ask from an algorithmic point of view. Given a graph G, can we solve
some optimization problems on Gk efficiently? Many optimization problems remain
difficult in the case of powers of graphs [25]. On the other hand, a Hamiltonian cycle
in the square of a 2-connected graph can be found in polynomial time [21], and the
chromatic number of the square of a planar graph can be approximated within a con-
stant factor in polynomial time [28]. Also, Ramachandran [32] proved, without using
computers, that if G is a planar graph with a square root or a cube root, then G is 4
colorable.

1.3. Basic terminology. Our basic notation and terminology reference is [38].
We denote a graph G with vertex set V (G) and edge set E(G) by G = (V,E), where n
and m denote |V | and |E|, respectively. A loop is an edge whose endpoints are equal.
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Multiple edges are edges having the same pair of endpoints. A simple graph is a graph
having no loops or multiple edges. When u and v are endpoints of an edge, they
are adjacent and are neighbors. We write u ↔ v or uv ∈ E(G) for “u is adjacent to
v”. All the graphs we consider are simple, undirected, and loopless, unless otherwise
specified. The complement G of a simple graph G is the simple graph with vertex set
V (G) defined by uv ∈ E(G) if and only if uv /∈ E(G). A graph G′ = (V ′, E′) is a
subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. G′ is an induced subgraph of G, written
G[V ′], if it is a subgraph of G and it contains all the edges uv such that u, v ∈ V ′ and
uv ∈ E(G).

The degree of a vertex v in a graph G, written deg(v), is the number of edges
incident with v. A pendant vertex is a vertex with degree one. An isolated vertex
is a vertex with degree zero. The open neighborhood of v, written NG(v) or N(v),
is the set of vertices adjacent to v. The closed neighborhood of v, written NG[v], is
NG(v)∪{v}. When U is a set of vertices, NG[U ] =

⋃
v∈U NG[v]. If G has a u, v-path,

then the distance from u to v, written dG(u, v), is the least length of a u, v-path. The
kth neighborhood of v, written Nk

G(v), is the set of vertices with distance k to v. A
graph G is connected if each pair of vertices in G is connected by a path; otherwise,
G is disconnected. A clique in a graph G is a set of pairwise adjacent vertices. When
the set has size r, the clique is denoted by Kr. An independent set (or stable set) in
a graph is a set of pairwise nonadjacent vertices.

A graph G is chordal if G does not have an induced cycle of length at least 4. A
vertex v is simplicial if G[N(v)] is a clique. Let σ = [v1, v2, . . . , vn] be an ordering of
the vertices in a graph G. We say that σ is a simplicial elimination ordering if each
vi is a simplicial vertex of G[{vi, . . . , vn}]. It is well known that a graph is chordal if
and only if it has a simplicial elimination ordering. A graph is weakly chordal if G and
G contain no induced cycle of length at least 5. Let I = {I1, I2, . . . , In} be a finite
collection of intervals of the real line and let GI be its intersection graph. G is an
interval graph if G is the intersection graph GI of an interval model I. G is a proper
interval graph if G is an interval graph with an interval model where no two intervals
Ix, Iy ∈ I properly contain each other. Furthermore, G is a proper interval graph if
and only if it is a unit interval graph, namely, an interval graph where all intervals
are of the same length. Both interval graphs and proper interval graphs [5, 7] can be
recognized in linear time. Furthermore, a fully dynamic algorithm for recognizing and
representing proper interval graphs is available [17]. A graph is a split graph if there is a
partition of its vertex set into a clique and a stable set. Clearly split graphs are chordal.

2. Squares of proper interval graphs. In this section, we will present the
first polynomial time algorithm to solve Square of Proper Interval Graph.
Problem Square of Proper Interval Graph

Instance A graph G = (V,E).
Question Does there exist a proper interval graph H such that H2 = G?

The algorithm is based on a dynamic programming approach and it is conceptu-
ally simple. The outline of this section is as follows. First we develop some special
structural properties of the square of a proper interval graph. This gives us insight
into a polynomial time recognition algorithm. To facilitate our discussion, we then
introduce the notation for the description of our algorithm. Then, we prove some
lemmas and a decomposition theorem which is the core of our algorithm. We then
present the algorithm formally, prove its correctness, and analyze the complexity. Fi-
nally, we give an outline to extend the algorithm to recognize kth powers of proper
interval graphs for every natural number k.
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Problem kth Power of Proper Interval Graph

Instance A graph G = (V,E).
Question Does there exist a proper interval graph H such that Hk = G?

2.1. Preliminaries. Let G be a proper interval graph and V (G) = {g1, . . . , gn}.
Let IG(gi) be the corresponding interval of gi. We denote the left endpoint of IG(gi)
by leftG(gi) and the right endpoint of IG(gi) by rightG(gi). In the remainder of this
section, we will assume that leftG(g1) < leftG(g2) < · · · < leftG(gn). Since G is a
proper interval graph, leftG(gi) < leftG(gj) implies rightG(gi) < rightG(gj). We call
such an ordering a total vertex ordering in a proper interval graph.

A set S of vertices (intervals) is consecutive if S = {gi, gi+1, gi+2, . . . , gj} for some
1 ≤ i ≤ j ≤ n, and we define leftG(S) = leftG(gi) and rightG(S) = rightG(gj). Given
two nonempty sets of consecutive vertices S1 and S2, we say S1 < S2 if and only if S1

and S2 are disjoint and leftG(S1) < leftG(S2). For technical reasons, we say S1 < S2

when S1 = ∅ or S2 = ∅.
A graph class C is closed under powers if for every G ∈ C and every k,Gk ∈ C. C

is strongly closed under powers if Gk ∈ C for some k implies Gk+1 ∈ C. The following
theorem characterizes the closure property of proper interval graphs under powers.

Theorem 2.1 (see [33]). The class of proper interval graphs is strongly closed
under powers.

In particular, if H is a proper interval graph, then H2 is a proper interval graph.
In light of this theorem, to determine if G is the square of a proper interval graph,
we can, without loss of generality, assume that G is a proper interval graph.

Given a graph G, there are O(n + m) algorithms (e.g., [5]) that determine if G
is a proper interval graph and construct an interval representation if it is. Therefore,
in the following sections, to determine if G is the square of a proper interval graph,
we assume G is a proper interval graph and the corresponding interval representation
is given. If G is the square of a proper interval graph, we use H to denote a proper
interval graph square root of G. We will let V (G) = {g1, g2, . . . , gn} and V (H) =
{h1, h2, . . . , hn}. We define G[i, j] = G[gi, gi+1, gi+2, . . . , gj ] and similarly for H.
Without loss of generality, we assume G and H are connected in the rest of this
section.

2.1.1. Computing the square of a proper interval graph. Before we dis-
cuss how to find a proper interval square root H of a given proper interval graph G,
we first consider how to compute H2 from a proper interval graph H. This will give
us insight into how to do the reverse operation. In general graphs, we can compute
the square of a graph by doing matrix multiplication. But in proper interval graphs,
there is a more effective and yet very intuitive way to compute the square of H by
looking at the interval representation of H. Figure 2.1 presents a proper interval
graph H and Figure 2.2 shows H2. In the figures, numbers on the left represent the
vertex names while numbers on the right represent the leftmost neighbor names (to
be defined later). This example will be used throughout this section.

Given a total vertex ordering of a proper interval graph, the following properties
are obvious.

Proposition 2.2. Given a proper interval graph H with a total vertex ordering,
NH [hi] is consecutive for any 1 ≤ i ≤ n.

With this property, it is easy to compute the square of a proper interval graph.
By Proposition 2.2, we know that NH [hj ] is consecutive. Let NH [hj ] = {hi, . . . , hk}.
We say hi is the leftmost neighbor of hj denoted by lH(hj) and hk is the rightmost
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Fig. 2.1. A proper interval graph H together with the names of the parents.
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Fig. 2.2. G = H2.

neighbor of hj denoted by rH(hj). For technical reasons, we set lH(h1) = h1 and
rH(hn) = hn.

Proposition 2.3. Let NH [hj ] = {hi, . . . , hk} with 1 ≤ i ≤ j ≤ k ≤ n.
Then NH2 [hj ] = NH [hi] ∪ NH [hk] for any 1 ≤ j ≤ n. In other words, NH2 [hj ] =
NH [lH(hj)] ∪NH [rH(hj)].

Corollary 2.4. Given a proper interval graph H, N2
H [hj ] = {lH(lH(hj)), . . . ,

rH(rH(hj))} for any 1 ≤ j ≤ n.
Notice that if i < j, then left(l(l(hi))) ≤ left(l(l(hj))) and right(r(r(hi))) ≤

right(r(r(hj))). So a total vertex ordering in H is a total vertex ordering in H2. In
other words, if G is the square of a proper interval graph, then it has a proper interval
graph square root H such that G and H have the same vertex ordering. We will prove
this fact formally later, and it is very useful when we construct a proper interval graph
square root since it significantly reduces the search space.

2.1.2. Notation for the algorithm. We introduce some notation to facilitate
our discussion. We say vi is the parent of vj and vj is a child of vi if vi is the leftmost
neighbor of vj . In Figures 2.1 and 2.2, the number in parentheses beside an interval
indicates the parent of the corresponding vertex. Notice that if vj is a child of vi, then
vj is not adjacent to vi−1. For every vi, there is a unique parent, denoted by p(vi).
On the other hand, vi may have many children and we denote the set of children of
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vi by C(vi). For example, in Figure 2.1, CH(h2) = {h5, h6}. For technical reasons,
C(v1) = N(v1) (i.e., v1 /∈ C(v1)) but p(v1) = v1. Note that vi may have no children.
For example, in Figure 2.1, CH(h3) = ∅. If vi = l(l(vj)), then we say vi is the
grandparent of vj , denoted by gp(vj), and vj is a grandchild of vi.

Let X be a set of consecutive vertices. We define C(X) =
⋃

v∈X C(v). Notice
that it is possible that X∩C(X) �= ∅; however, we are interested in only the case when
X∩C(X) = ∅ and thus X < C(X). C(X) is the union of the set of children of vertices
in X. We let C0(X) = X, C1(X) = C(X), and more generally Ci(X) = C(Ci−1(X)).
Notice that if Ci(X) = ∅, then Ci+1(X) = ∅. We define e(X) = k, where k is the
maximum value such that Ck(X) �= ∅, and we define C∗(X) =

⋃
0≤i≤e(X) C

i(X). So

C∗(X) is the set of descendants of vertices in X together with X. We say that C∗(X)
is the chain of X and e(X) is the length of the chain. If v′ ∈ C1(v), then v′ is a child
of v, and if v′ ∈ C2(v), then v′ is a grandchild of v. Furthermore, if v′ ∈ C∗

G(v), then
v′ is a descendant of v. Finally, if X < Y < CG(X), then we denote C∗

G(X) ∪C∗
G(Y )

by C∗
G(X,Y ).
The remainder of this section goes as follows. In subsection 2.2, we will prove that

if G is a proper interval graph square, then there exists a proper interval graph H with
the same vertex ordering as in G such that H2 = G. Then we will show some proper-
ties of chains in subsection 2.3 and prove the decomposition theorem in subsection 2.4.
Finally, we present the algorithm and analyze its complexity in subsection 2.5 and
extend it to recognize kth powers of proper interval graphs in subsection 2.6.

2.2. H2 and H share the same vertex ordering.
Lemma 2.5. If G is a proper interval graph square, then there exists a proper

interval graph H with the same vertex ordering as in G such that H2 = G.
Proof. We prove by induction on i that there exists Hi such that {g1, . . . , gi} in

G are mapped to {h1, . . . , hi} in Hi and Hi
2 = G. Thus H ′ = Hn is a proper interval

graph with the same vertex ordering as in G.
First we prove the base case when i = 1. Suppose H is a proper interval graph

square root of G. If g1 in G is mapped to h1 in H, then H1 = H and we are done.
So suppose g1 in G is mapped to hj in H such that 1 < j; we consider two cases.

Case 1. In H, there are a < j < b such that dH(ha, hj) = 2 and dH(hj , hb) = 2.
In H2, hj is adjacent to ha and hb. Since IG(g1) is the leftmost interval in G,
g1 is a simplicial vertex in G and its neighborhood induces a clique in G. Since
G = H2, hj is a simplicial vertex in H2 and thus ha and hb are adjacent in H2.
Since hjha, hjhb /∈ E(H), rightH(ha) < leftH(hj) and rightH(hj) < leftH(hb) in H.
Therefore, ha and hb are not adjacent in H. Since ha and hb are adjacent in H2,
there exists hc such that hahc ∈ E(H) and hbhc ∈ E(H). However, this implies that
leftH(hc) < rightH(ha) < leftH(hj) < rightH(hj) < leftH(hb) < rightH(hc) and thus
IH(hc) is an interval that properly contains IH(hj). This contradicts the assumption
that H is a proper interval graph. Thus Case 1 is impossible.

Case 2. In H, IH(hj) either intersects all the intervals on its left or intersects
all the intervals on its right. Without loss of generality, we assume the former case
such that hi is a neighbor of hj for all i < j. As IG(g1) is the leftmost interval in G,
g1 is a simplicial vertex and NG[g1] ⊆ NG[gk] if gk is a neighbor of g1 in G. Since
G = H2 and g1 is mapped to hj , NH2 [hj ] ⊆ NH2 [hi] for all i < j. On the other
hand, by Corollary 2.4, rightH(hj) > rightH(hi) implies NH2 [hi] ⊆ NH2 [hj ] for all
i < j. Therefore NH2 [hi] = NH2 [hj ] for all i < j. In particular, NH2 [h1] = NH2 [hj ].
Therefore, we can construct H1 from H by switching the preimages of h1 and hj .
Clearly, H1

2 = H2 = G. Thus the base case holds.
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Now we assume g1, . . . , gk in G are mapped to h1, . . . , hk in Hk, respectively, and
Hk

2 = G. We will construct Hk+1 from Hk such that g1, . . . , gk+1 in G are mapped
to h1, . . . , hk+1 in Hk+1, respectively, and H2

k+1 = G. If gk+1 in G is mapped to
hk+1 in Hk, then Hk+1 = Hk and we are done. So suppose gk+1 in G is mapped
to hj in Hk with j > k + 1. Since IG(gk+1) is the leftmost interval in G[k + 1, n],
by Corollary 2.4, we have NG[1,k][gi] ⊆ NG[1,k][gk+1] for i > k + 1. Since G = Hk

2

and gk+1 is mapped to hj , NHk
2[1,k][hi] ⊆ NHk

2[1,k][hj ] for k + 1 ≤ i < j. On the
other hand, since leftHk

(hi) < leftHk
(hj) for any k + 1 ≤ i < j, by Corollary 2.4,

NHk
2[1,k][hj ] ⊆ NHk

2[1,k][hi] for k + 1 ≤ i < j. So, NHk
2[1,k][hi] = NHk

2[1,k][hj ] for
k + 1 ≤ i < j. By essentially the same argument, we also have NHk

2[k+1,n][hj ] =
NHk

2[k+1,n][hi] for k + 1 ≤ i < j.
Therefore NHk

2 [hi] = NHk
2 [hj ] for k + 1 ≤ i < j. In particular, NHk

2 [hk+1] =
NHk

2 [hj ]. Thus we may construct Hk+1 from Hk by switching the preimages of hj and

hk+1. Clearly, H2
k+1 = Hk

2 = G and g1, . . . , gk+1 in G are mapped to h1, . . . , hk+1 in
Hk+1. By induction, we can construct Hn. Thus H ′ = Hn, and this completes the
proof.

By Lemma 2.5, we can assume that if G is a proper interval graph square, then
there is a proper interval graph H such that H2 = G and H and G share the same
vertex ordering (i.e., gi in G is mapped to hi in H for all i). Later on, gi and hi actually
mean the same vertex but gi refers to the one in G and hi refers to the one in H.

2.3. Parent and children relationship. Now we characterize H based on
the parent-children relationship in G which is analogous to Corollary 2.4. But in
the following lemma, we characterize H by just using the leftmost neighbors instead
of using both leftmost and rightmost neighbors. This allows us to construct H by
considering one direction only (from left to right, i.e., from 1 to n).

Lemma 2.6. Let G be a proper interval graph square and let H be a proper interval
graph with the same vertex ordering as in G. H2 = G if and only if gpH(hj) = pG(gj)
for 1 ≤ j ≤ n.

Proof. Since G and H share the same vertex ordering, if H2 = G, by Corollary 2.4,
gpH(hj) = pG(gj) for 1 ≤ j ≤ n.

Now we prove the reverse direction. If gpH(hj) = pG(gj) for 1 ≤ j ≤ n, we prove
that H2 = G by induction. First we prove the base case that NH2 [hn] = NG[gn].
By Corollary 2.4, NH2 [hn] = {lH(lH(hn)), . . . , hn}. Since lH(lH(hn)) = gpH(hn) =
pG(gn) and G and H share the same vertex ordering, NH2 [hn] = NG[gn] and thus the
base case holds.

Now suppose that NH2 [hj ] = NG[gj ] for k + 1 ≤ j ≤ n. Consider NH2 [hk];
by the induction hypothesis, NH2 [hk] ∩ {hk+1, . . . , hn} = NG[gk] ∩ {gk+1, . . . , gn}.
Since lH(lH(hk)) = gpH(hk) = pG(gk) and G and H share the same vertex order-
ing, NH2 [hk] ∩ {h1, . . . , hk} = NG[gk] ∩ {g1, . . . , gk}. Therefore, we conclude that
NH2 [hk] = NG[gk], and this completes the induction step.

The following easily proved proposition describes a basic property of a chain based
on the definition.

Proposition 2.7. If X < Y < C(X), then Ci(X)<Ci(Y ) < Ci+1(X) for i ≥ 0.
The following lemma formalizes the idea that a chain in H is composed of two

chains in G.
Lemma 2.8. Let H2 = G, where H and G share the same vertex ordering. If

X < Y < CG(X) and CH(X) = Y , then CH(Ci
G(X)) = Ci

G(Y ) and CH(Ci
G(Y )) =

Ci+1
G (X) for i ≥ 0. Furthermore, eG(X) = eG(Y ) or eG(X) = eG(Y ) + 1.

Proof. Since X < Y < CG(X) and CH(X) = Y , by Lemma 2.6, CH(Y ) = CG(X).
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And since H2 = G, if CG(X) �= ∅, then Y �= ∅. By Proposition 2.7, CG(X) < CG(Y ).
Repeating the same argument, since Y < CG(X) < CG(Y ) and CH(Y ) = CG(X),
we have CH(CG(X)) = CG(Y ). And since H2 = G, if CG(Y ) �= ∅, then CG(X) �= ∅.
By induction, we have CH(Ci

G(Y )) = Ci+1
G (X) and CH(Ci

G(X)) = Ci
G(Y ). Also, by

Lemma 2.6, if Ci+1
G (X) �= ∅, then Ci

G(Y ) �= ∅; if Ci+1
G (Y ) �= ∅, then Ci+1

G (X) �= ∅.
Thus eG(X) = eG(Y ) or eG(X) = eG(Y ) + 1, and this completes the proof.

Thus, a necessary condition for C∗
G(X,Y ) to form C∗

H(X) is that the length of
C∗

G(X) and the length of C∗
G(Y ) are about the same.

The following two propositions are useful for decomposition. Their proofs follow
directly from the definitions.

Proposition 2.9. Suppose X < C(X). If X1 ∪ X2 = X and X1 < X2, then
Ci(X1) ∪ Ci(X2) = Ci(X) and Ci

G(X1) < Ci
G(X2) for i ≥ 0.

Proposition 2.10. Suppose X < Y < C(X). Let X1 ∪ X2 = X and X1 <
X2 and similarly Y1 ∪ Y2 = Y and Y1 < Y2. Then Ci(X) = Ci(X1) ∪ Ci(X2),
Ci(X1) < Ci(X2) and Ci(Y ) = Ci(Y1) ∪ Ci(Y2), Ci(Y1) < Ci(Y2) for i ≥ 0. Also,
Ci(X1) < Ci(X2) < Ci(Y1) < Ci(Y2) < Ci+1(X1) for i ≥ 0.

Proof. The first two statements follow from Proposition 2.9. The last statement
follows from Proposition 2.7.

2.4. A decomposition theorem. The following is an important definition for
our algorithm. Intuitively, it checks if C∗

G(X,Y ) can form C∗
H(X); in other words, it

checks if G[C∗
G(X,Y )] has a square root with special properties.

Definition 2.11. Suppose X < Y < CG(X); G[C∗
G(X,Y )] is matched if and

only if there exists H ′ with the same vertex ordering as G[C∗
G(X,Y )] such that

(P1) H ′2 = G[C∗
G(X,Y )];

(P2) H ′[X] is a clique;
(P3) pH′(hi) ∈ X if and only if hi ∈ X ∪ Y .

We say H ′ is a matched root of G[C∗
G(X,Y )].

We will decompose G into small graphs that correspond to chains in H; then we
will construct matched roots (i.e., chains in H) independently and combine them to
form a root of G. Note that (P2) and (P3) are necessary conditions for H ′ to be
H[C∗

H(X)].
The following lemma is a rephrasing of Lemma 2.6 in the case of matched roots.

It characterizes matched roots based on the parent-children relationship in G.
Lemma 2.12. Suppose X < Y < CG(X); let H have the same vertex set and the

same vertex ordering as G[C∗
G(X,Y )] and assume H satisfies (P2) and (P3). Then

H2 = G[C∗
G(X,Y )] if and only if gpH(hi) = pG(gi) for all gi ∈ C∗

G(X,Y ) −X − Y .
Proof. By Lemma 2.6, H2 = G[C∗

G(X,Y )] if and only if gpH(hi) = pC∗
G

(X,Y )(gi)
for all gi ∈ C∗

G(X,Y ). Notice that pC∗
G

(X,Y )(gi) = pG(gi) for all gi ∈ C∗
G(X,Y ) −X.

Also, (P2) and (P3) holding for H guarantee gpH(hi) = pG(gi) for all gi ∈ X ∪ Y .
Therefore, H2 = G[C∗

G(X,Y )] if and only if gpH(hi) = pG(gi) for all gi ∈ C∗
G(X,Y )−

X − Y .
The following is a rephrasing of Lemma 2.8 in the case of a matched root. Note

that the only difference between Lemmas 2.13 and 2.8 is that CH(C0
G(X)) = C0

G(Y )
holds in Lemma 2.8.

Lemma 2.13. Suppose G[C∗
G(X,Y )] is matched and let H be a matched root of

G[C∗
G(X,Y )]. Then CH(Ci

G(X)) = Ci
G(Y ) for i ≥ 1 and CH(Ci

G(Y )) = Ci+1
G (X) for

i ≥ 0. Furthermore, eG(X) = eG(Y ) or eG(X) = eG(Y ) + 1.
Proof. By (P3) of H, pH(hi) ∈ X if and only if hi ∈ X ∪ Y . Since H2 =

G[C∗
G(X,Y )], CH(Y ) = CG(X). By Proposition 2.7, CG(X)<CG(Y ). Since CH(Y ) <
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CG(X) < CG(Y ) and CH(Y ) = CG(X), by Lemma 2.8, the results follow.
As mentioned previously, if H2 = G, then we can combine matched roots to con-

struct a root of G. The following lemma shows the reverse direction, namely, we can
find matched roots in H. This justifies our approach of constructing matched roots.

Lemma 2.14. Let H have the same vertex ordering as in G and H2 = G. If
X < Y < CG(X), H[X] is a clique, and CH(X) = Y , then G[C∗

G(X,Y )] is matched.
Proof. Let H ′=H[C∗

H(X)]; we will show that H ′ is a matched root of G[C∗
G(X,Y )].

First, since H2 = G, X < Y < CG(X), and CH(X) = Y , by Lemma 2.8, C∗
H(X) =

C∗
G(X,Y ). We now show (P1)–(P3) are satisfied for H ′. Since H[X] is a clique,

(P2) is satisfied. Since CH(X) = Y , (P3) is satisfied. For (P1), by our construction,
pH′(hi) = pH(hi) for all hi ∈ C∗

H(X) − X. Thus in H ′, gpH′(hi) = gpH(hi) for all
hi ∈ C∗

H(X) − X − CH(X). Since H2 = G, by Lemma 2.6, gpH(hi) = pG(gi) for
all i. Therefore gpH′(hi) = pG(gi) for all gi ∈ C∗

G(X,Y ) −X − Y . By Lemma 2.12,
H ′2 = G[C∗

G(X,Y )] and thus (P1) is satisfied; by Definition 2.11, G[C∗
G(X,Y )] is

matched.
Now we have enough machinery to prove the decomposition theorem. First, the

following theorem reduces the original problem to finding a matched root. Intuitively,
it corresponds to the partition of the neighborhood of g1 in G (i.e., guessing the
neighborhood of h1 in H).

Theorem 2.15. G is a proper interval graph square if and only if G[C∗
G(X,Y )]

is matched for some X, where X ∪ Y = CG(g1) and X < Y .
Proof. If G is a proper interval graph square, by Lemma 2.5, then there exists

H with the same vertex ordering as in G and H2 = G. Let X = CH(h1) and
Y = CG(g1)−X; clearly X∪Y = CG(g1) and X < Y . We will show that G[C∗

G(X,Y )]
is matched. In H, since X = CH(h1), H[X] is a clique. Since Y = CG(g1) −X and
H2 = G, every vertex in Y has a neighbor in X and thus CH(X) = Y . Thus H[X] is a
clique, CH(X) = Y , and X < Y < CG(X); by Lemma 2.14, G[C∗

G(X,Y )] is matched.
Now suppose G[C∗

G(X,Y )] is matched for some X, where X ∪ Y = CG(g1) and
X < Y . Let H ′ be a matched root of G[C∗

G(X,Y )]. We show how to construct H
from H ′ such that H2 = G. Since X ∪ Y = CG(g1), by Proposition 2.9, C∗

G(X,Y ) =
C∗

G(CG(g1)). Since CG(g1) = NG(g1), C
∗
G(CG(g1)) = G−g1 = {g2, . . . , gn}. Since H ′

is a matched root of G[C∗
G(X,Y )], V (H ′) = {h2, . . . , hn}. Since H ′2 = G− g1, H

′[X]
is a clique and CH′(X) = Y , by constructing H = H ′ + h1 with CH(h1) = X, it is
easy to verify that H2 = G. So G is a proper interval graph square.

The following theorem is the core of the algorithm. It reduces the problem of
finding a matched root in a graph to finding matched roots in two smaller graphs. It
is the basis of the “decomposition” step in the algorithm.

Theorem 2.16. Assume X and Y with X < Y < CG(X) in G with |X| ≥ 2. Let
ga be the first vertex in X. Then G[C∗

G(X,Y )] is matched if and only if G[C∗
G(ga, A)]

and G[C∗
G(X − ga, Y − A)] are both matched for some A, where A < Y − A. (Note

that A could be an empty set.)
Proof. Suppose G[C∗

G(X,Y )] is matched and let H ′ be a matched root of G[C∗
G

(X,Y )]. We will show G[C∗
G(ga, A)] and G[C∗

G(X − ga, Y − A)] are both matched
for some A, where A < Y − A. In particular, we set A = CH′(ha) − X. Since
H ′ has the same vertex ordering as G[C∗

G(X,Y )], A < Y − A. If CG(X) = ∅, by
Lemma 2.13, C∗

G(X,Y ) = X ∪Y and clearly G[C∗
G(ga, A)] and G[C∗

G(X − ga, Y −A)]
are both matched. Thus we assume CG(X) �= ∅; by Lemma 2.13, CH′(Y ) = CG(X).

Since H ′2 = G[C∗
G(X,Y )], by our choice of A, CH′(A) = CG(ga) and CH′(Y − A) =

CG(X−ga). By Lemma 2.14, both G[C∗
G(A,CG(ga))] and G[C∗

G(Y −A,CG(X−ga))]
are matched and we let H1 and H2 be the corresponding matched roots.
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Fig. 2.3. Combine matched root H1 of C∗
G(ga, A) and matched root H2 of C∗

G(X − ga, Y −A)
into matched root H′ of C∗

G(X,Y ).

We will show that H ′
1 = H ′[H1 + ha] and H ′

2 = H ′[H2 + (X − ha)] are matched
roots of G[C∗

G(ga, A)] and G[C∗
G(X− ga, Y −A)], respectively. By (P2) for H ′, H ′[X]

is a clique, so H ′[ha] and H ′[X − ha] are cliques and thus (P2) is satisfied in H ′
1

and H ′
2. By (P3) for H ′, pH′(hi) ∈ X if and only if hi ∈ X ∪ Y . Since we set

A = CH′(ha) −X, it is clear that (P3) is satisfied in H ′
1 and H ′

2. By (P1) for H1

and H2, H1
2 = G[C∗

G(A,CG(ga))] and H2
2 = G[C∗

G(Y − A,CG(X − ga))]. Since H ′

is a matched root of G[C∗
G(X,Y )], it is easy to check that H ′

1
2

= G[C∗
G(ga, A)] and

H ′
2
2

= G[C∗
G(X − ga, Y −A)]. Thus, by Definition 2.11, G[C∗

G(ga, A)] and G[C∗
G(X −

ga, Y −A)] are both matched.
Suppose G[C∗

G(ga, A)] and G[C∗
G(X − ga, Y − A)] are both matched for some A,

where A < Y − A, and let H1 and H2 be the corresponding matched roots. We
will show how to construct a matched root H ′ of G[C∗

G(X,Y )]. By Proposition 2.10,
C∗

G(ga, A) ∪C∗
G(X − ga, Y −A) = C∗

G(X,Y ). Also by Proposition 2.10, we know the
total vertex order of H1 ∪H2. We can construct H ′ by combining H1 and H2 with
the order indicated by Proposition 2.10 and setting pH′(hi) = ha for hi ∈ X − ha.
Notice that in this ordering, if i ≤ j, then left(pH′(hi)) ≤ left(pH′(hj)). Thus H ′

is constructible with the parent-children relationship unchanged as in H1 and H2,
except for hi ∈ X − ha. The concept is shown in Figure 2.3, where we combine two
matched roots to a matched root; recall that a matched root corresponds to two chains
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in G. It is important to note that, in Figure 2.3, the parent-children relationship in
H ′ unchanged as in H1 and H2 (by looking at the intersection of intervals), except for
hi ∈ X − ha. It is also worth noting that, unlike Figure 2.3, the length of C∗

G(ga, A)
and the length of C∗

G(X − ga, Y −A) could be very different.
By Lemma 2.12, gpH1

(hi) = pG(gi) for all gi ∈ C∗
G(ga, A)−ga−A and gpH2

(hj) =
pG(gj) for all gj ∈ C∗

G(X−ga, Y −A)−(X−ga)−(Y −a). As the parent relationship in
H ′ is unchanged as in H1 and H2, except for vertices in X − ga, so gpH′(hi) = pG(gi)
for all gi ∈ C∗

G(X,Y ) −X − Y . Since we set pH′(hi) = ha for hi ∈ X − ga, H
′[X] is

a clique and thus H ′ satisfies (P2). By (P3) for H1 and H2, pH1(hi) ∈ {ha} if and
only if hi ∈ {ha} ∪ A and pH2(hj) ∈ X − ha if and only if hj ∈ (X − ha) ∪ (Y − A).
Without changing the parent relationship except for vertices in X − ga, H

′ satisfies
(P3). By Lemma 2.12, H ′2 = G[C∗

G(X,Y )] and thus G[C∗
G(X,Y )] is matched.

The following theorem is the basis of the “propagation” step. It reduces the
problem of finding a matched root in a graph to finding a matched root in a smaller
graph; in particular, it reduces the length of the chain by one.

Theorem 2.17. Given X = {gi} and Y with {gi} < Y < CG(gi), G[C∗
G({gi}, Y )]

is matched if and only if G[C∗
G(Y,CG(gi))] is matched.

Proof. Suppose G[C∗
G({gi}, Y )] is matched and let H ′ be a matched root of

G[C∗
G({gi}, Y )]. We will show that H ′ − hi is a matched root of G[C∗

G(Y,CG(gi))].
By (P3) for H ′, hi is the parent of the vertices in Y in H ′. So H ′[Y ] is a clique and
thus (P2) is satisfied in H ′ − hi. Also, by Lemma 2.13, CH′(Y ) = CG(gi) and thus
(P3) is satisfied in H ′ − hi. And clearly, (H ′ − hi)

2 = G − gi. By Definition 2.11,
G[C∗

G(Y,CG(gi))] is matched.
Suppose G[C∗

G(Y,CG(gi))] is matched and let H1 be a corresponding matched
root. By (P2), H1[Y ] is a clique. By (P3), pH1(hj) ∈ Y if and only if hj ∈ Y ∪CG(gi).

By constructing H ′ = H1 + hi with CH(hi) = Y , H ′2 = G[C∗
G({gi}, Y )] and (P2),

(P3) are satisfied in H ′. Thus, by Definition 2.11, G[C∗
G({gi}, Y )] is matched.

2.5. Algorithm, correctness, and complexity. The following recursive al-
gorithm is an implementation of the decomposition procedure. P is a prefix of S if
P < S − P ; note that P could be an empty set.

Main Program

for every prefix P of CG(g1) do
if Match (P, CG(g1) − P ) then output “Yes”

output “No”

Match (X = {ga, . . .}, Y )
Case: X = ∅

if Y = ∅ then return True

else return False

Case: X = {ga}
return Match (Y, CG(ga))

Otherwise:
for every prefix P of Y do

if (Match ({ga}, P ) and Match (X − ga, Y − P ))
then return True

return False
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Theorem 2.18. The algorithm is correct.
Proof. In Main Program, we reduce the recognition of the square of a proper

interval graph to finding a matched root. Then we use the results obtained in the
previous subsection to find a matched root; this is done by the recursive function
Match.

The correctness of the Main Program is justified by Theorem 2.15. Now we
look into the recursive function Match. The first case is the base case when the
X-chain ends. If the Y -chain also ends, then X and Y are matched. Otherwise, X
and Y are not matched. The second case is the “propagation” step. Its correctness is
justified by Theorem 2.17. The final case is the “decomposition” step. Its correctness
is justified by Theorem 2.16.

Theorem 2.19. Square of Proper Interval Graph can be solved in
O(n5).

Proof. The key observation is that X={ga, ga+1, . . . , gb} and Y ={gc, gc+1, . . . , gd}
are consecutive sets. Thus there are at most O(n4) instances of Match since
there are at most n possibilities of each a, b, c, d. Therefore, we can use dy-
namic programming to solve this problem. Explicitly, we can create a table of size
O(n4) to store the results of all possible instances. Each entry in the table
can be computed in time at most O(n). The total complexity is at most O(n5).
To implement the algorithm, we can use a standard trick of “caching” the solu-
tions when we run the recursion so that each entry of the table is computed at most
once.

Notice that the above algorithm is for the decision problem where a proper interval
graph is a proper interval graph square. To actually find a proper interval graph square
root, we need to add another four-dimensional array to trace the partitions. This is a
standard technique of dynamic programming and is covered in many textbooks. For
simplicity in the description of the algorithm, we do not include the details of finding
the partitions.

Now suppose we know the partitions; we show how to construct a proper interval
square root H of G. Suppose X = {ha, . . . , hb} and Y = {hc, . . . , hd} and the
partition is (ha, {hc, . . . , hi}) and (X − ha, {hi+1, . . . , hd}). Then we set CH(ha) =
{hc, . . . , hi}. Suppose X = {ha} and Y = {hc, . . . , hd}; then we set CH(ha) =
Y . So from the partitions, we can deduce the parent for any vertex. Then from
the parents, we can obtain the adjacency matrix of a proper interval graph square
root.

2.6. Outline of the recognition algorithm of kth powers of proper in-
terval graphs. By applying the same idea of the recognition algorithm of the square
of a proper interval graph, we can develop a polynomial time algorithm for the recog-
nition of the kth power of a proper interval graph for any fixed k. We will not go
into full details. Also, we assume that G is not a complete graph. The outline of the
algorithm is as follows:

Main Program

for every partition of CG(g1) into k consecutive sets S1 < · · · < Sk

if Match (S1, S2, . . . , Sk) then output “Yes”
output “No”
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Match (S1 = {ga, . . .}, S2, . . . , Sk)
Case: S1 = ∅

if S2, . . . , Sk are all emptyset then return True

else return False

Case: S = {ga}
return Match (S2, . . . , Sk, CG(ga))

Otherwise:
for every combination of prefixes P2, . . . , Pk of S2, . . . , Sk do

if (Match ({ga}, P2, . . . , Pk) and
Match (S1 − ga, S2 − P2, . . . , Sk − Pk))

then return True

return False

Theorem 2.20. kth Power of Proper Interval Graph can be solved in
time O(n3k−1) and space O(n2k).

Proof. To apply dynamic programming, we have to create a table of size O(n2k)
since there are k pairs of integers. The main program is of complexity O(nk−1).
In Match, it takes at most O(nk−1) to compute one entry in the table. The total
complexity is at most O(n3k−1).

3. NP-completeness. In this section, we will show that recognizing squares of
chordal graphs, finding square roots of chordal graphs, and recognizing squares of
split graphs are all NP-complete. We will use Set Splitting and Intersection

Graph Basis as formulated in [12] for our reductions.
Problem [SP4] Set Splitting

Instance Collection C of finite sets of elements from S.
Question Is there a partition of S into two subsets S1 and S2 such that no

subset in C is entirely contained in either S1 or S2?
Note It is also known as Hypergraph 2-Colorability.

Problem [GT59] Intersection Graph Basis [19]

Instance Graph G = (V,E), positive integer K ≤ |E|.
Question Is G the intersection graph for a family of sets whose union has

cardinality K or less, i.e., is there a K-element set S and for each
v ∈ V a subset S[v] ⊆ S such that {u, v} ∈ E if and only if S[u]
and S[v] are not disjoint?

We will borrow the tail structure in [29] of a vertex v to ensure v has the same
neighborhood in any square root H of G. It enables one to exactly pin down the
neighborhood of v in any square root H of G.

Lemma 3.1 (see [29]). If a, b, c, d are vertices of G such that
• the only neighbors of a are b and c,
• the only neighbors of b are a, c, and d,
• c ↔ d,

then the neighbors, in V − {a, b, c, d}, of d in any square root of G are the same as
the neighbors, in V − {a, b, c, d}, of c in G. (See Figure 3.1 for an illustration.)

3.1. Squares of chordal graphs. In this subsection, we will show that to
determine if G is the square of a chordal graph is NP-complete.
Problem Square of Chordal Graph

Instance A graph G = (V,E).
Question Does there exist a chordal graph H such that G = H2?
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c dba c dba

Fig. 3.1. Tail in H and G = H2.

The rest of this section shows that Square of Chordal Graph is NP-hard
by reducing Set Splitting to it. It is clear that Square of Chordal Graph is
in NP, since guessing the square root H, verifying that H is a chordal graph, and
G = H2 can easily be done in polynomial time. Thus we will conclude that Square

of Chordal Graph is NP-complete.

3.1.1. The reduction. Given an instance of Set Splitting, we construct an
instance of Square of Chordal Graph. Let cj be the set of elements in subset j
and let C = {c1, . . . , cm}. Let S = {u1, . . . , un} be the ground set. The graph G is
constructed as follows (note that we will be using Lemma 3.1):
Vertices of G

• Element vertices: Ui: 1 ≤ i ≤ n for each element ui in S.
• Subset vertices: Cj for each subset cj ∈ C and tail vertices C1

j , C2
j , C3

j for
each cj .

• Partition vertices: S1 and S2.
Edges of G

• Edges of tail vertices of subset vertices: for all cj ∈ C,
C3

j ↔ C2
j , C3

j ↔ C1
j ,

C2
j ↔ C1

j , C2
j ↔ Cj ,

C1
j ↔ Cj and C1

j ↔ Ui for all ui ∈ cj .
• Edges of subset vertices: for all cj ∈ C,
Cj ↔ S1, Cj ↔ S2, Cj ↔ Ui for all i, and Cj ↔ Ck if and only if cj ∩ ck �= ∅.

• Edges of element vertices: for all ui ∈ U ,
Ui ↔ Uj for all j �= i and Ui ↔ S1 and Ui ↔ S2.

Before presenting the details of the proof, we first give some intuition behind the
transformation. From the tail structure, C1

j pins down the neighborhood of Cj in any
square root H of G. So in any square root H of G, Cj is adjacent to Ui if and only
if ui ∈ cj . Also, S1 and S2 are adjacent to all Ui in G to force S1 and S2 to have a
common neighbor to all Cj in H. Moreover, S1 and S2 are not adjacent in G to force
S1 and S2 to have no common neighbor in H and thus S1, S2 represents a partition
of the ground set S.

Lemma 3.2. If there is a partition of S into two subsets S1 and S2 such that no
subset in C is entirely contained in either S1 or S2, then there exists a chordal graph
H such that H2 = G.

Proof. Edges of H.
• Edges of subset vertices and its tail vertices:
C3

j ↔ C2
j , C2

j ↔ C1
j , C1

j ↔ Cj , and Cj ↔ Ui if and only if ui ∈ cj .
• Edges of partition vertices:
Sk ↔ Ui if and only if ui ∈ Sk.

• Edges of subset vertices:
Ui ↔ Uj for i �= j.
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Fig. 3.2. An example of G.

It is a tedious but straightforward task to check that H2 = G. We leave the
details to the reader (see [23] for a full proof).

For example, given C = {c1, c2, c3, c4}, c1 = {u1, u2, u3}, c2 = {u2, u5}, c3 =
{u3, u4}, c4 = {u1, u4}, and S = {u1, u2, u3, u4, u5}, we construct G as shown in
Figure 3.2. The ellipse corresponds to a clique and we omit the clique edges to keep
the figure simpler. Also in the figure, C1, C2, C3, C4, S1, and S2 have two dotted lines
to the central ellipse. This indicates that each of them is universal to the vertices in
the central ellipse. In this example, S1 = {u1, u3, u5} and S2 = {u2, u4} is a possible
solution. The graph H corresponding to this solution is shown in Figure 3.3. The
reader may verify that H2 = G and H is chordal. A possible perfect elimination
ordering of H is {C3

1 , . . . , C
3
4 , C

2
1 , . . . , C

2
4 , C

1
1 , . . . , C

1
4 , C1, . . . , C4, S1, S2, U1, . . . , U5}.

We now show that if G is a square, then there is a partition of S into two subsets
S1 and S2 such that no subset in C is entirely contained in either S1 or S2. First,
observing that {C3

j , C
2
j , C

1
j , Cj} satisfies the properties of Lemma 3.1, we have the

following consequence.
Proposition 3.3. If H is a square root of G, then in H, Cj is adjacent only to

the following: Ui if ui ∈ cj, and C1
j .

Lemma 3.4. If H is a square root of G, then there is a partition of S into two
subsets S1 and S2 such that no subset in C is entirely contained in either S1 or S2.

Proof. Proposition 3.3 forces each subset vertex to be adjacent to its own elements
only. Together with the fact that S1 and S2 are not adjacent to any tail vertices in
G, S1 and S2 only have neighbors in the element set in H. Since S1 � S2 in G, they
have no common element neighbor in H and so it is a partition on the element set.
And since S1 and S2 are adjacent to all subset vertices in G but not in H, S1 and S2

have a common neighbor with Ci in the element set for all i. Therefore, NH(S1) and
NH(S2) are the desired partitions. This completes the proof.

Notice that in the above lemma, we didn’t use the property that H is chordal.
In fact, any square root would tell us how to do set splitting. In particular, any
chordal root would tell us how to do set splitting. This completes the proof of NP-
completeness of Square of Chordal Graph.
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Fig. 3.3. An example of H.

Theorem 3.5. Square of Chordal Graph is NP-complete.
Since any square root would tell us how to do set splitting, we have the following

results.
Theorem 3.6. For any class X of graphs which contains the class of chordal

graphs, Square of X Graph is NP-complete.
Corollary 3.7. Given G, determine if there exists a weakly chordal graph H

such that H2 = G is NP-complete.
Corollary 3.8. Given G, determine if there exists a perfect graph H such that

H2 = G is NP-complete.

3.2. Square roots of chordal graphs. In this subsection, we will show that
given a chordal graph G, it is NP-complete to determine if there exists H such that
H2 = G. Notice that the proof is almost identical to that of the previous subsection;
therefore, we will omit unnecessary details.
Problem. Square Root of Chordal Graph

Instance. A chordal graph G = (V,E).
Question. Does there exist a graph H such that H2 = G?

The rest of this section shows that Square Root of Chordal Graph is NP-
hard by reducing Set Splitting to it. It is clear that Square Root of Chordal

Graph is in NP, since guessing the square root H and verifying that H2 = G can
be easily done in polynomial time. Thus we will conclude that Square Root of

Chordal Graph is NP-complete.

3.2.1. The reduction. Given an instance of Set Splitting, we construct an
instance of Square Root of Chordal Graph. Let cj be the set of elements in
subset j, let C = {c1, . . . , cm}, and let S = {u1, . . . , un} be the ground set. The graph
G is constructed as follows (note that we will be using Lemma 3.1):
Vertices of G

• Element vertices: Ui: 1 ≤ i ≤ n for each element ui.
• Subset vertices: Cj for each subset cj ∈ C and tail vertices C1

j , C2
j , C3

j for
each cj .

• Partition vertices: S1 and S2.
Edges of G

• Edges of tail vertices of subset vertices: for all cj ∈ C,
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C3
j ↔ C2

j , C3
j ↔ C1

j ,

C2
j ↔ C1

j , C2
j ↔ Cj ,

C1
j ↔ Ci for all i and C1

j ↔ Ui for all ui ∈ cj .
• Edges of subset vertices: for all cj ∈ C,
Cj ↔ S1, Cj ↔ S2, Cj ↔ Ui for all i, and Cj ↔ Ck for all k.

• Edges of element vertices: for all ui ∈ U ,
Ui ↔ Uj for i �= j, Ui ↔ S1, and Ui ↔ S2.

Lemma 3.9. G is a chordal graph.
Proof. We do this by showing a simplicial elimination ordering of G. For all C3

j ,

they are simplicial and we eliminate them first. Then for any C2
j , it is adjacent only

to C1
j and Cj , which are adjacent. Thus C2

j is simplicial for all j and we eliminate
them. The union of the set of subset vertices and the set of element vertices induces
a complete graph. For all C1

j and S1 and S2, their neighbor sets are a subset of that

union. So all C1
j and S1 and S2 are simplicial and we can eliminate them. Finally, a

complete graph is left, and this completes the proof that G is chordal.
Lemma 3.10. If there is a partition of S into two subsets S1 and S2 such that no

subset in C is entirely contained in either S1 or S2, then there exists a graph H such
that H2 = G.

Proof. Edges of H.
• Edges of subset vertices and its tail vertices:
C3

j ↔ C2
j , C2

j ↔ C1
j , C1

j ↔ Cj , Cj ↔ Ui if and only if ui ∈ cj and Cj ↔ Ck

for all k.
• Edges of partition vertices:
Sk ↔ Ui if and only if ui ∈ Sk.

• Edges of subset vertices:
Ui ↔ Uj for i �= j.

It is a routine matter to check that H2 = G. (See [23] for a full proof.)
By observing that {C3

j , C
2
j , C

1
j , Cj} satisfies the properties of Lemma 3.1 and

using the same argument as in the previous section, we can prove the following result.
Lemma 3.11. If H is a square root of G, then there is a partition of S into two

subsets S1 and S2 such that no subset in C is entirely contained in either S1 or S2.
Theorem 3.12. Square Root of Chordal Graph is NP-complete.
It should be pointed out that H is actually a Berge graph (i.e., there is no odd

hole and no odd antihole in H); proofs are omitted. By the recent strong perfect
graph theorem [4], it is implied that finding a perfect graph square root of a chordal
graph is also NP-complete.

Theorem 3.13. It is NP-complete to determine if a chordal graph is the square
of a perfect graph.

3.3. Squares of split graphs. In this subsection, we will show that to deter-
mine if G is the square of a split graph is NP-complete.

Recall that an undirected graph G = (V,E) is defined to be split if there is a
partition V = S +C of its vertex set into a stable set S and a complete set C. There
is no restriction on edges between vertices of S and vertices of C.
Problem. Square of Split Graph

Instance. Graph G = (V,E).
Question. Does there exist a split graph H such that G = H2?

The motivation for studying this problem is the similarity of the structure of split
graphs and the structure of bipartite graphs. While the vertex set of a bipartite graph
is partitioned into two independent set, the vertex set of a split graph is partitioned
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into a clique and an independent set. In [22], we prove that squares of bipartite graphs
can be recognized in polynomial time. Note that since a split graph is of diameter at
most 3, the tail structure cannot be applied in the reduction. In fact, we use a totally
different reduction for this problem.

Given an instance of Intersection Graph Basis, we transform it into an in-
stance of Square of Split Graph. Without loss of generality, we will assume that
the graph in the instance of Intersection Graph Basis has no universal vertex
and no isolated vertex. Recall that in the previous reduction, any square root will
tell us the corresponding set splitting. In this reduction, we use the property that the
square root is a split graph to find the corresponding intersection graph basis.

The transformation goes as follows. Given G = (V,E), we construct a graph G′ =
(V ′, E′) by adding a set U of k universal vertices to G. Since G has no universal vertex,
there are exactly k universal vertices in G′. We will show that G is an intersection
graph of a family of sets whose union has cardinality at most k if and only if G′ has
a split root.

For example, given G as in Figure 3.4 and k = 4, Figure 3.4 shows the whole
transformation process. In the figure, G is in the top left corner. G is the intersection
graph for a family of sets whose union has cardinality 4. The 4-element set B is
shown with B[a] = {1}, B[b] = {1, 3}, B[c] = {1, 2}, B[d] = {3, 4}, B[e] = {2, 4}, and
B[f ] = {4}. It is easy to verify that G is the intersection graph of B. The bottom
left corner shows G′, which comes from G by adding four universal vertices. Every
vertex in G is adjacent to every vertex in U in G′. This is represented by the dotted
lines between G and U in G′. Also, U itself is a clique in G′. The bottom right corner
shows H ′, which is a split square root of G′. The reader may verify that H ′ is a
split square root of G′. Finally, we observe that there is a one-to-one correspondence
between the solution to the Intersection Graph Basis problem and the solution
to the Square of Split Graph problem.

Theorem 3.14. Square of Split Graph is NP-complete.
Proof. We now argue that G is the intersection graph for a family of sets whose

union has cardinality k or less if and only if there exists a split graph H such that
G′ = H2.

First we prove the forward direction. If G is the intersection graph for a family of
sets whose union has cardinality k or less, then we construct H = (S+C,E) as follows.
Each vertex c in C corresponds to an element in B. If |B| < k, we add some extra
vertices to make |C| = k. Each vertex s in S corresponds to a vertex in G and s is ad-
jacent to the vertices corresponding to B[s]. Now we check that H2 = G′. Each vertex
in the complete set is universal in H2 and thus corresponds to a vertex in U . Two ver-
tices u and v in the stable set have an edge in H2 if and only if B[u] and B[v] are not
disjoint. Thus H2[S] is precisely the G subgraph of G′. Hence H2 ∼= G′ as required.

Now we prove the reverse direction. If H ′ = (S′ + C ′, E′) is a split square root
of G′, we construct the intersection graph basis as follows. Notice that a vertex in C ′

in H ′ is a universal vertex in H ′2. Since there are k vertices in G′ that are universal
vertices, there are at most k vertices in C ′ in H ′. Furthermore, all the vertices in
G ⊂ V (G′) must be in S′ and so there is no edge between any two vertices in S′.

Two vertices u and v in the stable set have an edge in H ′2 if and only if NH′(u) and
NH′(v) are not disjoint. Now we see that G has an intersection basis B such that
|B| ≤ k by setting B = C ′. For u ∈ G, B[u] = NH′(u), thereby showing that for
any split root of G′, we can construct an intersection graph basis of cardinality at
most k.
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Fig. 3.4. The whole transformation process of Square of Split Graph.

It is perhaps important to mention that, unlike the previous section, this result
does not imply that finding square roots of a more general class (e.g., chordal graphs)
is NP-complete. It is because we use the property that the square root is a split graph
to force all the vertices that are not universal in the square to form an independent
set in the square root.

4. Concluding remarks. For kth Power of Proper Interval Graph,
the complexity of our algorithm is exponential in k. It is open whether there is a
polynomial time algorithm for kth Power of Proper Interval Graph when k
is part of the input. Also, it is open whether there is a polynomial time algorithm to
recognize squares of interval graphs or, more generally, kth powers of interval graphs.
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Abstract. We construct nonconstructible simplicial d-spheres with d+ 10 vertices and noncon-
structible, nonrealizable simplicial d-balls with d + 9 vertices for d ≥ 3.
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1. Introduction. The concepts of vertex-decomposability, shellability, and con-
structibility describe three particular ways to assemble a simplicial complex from the
collection of its facets (cf. Björner [5]). The following implications are strict for (pure)
simplicial complexes:

vertex decomposable =⇒ shellable =⇒ constructible.

Shellability has its origin in Schläfli’s computation from 1852 [33] of the Euler
characteristics of convex polytopes, where he based his calculation on the assumption
that the boundary complexes of polytopes are shellable. However, this property of
polytopes was justified only much later in 1970 by Bruggesser and Mani [9] and then
played a crucial role in McMullen’s proof of the upper bound theorem in the same
year [28]. Besides in polyhedral theory, shellability has found fruitful applications in
topology, combinatorics, and computational geometry; see the surveys [4], [5], [12],
[35, Ch. 8], [36], and the references contained therein.

The notion of constructibility was coined by Hochster in 1972 [19] but implicitly
was used long before in combinatorial topology. In particular, it follows from New-
man’s and Alexander’s fundamental works on the foundations of combinatorial and
piecewise linear (PL) topology from 1926 [29] and 1930 [1] (cf. also Björner [5]) that a
constructible d-dimensional simplicial complex in which every (d−1)-face is contained
in exactly two or at most two d-dimensional facets is a PL d-sphere or a PL d-ball,
respectively. For recent surveys on constructibility see [17] and [18].

The strongest concept, vertex-decomposability, was introduced by Provan and
Billera in their proof from 1980 [31] that vertex decomposable simplicial complexes
satisfy the simplicial form of the famous Hirsch conjecture (cf. [13, p. 168]) of linear
programming.

Although boundary spheres of simplicial polytopes are shellable, Lockeberg [24]
constructed a simplicial 4-polytope with 12 vertices which is not vertex-decomposable;
and there even are not vertex-decomposable simplicial 4-polytopes with 10 vertices [21]
and not vertex-decomposable, nonpolytopal simplicial 3-spheres with 9 vertices [8].
For two-dimensional balls and spheres it was proved by Bing [4] that they are shellable
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and by Provan and Billera [31] that they are vertex-decomposable. Klee and Klein-
schmidt [21] also showed that all simplicial d-balls and all simplicial d-spheres with
up to d+ 3, respectively, d+ 4 vertices, are vertex-decomposable. However, for d ≥ 3
there are not vertex-decomposable simplicial d-balls with d+ 4 vertices and 10 facets
as well as not vertex-decomposable simplicial d-spheres with d + 6 vertices; see [8]
and [27].

The first known example of a nonshellable cellular 3-ball is due to Furch and
appeared in 1924 [15]. A nonshellable simplicial 3-ball with 30 vertices and 72 facets
was provided by Newman in 1926 [30]. Newman’s ball is strongly nonshellable; i.e., it
has no free facet that can be removed from the triangulation without losing ballness.
Much smaller strongly nonshellable simplicial 3-balls were obtained by Grünbaum
(cf. [12]) with 14 vertices and 29 facets and by Ziegler [36] with 10 vertices and
21 facets. Rudin’s 3-ball [32] with 14 vertices and 41 tetrahedra gives a strongly
nonshellable rectilinear triangulation of a tetrahedron with all the vertices on the
boundary; the vertices even can be moved slightly to yield a straight triangulation of
a convex 3-polytope with 14 vertices [11]. Ziegler’s ball is realizable as a straight yet
nonconvex ball in 3-space. Coordinates for a rectilinear realization of Grünbaum’s
ball can be found in [17]. Vertex-minimal nonshellable 3-balls with 9 vertices are enu-
merated in [8]; see [26] for a geometric realization of one of these balls with 18 facets.

The existence of nonconstructible 3-balls was shown by Lickorish [22] in 1971, but
it remained unclear whether there are nonshellable 3-spheres. Nonshellable cell par-
titions of S3 were first constructed by Vince [34] in 1985 and then by Armentrout [3].
In 1991, Lickorish [23] described nonshellable triangulated 3-spheres that contain a
knotted triangle made of the sum of (at least) three trefoil knots.

In fact, it suffices to use one single trefoil knot.

Theorem 1 (Hachimori and Ziegler [18]). If a triangulated 3-ball or 3-sphere
contains any knotted triangle, then it is nonconstructible (and thus nonshellable).
Moreover, a 3-ball with a knotted spanning arc consisting of at most 2 edges is non-
constructible.

A first explicit, but large, nonconstructible triangulated 3-sphere with f -vector
f = (381, 2309, 3856, 1928) based on Furch’s 3-ball with a knotted spanning arc con-
sisting of one edge was constructed by Hachimori [16]. Suspensions of such spheres
produce nonconstructible simplicial PL d-spheres in dimensions d ≥ 3. Examples
of small non-PL (and hence nonconstructible) d-spheres of dimensions d ≥ 5 with
d + 13 vertices can be found in [6]; see also [7]. Their construction makes use of
the double suspension theorem of Edwards [14] (respectively, of its generalization by
Cannon [10]) that double suspensions of nonspherical homology d-spheres give non-PL
(d + 2)-spheres.

2. The examples. In the following, we employ the theorem of Hachimori and
Ziegler to construct simplicial PL d-spheres in dimensions d ≥ 3 with only d + 10
vertices that are nonconstructible. From the enumeration in [8] it follows that all
3-spheres with n ≤ 10 vertices are shellable. Hence, the nonconstructible 3-sphere
S3

13,56 with 13 vertices that we are going to obtain is, if not vertex-minimal, then
close to vertex-minimality.

Theorem 2. There is a nonconstructible 3-sphere S3
13,56 with 13 vertices and

56 facets. Moreover, there are two strongly nonshellable, nonconstructible 3-balls
B3

12,37,a and B3
12,37,b with 12 vertices and 37 facets that cannot be rectilinearly embed-

ded into R
3.
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Fig. 1. The trefoil knot with three protected edges.

Proof. The examples are based on a trefoil knot consisting of three edges 1 2, 1 3,
and 2 3 (the dotted lines in Figure 1) which we embed into R

3. We shield off the edges
by enclosing every edge with three tetrahedra, as listed in the first column of Table 1.
We then close the holes of the knot by gluing in the following 16 triangles:

4 5 6 1 4 6 2 4 5 3 5 6
1 4 7 2 5 8 3 6 9
1 7 10 2 8 11 3 9 12
1 5 10 2 6 11 3 4 12
4 5 10 5 6 11 4 6 12.

Table 1

The ball B3
16,46.

1 2 6 9 1 4 6 12 1 4 7 13 2 5 8 14 3 6 9 15 4 5 6 16
1 2 6 12 2 4 5 10 2 4 7 13 3 5 8 14 1 6 9 15 1 4 6 16
1 2 9 12 3 5 6 11 1 7 10 13 2 8 11 14 3 9 12 15 1 4 13 16

2 7 10 13 3 8 11 14 1 9 12 15 2 4 13 16
1 3 5 8 1 5 10 13 2 6 11 14 3 4 12 15 2 4 5 16
1 3 5 11 2 5 10 13 3 6 11 14 1 4 12 15 2 5 14 16
1 3 8 11 1 5 8 13 2 6 9 14 3 4 7 15 3 5 14 16

2 5 8 13 3 6 9 14 1 4 7 15 3 5 6 16
2 3 4 7 3 6 15 16
2 3 4 10 1 6 15 16
2 3 7 10

The resulting simplicial complex C is contractible. By adding the 37 tetrahedra in
the columns 2–6 of Table 1 we thicken C to a ball B3

16,46 with 16 vertices, 46 facets,
and f -vector f = (16, 75, 106, 46). Since B3

16,46 contains a trefoil knot composed of
three edges, it follows from Theorem 1 of Hachimori and Ziegler that B3

16,46 is not
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Fig. 2. The contractible complex C with three cones.

constructible and thus not shellable. In fact, B3
16,46 is strongly nonshellable, as the

removal of any of its facets destroys the ballness. Moreover, the presence of the 3-edge
knot prevents B3

16,46 from having a straight embedding into R
3.

In Figure 2 we display the complex C. We also indicate the cones with respect to
the vertices 13, 14, and 15 over eight of the triangles of C each, as listed in columns
3–5 of Table 1. The cone with respect to vertex 16 is then placed “above” the drawing.

The boundary of B3
16,46 consists of 28 triangles:

1 13 16 4 5 6 4 5 10 5 6 11 4 6 12
2 13 16 1 5 10 2 6 11 3 4 12
2 14 16 1 5 11 2 6 12 3 4 10
3 14 16 1 8 11 2 9 12 3 7 10
3 15 16 2 8 11 3 9 12 1 7 10
1 15 16 2 8 13 3 9 14 1 7 15

1 8 13 2 9 14 3 7 15.

If we add to B3
16,46 the cone over these 28 triangles with respect to a new vertex 17,

then we get a 3-sphere S3
17,74 with f = (17, 91, 148, 74). This 3-sphere still contains the

complex C and with it the trefoil knot composed of the three edges 1 2, 1 3, and 2 3.
Hence, S3

17,74 is a nonconstructible, nonshellable sphere. By construction, B3
16,46 and

S3
17,74 have a Z3-symmetry.

Since all 3-spheres with n ≤ 10 vertices are shellable [8], 17 vertices is close
to the minimal number of vertices that are needed for a nonshellable 3-sphere. In
order to still improve on the number of vertices, we applied the bistellar flip program
BISTELLAR [25] to S3

17,74, under the additional restriction that the edges of the
knot should not be touched. (The objective of BISTELLAR is to decrease the size



NONCONSTRUCTIBLE SIMPLICIAL BALLS AND SPHERES 107

of a triangulation of a manifold by performing bistellar flips that locally modify the
triangulation without changing the topological type; see [6] for an explicit description.)
As result, we obtained a simplicial 3-sphere S3

13,56 with f = (13, 69, 112, 56) that has
no nontrivial symmetry. The removal of the star of vertex 13

1 7 9 13 2 5 7 13 3 5 8 13 5 7 9 13
1 7 11 13 2 5 8 13 3 5 9 13 6 10 11 13
1 9 10 13 2 6 11 13 3 6 10 13
1 10 11 13 2 6 12 13 3 6 12 13

2 7 11 13 3 8 12 13
2 8 12 13 3 9 10 13

from this complex yields a 12-vertex 3-ball B3
12,38 with 38 facets, as listed in Table 2.

Table 2

The ball B3
12,38.

1 2 6 9 1 5 8 10 2 4 5 7 3 4 6 7 4 5 6 7
1 2 6 12 1 5 10 11 2 4 5 10 3 4 6 10 4 5 6 10
1 2 9 12 1 6 7 9 2 5 8 10 3 5 9 11 5 6 7 9

1 6 7 12 2 6 9 11 3 6 7 12 5 6 9 11
1 3 5 8 1 7 8 10 2 7 8 10 3 7 10 12 5 6 10 11
1 3 5 11 1 7 8 11 2 7 8 11 3 8 9 11
1 3 8 11 1 7 10 12 2 8 9 11 3 8 9 12

1 9 10 12 2 8 9 12 3 9 10 12
2 3 4 7
2 3 4 10
2 3 7 10

This ball has two free facets, 2 4 5 7 and 3 4 6 10, so is not strongly nonshellable.
However, when we remove either of the two tetrahedra, we get strongly nonshellable,
nonconstructible 3-balls B3

12,37,a and B3
12,37,b with 37 facets and f = (12, 58, 84, 37), re-

spectively. These two balls are not isomorphic, although they have isomorphic bound-
aries. (The permutation (2, 3)(5, 6)(7, 10)(8, 12)(9, 11) maps the boundary spheres
onto each other, but, if we add to each ball the cone over its boundary with respect to
a new vertex, then the resulting 3-spheres have different Altshuler–Steinberg deter-
minants [2].) Both balls (and also the sphere S3

13,56) still contain the original 3-edge
trefoil knot for which, this time, the triangles

4 5 6 4 6 7 2 4 5 5 6 9
1 6 7 2 5 8 3 5 9
1 7 10 2 8 11 3 9 12
1 5 10 2 6 11 3 6 12
4 5 10 5 6 11 3 4 6

are glued in to close the holes of the knot; see Figure 3.
Corollary 3. For d ≥ 3 there are nonconstructible d-spheres with d+10 vertices.

Also there are nonconstructible d-balls, d ≥ 3, with d + 9 vertices and 37 facets that
do not have a straight embedding into R

d.
Proof. The cone over a nonconstructible, nonrealizable d-ball is a nonconstructible,

nonrealizable (d + 1)-ball with the same number of facets. Similarly, the one-point
suspension of a nonconstructible d-sphere is a nonconstructible (d + 1)-sphere; see
[20].
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Fig. 3. The 3-edge trefoil knot lying in the nonshellable sphere S3
13,56.
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Abstract. A variant of the multiarmed bandit problem was recently introduced by Dimitriu,
Tetali, and Winkler. For this model (and a mild generalization) we propose faster algorithms to
compute the Gittins index. The indexability of such models follows from earlier work of Nash on
generalized bandits.
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1. Introduction. The multiarmed bandit problem is a well-studied optimiza-
tion problem concerned with dynamically allocating a single resource amongst several
competing projects. In the basic version of this problem, there are N independent
projects, each of which can be in one of many possible states. At each t = 1, 2, . . .,
we must operate exactly one of the projects; as a result, we earn a (possibly random)
reward that may depend on the state of the operated project, which undergoes a
Markovian state transition. The states of all the other projects remain frozen. Future
earnings are discounted by a factor β, and our objective is to decide the order in which
we must operate the various projects to maximize the expected total discounted re-
ward earned. Gittins and Jones [7] showed that to each project i, we can attach an
index that depends only on the state of project i and is independent of the states of all
the other projects, and that operating a project with the largest index at any point in
time is optimal. (Such problems are said to be indexable.) Since their original proof,
many alternative and insightful proofs have appeared; see [14, 10, 12, 5, 9, 11, 1, 3].
In addition, several natural extensions and variations of the basic multiarmed bandit
model have been considered; see [8, 14, 15, 13, 2]. Especially relevant to this work is
the generalized bandit model of Nash [8], which considers a class of bandit problems
with a more general reward structure. In such a model, the reward obtained from a
transition in one project depends in a multiplicatively separable way on the states of
all the other projects. Nash [8] proved that this more general class of bandit problems
is indexable.

In this paper we consider a variant of the multiarmed bandit problem that was
introduced in [4]. Here, as before, we are required to operate exactly one of the
projects, except that we are forced to stop on reaching certain “target” states. The
formulation in [4] is in terms of costs (instead of rewards) and is used to model
situations in which there are multiple ways to accomplish a certain task, and the goal
is to find the “best” way. Termination is assumed to be inevitable, and our objective
is to operate the projects so as to minimize the expected total cost incurred until
termination. By letting the multiplicative factors in the generalized bandit model be
zero for the target states and one for the nontarget states, we see that the (discounted
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version of the) model considered here can be viewed as a special case of the generalized
bandit problem.

2. Model and related work. There are n bandit processes; the ith process is
a Markov chain with a finite state space Si and a sink ti ∈ Si. For convenience, we
assume that the state spaces of the different bandit processes are disjoint. Time is
discrete and is indexed by t. If the ith bandit is at some state x ∈ Si and is operated
at time t, then the bandit moves to state y ∈ Si with probability pxy, and a (possibly
random) cost Cxy is incurred. If y = ti, we stop; otherwise we must choose a bandit
to operate at time t + 1. Our objective is to operate the bandits over time so as
to minimize the expected total cost incurred before termination, which we assume is
inevitable (so the expected total cost is finite). For simplicity, we assume that the
Cxy are deterministic, noting that much of what follows holds true for random Cxy

by simply replacing the random variables by their expected values.
We shall call the special case in which Cxy > 0 for all nonsink states x the positive-

cost model, distinguishing it from the general model in which no assumptions are made
about Cxy. The indexability of the positive-cost model and the general-cost model
can be inferred from the classical results of Gittins [6] and Nash [8], respectively, by
letting β → 1. In [4], the authors prove the indexability of the positive-cost model
by adapting Weber’s elegant intuitive proof to this setting; in addition, they provide
two algorithms to compute the Gittins index, both with complexity O(n5), where n
is the number of nonsink states. Our main observation is that standard techniques
result in an O(n3) algorithm to compute the Gittins index for the general model
(and hence for the positive-cost model as well); this matches the complexity of the
most efficient algorithm to compute the Gittins index in the usual multiarmed bandit
problem [11, 12].

3. Computing the Gittins index. Since the model considered here is index-
able, we focus on a single bandit and show how the Gittins index can be computed for
each of its states. Without loss of generality, we assume that the bandit has a single
sink, which can be accessed from every other state. Let Fx denote the probability
of going from state x to the sink in one step. Also, let Cx ≡

∑
y Cxypxy be the

expected cost of operating the bandit when it is in state x. For convenience, we also
assume that Fx > 0 for every nonsink state x. Later we show how this assumption
can be relaxed.

An alternative characterization of the Gittins index is the key to computing it
efficiently, so we discuss this briefly. Consider a “game” in which, at each step, one
is faced with two choices: continuing to operate the bandit, which costs (on average)
Cx if the bandit is in state x, or quitting by paying a fee of M dollars. It is well
known that the Gittins index, νx, of a state x is the unique value of M at which one
is indifferent between operating the bandit in state x and quitting.

Suppose state x has the smallest Gittins index, and suppose the bandit is currently
in state x. Let the fee in the game described earlier be νx. By definition, it is optimal
to operate the bandit once and quit by paying νx if the resulting state is not a sink;
thus νx = Cx/Fx. Unfortunately, we do not know the state with the smallest Gittins
index, so we test all possibilities. From the alternative characterization of the Gittins
index mentioned earlier, it is clear that x is a state with the smallest Gittins index if
and only if

x = arg min
y∈S

Cy

Fy
.
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Having identified a state with the smallest Gittins index, we can now “reduce” the
bandit by eliminating x in the following manner (see [11]). Consider any nonsink
state y �= x with pyx > 0. In computing the Gittins index of y, we may assume that
whenever we make a transition to x, we continue to operate the bandit until we leave
x to reach some state z (which may possibly be y itself or even the sink); this sequence
of plays may be regarded as a single play with a “cost”

ĉyz = Cyx + Cxx

{
1

1 − pxx
− 1

}
+ Cxz

and a transition probability

p̂yz = pyx pxz/(1 − pxx).

We note that ĉyz is the expected cost incurred during this composite play, which
can be broken down into three components: the first transition from y to x, costing
Cyx; the successive self-transitions at x, whose expected number is 1/(1 − pxx) − 1,
each costing Cxx; and the last transition from x to z, costing Cxz. The conditional
probability of an (x, z) transition, given that a transition from x to another state
occurs is pxz/(1 − pxx), which justifies the expression for p̂yz. If the (y, z) arc does
not already exist, we introduce one, and we let Cyz = ĉyz, pyz = p̂yz; if the (y, z)
arc already exists, the cost for a y to z transition is updated as

Cyz ← pyzCyz + p̂yz ĉyz
pyz + p̂yz

,

and the transition probability from y to z now becomes

pyz ← pyz + p̂yz.

For a bandit with n states, a state with the smallest Gittins index can be deter-
mined in O(n) time; the reduction algorithm needs to examine O(n2) pairs, each of
which requires O(1) time. Thus the complexity per iteration is O(n2) when there are
n states. The (reduced) bandit now has one less state; we proceed as before by identi-
fying a state with the minimum Gittins index, eliminating this state to further reduce
the bandit, etc. After (n − 1) applications of the reduction algorithm we will have
determined the Gittins index for all the nonsink states; thus the overall complexity
of computing the Gittins index for an n-state bandit is easily seen to be O(n3).

We now show how the assumption Fx > 0 for all nonsink states x can be relaxed.
Let x be a nonsink state with Fx = 0. If Cx ≤ 0, then we will always operate the
bandit in state x, so νx = −∞. (Such states must be reduced first.) If Cx > 0, it is
clear that x cannot be a state with the minimum index; in fact, it is easy to see that
some state adjacent to x must have a lower index (see [4]). In this case, the index of
state x will be determined by the algorithm at a later point.

Finally, we note that the algorithm proposed here can be extended to more general
versions of the problem, such as the semi-Markov version (time is not slotted) and
the discounted version. We leave the obvious modifications to the reader.

Acknowledgments. A version of the problem described here was the subject of
the first author’s final project in a graduate course on dynamic programming taught
by the second author. We thank John Tsitsiklis for sharing his thoughts on this
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Abstract. Constraint satisfaction programs where each constraint depends on a constant num-
ber of variables have the following property: The randomized algorithm that guesses an assignment
uniformly at random satisfies an expected constant fraction of the constraints. Combining con-
structions from interactive proof systems with harmonic analysis over finite Abelian groups, H̊astad
[J. ACM, 48 (2001), pp. 798–859] showed that for several constraint satisfaction programs this naive
algorithm is essentially the best possible unless P = NP. While most of the predicates analyzed
by H̊astad depend on a small number of variables, Samorodnitsky and Trevisan [Proceedings of the
32nd Annual ACM Symposium on Theory of Computing, Portland, OR, 2000, pp. 191–199] recently
extended H̊astad’s result to predicates depending on an arbitrarily large, but still constant, number
of Boolean variables.

We combine ideas from these two constructions and prove that there exists a large class of
predicates on finite non-Boolean domains such that for predicates in the class, the naive randomized
algorithm that guesses a solution uniformly is essentially the best possible unless P = NP. As a
corollary, we show that it is NP-hard to approximate the Maximum k-CSP problem over domains

with size d within dk−2k1/2 − ε, for every constant ε > 0, unless P = NP. This lower bound extends
the previously known bound for the case d = 2 and matches well with the best known upper bound,
dk−1, of Serna, Trevisan, and Xhafa [Proceedings of the 15th Annual Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Comput. Sci. 1373, M. Morvan, C. Meinel, and D.
Krob, eds., Springer-Verlag, Berlin, 1998, pp. 488–498].

Key words. combinatorial optimization, approximation, approximation hardness, maximum
CSP
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1. Introduction. In a breakthrough paper, H̊astad [10] studied the problem
of giving approximate solutions to maximization versions of several constraint satis-
faction problems (CSPs). An instance of such a problem is given as a collection of
constraints, i.e., functions from some domain to {0, 1}, and the objective is to satisfy
as many constraints as possible. An approximate solution of a CSP is simply an as-
signment that satisfies roughly as many constraints as possible. In this setting, we are
interested in proving either that there exists a polynomial time algorithm producing
approximate solutions with weight some constant fraction from the optimum weight
or that no such algorithms exist.

Typically, each individual constraint depends on a fixed number k of the variables,
and the size of the instance is given as the total number of variables that appear in the
constraints. In this case, which is usually called the Max k-CSP problem, there exists
a very naive algorithm that approximates the optimum within a constant factor—the
algorithm that just guesses a solution at random. In his paper, H̊astad [10] proved
the very surprising fact that this algorithm is essentially the best possible efficient
algorithm for several CSPs, unless P = NP. His proofs unify constructions from
interactive proof systems with harmonic analysis over finite groups and give a general
framework for proving strong impossibility results regarding the approximation of
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CSPs. H̊astad [10] suggests that predicates with the property that the naive random-
ized algorithm is the best possible polynomial time approximation algorithm should
be called nonapproximable beyond the random assignment threshold.

Definition 1.1. A maximization problem is nonapproximable beyond the ran-
dom assignment threshold if, for every constant ε > 0, it is NP-hard to approximate
the optimum within a factor w − ε, where 1/w is the expected fraction of constraints
satisfied by a solution guessed uniformly at random.

H̊astad’s paper [10] deals mainly with CSPs whose constraints involve a small
number of variables, typically three or four. In most of the cases, the variables are
Boolean, but H̊astad also treats the case of linear equations over finite Abelian groups.
In the Boolean case, H̊astad’s techniques have been extended by Trevisan [21], Sudan
and Trevisan [18], and Samorodnitsky and Trevisan [16] to some predicates involv-
ing a large, but still constant, number of Boolean variables. In this paper, we prove
that those extensions can be adapted also to the non-Boolean case—a fact that is
not immediately obvious from the proof for the Boolean case. This establishes non-
approximability beyond the random assignment threshold for a large class of CSPs
where the domain of the variables is non-Boolean.

Definition 1.2. Given a finite Abelian group G, integers � > 0 and m > 0, and
a set E ⊆ [�] × [m], let F(G, �,m,E) be the family of constraints of the form∧

i,j:(i,j)∈E

(
xiyjyi,j = ai,j

)
,

where ai,j ((i, j) ∈ E) are constants from G and xi (1 ≤ i ≤ �), yj (1 ≤ j ≤ m), and
yi,j ((i, j) ∈ E) are variables assuming values in G.

Each constraint in F(G, �,m,E) involves at most �+m+ |E| variables and tests
if |E| linear equations are satisfied. The constraint is satisfied if and only if all of the
linear equations are satisfied. Our main result is that certain CSPs on constraints
from F(G, �,m,E) are nonapproximable beyond the random assignment threshold.

Theorem 1.3. For every finite nontrivial Abelian group G, every positive inte-
ger �, every positive integer m, and every set E ⊆ [�] × [m], the problem of simul-
taneously satisfying as many constraints as possible given a collection of constraints
from F(G, �,m,E) on some set of variables is nonapproximable beyond the random
assignment threshold.

As special cases, the above theorem includes the results of H̊astad [10] (set � =
m = |E| = 1), Trevisan [21] (set G = Z2, � = 2, m = 1, and |E| = 2), Sudan
and Trevisan [18] (set G = Z2, � = 2, and |E| = 2m), and Samorodnitsky and
Trevisan [16] (set G = Z2). The theorem also gives approximation hardness results
for the general problem of approximating the maximum of CSPs where each constraint
involves at most a fixed number of variables.

Definition 1.4. Max k-CSP-d is the following maximization problem: Given a
finite domain D of size d, a set X of variables assuming values in D, and a number
of functions from at most k variables in X to Z2, find an assignment to the variables
in X maximizing the number of functions evaluating to 1.

Corollary 1.5. For every integer k ≥ 3, every integer d ≥ 2, and every constant

ε > 0, it is NP-hard to approximate Max k-CSP-d within dk−2k1/2 − ε.
Proof. Let G be an Abelian group of order d, � = m = �k1/2� and |E| =

min{�m, k− �−m} in Theorem 1.3. Then the theorem implies that it is NP-hard to
approximate Max k-CSP-d within dmin{�m,k−�−m} − ε.

It remains to show that min{�m, k− �−m} ≥ k− 2k1/2 for every k ≥ 3. To this
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end, note that it follows from the definition of the floor operation that there exists a
ξ ∈ [0, 1) such that � = m = k1/2 − ξ. Then straightforward substitution shows that
�m = k − 2ξk1/2 + ξ2 and that k − �−m = k − 2k1/2 + 2ξ.

The above hardness result for Max k-CSP-d compares favorably with the currently
best known polynomial time approximation algorithm [17, 20], which is guaranteed
to always deliver a solution at most a factor dk−1 from the optimum. Choosing �, m,
and |E| in a more careful way, it is possible to improve the inapproximability factor
in Corollary 1.5 by constant powers of d.

The high-level structure of our proof is more or less identical to the one used by
Samorodnitsky and Trevisan [16]. However, the fact that we are working with finite
Abelian groups rather than the familiar group Z2 makes explicit several subtleties in
the proof. For instance, it is easy to write an arithmetic expression that serves as in
indicator for the event that some Boolean variable x evaluates to false: representing
true by −1 and false by 1, this expression is simply (1 + x)/2. Similarly, a Boolean
function may in a straightforward and intuitive way equivalently be viewed as function
assuming values in {0, 1} or in {−1, 1}. Working with an abstract Abelian group
requires that such arguments are formalized. How should the group be represented
in order to facilitate arithmetic manipulations of, for instance, indicator functions?
What is the “correct” way to embed group values into R or C?

Our proofs use Fourier analysis of functions from finite Abelian groups to the
complex numbers combined with what has now become standard constructions from
the world of interactive proof systems. The “ordinary” Fourier transform of Boolean
functions is well known to the computer science community. In an attempt to in-
troduce the community to the more general Fourier transform of functions on finite
Abelian groups, we have included a short description of it in the introductory part
of the paper. Our main technical result, the proof of Lemma 3.4, also serves as an
illustration of how this more general Fourier transform may be applied. Following the
conference version of our paper [4], several papers have appeared where the Abelian
Fourier transform has been applied successfully to establish strong hardness results for
several combinatorial optimization problems [5, 6, 12, 13, 14]. In addition to this, the
non-Abelian analogue of the Fourier transform, the so-called representation theory of
finite groups, has been used by Engebretsen, Holmerin, and Russell [7] to generalize
H̊astad’s hardness result [10] for linear equations involving three variables to all finite
groups. We expect that these tools will continue to play an important role in the field
of theoretical computer science.

2. Preliminaries. To show our approximation hardness result, we use the same
underlying hard problem as many previous constructions. While H̊astad [10] describes
this problem in terms of a two-prover one-round protocol for a certain class of 3-Sat
formulas, we chose one of the alternate formulations: a label cover problem with a
certain “gap” property.

Definition 2.1. Given two sets R and S, an instance of the label cover problem
on R and S is a set Ψ ⊆ V × Φ, where V and Φ are sets of variables with ranges
R and S, respectively, with an onto function πvφ : S → R for every (v, φ) ∈ Ψ. The
instance is regular if every v ∈ V occurs in the same number of pairs in Ψ and every
φ ∈ Φ occurs in the same number of pairs in Ψ.

The following theorem is a consequence of the so-called “PCP theorem” [2] com-
bined with a certain regularization procedure [8] and the parallel repetition theo-
rem [15].

Theorem 2.2 (see [2, 8, 15]). There exists a universal constant µ > 0 such that
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for every large enough constant u there exist sets R and S with 2u ≤ |R| ≤ |S| ≤ 7u

such that it is NP-hard to distinguish between the following two cases given a regular
instance Ψ ⊆ V × Φ of a label cover problem on R and S:

YES: There exist assignments Π: V → R and Σ: Φ → S such that for every
(v, φ) ∈ Ψ, Π(v) = πvφ(Σ(φ)).

NO: There are no functions P from V to probability distributions on R and Q
from Φ to probability distributions on S with the property that

E(v,φ)∈Ψ

⎡⎢⎣ Pr
r∼P (v)
s∼Q(φ)

[
r = πvφ(s)

]⎤⎥⎦ ≥ |R|−µ.(1)

2.1. Our PCP. A probabilistically checkable proof (PCP) consists of a verifier
and a proof. The verifier is given an input and oracle access to an alleged proof of the
fact that the input belongs to some specified language. The verifier also has access
to a specified amount of random bits. Based on the random bits and the input, the
verifier decides which positions in the proof it should look at. Once it has examined
the positions of its choice, it uses all available information to decide if the input should
be accepted or rejected. Our main interest in PCPs comes from the fact that PCPs
where the verifier uses a logarithmic, in the size of the input, number of random bits
are intimately connected with CSPs. Indeed, enumerating the verifier’s acceptance
conditions for every possible outcome of the random bits gives rise to a CSP with
size polynomial in the size of the input to the PCP verifier. Maximizing the number
of simultaneously satisfied constraints in this CSP is the same as finding the proof
maximizing the probability that the verifier accepts the input.

In our case, the PCP in some sense “simulates” the above label cover problem: the
verifier is given oracle access to an alleged proof of the fact that there exist assignments
Π and Σ as described in case YES above, and it is supposed to check if the proof is
correct or not. The verifier in our PCP has access to several subtables, one for each
v ∈ V and one for each φ ∈ Φ. These tables contain purported encodings of the labels
assigned to the corresponding variable. The error correcting code supposedly used to
create the tables is the so-called long G-code for some finite Abelian group G, first
defined by H̊astad [10]. It is a generalization of the ordinary long code, first used in
the context of PCPs by Bellare, Goldreich, and Sudan [3]; the ordinary long code is
in fact exactly the same thing as the long Z2-code.

Definition 2.3. For a finite Abelian group G, the long G-code Av,σ of an
assignment σ to some variable v assuming values in some set R is a function mapping
f ∈ GR, i.e., a function from R to G, to a value in G by the map Av,σ : f �→ f(σ).

As mentioned above, the proof in our PCP supposedly contains the long G-code
of assignments Π and Σ satisfying property YES in Theorem 2.2. Concretely, the
proof contains for each v ∈ V a string of length |G||R|, interpreted as a function
Av : GR → G, and for each φ ∈ Φ a string of length |G||S| interpreted as a function
Aφ : GS → G. The proof is correct if there exist assignments Π and Σ satisfying
property YES in Theorem 2.2 such that Av is the long code of Π(v) and Aφ is the
long G-code of Σ(φ) for every v and φ. In section 3 we design a verifier for the proof
described above and formalize the connection between our PCP and the label cover
problem. Specifically, we show that if the verifier accepts with “high” probability,
then there exist functions Π and Σ satisfying property YES in Theorem 2.2.

2.2. Folded proof tables. Our analysis requires that all the tables in the PCP
are folded over G [10, sections 2.4–2.6]. That a table Av : GR → G is folded amounts
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to the requirement that for f ∈ GR and g ∈ G, Av(gf) = gAv(f), where the function
gf is defined by the map gf : r �→ gf(r). Note that a long G-code is always folded
since Av,σ(gf) = (gf)(σ) = gf(σ) = gAv,σ(f).

The requirement that a table Av : GR → G is folded can be enforced by employing
the following access conventions in the verifier: partition GR into equivalence classes
under the relation ∼, where f1 ∼ f2 if there exists a g ∈ G such that f1 = gf2, this
equality being an equality of functions. Denote by f̃ the coset representative for the
equivalence class that f belongs to. Instead of reading position f in Av, the verifier
reads position f̃ and returns the value gAv(f̃), where g ∈ G is such that f = gf̃ .

Intuitively, folding can be viewed as a method of restricting the possibility to
construct “bad” proofs, i.e., proofs that fool the verifier to accept when it should not.
Since the long G-code is folded, a correctly encoded proof is also folded; hence folding
does not restrict the possibility to formulate correct proofs.

2.3. Fourier transforms. To prove a bound on the soundness of their verifiers,
H̊astad [10] as well as Samorodnitsky and Trevisan [16] use Fourier transforms. In this
section we give a brief account of the methods involved; for more details see H̊astad’s
paper [10] or Terras’s book [19].

The aim of Fourier transforms is to express functions from some domain to the
complex numbers as linear combinations of basis functions with certain nice prop-
erties. The reader may be familiar with the Boolean case, where a function is
usually written in {−1, 1}-notation, i.e., −1 represents true and 1 represents false.
The Fourier transform of a function f : {−1, 1}n → {−1, 1} can then be written as

f(x) =
∑

α∈{0,1}n f̂αχα(x), where f̂α = 2−n
∑

x∈{−1,1}n f(x)χα(x) = Ex[f(x)χα(x)]

and χα(x) =
∏n

i=1 x
αi
i . In this paper we need a generalization of this transform.

Specifically, we need to apply the Fourier transform to functions from (powers of) an
arbitrary finite Abelian group to the complex numbers. It turns out that the correct
way to generalize the “basis functions” χα is to use the set of all homomorphisms from
the group in question to the set of complex numbers of unit norm. For an Abelian
group G, the set of all such homomorphisms is denoted by Ĝ; the members of Ĝ are
called characters of G. It is true for every Abelian group that the number of distinct
characters is equal to the order of the group. In fact something even stronger holds:
for finite Abelian groups the set of characters forms a group with complex multipli-
cation as the group operation. This group is usually called the dual group and it is
isomorphic to the original group.

Example. The cyclic group Zm represented as powers of a primitive mth root of
unity with multiplication as the group operator has Ẑm = {x �→ xt : 0 ≤ t < m}.
The members of Ẑm are functions from Zm to C; moreover, these functions form a
group under multiplication. Notice that each function in Ẑm can be described by an
integer mod m, namely, the power to which the argument of the function is raised.
Hence we can actually equivalently view Ẑm as the group of integers mod m with
addition as the group operation.

To construct characters for an arbitrary finite Abelian group, recall that every
such group can be written as a direct product of cyclic groups. It turns out that the
characters of G×H are precisely the functions (g, h) �→ χ(g)ψ(h) such that χ ∈ Ĝ and
ψ ∈ Ĥ. More formally, suppose that G ∼= Zm1×· · ·×Zmk

, where |G| = m1 · · ·mk, and
that g ∈ G is represented as a k-tuple (g1, . . . , gk) ∈ Zm1×· · ·×Zmk

, where each Zmi

is represented as powers of a primitive mith root of unity with multiplication as the
group operator; the group operation of G corresponds to coordinatewise application
of the group operations in Zmi . The characters of G are then the functions χa(g) =
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j=1(gj)

aj for all vectors a = (a1, . . . , ak) such that ai is an integer mod mi. Since

each function in Ĝ corresponds to exactly one such vector a, we may view Ĝ as the
group of vectors a described above with componentwise addition mod mi as the group
operation. It is notationally convenient for us to do computations in this group; we
then use addition as the group operator and denote the character corresponding to
the all zeroes vector, the so-called trivial character, by χ0. The set of all characters
except the trivial one is denoted by Ĝ∗ in this paper.

Proposition 2.4. Let G be a finite Abelian group. Then the following identities
hold for g, g′ ∈ G and a, a′ ∈ Ĝ:

χa(gg
′) = χa(g)χa(g

′),(2)

χa+a′(g) = χa(g)χa′(g),(3)

χ0(g) = χa(1G) = 1,(4)

χa(g) = χ−a(g) = χa(g
−1).(5)

Moreover,

1

|G|
∑
a∈Ĝ

χa(g) =

{
1 if g = 1G,

0 otherwise.
(6)

1

|G|
∑
g∈G

χa(g)χa′(g) =

{
1 if a = a′,

0 otherwise.
(7)

Once we have the characters, the Fourier transform of functions from G to C is
defined as follows.

Definition 2.5. For every finite Abelian group G, every function f : G → C
can be written as

∑
a∈Ĝ f̂aχa(g), where the Fourier coefficients {f̂a}a∈Ĝ are defined

as f̂a = Eg∈G[f(g)χa(g)] = |G|−1
∑

g∈G f(g)χa(g).
As an illustration of these concepts, we state and prove the only theorem from

classical Fourier analysis that we use in this paper, namely, Plancherel’s equality.
Lemma 2.6. Suppose that f is a function from G to C and that its Fourier

coefficients are {f̂a}a∈Ĝ. Then Eg∈G[|f(g)|2] =
∑

a∈Ĝ |f̂a|2.
Proof. If we expand f in its Fourier series, we get

Eg∈G[|f(g)|2] = Eg∈G[f(g)f(g)] =
∑
a∈Ĝ

∑
a′∈Ĝ

f̂af̂a′ Eg∈G[χa(g)χa′(g)].

Since Eg∈G[χa(g)χa′(g)] is one when a = a′ and zero otherwise according to (7), the
only terms remaining in the above double sum are those where a = a′.

Recall that the verifier in our PCP has access to a proof consisting of several
subtables, one for each variable in the label cover instance. For each v ∈ V there
is a table Av, interpreted as a function from GR to G, and for each φ ∈ Φ there
is a table Aφ, interpreted as a function from GS to G. The tables are folded, i.e.,
Av(gf) = gAv(f) and Aφ(gh) = gAφ(h). In our analysis, we need some identities
regarding the Fourier transform of a folded table and the Fourier transform of related
tables. All these identities have already been obtained by H̊astad [10, section 2.6]
but we state and prove them here as an illustration of how characters and Fourier
coefficients may be manipulated.
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Since a function from R to G can be identified by a table of |R| values from G,
we identify GR with the group G|R|. For a function f : R → G or, equivalently, an
element f ∈ G|R|, we denote by f(r) the coordinate in f corresponding to r. To write
the Fourier transform of some function A : GR → C we need the characters of GR.
As mentioned above, they are all possible products of |R| functions from Ĝ. We use
the notation ĜR for the set of characters of GR and often view an α ∈ ĜR as a vector
of |R| values from Ĝ or, equivalently, a function from R to Ĝ. We can then write the
character explicitly as χα(f) as

∏
r∈R χα(r)(f(r)). Using this explicit representation

of the characters, we now derive two identities needed in our main technical lemma.
Lemma 2.7. Given an Abelian group G and a finite set R, suppose that Av : GR →

G is folded over G, define A : GR → C by the map f �→ χa(Av(f)) for some a ∈ Ĝ∗,
and let Âα be the Fourier coefficients of A. Then Âα = 0 unless a =

∑
r∈R α(r). In

particular, Â0 = 0.
Proof. Using the definition of the Fourier coefficient,

Âα = Ef [A(f)χα(f)] = |G|−1
∑
g∈G

Ef [A(gf)χα(gf)].

By the definition of A and the fact that Av is folded, A(gf) = χa(g)A(f). Using the
definition of χα(·) gives

χα(gf) =
∏
r∈R

χα(r)(gf(r)) = χα(f)
∏
r∈R

χα(r)(g) = χα(f)χ∑
r∈R α(r)(g),

where the second equality follows from (2) and the third from (3). Since χa(g) =
χ−a(g) by (5) we can summarize our calculations by

Ef [A(gf)χα(gf)] = Ef [A(f)χα(f)]χa(g)χ−
∑

r∈R α(r)(g);

hence

Âα

(
1 − |G|−1

∑
g∈G

χa−
∑

r∈R α(r)(g)

)
= 0.

This equality and (7) with a′ = 0 together imply that either Âα = 0 or a =∑
r∈R α(r).
Lemma 2.8. Given an Abelian group G, two finite sets R and S, a function

f : R → G, an onto function π : S → R, and a β ∈ ĜS, let πG(β) ∈ ĜR be defined by
πG(β)(r) =

∑
s∈π−1(r) β(s). Then χβ(f ◦ π) = χπG(β)(f).

Proof. By definition,

χβ(f ◦ π) =
∏
s∈S

χβ(s)(f(π(s))) =
∏
r∈R

∏
s∈π−1(r)

χβ(s)(f(r)).

For each fixed r in the above product,∏
s∈π−1(r)

χβ(s)(f(r)) = χπG(β)(r)(f(r))

by the identity (3) and the definition of πG(β). Hence the lemma follows.
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Select v ∈ V uniformly at random.
For j = 1, . . . ,m, select φj uniformly at random from {φ : (v, φ) ∈ Ψ}.
For i = 1, . . . , �, select fi : R → G uniformly at random.
For j = 1, . . . ,m, select gj : S → G uniformly at random.
For all (i, j) ∈ E, choose eij : S → G such that, independently for all s ∈ S,

with probability 1 − δ1, eij(s) = 1G;
with probability δ1, eij(s) is selected uniformly at random from G.

Define hij by hij(s) =
(
fi(πvφj

(s))gj(s)eij(s)
)−1

for all s ∈ S.
If for all (i, j) ∈ E, Av(fi)Aφj

(gj)Aφj
(hij) = 1G, then accept, else reject.

Fig. 1. The PCP is constructed from an instance Ψ ⊆ V × Φ of the label cover problem on
R and S. The proof consists of for each v ∈ V a table Av defining a function from GR to G and
for each φ ∈ Φ a table Aφ defining a function from GS to G. The verifier is parameterized by the
integers � and m, a set E ⊆ [�]× [m], and a constant δ1 > 0. The actions of the verifier are described
above, within the figure.

3. The PCP verifier. The objective of our verifier is to check if a purported
proof does in fact constitute an encoding of a labeling corresponding to the YES case
in Theorem 2.2. To obtain this, we—following the construction of Samorodnitsky and
Trevisan [16]—first query 2k positions from the proof and then, as a checking proce-
dure, construct k2 linear equations, each of them involving two of the first 2k queried
positions and one extra variable. The verifier accepts if all these linear equations are
satisfied. To give a more illustrative picture of the procedure, we let the first 2k queries
correspond to the vertices of a complete k×k bipartite graph. The k2 linear equations
that we check then correspond to the edges of this graph.

Given a labeling corresponding to the YES case, it turns out—for our particular
choice of verifier—that it is possible to construct a proof such that the verifier ac-
cepts with probability almost one. As for the nonapproximability beyond the random
assignment threshold, a random assignment to the positions in the proof satisfies all
k2 linear equations simultaneously with probability |G|−k2

—the aim of our analysis
is to prove that this is essentially the best possible any polynomial time algorithm
can accomplish. This follows from a connection between our PCP and the label cover
problem: we assume that it is possible to satisfy a fraction |G|−k2

+ ε of the equations
for some constant ε > 0 and prove that this implies that the NO case in Theorem 2.2
is violated. The final link in the chain is the observation that since there are only
polynomially many outcomes for the random choices made by the verifier, we can form
a CSP with polynomial size by enumerating the checked constraints for every possi-
ble outcome. If the resulting CSP is approximable beyond the random assignment
threshold, we can use it to decide the NP-hard label cover problem.

We remark that by checking the equations corresponding to some subset E of the
edges in the complete bipartite graph we also get a predicate that is nonapproximable
beyond the random assignment threshold. It is satisfied with probability |G|−|E| by
a random assignment and our proof methodology works also for this case.

Lemma 3.1. Suppose that a PCP is constructed from an instance Ψ ⊆ V × Φ of
the label cover problem on R and S as described in Figure 1. If the case YES holds in
Theorem 2.2, there exists a proof that convinces the verifier with probability at least
(1 − δ1)

|E|.
Proof. Given assignments Π and Σ guaranteed by the YES case in Theorem 2.2,

construct a proof as follows. For each v ∈ V , let Av be the long G-code of Π(v); for
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each φ ∈ Φ, let Aφ be the long G-code of Σ(φ). Then

Av(fi)Aφj
(gj)Aφj

(hij) = fi(Π(v))gj(Σ(φj))hij(Σ(φj)).

Suppose that eij(Σ(φj)) = 1G for all (i, j) ∈ E; this happens with probability at least
(1 − δ1)

|E|. Then

hij(Σ(φj)) =
(
gj(Σ(φj))

)−1
(
fi
(
πvφj

(Σ(φj))
))−1

and hence

Av(fi)Aφj (gj)Aφj (hij) = fi(Π(v))
(
fi(πvφj

(Σ(φj)))
)−1

.

Since the assignments Π and Σ satisfy property YES in Theorem 2.2, it is guaranteed
that πvφj (Σ(φj)) = Π(v); therefore Av(fi)Aφj (gj)Aφj (hij) = 1G.

The remainder of the proof establishes that if the verifier accepts with probability
at least (1 + δ2)/|G||E| for any constant δ2 > 0, then case NO in Theorem 2.2 cannot
hold. The high-level structure of the proof is the same as in earlier constructions [10,
16]. First the acceptance predicate is arithmetized.

In the Boolean case, it is straightforward to express the indicator for the event
that a Boolean variable is false with a closed form formula that is easy to analyze: the
expression (1 + b)/2 is one if b is false and zero otherwise. (Recall the we work with
{−1, 1}-representation of Boolean values where 1 represents false.) For an arbitrary
Abelian group, the sum (6) provides us with the “right” generalization of the above
formula: for an element g ∈ G, |G|−1

∑
a∈Ĝ χa(g) evaluates to one if g = 1G and zero

otherwise.
Lemma 3.2. The test in the PCP accepts with probability |G|−|E| ∑

P⊆E E[TP ],
where the expectation is over the verifier’s choice of v, φ1, . . . , φm, f1, . . . , φ�, g1, . . . , gm,
and eij ((i, j) ∈ E), and

TP =
∏

(i,j)∈P

( ∑
a∈Ĝ∗

χa

(
Av(fi)Aφj (gj)Aφj (hij)

))
.(8)

Proof. The PCP tests if |E| linear equations of the form Av(fi)Aφj
(gj)Aφj

(hij) =
1G are satisfied. We index the equations by (i, j), and we note that the fact (4) that
χ0(g) = 1 for all g ∈ G and the summation relation (6) together imply that the
expression

Pij =
1

|G|

(
1 +

∑
a∈Ĝ∗

χa

(
Av(fi)Aφj (gj)Aφj (hij)

))

is one when the equation corresponding to (i, j) is satisfied and zero otherwise. Since
the test accepts if all equations are satisfied,

∏
(i,j)∈E

Pij =

{
1 if the test in the PCP accepts,

0 otherwise;

hence the test accepts with probability E[
∏

(i,j)∈E Pij ]. Expanding the product, we
obtain the claim in the formulation of the lemma.

Having arithmetized the acceptance probability, the main part of the analysis
begins. The most technical part of the argument is to establish that whenever the
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expression derived in Lemma 3.2 is “large” for a certain value of “large,” there exist
functions P and Q satisfying the inequality (1) in Theorem 2.2. This follows from
manipulations of the above expression with the aid of Fourier analysis and averaging
arguments. We remark that our original proof [4] was more complicated than the one
given below in the proof of Lemma 3.4. The main simplification of the proof amounts
to a certain way to fix many of the functions fi, gj , and eij at an early stage of the
proof; this method was first used by H̊astad and Wigderson [11]. We frequently use
a straightforward consequence of Jensen’s inequality in the proof and therefore first
state this relation formally.

Lemma 3.3. Let X be a finite set. For every function f : X → C,

max
x∈X

|f(x)| ≥ Ex∈X [|f(x)|] ≥ |Ex∈X [f(x)]|,

max
x∈X

|f(x)|2 ≥ Ex∈X [|f(x)|2] ≥ |Ex∈X [f(x)]|2,

|X|max
x∈X

|f(x)| ≥
∑
x∈X

|f(x)| ≥
∣∣∣∑
x∈X

f(x)
∣∣∣.

Proof. Jensen’s inequality implies that for every set {zi}ni=1 of complex numbers,
every set {λi}ni=1 of real numbers, and every convex function g : C → R,

∑
i λig(zi) ≥

g(
∑

i λizi) as soon as
∑

i λi = 1. Since the functions z �→ |z| and z �→ |z|2 are convex,
the second equalities on each line of the lemma follow. The first inequalities follow
from a simple averaging argument.

Lemma 3.4. Suppose that a PCP is constructed from a regular instance Ψ ⊆ V ×Φ
of the label cover problem on R and S as described in Figure 1 and that the PCP
verifier accepts with probability at least (1 + δ2)/|G||E| for some constant δ2 ≥ 0.
Then there exist functions P from V to probability distributions on R and Q from Φ
to probability distributions on S such that

E(v,φ)∈Ψ

⎡⎢⎣ Pr
r∼P (v)
s∼Q(φ)

[
r = πvφ(s)

]⎤⎥⎦ ≥ 2δ1δ
2
2

(2|E| − 1)2(|G| − 1)2|E| .(9)

Proof. Consider the expression for the acceptance probability derived in Lemma 3.2.
Since the term corresponding to P = ∅ in the sum |G|−|E| ∑

P⊆E E[TP ] contributes

with |G|−|E|, the assumption that the PCP verifier accepts with probability at least
(1 + δ2)/|G||E| implies that

δ2 ≤
∑
P⊆E
P �=∅

E[TP ] =

∣∣∣∣∣∣∣∣
∑
P⊆E
P �=∅

E[TP ]

∣∣∣∣∣∣∣∣ < (2|E| − 1) max
P⊆E
P �=∅

|E[TP ]|,

where the last inequality follows from Lemma 3.3. We now fix P to a value that
attains the above maximum. The first phase of the proof then continues by gradually
fixing more and more parameters in the expression for |E[TP ]|. Switching the order
of product and summation in (8) gives

δ2 ≤ (2|E| − 1)|E[TP ]| =

∣∣∣∣∣∣∣∣∣
∑

aij∈Ĝ∗

(i,j)∈P

E

[ ∏
(i,j)∈P

χaij

(
Av(fi)Aφj (gj)Aφj (hij)

)]
∣∣∣∣∣∣∣∣∣ .
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The summation sign above denotes |P | summations; each summation is over aij ∈ Ĝ∗.
By Lemma 3.3 and the fact that |P | ≤ |E|, there exists a way to fix all aij such that

δ2 ≤ (2|E| − 1)(|G| − 1)|E|
∣∣∣∣E[ ∏

(i,j)∈P

χaij

(
Av(fi)Aφj (gj)Aφj (hij)

)]∣∣∣∣,
and we now keep aij fixed in such a way for the rest of the analysis. We also introduce
the shorthand δ3 = δ2/(2

|E|−1)(|G|−1)|E|. Let (σ, τ) be an arbitrary pair in P . Since
the functions are chosen independently from each other and from v and φ1, . . . , φm,
the above expression can be rewritten as

δ3 ≤
∣∣∣∣∣E

[
Ev,φ1,... ,φm

fσ,gτ ,eστ

[ ∏
(i,j)∈P

χaij

(
Av(fi)Aφj (gj)Aφj

(hij)
)]]∣∣∣∣∣,

where the outer expectation is over the functions {fi : i �= σ}, {gj : j �= τ}, and
{eij : (i, j) �= (στ)}. By Lemma 3.3, there hence exists a way to fix those functions
such that

δ3 ≤
∣∣∣∣Ev,φ1,... ,φm

fσ,gτ ,eστ

[ ∏
(i,j)∈P

χaij

(
Av(fi)Aφj (gj)Aφj (hij)

)]∣∣∣∣.
We now keep all functions but {fσ, gτ , eστ} fixed in such a way for the remainder of
the proof. In fact, we are now in a situation similar to, but not quite identical to, the
one considered by H̊astad [10, Lemmas 5.2 and 5.11], who estimated an expectation
of the product of three correlated functions. To see this, define the functions

A : fσ �→ χaστ (Av(fσ))
∏

(σ,j)∈P
j �=τ

χaσ,j

(
Av(fσ)Aφj (gj)Aφj (hσ,j)

)
,

B : hστ �→ χaστ
(Aφτ

(hστ )),

C : gτ �→ χaστ (Aφτ (gτ ))
∏

(i,j)∈P
i �=σ

χaij

(
Av(fi)Aφj (gj)Aφj (hij)

)
.

Using these three functions and (2), the above inequality can then be rewritten as

δ3 ≤
∣∣∣∣Ev,φ1,... ,φm

fσ,gτ ,eστ

[
A(fσ)B(hστ )C(gτ )

]∣∣∣∣ .
Using the fact that hστ is defined as ((fσ ◦ πvφτ

)gτeστ )
−1 and, again, the fact that

the functions fσ, gτ , and eστ are independent of v and φ1, . . . , φm, we can simplify
the notation even further to

δ3 ≤
∣∣∣Ev,φ1,... ,φm

[
Ef,g,e

[
A(f)B(((f ◦ πvφτ )ge)−1)C(g)

]]∣∣∣.(10)

The second phase of the proof concentrates on the inner expectation above. To this
end, we expand each of the functions A, B, and C in their Fourier series:

A(f) =
∑

α∈ĜR

Âαχα(f),

B(h) =
∑

β1∈ĜS

B̂β1
χβ1

(h),

C(g) =
∑

β2∈ĜS

Ĉβ2
χβ2

(g).



THE NONAPPROXIMABILITY OF NON-BOOLEAN PREDICATES 125

Note that the function A depends implicitly on v and {φj}j �=τ while B depends

implicitly on φτ . Hence, the Fourier coefficients Âα depend on v and {φj}j �=τ and B̂β

depend on φτ . Inserting the Fourier expansions results in the identity

Ef,g,e

[
A(f)B(((f ◦ πvφτ

)ge)−1)C(g)
]

=
∑

α,β1,β2

ÂαB̂β1Ĉβ2 Ef,g,e

[
χα(f)χβ1(((f ◦ πvφτ )ge)−1)χβ2(g)

]
.

Using the identities (2), (3), and (5) together with Lemma 2.8, we can simplify the
above sum to∑

α,β1,β2

ÂαB̂β1Ĉβ2 Ef

[
χα−πG(β1)(f)

]
Eg

[
χβ2−β1(g)

]
Ee

[
χβ2(e)

]
.

From the summation identity (6) it follows that

Ef

[
χα−πG(β1)(f)

]
=

{
1 if α = πG(β1),

0 otherwise,

and that

Eg

[
χβ2−β1

(g)
]

=

{
1 if β1 = β2,

0 otherwise.

To calculate Ee[χβ2(e)] notice that

Ee

[
χβ2

(e)
]

= Ee

[∏
s∈S

χβ2(s)

(
e(s)

)]
=

∏
s∈S

Ee(s)

[
χβ2(s)

(
e(s)

)]
,

where the last inequality follows since e is selected in such a way that e(s) is inde-
pendent of all other coordinates in e. For factors such that β2(s) = 0 in the above
product, (4) implies that Ee(s)[χβ2(s)(e(s))] = 1; for the remaining factors,

Ee(s)[χβ2(s)(e(s))] = (1 − δ1) · 1 + δ1 ·
1

|G|
∑
g∈G

χβ2(s)(g).

The last term above is always zero thanks to (7) with a = β2(s) �= 0 and a′ = 0;
hence Ee[χβ2(e)] = (1 − δ1)

|β2|, where we introduced the notation |β2| to denote
|{s : β2(s) �= 0}|. To summarize,

Ef,g,e

[
A(f)B((fge)−1)C(g)

]
=

∑
β∈ĜS

ÂπG(β)B̂βĈβ(1 − δ1)
|β|.

Inserting this expression into (10) results in the inequality

δ3 ≤
∣∣∣∣Ev,φ1,... ,φm

[ ∑
β∈ĜS

ÂπG(β)B̂βĈβ(1 − δ1)
|β|

]∣∣∣∣.(11)

Squaring the above inequality and using Lemma 3.3 gives the bound

δ2
3 ≤ Ev,φ1,... ,φm

[∣∣∣∣ ∑
β∈ĜS

ÂπG(β)B̂βĈβ(1 − δ1)
|β|

∣∣∣∣2].
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Moreover, the Cauchy–Schwarz inequality shows that∣∣∣∣ ∑
β∈ĜS

ÂπG(β)B̂βĈβ(1 − δ1)
|β|

∣∣∣∣2 ≤
( ∑

β∈ĜS

|ÂπG(β)|2|B̂β |2(1 − δ1)
2|β|

)( ∑
β∈ĜS

|Ĉβ |2
)

.

Finally, Plancherel’s equality (Lemma 2.6) shows that
∑

β |Ĉβ |2 = Eg[|C(g)|2] = 1,
where the last equality follows since |C(g)| = 1 for all g—recall that C is a product
of characters and hence a root of unity. Putting these bounds together shows that

δ2
3 ≤ Ev,φ1,... ,φm

[ ∑
β∈ĜS

|ÂπG(β)|2|B̂β |2(1 − δ1)
2|β|

]
.

Recall that our aim is to show that there exists a probabilistic procedure to select
labels such that many of the constraints in the label cover instance are satisfied.
The third, and final, phase of the proof establishes this by constructing probability
distributions from the Fourier coefficients {Âα} and {B̂β}.

The expectation above is over v, φ1, . . . , φm as they are selected by the PCP
verifier. More precisely, first v ∈ V is selected uniformly at random, then for all j
(1 ≤ j ≤ m) φj is selected uniformly at random from {φ : (v, φ) ∈ Ψ}. Since the
instance of label cover was assumed to be regular, the following probabilistic proce-
dure induces the same distribution on v, φ1, . . . , φm. First select (v, φτ ) uniformly at
random from Ψ; then for all j (1 ≤ j ≤ m∧ j �= τ) φj is selected uniformly at random
from {φ : (v, φ) ∈ Ψ}. Therefore, the above inequality can be equivalently written as

E(v,φτ )∈Ψ

[ ∑
β∈ĜS

Eφj(j �=τ)

[
|ÂπG(β)|2

]
|B̂β |2(1 − δ1)

2|β|
]
≥ δ2

3 ,(12)

where the inner expectation is over φj (j �= τ) given v.
Consider the following probabilistic procedure that given v ∈ V selects an r ∈ R

and given φτ ∈ Φ selects an s ∈ S. Given v, first select α ∈ ĜR according to
the probability distribution given by Eφj(j �=τ)[|Âα|2] and then select an r such that
α(r) �= 0 uniformly at random. If no such r exists, select an r ∈ R uniformly at
random. Given φτ ∈ Φ, first select β ∈ ĜR according to the probability distribution
given by |B̂β |2 and then select an s such that β(s) �= 0 uniformly at random.

There always exists at least one s such that β(s) �= 0, for B̂0 = 0 by Lemma 2.7
since the table Aφτ is folded and {B̂β} are the Fourier coefficients of χa ◦ Aφτ for

some a �= 0. Moreover, Plancherel’s equality (Lemma 2.6) implies that
∑

α |Âα|2 =∑
β |B̂β |2 = 1; therefore, the procedure described above indeed defines functions P

from V to probability distributions on R and Q from Φ to probability distributions
on S. We now analyze the success rate of the above strategy.

Note that if α = πG(β) �= 0 there exists for each r ∈ R such that α(r) �= 0 at
least one s ∈ S such that β(s) �= 0 and πvφτ (s) = r. This follows since by definition
πG(β)(r) =

∑
s:r=πvφτ (s) β(s) and has the following important consequence. Suppose

that (α, β) are selected such that α = πG(β) �= 0 and that an r such that α(r) �= 0 is
selected. Then, if an s such that β(s) �= 0 is selected uniformly at random, r = πvφ(s)
with probability at least |β|−1.

Note also that if B̂β �= 0, then πG(β) �= 0. This follows from Lemma 2.7 since B̂β

is a Fourier coefficient of a nontrivial character composed with a folded table. The
fact that B̂β is nonzero implies, by Lemma 2.7, that

∑
s∈S β(s) �= 0. But this sum
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is precisely
∑

r∈R πG(β)(r) by the definition of the “projected character” πG(β) in
Lemma 2.8. Therefore it cannot be the case that πG(β)(r) = 0 for all r.

Combining these two observations, we can conclude that the probability that the
above probabilistic procedure succeeds for an arbitrary pair (v, φτ ) ∈ Ψ to select
values r and s such that r = πvφτ

(s) is no less than∑
β∈ĜS

Eφj(j �=τ)

[
|ÂπG(β)|2

]
|B̂β |2|β|−1 ≥ 2δ1

∑
β∈ĜS

Eφj(j �=τ)

[
|ÂπG(β)|2

]
|B̂β |2(1 − δ1)

2|β|,

where the inequality follows since x−1 > δe−δx > δ(1 − δ)x for all x ≥ 0 and all
δ ∈ (0, 1). Finally, since

E(v,φτ )∈Ψ

[
2δ1

∑
β∈ĜS

Eφj(j �=τ)

[
|ÂπG(β)|2

]
|B̂β |2(1 − δ1)

2|β|
]
≥ 2δ1δ

2
3

by (12), the proof is completed.

4. The reduction to non-Boolean CSPs. We now show how the above PCP
can be connected with CSPs to prove that the corresponding CSPs are nonapprox-
imable beyond the random assignment threshold.

Proof of Theorem 1.3. Select the constants δ1 > 0 and δ2 > 0 such that

|G||E|(1 − δ1)
|E|

1 + δ2
≥ |G||E| − ε

and select u in Theorem 2.2 such that 2δ1δ
2
2(2|E| − 1)−2(|G| − 1)−2|E| > |R|−µ. Let

� = |U | and m = |W | and consider a PCP constructed from a regular instance
Ψ ⊆ V × Φ of the label cover problem on R and S as described in Figure 1.

Construct a collections of constraints as follows. Introduce variables xv,f and yφ,g
representing Av(f) and Aφ(g), respectively. For all ways that the verifier can select
v, φ1, . . . , φm, f1, . . . , f�, g1, . . . , gm, and h1,1, . . . , h�,m, introduce a constraint that
is one exactly when xv,fiyφj ,gj = yφj ,hij

for all (i, j) ∈ E. Set the weight of this
constraint to the probability of the event that v, φ1, . . . , φm, f1, . . . , f�, g1, . . . , gm,
and h1,1, . . . , h�,m are chosen by the verifier in the PCP. Each constraint is a function
of at most |E|+�+m variables. The total number of constraints is definitely less than

|Ψ|m|G|�2u+m23u+�m23u

, which is polynomial in the size of the label cover instance if
�, m, |G|, and u are constants. The weight of the satisfied equations for a given
assignment to the variables is equal to the probability that the PCP accepts the proof
corresponding to this assignment. Thus, any algorithm approximating the optimum
of the above instance within

|G||E|(1 − δ1)
|E|

1 + δ2
≥ |G||E| − ε

decides the NP-hard label cover problem.

5. Conclusions. We have shown that it is possible to combine the harmonic
analysis introduced by H̊astad [10] with the recycling techniques used by Samorodnit-
sky and Trevisan [16] to obtain a lower bound on the approximability of Max k-CSP-d.
The current state of the art regarding the (non)approximability of predicates is that
there are a number of predicates—such as linear equations mod p with three unknowns
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in every equation, E3-satisfiability, and the predicates of this paper—that are nonap-
proximable beyond the random assignment threshold [10, 16]. There also exists some
predicates—such as linear equations mod p with two unknowns in every equation [1],
constraints on exactly two Boolean variables [9], and a large class of so-called reg-
ular constraints on two non-Boolean variables [5]—where there are polynomial time
algorithms beating the bound obtained from a random assignment.

A very interesting direction for future research is to try to determine criteria iden-
tifying predicates that are nonapproximable beyond the random assignment thresh-
old. Some such attempts have been made for special cases. It is known that every
predicate on two Boolean variables is approximated beyond the random assignment
threshold [9]; for predicates of three Boolean variables, it is known that the predicates
that are nonapproximable beyond the random assignment threshold are precisely those
that are implied by parity [10, 22]. However, the general question remains completely
open.

Acknowledgments. The author thanks Johan H̊astad for many clarifying dis-
cussions on the subject of this paper and the anonymous referees for many constructive
comments and suggestions that helped improve the presentation of the results in the
paper.
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Abstract. Maximal length feedback with carry shift register sequences have several remarkable
statistical properties. Among them is the property that the arithmetic correlations between any
two cyclically distinct decimations are precisely zero. It is open, however, whether all such pairs of
decimations are indeed cyclically distinct. In this paper we show that the set of distinct decimations
is large and, in some cases, all decimations are distinct.

Key words. feedback with carry shift register, arithmetic correlation, exponential sum, binary
sequence, p-adic number
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1. Introduction. If a = (a0, a1, a2, . . . ) is a periodic binary sequence, let aτ =
(aτ , aτ+1, aτ+2, . . . ) denote the τ -shifted sequence. If a,b are periodic binary se-
quences with the same period T we say they are cyclically distinct if aτ �= b, for every
shift τ with 0 < τ < T .

Associate to a and bτ the 2-adic integers

α =

∞∑
i=0

ai2
i and βτ =

∞∑
i=0

bi+τ2
i.

We recall that if b̄i+τ = 1 − bi+τ denotes the complementary bit, then −βτ = 1 +∑∞
i=0 b̄i+τ2

i. Let

γ = α− βτ =

∞∑
i=0

ci2
i

be the difference. The sequence of bits c = (c0, c1, . . . ) is eventually periodic (with
period T ), and the arithmetic cross-correlation Ca,b(τ) is defined to be the num-
ber of zeroes minus the number of ones in a single window of size T within the
periodic part of c. The pair of sequences a,b is said to have ideal arithmetic cross-
correlation if Ca,b(τ) = 0 for every τ . In this paper we discuss families S of peri-
odic binary sequences such that every pair a,b ∈ S of elements has ideal arithmetic
cross-correlation. Further background on 2-adic numbers can be found in a book by

∗Received by the editors March 4, 2002; accepted for publication (in revised form) January 20,
2004; published electronically July 20, 2004. Parts of this research were performed while the second
and fourth authors were visitors at the Institute for Mathematical Sciences, National University of
Singapore.

http://www.siam.org/journals/sidma/18-1/40342.html
†The Institute for Advanced Study, School of Mathematics, Princeton, NJ 08540 (goresky@

ias.edu, www.math.ias.edu/∼goresky/). This author’s research was partially supported by NSF
grant 0002693.

‡Department of Computer Science, 779A Anderson Hall, University of Kentucky, Lexington, KY,
40506-0046, and the Institute for Advanced Study, School of Mathematics (klapper@cs.uky.edu).
This author’s research was partially supported by NSF grant 9980429.

§Department of Mathematics, Queen’s University, Kingston, ON K7L 3N6, Canada, and the
Institute for Advanced Study, School of Mathematics (murty@mast.queensu.ca).

¶Department of Computing, Macquarie University, NSW 2109, Australia (igor@ics.mq.edu.au).

130



ON DECIMATIONS OF �-SEQUENCES 131

Koblitz [15] and in a paper by Klapper and Goresky [14]. Further background on
arithmetic correlations can be found in another paper by Goresky and Klapper [8].

The existence of such families is surprising in light of the Welch bound [11], which
states that if S is a collection of S cyclically distinct binary sequences of period T ,
then there exist a,b ∈ S and a shift τ such that the (usual) periodic cross-correlation

ca,b(τ) =

T−1∑
i=0

(−1)ai−bτ+i

satisfies

ca,b(τ) ≥ T

√
S − 1

ST − 1
.

Thus the Welch bound can be broached, by replacing the usual cross-correlation c
with the arithmetic cross-correlation C.

The particular sequences of interest are called long sequences or �-sequences; they
are in many ways analogous to the binary m-sequences. Let q be a prime number
such that 2 is a primitive root modulo q (meaning that the powers of 2 account for
all the nonzero elements in Z/(q)). Then a binary �-sequence is any sequence of the
form

ai = (A2−i mod q) mod 2,(1.1)

where A ∈ Z/(q) is nonzero. This equation means the following. Let b = 2−1 ∈ Z/(q)
be the inverse of 2, modulo q. First compute Abi and reduce modulo q to obtain a
number between 0 and q−1. Then reduce this number modulo 2. The sequence (1.1)
is strictly periodic with period q − 1, and different choices of A give rise to cyclic
shifts of the same “base” sequence ai = (2−i mod q) mod 2. (Up to a shift, this
sequence may be described as the coefficient sequence of the 2-adic expansion of the
fraction −1/q; it is also the reverse of the binary expansion of the fraction 1/q.) These
sequences have been studied since Gauss [7]. The related sequences (gi mod q) mod �
are used in the Digital Signature Standard and are important for an attack due to
Nguyen and Shparlinski [18].

Such �-sequences may be generated using feedback with carry shift registers as
described in [13, 14], where their role in stream ciphers was investigated; see also [5]
and [16]. This method of generating �-sequences (and their mod p generalizations)
was discovered independently by Marsaglia and Zaman [17] in special cases and by
Couture and L’Ecuyer [4] in general, who proposed using them as pseudorandom
number generators for Monte Carlo simulations.

These �-sequences exhibit important randomness properties. In [1] it was shown
that they have perfect distribution properties: for any d < log q, every d-tuple of bits
occurs either �(q − 1)/d� or �(q − 1)/d� times in a single period, where hereafter we
use ln z and log z to denote the natural and binary logarithms of z > 0, respectively.

Let x = ad be the d-fold decimation of a. That is, xi = adi. We say this
decimation is allowable if d is relatively prime to q − 1. In [8] it was shown that
cyclically distinct allowable decimations of a single �-sequence have ideal arithmetic
cross-correlation; see the following theorem.

Theorem 1.1. Let q be a prime number such that 2 is a primitive root modulo
q and let a = (a0, a1, . . . ) be an �-sequence of period q − 1. Let x = ad and y = ae
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be allowable decimations of a by d and e, respectively. Suppose x and y are cyclically
distinct. Then for any shift τ the arithmetic crosscorrelation vanishes: Cx,y(τ) = 0.

This theorem provides a family S of periodic sequences with ideal arithmetic
cross-correlation. Unfortunately, however, even if d �= e, the sequences x and y may
fail to be cyclically distinct. On the basis of extensive experimental evidence the
following conjecture was made [8].

Conjecture 1.2. If q > 13 is prime, 2 is primitive modulo q, and a is an
�-sequence based on q, then every pair of allowable decimations of a is cyclically
distinct.

It is relevant to remark that by the celebrated result of Hooley [12], under the
extended Riemann hypothesis, 2 is primitive for a set of primes of positive relative
density.

If Conjecture 1.2 holds for a prime q, then the resulting family S consists of
ϕ(q − 1) distinct elements with ideal arithmetic correlation (where ϕ is the Euler
function). We have verified this conjecture for all primes q < 2, 000, 000. It can be
restated in very elementary terms as follows.

Let q > 13 be a prime number such that 2 is primitive mod q. Let E be the set
of even integers 0 ≤ e ≤ q − 1. Fix A with 1 ≤ A ≤ q − 1. Suppose the mapping
x 	→ Axd mod q preserves (but permutes the elements within) the set E. Then d = 1
and A = 1. The equivalence between these two statements follows from the fact that
ad and ae are cyclically distinct if and only if a and ah are cyclically distinct, where
h = d(e−1 mod q − 1).

2. Previous and current results. Conjecture 1.2 has turned out to be sur-
prisingly resistant to proof. Suppose q is prime, 2 is a primitive root mod q, a is an
�-sequence with prime connection integer q > 13, and d is relatively prime to q − 1.
In [8] and [9] the following was shown.

Theorem 2.1. Suppose
(i) either d = −1 (or, equivalently, d = q − 2);
(ii) or q ≡ 1 mod 4 and d = (q + 1)/2;
(iii) or

1 < d ≤ (q2 − 1)4

216q7(ln q + 2)4
∼ q

(16 ln q)4
.

Then the decimation ad is cyclically distinct from a.
In this paper we give the complete proof of Theorem 2.1 (iii) (which was only

sketched in [9]) and we improve substantially on this bound by removing the ln q
factors. Let a, q, d be as above.

Theorem 2.2. If d > 1 and

d ≤ (q2 − 1)4

224q7

or if d < 0 and

|d| ≤ (q2 − 1)4

225q7
,

then the decimation ad is cyclically distinct from a.
Finally, we show that, asymptotically for large q, the collection of counterexamples

to Conjecture 1.2 is a vanishingly small fraction of the set of all allowable decimations.
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Theorem 2.3. For any fixed ε > 0 there is a constant C0(ε) > 0 depending only
on ε, such that there are at most C0(ε)q

2/3+ε decimations of an �-sequence a with
connection number q that are cyclic permutations of a.

Finally, we show that for certain q, Conjecture 1.2 holds.
Theorem 2.4. If q = 2p+1 = 8r+3 with q, p, and r prime, and if 2 is primitive

mod q, then Conjecture 1.2 holds for q sufficiently large.

3. Preliminary estimates. Throughout this paper we fix a primitive qth root
of unity, say, ξ = e2πi/q ∈ C. Define

Sd(a, b) =

q−1∑
x=0

ξax
d+bx.

Then Sd(0, 0) = q, Sd(a, 0) = Sd(0, b) = 0 if a and b are nonzero, and

Sd(1, b) = Sd(λ
d, λb)(3.1)

for any λ �= 0 (and for any b).
We need the following bound on the fourth moment of the sums Sd(a, b) averaged

over b; see [9].
Lemma 3.1. If a �= 0 and d > 1, then

q−1∑
b=0

|Sd(a, b)|4 ≤ (d− 1)q3.

Proof. The proof follows the method of Davenport and Heilbronn [6]. Let R(w, t)
denote the number of solutions to the system of congruences

x + y ≡ w mod q,

xd + yd ≡ t mod q.

By solving for y using the first equation, we can reduce this to a single equation
of degree d − 1. (Since d > 1 is odd, the terms involving xd cancel out.) Such an
equation has at most d− 1 solutions unless w = t = 0, when it has q solutions. Also,
R(w, t) = 0 if one but not both of w and t is zero. Thus we have

q−1∑
w=1

q−1∑
t=1

R(w, t) =

q−1∑
w=0

q−1∑
t=0

R(w, t) − q = q2 − q

and

q−1∑
w=0

q−1∑
t=0

R2(w, t) ≤ (d− 1)

q−1∑
w=1

q−1∑
t=1

R(w, t) + q2 = dq2 − (d− 1)q.

Therefore the sum

T =

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4

is given by

T =

q−1∑
a=0

q−1∑
b=0

p−1∑
x1=0

p−1∑
x2=0

p−1∑
x3=0

p−1∑
x4=0

ξa(xd
1+xd

2−xd
3−xd

4)+b(x1+x2−x3−x4),
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which is q2 times the number of solutions (x1, x2, x3, x4) to the system

x1 + x2 ≡ x3 + x4 mod q,

xd
1 + xd

2 ≡ xd
3 + xd

4 mod q

with 0 ≤ x1, x2, x3, x4 ≤ q − 1. Counting the number of pairs (x1, x2) and (x3, x4)
independently gives

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4 = T = q2

q−1∑
w=0

q−1∑
t=0

R2(w, t) ≤ dq4 − (d− 1)q3.(3.2)

The terms for which a = 0 contribute the quantity

q−1∑
b=0

|Sd(0, b)|4 = q4.

Thus

q−1∑
a=1

q−1∑
b=0

|Sd(a, b)|4 ≤ (d− 1)(q4 − q3).

Since d is relatively prime to q−1, the mapping x 	→ xd is a permutation; hence (3.1)
gives

q−1∑
b=0

|Sd(a, b)|4 =

q−1∑
b=0

|Sd(1, b)|4 =
1

q − 1

q−1∑
λ=1

q−1∑
b=0

|Sd(λ
d, λb)|4

≤ 1

q − 1

q−1∑
u=0

q−1∑
v=0

|Sd(u, v)|4 ≤ (d− 1)q3.

(3.3)

This completes the proof of Lemma 3.1.
Let E = {0, 2, . . . , q − 1} ⊂ Z/(q) denote the set of “even” elements. For any

b ∈ Z define

σd(b) =
∑
x∈E

ξbAxd

=

(q−1)/2∑
x=0

ξbA2dxd

.

Then σd(0) = |E| = (q + 1)/2.
Lemma 3.2. For any b �= 0 we have

|σd(b)| ≤
214/4

π
(d− 1)1/4q3/4 + 4 ln q + 4 < 23(d− 1)1/4q3/4.

Proof. Davenport and Heilbronn [6] gave estimates on certain exponential sums.
If we let

F (n) =

q−1∑
x=0

ξf(x)+nx,
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where n is an integer, then their Lemma 4 says that for any m,

m∑
x=0

ξf(x) =
m

q
F (0) + O

(
q−1∑
n=1

1

n
(|F (n)| + |F (−n)|)

)
+ O(ln q).

Let us take f(x) = axd (where a = bA2d) and m = (q − 1)/2. Then F (0) = 0 and
F (n) = Sd(a, n). By carefully examining Davenport and Heilbronn’s proof, one sees
that the constant on the first big-O is 2/π and the second big-O can be replaced by
4 ln q + 4. In other words,

|σd(b)| ≤
2

π

(
q−1∑
n=1

1

n
(|Sd(a, n)| + |Sd(a,−n)|)

)
+ 4 ln q + 4.(3.4)

Applying Hölder’s inequality to Lemma 3.1 gives

q−1∑
n=1

1

n
|Sd(a, n)| ≤ 43/4(d− 1)1/4q3/4.

The same bound applies to the sum using Sd(a,−n) in place of Sd(a, n). The lemma
follows.

4. Proof of Theorem 2.1 (iii). Although Theorem 2.2 gives a better estimate
than Theorem 2.1 (iii), we briefly include our original proof of it because it illustrates
a technique which may some day be refined so as to give an even better estimate. As in
the previous sections we suppose that q is a prime number, that 2 is primitive modulo
q, and that d is relatively prime to q − 1. Again let E = {0, 2, . . . , q − 1} ⊂ Z/(q) be
the set of even numbers. Define

fE(x) =

{
1 if x ∈ E,
0 otherwise.

Its Fourier transform is given by

f̂E(b) =
1

q

q−1∑
c=0

fE(c)ξ−bc.

By the Fourier inversion formula we have

fE(a) =

q−1∑
b=0

f̂E(b)ξba.

Now assume that the mapping x 	→ Axd preserves (but permutes the elements within)
the set E. Then∑

x∈E

fE(Axd) =

q−1∑
b=0

f̂E(b)
∑
x∈E

ξbAxd

=

q−1∑
b=0

f̂E(b)σd(b).

The left-hand side equals |E| = (q + 1)/2 because if b = 0, then f̂E(b) = (q + 1)/(2q)
and σd(b) = |E| = (q + 1)/2. Thus

q2 − 1

4q
=

∣∣∣∣∣
q−1∑
b=1

f̂E(b)σd(b)

∣∣∣∣∣ ≤
(

q−1∑
b=1

|f̂E(b)|
)

max
b �=0

|σd(b)|.
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We need the following lemma; see [9].
Lemma 4.1. The following inequality holds:

q−1∑
b=1

|f̂E(b)| ≤ 1 +
1

2
ln

(
q − 3

2

)
<

ln q + 2

2
.

Combining this estimate with Lemma 3.2 gives

d >
(q2 − 1)4

216q7(ln q + 2)4
,

which completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2. In this section we use the technique for obtaining
bounds from exponential sums that has been used by several authors (for example,
see [3]).

As in the preceding sections, let E be the set of even integers between 0 and q−1
and assume that the conclusion of Theorem 2.2 is false. In other words, assume that
Axd ∈ E for every x ∈ E. Let W denote the set of integers between 0 and �(q − 2)/4�
and let s = 2 �(q − 1)/4� + 1. It follows that the congruence

Axd ≡ 2(u− v) + s mod q, x ∈ E, u, v ∈ W,

has no solutions. Therefore

0 =
1

q

∑
u,v∈W

∑
x∈E

q−1∑
b=0

ξb(Axd−2(u−v)−s)

=
1

q

q−1∑
b=0

ξ−bsσd(b)
∑

u,v∈W

ξ2b(u−v) =
1

q

q−1∑
b=0

ξ−bsσd(b)

∣∣∣∣∣∑
u∈W

ξbu

∣∣∣∣∣
2

.

The term corresponding to b = 0 equals |W |2|E|/q. Therefore

|W |2|E|
q

= −1

q

q−1∑
b=1

ξ−bsσd(b)

∣∣∣∣∣∑
u∈W

ξ2bu

∣∣∣∣∣
2

≤ 1

q

q−1∑
b=1

|σd(b)|
∣∣∣∣∣∑
u∈W

ξ2bu

∣∣∣∣∣
2

.(5.1)

Using Lemma 3.2, we derive

|W |2|E|
q

≤ 23(d− 1)1/4q−1/4

q−1∑
b=1

∣∣∣∣∣∑
u∈W

ξbu

∣∣∣∣∣
2

≤ 23(d− 1)1/4q−1/4

q−1∑
b=0

∣∣∣∣∣∑
u∈W

ξ2bu

∣∣∣∣∣
2

= 23(d− 1)1/4q−1/4(q|W |) = 23(d− 1)1/4q3/4|W |.

(5.2)

Since |W | ≥ (q − 1)/4 we obtain

d− 1 ≥ |W |4|E|4
212q7

≥ (q2 − 1)4

224q7
.
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A similar argument can be made for negative d. Suppose d = −e with e > 0. The
system of congruences

x + y ≡ w mod q,

xd + yd ≡ t mod q

is equivalent to the single congruence

(w − x)e + xe ≡ t(w − x)exe,

which has at most 2e solutions. This fact can be used in the proof of Lemma 3.1,
which now says, If a �= 0 and if d = −e < 0, then

q−1∑
b=0

|Sd(a, b)|4 ≤ 2eq3.

Lemma 3.2 then reads as follows: for any b �= 0,

|σd(b)| < 23(2e)1/4q3/4.

Now go back to the beginning of the proof of Theorem 2.2, using this estimate for
|σd(b)| in (5.1). The factors (d − 1) become replaced by 2e, which leads to the con-
clusion

2e >
(q2 − 1)4

224q7
.

This completes the proof of Theorem 2.2.

6. Proof of Theorem 2.3. It follows from the proof of Theorem 8 of Canetti
et al. [2] that for any fixed ε > 0, the sum of the numbers of solutions to the systems
of congruences

x1 + x2 ≡ x3 + x4 mod q,

xd
1 + xd

2 ≡ xd
3 + xd

4 mod q
(6.1)

over all d = 0, 1, . . . , q − 2 is bounded by a function in O
(
q11/3+ε

)
. Let D be the set

of d such that the system of congruences (6.1) has more than q3−ε solutions. Then
the cardinality of D satisfies |D| ∈ O(q2/3+ε).

We claim that if there exists A �= 0 such that x 	→ Axd preserves the set E of even
elements, then d ∈ D. Suppose the contrary: fix such an A and d, and suppose that
d /∈ D. Then the number of solutions to (6.1) is no more than q3−ε. Thus by (3.2)
we obtain the bound

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4 = T ∈ O(q5−ε).

Hence, as in (3.3), we conclude that

q−1∑
b=0

|Sd(a, b)|4 ≤ 1

q − 1

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4 ∈ O(q4−ε),
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and thus |Sd(a, b)| ∈ O(q1−ε/4) for every b = 0, . . . , q − 1. Hence

q−1∑
n=1

1

n
|Sd(a, n)| ∈ O(q1−ε/4 ln q)

and this estimate can be used in (3.4) to give

|σd(b)| ∈ O(q1−ε/4 ln q).

Now return to the beginning of the proof of Theorem 2.2 and use this estimate in (5.1).
Then (5.2) becomes

|W |2|E|
q

∈ O(q1−ε/4|W | ln q),

which is impossible.

7. Proof of Theorem 2.3 and other large sets of distinct decimations.
Let G denote the set of decimations of an �-sequence a with connection integer q. The
set G is a multiplicative group isomorphic to (Z/(ϕ(q)))∗. Let H denote the set of
decimations that are cyclic shifts of a. Then H is a subgroup of G.

Let ∆ ⊆ G be a set of representatives for G/H, with 1 ∈ ∆. That is, for each
coset dH, there is exactly one element in dH ∩ ∆.

Lemma 7.1. The set D = {ad : d ∈ ∆} is a set of |∆| pairwise cyclically distinct
decimations with ideal arithmetic correlations.

Proof. Suppose that ad is a cyclic permutation of ae, with d, e ∈ ∆. Then ade−1

is a cyclic permutation of a. Thus de−1 ∈ H, and by the hypotheses on ∆, de−1 = 1.
That is, d = e.

Corollary 7.2. Let a be an �-sequence with connection integer q. For any fixed
ε > 0 there are constants C1(ε), C2(ε) > 0 depending only on ε, such that the following
statements hold:

(i) The set {ad : d ∈ ∆} is a set of at least

|G|
|H| ≥ C1(ε)q

1/3−ε

cyclically distinct sequences with ideal arithmetic correlations.
(ii) If ϕ(ϕ(q)) has a prime factor r > C2(ε)q

2/3+ε, then {ad : d ∈ ∆} is a set of
at least r cyclically distinct sequences with ideal arithmetic correlations.

Proof. The first statement follows from Theorem 2.3 and the lower bound

q

ϕ(ϕ(q))
∈ O((ln ln q)2);

see Theorem 328 in [10].
We know that |H| and |∆| divide |G| = ϕ(ϕ(q)). Take C2(ε) = C1(ε)

−1. If
ϕ(ϕ(q)) has a prime factor r > C2(ε)q

2/3+ε, then r cannot divide |H|, and so {ad :
d ∈ ∆} is a set of at least r > C2(ε)q

2/3+ε cyclically distinct sequences. This proves
the second statement.
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Now consider integers q with the special form q = 2p + 1 = 2kr + 3 with p
and r prime. In this case ϕ(ϕ(q)) = ϕ(2p) = p − 1 = 2k−1r. If k is small enough
(for example, k = 3 as in the formulation of Theorem 2.4) and q is large enough,
then r does not divide |H|. This implies that |H| is a power of 2. We also have
|G| = (Z/(2p))∗ = (Z/(p))∗, which is a cyclic group. Thus either |H| is trivial or
H contains −1. However, we have already shown in Theorem 2.1 that −1 �∈ H. It
follows that all decimations are cyclically distinct. This proves Theorem 2.4.

In fact, as we have just seen, in Theorem 2.4 one can consider more general
families of primes.

There is a heuristic for the density of such primes q. Artin’s conjecture, which is
true if the extended Riemann hypothesis is true [12], implies that there are at least
AN/ lnN primes q < N such that 2 is primitive modulo q. (The constant A is known
as Artin’s constant and is about .3739558.) Of these, we expect about 1/ lnN to
satisfy q = 2p + 1 with p prime. If p is congruent to 3 modulo 4, then q is congruent
to 7 modulo 8, which would imply that 2 is a quadratic residue, hence, not primitive.
Thus it must be the case that p is congruent to 1 modulo 4, so q = 8r + 3 for some
r. We expect r to be prime with probability about 1/ lnN , so we expect more than
AN/(lnN)2 primes less than N that satisfy all these requirements. Experimentation
shows that this estimate is a bit conservative for N < 1, 000, 000, 000.

8. Conclusions. We have significantly increased the set of decimations of an
�-sequence a that are known to be cyclically distinct from a. For sufficiently long �-
sequences we have shown that there is a large family of cyclically distinct decimations.
In some special cases we have in fact shown that all decimations are cyclically distinct.
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Abstract. An exact formula for the number of arrangements of a fixed collection of letters
containing a specified set of runs is generalized from runs of letters to runs of words. The generalized
formula is applicable, provided the specified run-lengths and word-types meet certain restrictions.
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1. Introduction. Different probabilistic models are utilized to measure the sta-
tistical significance of repeating patterns in letter sequences. Assuming a fixed pool L
of letters, this paper presents a shuffling model in order to determine the exact number
of arrangements of L containing a specified set of word-runs. A known run-formula
by Morris, Schachtel, and Karlin (1993) allows one to specify any number of desired
letter-runs of different types and minimum lengths. This result will be extended here
from letter- to word-runs. Our generalization, however, is restricted to a certain class
of so-called admissible sets of words and run-lengths.

The first comprehensive book on runs dates back to Bortkiewicz (1917), who
studied unconditional models, i.e., sequences whose composition is not fixed a priori.
Additional exact results on runs are provided in Mood (1940), asymptotic results
in Erdös and Renyi (1970), Guibas and Odlyzko (1980), and Foulser and Karlin
(1987), to name a few. Conditional models are less common; results can be found,
for instance, in Mood (1940) and in Bradley (1968). More recently Balakrishnan and
Koutras (2002) published a monograph on runs and scans with applications.

An early comprehensive publication on the combinatorics of words was compiled
by Lothaire in 1983 and supplemented in 2002. Reinert, Schbath, and Waterman
(2000) reviewed the current state of research in the area, giving an overview on the
statistical and probabilistic properties concerning location and counts of words in
letter sequences, introducing major aspects of the field, providing relevant techniques,
warning of pitfalls associated with the analysis of words, and citing many related
results and references.

With the accumulation of biomolecular sequences in the 1980s, the search for
statistically significant patterns in sequences motivated many probabilistic studies.
Runs of various kinds are of interest in this context, since a large fraction of genomic
DNA is comprised of repetitive sequences. These so-called tandem repeats are of grow-
ing biological concern, because they are involved in a variety of regulatory, catalytic,
immunological, and evolutionary processes. As markers in linkage analysis, DNA fin-
gerprinting, and phylogenetic studies, they have also become valuable investigative
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tools in molecular genetics. Repeats of units of up to six nucleotides (i.e., characters
over the alphabet {A, C, G, T}) are called microsatellites or STRs (short tandem
repeats) and are found in many different sequence locations, e.g., in direct proximity
to genes or within them; see Reddy and Housman (1997).

Much attention is currently focused on diseases involving trinucleotide repeats.
Through mutation these repeats can expand dramatically and accumulate to over
40 times their nonpathological copy number; e.g., in fragile X syndrome the trinu-
cleotide CGG is repeated 2000 times (healthy individuals carry only up to 52 copies).
Such STR expansions are associated with about 20 inherited human diseases, such as
myotonic dystrophy and Huntington’s disease, both characterized by a substantially
expanded CAG run (Sinden (1999)). The great biological and medical impact of STR
disorders quickly prompted the development of efficient and sensitive algorithms for
their detection, e.g., Karlin et al. (1988). More recently an automated program, TRF
(tandem repeat finder) by Benson (1999) and the database TRIPS (tandem repeats
in proteins) by Katti et al. (2000) were made available on the World Wide Web.

The vast amount of sequence data provided by modern sequencing technologies
requires automated methods to identify biologically important features within those
sequences. While statistical significance is neither necessary nor sufficient for biolog-
ical significance, it is nevertheless a valuable indicator. The distinction between the
randomness and nonrandomness of observed patterns can often serve as a benchmark
to detect potentially interesting regions within biomolecular sequences and sort them
out for further experimental investigation. In this paper we are concerned with sets
of microsatellites encountered in a given sequence. In order to assess their statistical
significance we will regard them as word-runs in random orderings of fixed length
and letter composition, and derive the probability that any specified collection of
word-runs will be present in such random orderings.

The remainder of the paper is organized as follows. In section 2 we briefly describe
the main features of the counting approach for letter-runs and then illustrate the
complications arising in the generalization from letter- to word-runs. In section 3
proper notation and terminology are introduced. In section 4 a class of admissible
sets is defined, for which a uniqueness theorem is proved in section 5. Finally, section
6 provides the generalized formula, valid for any collection of word-runs obtained from
an admissible set.

2. Complications associated with the generalization. Several word-proper-
ties such as overlap and self-overlap cause serious complications and prevent an
immediate generalization of the Morris, Schachtel, and Karlin (1993) run-formula
from letter- to word-runs. Before demonstrating these complications, let us first de-
scribe the counting methods exploited to derive the formula for letter-runs.

2.1. Counting method for letter-runs. We take as given a finite alphabet
A = {Lα|α = 1, 2, . . . , τ} with τ ≥ 2 letter types Lα and an integer-valued, τ -
dimensional vector �n = (n1, n2, . . . , nτ ) with N =

∑τ
α=1 nα. Then L(A;�n) denotes

a letterpool containing N letters from alphabet A, namely n1 letters of type L1, n2

of type L2, . . . , nτ of type Lτ . Any distinguishable arrangement of all N members of
the letterpool is called an ordering of L. Let the sequence Z = (z1, z2, . . . , zN ) be
one such ordering. We define a letter-run within Z as an uninterrupted subsequence
(zm, zm+1, . . . , zn) with 0 < m ≤ n ≤ N consisting of only one letter type bounded
at either end by a letter of different type or by a boundary of the sequence (i.e.,
in our context, only maximal runs are considered). By this definition, the sequence
BAAAABBB has (letter-) runs of B’s only of lengths 1 and 3. We will sometimes refer
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Table 2.1

Different configurations representing the same ordering. Suppose at least two runs(A) ≥ 2 and
one run(C) ≥ 3 are desired. Let x = [AA] and y = [CCC] be chunks representing an A-run of
length 2 and a C-run of length 3, respectively. Rows (1) to (4) display different configurations of
the same chunkpool, all corresponding to the ordering (0), which must be acceptable since (3) and
(4) are disjoint.

(0) A A C C C A A A A T A A G Original ordering

(1) x y A x A T A A G Nonendplaced configuration

(2) A A y x x T A A G Nonseparate configuration

(3) x y A A A A T x G

(4) x y A A x T A A G
Assignment alternatives

to runs of the same letter type as separate to emphasize that they must be separated
by intervening letters of a different type.

Example 2.1. Let A = {Lα|α = 1, 2, 3, 4} be an alphabet of the τ = 4 letter
types L1 = A, L2 = C, L3 = G, and L4 = T. And let L(A;�n) with �n = (8, 3, 1, 1) be
a letterpool containing altogether N = 13 letters, namely 8 A’s, 3 C’s, 1 G, and 1 T.
Then O = AACCCAAAATAAG in row (0) of Table 2.1 is an ordering of L having
two A-runs of length 2, one A-run of length 4, one C-run of length 3, one T- and one
G-run each of length 1. – O′ = ACAACAACAAATG is another ordering of the same
letterpool L.

Let F represent the set of conditions describing the required runs (i.e., their
number, length, and letter type). The ordering Z is said to be acceptable (or F-
acceptable) if, for each run specified in F , there exists in Z a run of this letter type
and at least the specified length. Each run within Z may be used to satisfy only one
run within the condition set F ; e.g., a run of length 4 does not satisfy the requirement
for two runs of length 2, since they would not be separate.

To count the number of acceptable orderings, we will first count the number of
distinguishable arrangements of a modified pool, called the F-pool or the chunkpool
of F . For each run specified in F , replace these letters with a new type of object
called a chunk. Each chunk is an indivisible unit having the “length” and letter type
attributes of the letters it replaces. The resulting pool of letters and chunks is called
the chunkpool of F . Arrangements of the chunkpool are called configurations to dis-
tinguish them from orderings of the full letterpool, L. There is an obvious mapping
of configurations to orderings, which replaces each chunk by its component individual
letters. Although each acceptable ordering has at least one corresponding configura-
tion (as we will show), the map is not one-to-one because some configurations map to
unacceptable orderings and different configurations often map to the same ordering.
For example, suppose we have a two-letter alphabet and a letter-pool, L of n1 = 7
A’s and n2 = 3 B’s, and we desire at least two separate runs of three or more A’s. In
a simplified notation, we will write this condition as F = {at least two runs(A) ≥ 3}.
We use six of the A’s to construct two chunks of three A’s each, denoted by x’s or
by square brackets, e.g., x = [AAA]. Our F-pool thus consists of two x chunks, one
remaining A, and three B’s, and each arrangement of this chunkpool is a configura-
tion. The configuration (x, B, A, x, B, B) corresponds to the ordering (A, A, A, B,
A, A, A, A, B, B), which is F-acceptable since it has the desired runs (one of length
3 and one of length 4). The configurations (x, B, x, A, B, B) and (x, B, A, x, B, B),
are different, but correspond to the same ordering. Another configuration (x, x, B,
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A, B, B) corresponds to an ordering that is not F-acceptable, since it contains only
one run of three or more A’s—in this case, a run of length 6.

As the above example shows, the natural correspondence between configurations
and the orderings they determine is not one-to-one; nor is it surjective over all or-
derings, since there are many nonacceptable orderings that have no corresponding
configuration. Consider the mapping that takes an ordering to its corresponding con-
figurations. Intuitively, this can be visualized in terms of placing each chunk on a run
of the correct letter type within the ordering without overlapping any two chunks.
We say that each ordering is counted as many times as there are configurations cor-
responding to it. Since each acceptable ordering has, by definition, a collection of
runs large enough to fit all of the chunks in the chunkpool, it is counted at least once.
The number of configurations therefore exceeds the number of acceptable orderings,
and this overcounting can be attributed to three mechanisms: (i) multiple ways of
positioning a chunk within a longer run, (ii) multiple occupancy of two or more chunks
within a single long run, and (iii) multiple ways for assignment of a number of chunks
to a greater number of available runs.

To determine the number of acceptable orderings, we stepwise eliminate these
three sources of overcounting as follows.

(i) Positioning. An acceptable ordering containing a run longer than required
is counted multiple times corresponding to the number of ways the chunk can be
positioned within the actual run. For example, if an x corresponds to a chunk of
three A’s, the ordering O1 = (A, A, A, A, B) is counted by the configurations C1 =
(A, x, B) and C2 = (x, A, B). To avoid this source of overcounting, we count only
configurations in which no chunk is adjacent on its right to an individual letter of the
same kind. We call these configurations endplaced (in our example, C1 is endplaced;
C2 is not).

(ii) Occupancy. Some nonacceptable orderings have corresponding configurations
in which more than one chunk is placed within a single run. For example, if two
runs of three A’s each are required, the ordering O2 = (A, A, A, A, A, A, A, B) is
not acceptable because it has only one separate run of length 3 or greater. However,
O2 is counted by the configurations C3 = (x, x, A, B), C4 = (x, A, x, B), and
C5 = (A, x, x, B). Configurations in which no chunk is adjacent to another chunk of
the same letter type are called separate. Configurations that are both endplaced and
separate are called disjoint. Disjoint configurations cannot have more than one chunk
to a run (we speak of runs in configurations, although technically we are referring
to the runs in the corresponding ordering). If more than one chunk were placed on
a run, the leftmost chunk would be adjacent on its right to an individual letter of
the same type (in which case, it would not be endplaced) or to another chunk (in
which case, it would not be separate). It follows that the ordering corresponding to a
disjoint configuration must have a separate run for each chunk in the chunkpool and is
therefore acceptable. Furthermore, an acceptable ordering, because it has a separate
run for each chunk in the chunkpool, must have at least one corresponding disjoint
configuration. We have thus shown that the set of disjoint configurations counts all
acceptable orderings (one or more times each) and only acceptable orderings. The
unacceptable ordering O2, for example, has no corresponding disjoint configuration
(C3 and C4 are not endplaced, and C5 is not separate).

(iii) Assignment. Orderings with more than the required number of separate
runs are counted by as many disjoint configurations as there are ways of assigning
the chunks to the runs. If, for example, two runs of three A’s are required, the
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ordering (A, A, A, B, A, A, A, B, A, A, A) is counted three times corresponding
to the configurations C6 = (x, B, x, B, A, A, A), C7 = (x, B, A, A, A, B, x),
and C8 = (A, A, A, B, x, B, x). A judiciously weighted sum of the numbers of
disjoint configurations eliminates overcounting of type (iii) and gives the number of
acceptable orderings. In the construction of this sum, we make use of the following
standard equality:∑

i≥s

∆(i; s)

(
k

i

)
= 1 for k ≥ s and k ≥ 0,(2.1)

where ∆(i; s) =

⎧⎨⎩
(−1)i+s ·

(
i−1
s−1

)
for s > 0,

1 for s ≤ 0 and i = 0,
0 otherwise.

To prove that the weighted sum of the number of disjoint configurations equals the
number of acceptable orderings, Morris, Schachtel, and Karlin (1993) introduce Gm

as the number of orderings of L with exactly m runs of desired length and letter type.
If s is the requested number of runs with specified length and letter type, then the
number AO(s) of acceptable orderings can be rewritten as the sum over all Gm with
m ≥ s as follows:

AO(s) = Gs + Gs+1 + Gs+2 + · · · .(2.2)

Our counting method overcomes the three sources of overcounting by first dis-
carding all nonendplaced and nonseparate (i.e., all nondisjoint) configurations and
then utilizing the fact that a properly weighted sum over the number of disjoint con-
figurations equals the sum of Gm-values, which in turn is equal to the number of
acceptable orderings.

2.2. Problems arising with word-runs. The described counting strategy re-
lies heavily on the concepts of (i) “endplacedness” and (ii) “separatedness” of con-
figurations, as defined in section 2.1 for the case of letter-runs. And it requires (iii)
that the Gm-values of (2.2) be well defined, which presumes that for each ordering
the precise number and maximal length of all specified runs can be ascertained unam-
biguously. While these three prerequisites are easily met with respect to letter-runs,
their generalization to word-runs is not at all straightforward and presents various
obstacles, which are exemplified briefly in the following.

First, we will illustrate the difficulty of defining endplaced word-runs. A letter-run
is endplaced if it is followed to the right by a letter of different type. It is nonendplaced
if the letter is of the same type.

Example (letter-runs). Given the ordering O = AACCCCAG, we may place a
desired run of three C’s in two ways within O. In AACxAG the C-run (denoted by x)
is endplaced, because the next letter to the right is different from “C”. In AAxCAG,
on the other hand, the C-run is followed by an additional “C” and is therefore non-
endplaced.

For word-runs the situation is more intricate because a word-run is not necessarily
endplaced, even when followed to the right by a different word.

Example (word-runs). Suppose a sequence CTATATATATATG, a word w =
TATA, and a desired word-run ww = TATATATA of length 2. In CwwTATG the
w-run is followed by a word different from w, namely TATG (or any of its prefixes).
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Nevertheless, it does not seem useful for our purposes to view “ww” in this position
as endplaced, since it is not at the very end of the available stretch of TA’s. Only if
shifted by two positions to the right does it make sense to consider it endplaced, as
in CTAwwTG.

Next, we demonstrate the difficulty of ascertaining the exact number of available
word-runs in a given ordering. Such a problem does not arise for letter-runs, where
each run is of unique letter type and maximal length. The latter is easily determined
by the run’s well-defined boundaries, i.e., on either side by the first occurrence of a
letter of different type (or of no letter).

Example (letter-runs). Looking in AGGCCCCCAGGGCCCCT for the number
of available runs(C) ≥ 4 and runs(G) ≥ 3 immediately reveals 2 appropriate C- and
1 appropriate G-run.

Again, for word-runs the situation is more complicated because runs may overlap
and therefore exhibit blurring borders. The intervening segments between neighboring
runs can be used in some circumstances to lengthen either one or the other, resulting
in ambiguities about the precise number and size of available runs.

Example (word-runs). Given the ordering O = TAGCAGCAGCAGCCC, we seek
the exact number of runs(w1) ≥ 2 and of runs(w2) ≥ 3 for the words w1 = GCA
and w2 = AGC. Depending on what run we assign to the stretch behind the T,
we get either a run of three w1, since O = TAw1w1w1GCCC, or a run of four w2,
since O = Tw2w2w2w2CC. Hence there is ambiguity as to how many desired w1- and
w2-runs the given ordering harbors.

These few examples demonstrate the need to extend concepts (i) to (iii) to runs of
words before applying the described counting method; i.e., we have to generalize the
definitions of endplaced and separate configurations and to solve the ascertainment
problem in order to ensure that Gm is well defined. To that end, however, a number
of modifications with respect to notation and terminology will be necessary.

3. Notation and terminology. Let A be a finite alphabet with τ letters, and
L(A;�n) be a letterpool containing N =

∑τ
α=1 nα letters from alphabet A; see section

2.1. A short sequence w = (a1, a2, . . . , ar) with 0 ≤ r � N and ai ∈ A is called a
word, and its length r is denoted by |w|. For words of length r = 0 the symbol ε will
be reserved.

Given an ordering O = (z1, z2, . . . , zN ) of letterpool L and words u, x, and v such
that u = (z1, z2, . . . , zm), x = (zm+1, zm+2, . . . , zn), and v = (zn+1, zn+2, . . . , zN ),
then u, x, and v are called factors of O and we may write O = uxv. The factors u
and v are called the prefix and suffix, respectively, of O. See, for example, Crochemore
and Rytter (1994).

For a word w �= ε we define a word-run of type w within O as a factor of O
consisting of a series of abutting reiterations of w. To distinguish the number of
letters in a w-run from the number of w-iterations, the latter will be referred to as the
run’s iteration length; e.g., a w-run of iteration length l ≥ 0, denoted by wl = ww . . . w,
has a total length of l · |w| individual letters.

Next we formally postulate the demands concerning the word-types, iteration
lengths, and number of occurrences of the various desired runs. Given a set W =
{w1, w2, . . . , wp} of p words, and two integer-valued ragged arrays1 S and L of equal
dimensions and with p rows, the required runs are specified by the condition set
F4(S;W;L) = {at least sij runs(wi) ≥ lij with li1 > li2 > · · · > liqi ; 1 ≤ i ≤ p;

1A ragged array is a degenerate matrix where rows can have different lengths.



EXACT WORD-RUN STATISTICS IN RANDOM ORDERINGS 147

wi ∈ W}, where sij , lij > 0 are the elements of S and L, respectively. Recall, as
stated in section 2.1, that we consider only maximal runs.

The “lengths-array” L contains the iteration lengths of the desired runs of the
word-types specified in W. The lengths liqi of the shortest desired wi-runs are of

particular interest, and therefore are summarized in �λ = (λ1, λ2, . . . , λp) with λi = liqi ,
called the vector associated with L.

Example 3.1 (condition set). Take the set of desired runs in Table 2.1, where
p = 2, W = {w1 = A, w2 = C}, S =

(
2
1

)
, and L =

(
2
3

)
. The corresponding condition

set is F4(S;W;L) = {at least s11 = 2 runs(w1 = A) ≥ l11 = 2; and s21 = 1
run(w2 = C) ≥ l21 = 3}.

In accordance with F1 to F3 in Morris, Schachtel, and Karlin (1993), we denote
condition sets by F4. Notice also that the number qi of columns in ragged arrays
depends on i.

An ordering O of L is said to be F4-acceptable (or just acceptable) if O contains
the required number of runs of proper type and iteration length as specified in F4,
that is, if it contains at least S runs(W) ≥ L.

The following order relation between ragged arrays S = ‖sij‖ and H = ‖hij‖
of equal dimension will be needed later. Let S

(i)
j be the partial sum of the first j

elements of the ith row of S, i.e., S
(i)
j =

∑j
k=1 sik with S

(i)
0 = 0, and H

(i)
j defined

accordingly. H is said to be greater than or equal to S, denoted H ≥ S, if H
(i)
j ≥ S

(i)
j

holds for all i and j.
For the intended enumeration technique we will substitute all desired runs by

(elementary) chunks, i.e., by indivisible units of the same iteration length and word-
type as the runs they represent. Chunks will be indicated by square brackets to
distinguish them from sequences of individual letters (and from words, which are just
shortcuts for specific letter sequences).

Let Nα(w) denote the number of letters of type Lα contained in word w. Then
a w-chunk x = [wl] of iteration length l consumes l ·Nα(w) individual letters of type
Lα, and a total of |x| = l ·

∑p
α=1 Nα(w) = l · |w| letters.

Example. Take the word w = ACCC of length |w| = 4 and the w-chunk x =
[w2] = [ww] = [ACCCACCC] of iteration length l = 2; then NA(w) = 1, NC(w) = 3,
and |x| = 8.

Given a letterpool L(A;�n) and a condition set F4(S;W;L), one generates the as-
sociated chunkpool F4[S;W;L;L] as follows: For each word-run specified in condition
set F4(·) the corresponding letters in L are replaced by one (indivisible) elemen-
tary chunk of proper length and word-type. The resulting chunkpool F4[ · ] consists
of elementary chunks (for each word-type wi ∈ W exactly sij chunks of iteration
lengths lij) and remaining individual letters (for each letter type Lα ∈ A exactly
tα = nα −

∑p
i=1

∑qi
j=1[sij · lij ·Nα(wi)] ).

Remark. Obviously, the number of F4-acceptable orderings becomes 0 whenever
the letterpool is too small to satisfy the entire demand for runs, e.g., whenever tα < 0
for at least one α.

Example 3.2. Take letterpool L and condition set F4 in Examples 2.1 and 3.1,
respectively. Generate two chunks of type x = [AA]; this will reduce the number of
individual letters of type A from 8 to t1 = 4. Similarly, one chunk of type y = [CCC]
will use up all three available C’s in L, i.e., t2 = 0. Hence the resulting chunkpool
F4[S;W;L;L] will consist of x, x, y, A, A, A, A, G, T.

Arrangements of all chunks and all individual letters of a given chunkpool are
called configurations (in order to set them apart from orderings).
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Rows (1) to (4) in Table 2.1 display four different configurations for chunkpool
F4[S;W;L;L] of Example 3.2, e.g., in row (3), configuration xyAAAATxG. Chunks
are regarded as indivisible units. Ordering O′ = ACAACAACAAATG in Example 2.1
therefore has no corresponding configuration with respect to chunkpool F4[S;W;L;L].
Even though O′ possesses three C’s, they are not adjacent and thus do not constitute
a run(C) ≥ 3. Hence chunk y cannot be “placed” properly in ordering O′.

The building blocks of configurations are chunks and individual letters. For our
purposes it is convenient, within configurations, to distinguish between chunks and
stretches of individual letters. These (maximal) stretches of letters will be called
separators. Such a distinction will enable us to represent configurations as sequences
of chunks and separators. We also allow for empty separators and can thus represent
any configuration by C = σ1x1σ2x2 . . . σnxnσn+1, where σi and xi denote separators
and chunks, respectively. While separators are regarded as maximal stretches and
therefore must not occur adjacent to each other, chunks may abut one another (with
empty separators).

Example. Take ordering O = ACACTGTGTGTGG and chunks x = [ACAC] and
y = [TGTG]. The associated configuration C1 = [ACAC]TGTG[TGTG]G = xTGTG
yG may then be represented by C1 = σ1x1σ2x2σ3 with σ1 = ε, σ2 = TGTG,
σ3 = G, x1 = x, and x2 = y. −C2 = [ACAC][TGTG][TGTG]G = xyyG is an-
other configuration associated with the same ordering O, and the four separators are
σ1 = σ2 = σ3 = ε and σ4 = G.

Configurations are called separate if none of their chunks is adjacent to another
chunk of identical word-type.

As Table 2.1 illustrates, the same ordering can be represented by different con-
figurations. Each configuration C, on the other hand, is uniquely associated with
exactly one ordering O(C), namely with the corresponding sequence of individual
letters. This sequence is obtained by resolving every chunk or word back into the
subsequence of letters it represents. Applying this natural mapping, we establish an
equivalence relation “∼” on the family of configurations. Two configurations Ci and
Cj are said to be equivalent, denoted by Ci ∼ Cj , if they correspond to the same
ordering, i.e., to the same sequence of individual letters.

Example. Take chunks x = [ACAC] and y = [TGTG] and configurations C1 =
xTGTGyG and C2 = xyyG (see the last example). The two configurations are equiv-
alent, i.e., C1 ∼ C2, since both correspond to the same ordering, i.e., O(C1) = O(C2) =
ACACTGTGTGTGG. But configuration C3 = xGGTTyG corresponds to a different
ordering, namely to O(C3) = ACACGGTTTGTGG; therefore C1 �∼ C3 �∼ C2.

Remark. We will regard “letter sequences” as “configurations without chunks”
and apply the equivalence relation to compare configurations and letter-sequences,
e.g., xTT ∼ ACACACTT with x = [ACACAC].

4. Admissible condition sets. So far we have been able to smoothly adapt
the terminology and notation from letter- to word-runs. We now turn to the more
demanding task of generalizing concepts (i) to (iii) of section 2. First, we will provide
a definition for endplaced chunks (of words). Then we introduce cyclic chunks and
principal units, which will substantially simplify the identification of disjoint configu-
rations. Next, we will deal with overlapping and embeddable words and chunks, two
sources of ambiguities concerning the ascertainment of the exact number of available
word-runs. Finally, we combine these attributes to define a class of admissible con-
dition sets, which subsequently allows us in section 5 to eliminate all the unwanted
ambiguities.
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4.1. Extenders and endplaced chunks. The essential feature of endplaced
configurations is that none of their chunks can be shifted any further within their
harboring run, because the run does not extend properly to the right.

Definition 1. Let x be a chunk. A word u is called an extender to x if 0 <
|u| ≤ |x| and if a suitable word v exists such that xu ∼ vx holds. The word v is called
the extension complement of u.

Note that the complement v of an extender u is unique and of the same length
as u (i.e., |v| = |u|); its sequence of letters is identical to the first |u| letters of chunk
x (see also Lemma 1 below).

Remark. The existence of at least one extender to each chunk [x] is ensured by
[x] “itself” (strictly speaking by the underlying sequence x); in that sense [x] or x are
said to be their own extenders. Generally, there is more than one extender to each
chunk. Obviously, a word w always qualifies as an extender to any w-chunk x = [wl].

Example. Chunk x = [ATACATA] has three extenders, u1 = CATA (with exten-
sion complement v1 = ATAC), u2 = TACATA (with v2 = ATACAT), and finally x
“itself”, i.e., u3 = ATACATA.

The restrictions |u| > 0 and |u| ≤ |x| in Definition 1 exclude zero-shifts and
“jumps” to the next available (separate) run, respectively. We do not want, for
example, to regard the 5-letter word u=ATGGG as an extender to the 3-letter chunk
x = [GGG], even though the equivalence xu ∼ vx holds for v = GGGAT.

Several definitions and lemmas in this paper are phrased with respect to chunks
but easily adapted to words and used in this broader sense. For instance, u is an
extender to the word w if it is an extender to the corresponding chunk x = [w].

Lemma 1. Let u be an extender to chunk x with extension complement v.
(i) Then a word µ(x) exists such that x ∼ µ(x)u = v µ(x) holds.
(ii) If u1 with |u1| ≥ |u| is another extender to x with extension complement v1,

then words u(1) and v(1) exist such that u1 = u(1)u and v1 = v v(1).
Proof. For extender u the equivalence xu ∼ vx implies that u coincides with the

last |u| letters of x. Let µ(x) consist of the preceding |x| − |u| letters of chunk x, i.e.,
x ∼ µ(x)u. Now xu ∼ vx ∼ v(µ(x)u) = (vµ(x))u implies x ∼ vµ(x), which proves

(i). From x ∼ µ(x)u and x ∼ µ
(x)
1 u1 we get µ(x)u = µ

(x)
1 u1, and because |u1| ≥ |u|,

both extenders must share the last |u| letters. Hence a proper word u(1) can be found

with u1 = u(1)u. If |u| = |u1|, then u(1) = ε. Analogously, vµ(x) = v1µ
(x)
1 implies

v1 = vv(1).
Remark 4.1. Each chunk has exactly one shortest extender. Consider the exis-

tence of two minimal extenders e and e′ to the same chunk x; then µ e ∼ x ∼ µ′ e′

must hold by Lemma 1(i) for two possibly empty words µ and µ′. And since e and e′

are of equal size, e = e′ follows.
The following lemma explores the relationship between extenders to words and

extenders to corresponding chunks.
Lemma 2. Let w be a word and x = [wl] a w-chunk of iteration length l. If ux is

an extender to x with complement vx, then an extender uw to w with complement vw
can be found such that ux = uww

s and vx = wsvw with 0 ≤ s < l.
Proof. We approach the proof by induction on l. Let ux denote an extender

to x = [wl]. For l = 1 we obtain x = [w], and obviously ux = uww
0 = uw holds.

Supposing now that the statement holds for l, we show its validity for l+ 1. For that
purpose we distinguish the following two cases.

Case 1. |ux| ≤ |w|. Recall that w is an extender to x; by Lemma 1(ii), words

u
(w)
x and v

(w)
x exist such that w = u

(w)
x ux and w = vxv

(w)
x . Moreover, a comparison of
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the first |w| letters on the left and on the right of wwlux = wl+1ux ∼ xux ∼ vxx ∼
vxw

l+1 = vxwwl = vxu
(w)
x uxw

l implies w = vxu
(w)
x . Together with w = vxv

(w)
x , this

results in u
(w)
x = v

(w)
x = µ

(w)
x . Thus wux = (vxµ

(w)
x )ux = vx(µ

(w)
x ux) = vxw, and

hence ux is an extender to w, i.e., ux = uww
0 as well as vx = w0vw hold.

Case 2. |ux| > |w|. Application of Lemma 1(ii) provides words u(x) and v(x) such
that ux = u(x)w and vx = wv(x). Now wwlu(x)w = wl+1ux ∼ xux ∼ vxx ∼ wv(x)wlw
implies [wl]u(x) ∼ v(x)[wl]. Thus u(x) is an extender to chunk [wl], for which by the
induction assumption, uw and s with 0 ≤ s < l can be found such that u(x) = uww

s

holds. In combination with ux = u(x)w we obtain ux = uww
s+1; analogously vx =

ws+1vw is shown. This completes the proof.
Everything is now at hand to define endplacedness.
Definition 2. Let C = σ1x1σ2x2 . . . xrσr+1 . . . xnσn+1 be a configuration of

chunkpool F4[S;W;L;L], and σi and xj separators and chunks, respectively. Then we
have the following:

(i) chunk xr is called extendible in C if an extender u to xr and a word c exist
such that σr+1 = uc. The boundary between xr and σr+1 is called an extension
site of xr in C.

(ii) chunk xr is called endplaced in C if it is not extendible in C, i.e., if σr+1 is
empty or if no extender u to xr exists such that σr+1 = u c.

(iii) configuration C of chunkpool F4[S;W;L;L] is called endplaced if all its chunks
are endplaced.

In other words, endplaced chunks are those not followed immediately by any of
their extenders. Note that two configurations can be equivalent, even if x is endplaced
in one but not the other.

Example. In configuration C1 = ATCGxCGGTG the chunk x = [CGCG] is not
endplaced but rather extendible with u = CG and c = GTG. In C2 = ATCGCGxGTG,
on the other hand, x is endplaced.

4.2. Cyclic chunks. The assessment of extendibility of word-chunks can, in
general, become quite complicated. For the following class of cyclic chunks, however,
extendibility depends only on the presence or absence of a unique word to the right,
namely the corresponding principal unit.

Definition 3. A chunk x is called cyclic if a word e �= ε exists such that all
extenders u to x are of the form u = er for proper integers r > 0. The word e is called
the principal unit of x and is denoted by PU(x).

Example. Chunk x = [AGTAGT] is cyclic with principal unit e = AGT. Its only
extenders u1 = e and u2 = e2 are of the required form ui = eri . Chunk x = [ATA
CATA], on the other hand, is not cyclic. It has three extenders (u1 = CATA, u2 =
TACATA, and u3 = ATACATA), but no principal unit e such that ui = eri holds for
all three.

Note also that chunks of letter-runs (in contrast to word-runs) are always cyclic,
with letter L as the principal unit of any L-chunk.

Remark 4.2. Let x denote a cyclic chunk with principal unit e = PU(x), and let
u be an extender to x.

(a) Then x = ek for a proper integer k > 0, because x is an extender to itself.
(b) The principal unit e is an extender to x, since ex ∼ e(ek) = (ek)e ∼ xe.
(c) Moreover, the principal unit e is the minimal extender to x, because u = er

with r > 0 implies that no extender can be shorter.
(d) All extenders to x can be written as u = ec with proper c; i.e., extenders to

cyclic chunks always start with the same word e. (Generally this is not true,
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e.g., u1 = AGA and u2 = GAAGA are both extenders to x = AGAAGA, but
start differently.)

For cyclic chunks Remark 4.2(d) provides a useful and simple way to distinguish
endplaced from nonendplaced chunks.

Lemma 3. Let xr be a cyclic chunk with principal unit e and let C = σ1x1σ2x2 . . .
xrσr+1 . . . xnσn+1 be a configuration where σi and xj denote separators and chunks,
respectively. Then xr is endplaced in C if and only if σr+1 is either empty or no word
c exists such that σr+1 = ec.

In other words, a cyclic chunk is endplaced in a configuration if and only if it is
not followed immediately by its principal unit.

Proof. First show [xr endplaced] ⇒ [σr+1 �= ec]. For xr endplaced and e = PU(xr)
no word c can be found (see Definition 2) such that σr+1 = ec holds. To show the
converse, assume that no c with σr+1 = ec exists. Then no extender u to xr can
satisfy σr+1 = uc1 for any word c1; otherwise σr+1 = uc1 = erc1 = e(er−1c1) = e c
would hold, contradicting the assumption. Hence xr must be endplaced.

The next lemma states that cyclic chunks are exactly those in which extenders
and extension complements coincide. For a corresponding result, see Lothaire (1983).

Lemma 4. A chunk x is cyclic if and only if it commutes with all its extenders,
i.e., if xu ∼ ux holds for any extender u to x.

Proof. Let u and v denote an extender to x and its complement, respectively.
Show first [xcyclic] ⇒ [u = v]. Cyclicity of x implies u = er and x = ek with
e = PU(x). Therefore vx ∼ xu ∼ eker = erek, i.e., v = er = u. To prove the
reverse let e denote the unique smallest extender to x (see Remark 4.1); then ex ∼ xe
holds by assumption. Now, by Lemma 1(ii), a word u1 exists such that u = u1e and
u1xe ∼ u1ex = ux ∼ xu = xu1e holds, implying u1x ∼ xu1. Hence u1 qualifies also as
an extender to x, and (again by Lemma 1) a word u2 exists with u1 = u2e. Proceeding
in this manner, we obtain a finite number of extenders u1, u2, . . . of decreasing length,
the smallest of which is ur−1 with 0 < |ur−1| ≤ |e|. Since e is the unique smallest
extender, ur−1=e, and u = er, which proves that x is cyclic with e = PU(x).

The cyclicity of a word w and the cyclicity of an associated w-chunk x are closely
related properties, as will be described next.

Lemma 5. Let w be a word and x = [wl] a w-chunk of iteration length l. Then x
is cyclic if and only if w is cyclic. Additionally, both share the same principal unit,
i.e., PU(x) = PU(w).

Proof. Let ux and uw be extenders to x and w, respectively. Show first [w cyclic] ⇒
[x cyclic]. With proper uw and s, any ux can be written as ux = uww

s; see Lemma
2. Cyclicity of w implies w = ekw and uw = erw. Now ux = uww

s = (erw)(ek·sw ), i.e.,
ux = etw with t = r + k · s. Thus x is cyclic with ew = PU(x). To show the reverse,
let x be cyclic. For any extender uw the word ux = uww

l−1 is an extender to x,
because xux ∼ wluww

l−1 = wl−1(wuw)wl−1 = wl−1(vww)wl−1 = (wl−1vw)wl ∼ vxx.
Since w is an extender to x, the cyclicity of x implies w = esx and ux = erx. Now

ekx = ux = uww
(l−1) = uwe

s·(l−1)
x , i.e., uw = etx with t = k−s · (l−1). The uniqueness

of principal units implies that PU(x) = PU(w).

4.3. Overlapping chunks. It was mentioned earlier that overlapping word-runs
can sometimes compete for the same intervening segment, resulting in blurred borders
and ambiguities in the exact number, location, and size of available runs. To avoid
such ambiguities, word-type combinations with certain overlaps will be excluded from
our considerations.

Definition 4. Two chunks x1 and x2 are called overlapping if words u1 and u2

with |u1| < |x1| (and |u2| < |x2|) exist such that x1u2 ∼ u1x2 or x2u1 ∼ u2x1.
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It is immediate from the definition that two overlapping chunks share a subse-
quence o such that x1 ∼ u1o and x2 ∼ o u2 (i.e., x1u2 ∼ u1o u2 ∼ u1x2) or x2 ∼ u2o
and x1 ∼ o u1 (i.e., x2u1 ∼ u2o u1 ∼ u2x1) holds. The subsequence o is called a
common overlap of x1 and x2.

Example. Chunks x1 = [ATGACCTTT] and x2 = [AGGTATG] overlap by o =
ATG: Take u1 = ACCTTT, u2 = AGGT; then x2u1 ∼ u2o u1 ∼ u2x1. However, a
shared subsequence at the beginning or at the end of two chunks does not necessarily
mean that they overlap in the sense of the definition. For instance, x1 = [TATTCC]
and x2 = [TATTAAAG] are, by Definition 4, nonoverlapping even though they share
the same start sequence u = TATT.

The following lemma shows that the overlap property is carried over from chunks
to corresponding words and vice versa.

Lemma 6. Let x1 and x2 be chunks of the words w1 and w2, respectively, i.e.,
x1 = [wl1

1 ] and x2 = [wl2
2 ]. Then x1 and x2 overlap if and only if w1 and w2 overlap.

Proof. First show [x1 and x2 overlap]⇒[w1 and w2 overlap]. W.l.o.g. let x1u2 ∼
u1x2 and |u1| < |x1|, implying that u1 = wr

1h1 for proper integer r < l1 and a
possibly empty word h1, where w1 = h1µ for a word µ with 0 < |µ| ≤ |w1|. Now
let |w1| ≤ |w2| hold; then |µ| ≤ |w2| and a word h2 exists such that w2 = µh2,
and hence w1h2 = h1µh2 = h1w2 with |h1| < |w1| and |h2| < |w2|; i.e., w1 and
w2 overlap, by Definition 4. For |w1| ≥ |w2| symmetric arguments apply. To show
the converse, let w1 and w2 overlap, i.e., w1h2 = h1w2 with |hi| < |wi| for i = 1, 2.
Then u1 = wl1−1

1 h1 and u2 = h2w
l2−1
2 satisfies |u1| < |x1| and |u2| < |x2| and

x1u2 ∼ wl1−1
1 (w1h2)w

l2−1
2 = wl1−1

1 (h1w2)w
l2−1
2 ∼ u1x2, completing the proof.

While Lemma 6 deals with two chunks of different word-types, the next statement
considers chunks of the same but cyclic word-type.

Lemma 7. Let x1 = [wl1 ] and x2 = [wl2 ] be two chunks of a cyclic word w with
principal unit e = PU(w). Then an integer r > 0 can be found for any common
overlap o of x1 and x2 such that o = er holds.

Proof. W.l.o.g., let d = l1 − l2 > 0 and u1x2 ∼ u1o u2 ∼ x1u2; then u = u2w
d

is an extender to x1, because of u1x1 ∼ u1(w
l2wd) ∼ u1x2w

d ∼ x1u2w
d = x1u and

0 < |u| < |x1|. Lemma 5 implies the cyclicity of x1, and Lemma 4 implies that u = u1.
With e = PU(x1) = PU(w) we obtain by Definition 4 that u1 = er1 and w = et for
proper integers r1 and t, respectively. Now, u2e

dt = u2w
d = u = u1 = er1 = er1−dtedt

implies that u2 = er1−dt. Finally, er1el2t ∼ u1x2 ∼ u1o u2 = er1o er1−dt leads to
o = el2t−(r1−dt) = el1t−r1 = er for r = l1t− r1, which completes the proof.

4.4. Embeddible chunks. Two chunks may not only compete for the same
intermediate segment; one chunk, if a substring of the other, may compete for a
segment within the other.

Definition 5. Let x1 and x2 be two chunks of word-types w1 and w2, respectively.
Chunk x1 is called embeddable in x2, denoted by x1 ⊆ x2, if words uL and uR (possibly
empty) exist such that x2 ∼ uLx1uR holds. We say that the pair (x1;x2) is embeddible
if x1 ⊆ x2 or x2 ⊆ x1; accordingly, (x1;x2) is nonembeddable if neither x1 ⊆ x2 nor
x2 ⊆ x1.

Contrary to cyclicity and overlapability, the property of embeddability is not
conveyed from words to chunks or vice versa. Chunks of embeddable words may
nevertheless be nonembeddable; and chunks of nonembeddable words can still be
embeddable.

Example. The word w1 = AG is embeddable in w2 = AGT, but chunk x1 =
[w2

1] = [AGAG] is not embeddable in x2 = [w3
2] = [AGTAGTAGT]. The words

w1 = AG and w2 = GA are obviously nonembeddable, whereas x1 = [w2
1] = [AGAG]
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is nevertheless embeddable in x2 = [w3
2] = [GAGAGA] with uL = G and uR = A.

With respect to embeddability, this suggests that there is no simple relation be-
tween words and chunks. However, restricted to nonoverlapping chunks, the following
statement holds.

Lemma 8. Let w1 and w2 be two words, l1, l2 ≥ 1 two integers, and x1 = [wl1
1 ] and

x2 = [wl2
2 ] two nonoverlapping chunks. If any two chunks y1 = [ws1

1 ] and y2 = [ws2
2 ]

with s1 ≥ l1 and s2 ≥ l2 are embeddible, then x1 and x2 are embeddible too.
Proof. W.l.o.g., assume y1 ⊆ y2, i.e., y2 ∼ uLy1uR for proper uL and uR. Then

words v and u1 with |v| < |w2| exist such that uL = wr−1
2 v and w2 = vu1. Now,

wr−1
2 vy1uR = uLy1uR ∼ y2 ∼ ws2

2 = wr−1
2 vu1w

s2−r
2 implies y1uR ∼ u1w

s2−r
2 . There-

fore y1uRw
r
2 ∼ u1w

s2−r
2 wr

2 ∼ u1y2. Setting u2 = uRw
r
2, we obtain y1u2 ∼ u1y2. If,

however, |u1| < |y1|, then (by Definition 5) y1 and y2 overlap, and (by Lemma 6) there-
fore x1 and x2 overlap, but they were assumed nonoverlapping. Hence |u1| ≥ |y1| and
a (possibly empty) v′ exist such that u1 ∼ y1v

′, implying x2 ∼ w2w
l2−1
2 = vu1w

l2−1
2 ∼

vy1v
′wl2−1

2 ∼ vx1w
s1−l1
1 v′wl2−1

2 . Finally, setting u
(x)
L = v and u

(x)
R = ws1−l1

1 v′wl2−1
2

provides x2 ∼ u
(x)
L x1u

(x)
R , i.e., x1 ⊆ x2.

The formal negation of Lemma 8 provides the following important conclusion.
Remark 4.3. If two chunks are neither overlapping nor embeddable, then any

two longer chunks of the same two word-types are also neither overlapping nor em-
beddable.

4.5. Condition set restrictions. In section 2 we described several complica-
tions emerging with the Morris, Schachtel, and Karlin (1993) counting method, if
applied directly to word-runs. Combining the properties introduced in sections 4.2–
4.4, we next define a class of condition sets to which the method can be applied
without further difficulties.

Definition 6. Let W be a set of words, L a lengths-array, and �λ its associated
vector. The pair (W;L) is called admissible if the following holds for 1 ≤ i, j ≤ p:

(i) All words wi ∈ W are cyclic.
(ii) Any two words wi, wj ∈ W are either identical or nonoverlapping.

(iii) Chunks xi = [wλi
i ] and xj = [w

λj

j ] are nonembeddable, provided wi, wj ∈ W
are not identical.

The condition set F4(S;W;L) as well as the associated F4-chunkpool are called ad-
missible if (W;L) is admissible.

Recalling Remark 4.3, we note that Definition 6(iii) ensures for admissible chunk-
pools that chunks of different word-types are nonembeddable.

5. Ascertaining the number of word-runs. The derivation of the word-run
formula involves the summation of GM-values, where GM denotes the number of
orderings of L with exactly M runs(W) ≥ L. It is therefore crucial that these values
be well defined, i.e., that the number mij of runs(wi) ≥ lij can be unambiguously
determined for any ordering of L. While this is not the case for word-runs in general
(see section 2), we will show that GM is always well defined, as long as (W,L) is
admissible.

To this end we introduce the class of �λ-maximal configurations and establish in
Theorem 1 a function assigning to each ordering of L a unique �λ-maximal configu-
ration. For each such configuration the numbers mij of chunks(wi) ≥ lij are well
defined and coincide with the corresponding mij-values of the associated ordering,
thus proving GM to be well defined.

5.1. �λ-maximal configurations. We start by defining the class of �λ-maximal
configurations as follows.
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Definition 7. Let (W;L) be admissible and �λ associated with L, i.e., λi = liqi .
Also let σ1, σ2, . . . , σn+1 denote separators and xj = [w

rj
ij

] chunks of types wij ∈ W
and lengths rj ≥ λij , with 1 ≤ j ≤ n and 1 ≤ i, ij ≤ p. Then any configuration

C = σ1x1σ2x2 . . . σnxnσn+1 is called �λ-maximal with respect to (W;L) if
(i) σj+1 = eiv for wi ∈ W and ei = PU(wi) implies wi �= wij ,
(ii) σj+1 = ε implies wij �= wij+1

,
(iii) no word v exists such that σj = v wij ,

(iv) no wλi
i is embeddable in any σj .

The four requirements (i)–(iv) in Definition 7 force �λ-maximal configurations to
be disjoint (i.e., endplaced and separate), and their chunks to be maximal in length

and number. �λ-maximal configurations are endplaced (see Lemma 3) because by
Definition 7(i), no separator starts with the principal unit of the preceding chunk; they
are separate because by Definition 7(ii), empty separators may occur only between

chunks of distinct word-types. Chunks of �λ-maximal configurations are of maximal
iteration length because extensions are excluded to the right by (i) and to the left
by (iii) of Definition 7; and by (iv) the number of desired chunks has to be maximal,
because no separator harbors an additional run of desired length and word-type.

Remark 5.1. For any �λ-maximal configuration C the ascertainment of the exact
number mij of chunks(wi) ≥ lij is unambiguous (and straightforward). The num-

ber of �λ-maximal configurations with exactly M chunks(W) ≥ L is therefore well
defined. Furthermore, these mij coincide with the numbers of runs(wi) ≥ lij in the
corresponding ordering O(C).

5.2. Uniqueness theorem. While each configuration C can be mapped in a
natural way to exactly one ordering O(C), the reverse is not generally true. Usually
the same ordering can be represented by several different configurations. However, as
Theorem 1 states, each ordering corresponds to only one �λ-maximal configuration.

Theorem 1. Let (W;L) be admissible and O an ordering of letterpool L. Then

exactly one �λ-maximal configuration CO exists with CO ∼ O.
Proof. We have to show the existence and uniqueness of configuration CO.
Existence. Shown by construction. Start with word-type w1 ∈ W; scan ordering

O; beginning from the right, replace the first occurring subsequence that matches wλ1
1

by a corresponding chunk, preliminarily labeled x
(1)
1 . Then lengthen x

(1)
1 as long as

it is immediately preceded by a word of type w1; e.g., if a total of three additional w1

precede x
(1)
1 , then the chunk becomes x

(1)
1 = [wλ1+3

1 ] and substitutes for the whole
subsequence of (λ1+3) iterations of type w1 at this position of O. The next wλ1

1 -match

is treated in the same manner, substituting it by a properly lengthened chunk x
(2)
1 ,

etc. Eventually this results in configuration C1 = σ
(n1+1)
1 x

(n1)
1 σ

(n1)
1 x

(n1−1)
1 . . . x

(1)
1 σ

(1)
1 ,

which satisfies C1 ∼ O and meets with respect to w1 and λ1 all requirements of Def-
inition 7. Next, one proceeds analogously with respect to w2 ∈ W, scanning all

separators σ
(j)
1 of C1 for wλ2

2 -matches and then relabeling properly to obtain config-

uration C2 = σ
(n2+1)
2 x

(n2)
2 σ

(n2)
2 x

(n2−1)
2 . . . x

(1)
2 σ

(1)
2 , which satisfies C2 ∼ O and meets

the requirements of Definition 7 with respect to w1, w2, λ1, and λ2. Note that all x
(k)
2

are either w1- or w2-chunks. After p steps, one attains Cp = CO, which is �λ-maximal
with respect to (W; L) and fulfills CO ∼ O.

Uniqueness. Let CO = c1c2c3 . . . c2n+1, where for even k ≤ 2n each ck denotes
a (nonempty) chunk xr, and for odd k ≤ 2n + 1 a (possibly empty) separator σr,
with r = k/2 or r = (k + 1)/2, respectively. Assume now that CO is not unique, i.e.,
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a second, distinct �λ-maximal configuration C′
O = c′1c

′
2c

′
3 . . . c

′
2m+1 exists, such that

C′
O ∼ CO ∼ O holds. Let κ with 1 ≤ κ ≤ 2n be the smallest integer for which cκ �= c′κ

holds, and w.l.o.g. let |cκ| < |c′κ|. Two cases need consideration: (1) κ even, i.e., cκ, c
′
κ

are chunks, and (2) κ odd, i.e., cκ, c
′
κ are separators.

Case 1. Suppose that κ even and cκ = xr, c
′
κ = x′

r are chunks with |xr| < |x′
r|.

Then xr and x′
r overlap and are (by Lemma 6 and by (i) and (ii) of Definition 6) of

identical (cyclic) word-type, say xr = [wl] and x′
r = [wl+d] with d ≥ 1. This means

that xr is immediately followed by at least one w, and thus a word u exists such
that xrw = xrσr+1u, i.e., w = σr+1u (recall that w = et holds by cyclicity), and
|σr+1| < |e| ≤ |w| by Definition 7(i). At the same time x′

r and xr+1 overlap at least
by u, implying that xr+1 is also of word-type w, hence σr+1 (which precedes xr+1)
is, by Definition 7(ii), nonempty and also followed by at least one w. Thus a word
u′ exists with σr+1w = σr+1(uu

′) = (σr+1u)u′ = wu′, making σr+1 an extender to
w. Now the cyclicity of w implies σr+1 = es for proper integer s > 0. But since this
contradicts Definition 7(i), κ cannot be even.

Case 2. Suppose that κ is odd and cκ = σr, c
′
κ = σ′

r are separators with |σr| < |σ′
r|.

Then |σ′
r| < |σrxr|; otherwise xr were embeddible in σ′

r, violating Definition 7(iv).
This means that xr and x′

r must overlap or be embeddible; in either circumstance they
are of identical (cyclic) word-type, say w. We have to distinguish three situations:

(I) If |σ′
rx

′
r| = |σrxr|, then σ′

rw
l = σrw

l+d with d ≥ 1 (since |xr| > |x′
r|). But

this would imply σ′
r = σrw

d, violating Definition 7(iii).
(II) If |σ′

rx
′
r| > |σrxr|, then a word u2 (|u2| < |x′

r|) exists with σrxru2 ∼ σ′
rx

′
r,

and because of |σr| < |σ′
r| a word u1(|u1| < |xr|) with σ′

r = σru1. Hence σrxru2 ∼
σ′
rx

′
r ∼ σru1x

′
r, and therefore u1x

′
r ∼ u1o u2 ∼ xru2 with o = erw by Lemma 7 and

ew = PU(w), leading to esw ∼ x′
r ∼ o u2 = erwu2 and thus u2 = e

(s−r)
w ; i.e., xr is

immediately followed by ew. By Definition 7(i), the separator σr+1 must not start
with ew; therefore |σr+1| < |ew|. Hence σr+1 is followed by a word u with ew = σr+1u.
But then xr+1 overlaps x′

r and is of type w; i.e., σr+1 is followed by ew, and a word v
exists with σr+1ew = σr+1u v = ewv. Thus σr+1 is either empty, violating Definition
7(ii), or an extender to ew and thereby to w, violating the minimality of ew.

(III) If |σ′
rx

′
r| < |σrxr|, then arguments analogous to (II) apply.

Now it follows from (I), (II), and (III) that |σ′
rx

′
r| is neither equal to, nor larger

or smaller than |σrxr|. Hence κ cannot be odd.
Altogether, Cases 1 and 2 imply that no even or odd κ exists, with cκ �= c′κ.

Therefore C′
O = CO; i.e., CO is unique.

Remark 5.2. For admissible (W;L), Theorem 1 ensures that for each ordering O
of letterpool L a unique �λ-maximal configuration CO with CO ∼ O exists. Further-
more, we know from Remark 5.1 that the exact numbers mij of chunks(wi) ≥ lij can
be assessed unambiguously for CO and that these mij coincide with the numbers of
runs(wi) ≥ lij in ordering O. Hence GM is well defined for all admissible (W;L).

6. The number of acceptable orderings. At this point all preparations have
been made to apply the Morris, Schachtel, and Karlin (1993) counting methods to
word-runs. The remaining steps closely resemble their approach, and the necessary
lemmas will be listed, but for most proofs we will refer to the original publication.

We start this section by introducing so-called generalized chunkpools. Then, in
Lemma 9, we provide the number of unrestricted configurations, generated from these
generalized chunkpools. Next, in Lemma 10, the number of endplaced configurations
(EC) and of disjoint configurations (DC) is established, and in Lemma 11, the number
of acceptable orderings is calculated as a weighted sum of DC-values. Finally, Theorem
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2 presents the resulting run-formula, valid for word-runs of admissible condition sets.

6.1. Generalized pools. In section 2 we introduced ragged arrays S and H,
both of equal dimension. Array S is associated with the condition set F4(S;W;L).
Its elements sij are fixed, providing the numbers of requested occurrences for each
run specified by (W;L). Array H, on the other hand, may range over all H ≥ S and
will serve as a summation index.

Extending the notion of chunkpools, we can form generalized pools by the follow-
ing two operations:

(i) Fusion of chunks: two or more adjacent elementary chunks of equal word-type
are fused to form one megachunk. For simplicity all chunks in generalized pools are
called megachunks, even the nonfused (elementary) ones.

(ii) Extension of megachunks: megachunks of word-type wi are extended by their
principal unit ei = PU(wi). Note that for any wi ∈ W admissibility ensures the
existence of ei, which contains exactly Nα(ei) letters of type Lα ∈ A.

Generalized F4-pools are characterized by an array H together with two integer-
valued vectors �d = (d1, d2, . . . , dp) and �δ = (δ1, δ2, . . . , δp) such that they contain
exactly di megachunks originating from a total of H(i) =

∑qi
j=1 hij elementary wi-

chunks, exactly δi of which are extended. The vectors �d and �δ are constrained by
min(H(i); 1) ≤ di ≤ H(i) and 0 ≤ δi ≤ di, respectively. There are multiple ways to

form �d megachunks by fusing elementary chunks of a given F4-pool and to extend �δ of
them. Thus, the characterization by �d and �δ is not unique; usually more than one gen-
eralized F4-pool is associated with the same pair of vectors �d and �δ. However, all gen-
eralized F4[H;W;L;A;�n; �d; �δ ]-pools exhibit the same number di of wi-megachunks
and the same number tα = nα −

∑p
i=1 [ δi ·Nα(ei) +

∑qi
j=1[hij · lij ·Nα(wi)] ] of re-

maining letters Lα, where α = 1, 2, . . . , τ .
Next we derive the total number UC of “unrestricted” configurations generated

from corresponding generalized F4-pools.
Lemma 9. Provided all tα ≥ 0, the number UC of unrestricted configurations

from generalized F4[H;W;L;A;�n; �d; �δ ]-pools is

UC(H;W;L;A;�n; �d; �δ ) =
(D + T )!∏τ
α=1(tα!)

·
p∏

i=1

[
H(i)!

(di!) ·
∏qi

j=1 (hij !)
·
(
H(i) − 1

H(i) − di

)
·
(
di
δi

)]
,

where D =
∑p

i=1 di and T =
∑τ

α=1 tα.
Proof. For the H(i) elementary chunks of type wi ∈ W, exactly H(i)!/

∏qi
j=1 (hij)!

distinguishable arrangements exist. In each arrangement there are
(
H(i)−1
H(i)−di

)
ways to

choose the (H(i) − di) fusion sites out of a total of (H(i) − 1) available, and then(
di

δi

)
possibilities for choosing δi out of the di available wi-megachunks for extension.

For each word-type wi, this results in H(i)!∏qi

j=1
(hij !)

·
(
H(i)−1
H(i)−di

)
·
(
di

δi

)
ways to obtain

the required di megachunks, to extend δi of them, and to order them. Finally, the
D =

∑p
i=1 di generated megachunks and the remaining T =

∑τ
α=1 tα single letters

need to be arranged. Considering that the di megachunks of each word-type wi

are ordered already, and that the tα ≥ 0 remaining single letters of type Lα are
indistinguishable, this arrangement of megachunks and letters can be conducted in
(D + T )!/[

∏τ
α=1(tα!) ·

∏p
i=1(di!)] different ways. This completes the proof.

The following lemma, in concert with Lemma 9, provides a formula for the number
of disjoint configurations in admissible chunkpools.
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Lemma 10. Let (W;L) be admissible and all tα ≥ 0.
(i) The number EC of endplaced configurations generated from generalized F4-

pools with exactly �d megachunks is

EC(H; W; L; A;�n; �d ) =
∑

0≤�δ≤�d

(−1)η(�δ) UC(H; W; L; A;�n; �d; �δ ),

where η(�δ) =
∑p

i=1 δi is the total number of extended megachunks and UC is
as in Lemma 9.

(ii) The number DC of disjoint configurations of chunkpool F4[H;W;L;A;�n ] is

DC(H; W; L; A;�n; ) =
∑

�b≤�d≤ �H

(−1)ϕ(�d) EC(H; W; L; A;�n; �d ),

where ϕ(�d) =
∑p

i=1 (H(i) − di) is the total number of connected fusion sites

within all megachunks, vector �H = (H(1), H(2), . . . , H(p)) with H(i) =
∑qi

k=1 hik

is the total number of elementary wi-chunks, bi = min(H(i); 1) is the ith com-

ponent of �b, and EC is as in (i).
Proof. See Lemmas 2 and 3 in Morris, Schachtel, and Karlin (1993) for a proof

of this result.

6.2. The word-run formula. Let F4(S;W;L) be an admissible condition set
and let GM be the number of orderings of L with exactly M runs(W) ≥ L. Then
GM is, according to Remark 5.2, well defined. Further, let AO denote the number
of F4-acceptable orderings. Applying now (2.2) of section 2.1, AO can be written as
AO =

∑
M≥S GM. Based on this sum and on the relation between GM and DC (see

(ii) in Lemma 11), and by exploiting the standard equality (2.1) of section 2.1, we
will express AO as a weighted sum of DC-values with ∆(h; s) as weights.

Lemma 11. Let L be a letterpool and F4[H;W;L;L] an admissible chunkpool.
(i) Let O be an ordering of L with exactly M runs(W) ≥ L. The number RC of

disjoint configurations Ci ∼ O with exactly H chunks(W) of lengths L is

RC(M;H) =

p∏
i=1

qi∏
j=1

(
M

(i)
j −H

(i)
j−1

hij

)
,

where M = ||mik|| and M
(i)
j =

∑j
k=1 mik; H and H

(i)
j accordingly.

(ii) Let GM denote the number of orderings of L with exactly M runs(W) ≥ L.
The number DC of disjoint configurations of chunkpool F4[H;W;L;L] is

DC(H; W; L; L) =
∑

M≥H

⎡⎣ p∏
i=1

qi∏
j=1

(
M

(i)
j −H

(i)
j−1

hij

)⎤⎦ · GM,

with M and H as in (i).
(iii) Let F4(S;W;L) be an admissible condition set. The number AO of F4-

acceptable orderings of L is

AO(S; W; L; L) =
∑
H≥S

⎛⎝ p∏
i=1

qi∏
j=1

∆(hij ;S
(i)
j −H

(i)
j−1)

⎞⎠ · DC(H; W; L; L).
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Proof. See (6) and (12) and Result 3 in Morris, Schachtel, and Karlin (1993) for
a proof.

Finally, Theorem 2 combines Lemmas 9–11 to supply an explicit formula for the
number of orderings of L with at least S word-runs(W) ≥ L, provided (W,L) is
admissible.

Theorem 2. Let L(A;�n) be a letterpool, F4(S;W;L) an admissible condition
set, and tα ≥ 0 for 1 ≤ α ≤ τ . The number AO of F4-acceptable orderings of L is

AO(S; W; L; L) =∑
H≥S

∑
�b≤�d≤�H

0≤�δ≤�d

(−1)ϕ(�d)+η(�δ) · E!∏τ
α=1 (tα!)

·
p∏

i=1

⎡⎣H(i)!

di!

(
H(i) − 1

H(i) − di

)(
di
δi

) qi∏
j=1

∆(hij ; S
(i)
j −H

(i)
j−1)

hij !

⎤⎦,
where H

(i)
j =

∑j
k=1 hik, H

(i) = H
(i)
qi , S

(i)
j and S(i) analogously. Further, ϕ(�d) =∑p

i=1 (H(i) − di), η(�δ) =
∑p

i=1 δi, D =
∑p

i=1 di, T =
∑τ

α=1 tα, and E = D + T ,

bi = min(H(i); 1) the ith component of �b, and ∆(h; s) is as in (2.1).
Proof. The proof follows by Lemmas 9–11.

Acknowledgments. Thanks to Boris Hollas, Santani Teng, and Rob O’Neill for
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Abstract. We characterize the switching classes that do not contain an acyclic graph. The
characterization is by means of a set of forbidden induced subgraphs. We prove that in addition to
switches of the cycles Cn for n ≥ 7, there are only finitely many such graphs in 24 switching classes,
all having at most 9 vertices. We give a representative of each of the 24 switching classes.

Key words. graph, switching class, Seidel switching, acyclic graph, trees, forbidden induced
subgraph, critically cyclic graph
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1. Introduction. For a finite undirected graph G = (V,E) and a set σ ⊆ V , the
switch of G by σ is defined as the graph Gσ = (V,E′), which is obtained from G by
removing all edges between σ and its complement σ̄ and adding as edges all nonedges
between σ and σ̄. The switching class [G] determined by G consists of all switches
Gσ for subsets σ ⊆ V .

A switching class is an equivalence class of graphs under switching. The initia-
tors of the theory of switching classes of graphs were Van Lint and Seidel [10]. They
used the model in their investigation of elliptic geometry. For a survey of switching
classes of graphs, and especially their many connections to other parts of mathemat-
ics, we refer to Seidel [7], Seidel and Taylor [8], and Cameron [2]. Recently a book by
Ehrenfeucht, Harju, and Rozenberg was published on 2-structures that has a num-
ber of chapters on switching classes of graphs and their generalizations [4]. A book
completely devoted to the subject is the first author’s thesis (Hage [5]). Part of the
motivation for the general model treated in these two books is that they constitute a
way in which to model the semantics of a certain type of network of processors.

In this paper we solve a problem raised by Acharya [1] and mentioned by Zaslavsky
in his dynamic survey [11], which asks for a characterization of those graphs that have
an acyclic switch. We are concerned with those graphs that do not have an acyclic
switch. Obviously, any graph which contains such a graph as an induced subgraph also
does not have an acyclic switch. For this reason we are interested in the graphs that
are minimal in this respect: they do not have an acyclic switch, but all their induced
subgraphs do have an acyclic switch. We call these graphs and the corresponding
switching class critically cyclic. We show that apart from the simple cycles Cn for
n ≥ 7, there are only finitely many critically cyclic graphs. In fact, we shall prove that
a critically cyclic graph G /∈ [Cn] has order at most 9. These graphs are partitioned
into 24 switching classes, and altogether there are 905 critically cyclic graphs (up to
isomorphism and excluding switches of the cycles Cn).

In order to save the reader from long—and occasionally tedious—technical con-
structions for the small graphs, we rely on a computer program (in fact, two indepen-
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dent programs) for the cases of order at most 9. Therefore our purpose is to prove
that if G is a critically cyclic graph of order n ≥ 10, then G ∈ [Cn]. The proof of this
result uses the characterization from [6] of the acyclic graphs G—henceforth called
the special acyclic graphs—that have a nontrivial acyclic switch (see section 4).

The paper is structured as follows. After some preliminaries we list the necessary
details of the special acyclic graphs from [6]. We proceed by proving that critically
cyclic graphs can have only a limited number of isolated vertices. As a consequence,
a vertex in a critically cyclic graph has only a limited number of leaves adjacent to it.
We prove that each switching class consisting of critically cyclic graphs and, different
from [Cn] for n ≥ 8, contains a graph G that is almost a special acyclic graph. We
then prove by case analysis, relying on the types of the special acyclic graphs, that a
critically cyclic graph must have order at most 9. At the end of the paper we shall
spend some time discussing the computer programs that were used to search for the
small critically cyclic graphs. We shall also consider the question of why not all of
the critically cyclic switching classes are used in our proof.

2. Preliminaries. For a (finite) set V , let |V | be the cardinality of V . We shall
often identify a subset A ⊆ V with its characteristic function A:V → Z2, where
Z2 = {0, 1} is the cyclic group of order 2, by the convention that for x ∈ V , A(x) = 1
if and only if x ∈ A. The symmetric difference of two sets A and B is denoted by
A + B, and for the difference between A and B we write A−B.

The set E(V ) = {{x, y} | x, y ∈ V, x �= y} is the set of all unordered pairs of
distinct elements of V . A graph is a pair G = (V,E), where V is the set of vertices and
E ⊆ E(V ) the set of edges. We write xy or yx for the undirected edge {x, y} ∈ E; we
call x and y adjacent. The graphs in this paper will be finite, undirected, and simple;
i.e., they contain no loops or multiple edges. The cardinalities |V | and |E| are called
the order and the size of G. Analogously to sets, a graph G will be identified with
the characteristic function G:E(V ) → Z2 of its set of edges defined by G(xy) = 1 for
xy ∈ E and G(xy) = 0 for xy /∈ E. Later we shall use both notations, G = (V,E)
and G:E(V ) → Z2, for graphs.

A graph H = (X,E′) is a subgraph of G = (V,E), if X ⊆ V and E′ ⊆ E.
Moreover, if H �= G, then H is a proper subgraph of G. Also, H is an induced subgraph
or a subgraph induced by X if for all distinct vertices x, y ∈ X, H(xy) = G(xy). As
shorthand we write G− x for the subgraph induced by V − {x} and, more generally,
we write G− I for the subgraph induced by V − I. Let H be a subgraph induced by
a nonempty set X ⊆ V . If H(xy) = 1 for all distinct x, y ∈ X, then H is called a
clique. On the other hand, if H(xy) = 0 for all distinct x, y ∈ X, then X is said to
be independent.

For two graphs G and H on the vertex set V , we define G + H to be the graph
such that (G + H)(xy) = G(xy) + H(xy) for all xy ∈ E(V ), where + is addition
modulo 2. We extend this operation to graphs on different sets of vertices V and V ′,
respectively, by first extending G and H to graphs on V ∪V ′ by setting all new edges
to 0.

The disjoint union of two graphs G and H, on the other hand, is denoted G∪H.
We use k ·G as shorthand for the disjoint union of k copies of G.

Some graphs we shall encounter in what follows are Kn, the clique on n vertices,
and Km,n, the complete bipartite graph on two disjoint sets of m and n vertices,
respectively. Pn denotes a path of n vertices, and Cn denotes a cycle on n vertices.

For a vertex v ∈ V of a graph G, the neighborhood NG(v) ⊆ V is the set of
vertices adjacent to v in G. The degree of v is defined by dG(v) = |NG(v)|. An
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isolated vertex has degree zero, a leaf degree one. A vertex v is a leaf at z if v is a leaf
adjacent to z.

A graph is acyclic if it has no cycles. A tree is a connected acyclic graph.
A selector for G = (V,E) is a subset σ ⊆ V , or alternatively a function σ:V → Z2.

A switch of a graph G by σ is the graph Gσ such that for all xy ∈ E(V ),

Gσ(xy) = σ(x) + G(xy) + σ(y).

It should be clear that this definition of switching is equivalent to the one given in the
introduction. One of the switches of the graph (7-3) of Figure 3.1 is the graph (7-3’)
of Figure 3.4. In the figures we shall usually indicate a selector by the black vertices.

For a singleton set σ = {x} we shall write Gx instead of G{x}.
The set [G] = {Gσ | σ ⊆ V } is called the switching class of G = (V,E). We

reserve lower case σ, τ for selectors (subsets) used in switching.
We always have Gσ = Gσ̄ for the complemented selector σ̄ = V − σ.
A selector σ is said to be constant on a subset X ⊆ V if σ is a constant function

on X, that is, if X ⊆ σ or X ∩ σ = ∅. Note that if σ is constant on X, then the
subgraphs induced by X in G and in Gσ are equal.

3. Critically cyclic graphs. A graph G, as well as its switching class [G], is
called critically cyclic if all proper induced subgraphs of G have an acyclic switch, but
G itself does not have any acyclic switches. These graphs are forbidden, if we want
to avoid switching classes with acyclic graphs. It is clear that a switch of a critically
cyclic graph is also critically cyclic.

We say that an acyclic graph G has a singular acyclic switch if G has a unique
acyclic switch different from G, that is, if, whenever σ and τ are any two nonconstant
selectors for which both Gσ and Gτ are acyclic, then Gσ and Gτ are equal (not only
isomorphic).

Let G be a critically cyclic graph. By definition, for each x ∈ V , there is a switch
Gσ such that Gσ − x is acyclic. We have the following simple result that will be used
quite often without reference in the proofs.

Lemma 3.1. Let G be a critically cyclic graph and let x be a vertex of G.
(i) The proper induced subgraphs of G all have acyclic switches.
(ii) There exists a switch Gσ of G such that the induced subgraph Gσ−x is acyclic.

In this case all cycles of Gσ and of (Gx)σ go through x.
Note that it is not true that in every critically cyclic graph G there is a vertex

x such that G − x is acyclic; the graph K3,3 ∪ 3 ·K1 of Figure 3.3 (9-2) is a counter
example.

Example 3.2. Let G be the graph (7-3’) in Figure 3.4. We prove that it is a
critically cyclic graph. For this we need to show that it has no acyclic switches and
that removing any of the vertices allows for an acyclic switch. For the latter it is
sufficient to observe that the vertices 2, . . . , 6 are all on the unique cycle of G, and
the induced subgraphs G{2,5} − 7 and G{3,6} − 1 are acyclic.

To prove that G has no acyclic switch observe that G has seven edges and that
an acyclic graph can have at most six. We prove that applying any selector will not
decrease the number of edges, and thereby we have proved that there is no acyclic
switch of G. Since Gσ = Gσ̄ for all selectors σ, we can assume that σ has at most
three vertices.

First of all, for all vertices x, dG(x) ≤ 3 = (n− 1)/2. Hence applying a singleton
selector cannot decrease the number of edges.
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(7-4)

(6-1)(5-1) (7-1) (7-2) (7-3)

(7-5)

Fig. 3.1. The critically cyclic graphs of order 5, 6, and 7.

For doubleton selectors, σ = {x1, x2}, we can reason in the same way. The
number of edges that change is |σ| · (7 − |σ|) = 10. We must make sure that every
selector makes at most five edges disappear. The only possible way, knowing that the
maximum degree is three, is to take σ = {2, 6}, but in that case only four edges are
removed, because one edge occurs inside the subgraph induced by σ.

For selectors of size 3, twelve edges will change. Hence we must look for selectors
σ which create fewer than six edges, that is, σ makes more than six edges of G
disappear. For this, the selector must contain a vertex of degree three, say {2}. If
also 6 ∈ σ, then the number of edges to be removed is four. Since there are no other
vertices of degree three in G, we conclude that 6 /∈ σ. If σ has two vertices of degree
two, then the subset σ has at most six edges going to its complement, because either
the two of them are adjacent, or one of them is adjacent to 2.

Note that Cn for n ≤ 6 has an acyclic switch: take an independent set of cardi-
nality 
n/2�. However, the following was already proved by Acharya [1].

Lemma 3.3. The cycle Cn is critically cyclic for each n ≥ 7.

Proof. Let G = Cn with n ≥ 7. First, removing any vertex from G = Cn gives
us an acyclic graph Pn−1. Hence we need to prove only that all switches of G have
a cycle. Let {x1, x2, . . . , xn} be the vertices of G, where G(xixi+1) = 1 = G(xnx1).
Suppose that Gσ is acyclic.

Assume first that σ has the same value for two adjacent vertices, say σ(x1) = 1 =
σ(x2). Now σ(xi) = 1 for each 4 ≤ i ≤ n − 1, since {x1, x2, xi} does not induce a
triangle C3 in Gσ. Also σ(x3) = 1 and σ(xn) = 1 because otherwise {x3, xn−1, xn−2}
or {xn, x4, x5} induces a triangle in Gσ. However, now σ is constant and Gσ = G; a
contradiction. This takes care of all Cn where n ≥ 7 is odd.

There remains the case where σ contains every other vertex of G. In this case, it
is easy to see that if n = 8, then Gσ is again a cycle Cn, and if n ≥ 10 and n is even,
then the subset {x1, x2, x4, x5, x7, x8} induces a cycle C6 in Cσ

n . These contradictions
prove the claim.

We now state the result of our computer search for critically cyclic graphs.

Theorem 3.4. There are 27 switching classes of critically cyclic graphs of order
n ≤ 9. Representatives of these switching classes are given in Figures 3.1, 3.2, and
3.3.

The main theorem proved in this paper is the following.
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Theorem 3.5. The switching classes [Cn] are the only critically cyclic switching
classes of order n ≥ 10.

In the following proofs we shall refer to the graphs from Figures 3.1–3.4. The black
vertices in Figure 3.4 indicate how these graphs can be switched into the corresponding
graphs from the former three figures.

(8-11)

(8-1)

(8-10)

(8-12) (8-13) (8-14) (8-15)

(8-4)

(8-2) (8-3)

(8-7)(8-6)(8-5)

(8-8) (8-9)

Fig. 3.2. Critically cyclic graphs of order 8.

(9-3)(9-2)

(9-4) (9-5)

(9-1)

Fig. 3.3. Critically cyclic graphs of order 9.
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(8-8’)(8-5’)(5-1’) (6-1’)

(7-2’) (7-5’)

2

(7-3’)

1

57
6

4

3

Fig. 3.4. Switches of known critically cyclic graphs that are used in the proofs.

4. The special acyclic graphs. We shall now describe the special acyclic
graphs of [6] (see Figure 4.1), which will often be referred to in the rest of the paper.
These acyclic graphs S have the property that they have an acyclic switch Sσ different
from S.

Type (1s). The graph in Figure 4.1(1s) is denoted by Sk,m,l. It is obtained from
the graph K1,k+m by substituting k leaves by an edge and by adding l isolated vertices.
To be precise, S = Sk,m,l consists of the induced subgraphs H, I, and M as defined
in (S1)–(S3).

(S1) H = {z}∪ {yi, xi | i = 1, 2, . . . , k} consists of vertices for which G(zyi) = 1 =
G(yixi) for each i. The vertex z is called the center of S.

(S2) I = {u1, u2, . . . , ul} consists of isolated vertices.
(S3) M = {v1, v2, . . . , vm} consists of leaves such that G(zvi) = 1 for each i.
For the types (As) with A = 2, 3, . . . , 8, the corresponding special acyclic graphs

will be denoted by SA(k,m), where k and m indicate the number of leaves of the
(black) vertices z1 and z2. Because of the symmetry in k and m in each of these
graphs, we may assume that k ≥ m.

Denote by Pt(m, k) the tree that is obtained from the path Pt of t vertices when
the leaves are substituted by K1,m and K1,k (see Figure 4.1(4s) for P3(k,m)).

Type (2s). S2(k,m) = K1,k ∪K1,m.
Type (3s). S3(k,m) = K1,k ∪K1,m ∪K1.
Type (4s). S4(k,m) = P3(k,m).
Type (5s). S5(k,m) = P3(k,m) ∪K1.
Type (6s). S6(k,m) = P2(k,m).
Type (7s). S7(k,m) is equal to K1,3(k,m), which is K1,3 with two leaves substi-

tuted by K1,k and K1,m (see Figure 4.1(7s)).
Type (8s). S8(k,m) = P4(k,m).
Types (9s)–(12s). The acyclic graphs of these types are P7, T7, P6, and P4 ∪ P2.

These are listed in Figures 4.1(9s)–(12s).
A small acyclic graph can be of several of the above types. The role of the small

acyclic graphs of the types (9s)–(12s) is strictly limited in this paper, because of their
low order. Notice that P6 equals P4(1, 1) of the type (8s), but we treat this small
instance independently.

In [6] we proved the following theorem.
Theorem 4.1. Every switching class contains at most three acyclic graphs up to

isomorphism. The acyclic graphs G that have an acyclic switch Gσ by a nonconstant
selector σ are the special graphs of the types (1s)–(12s).
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y1

xk

u1

yk

vm
v1

(1s) (2s)

v1

vk u1
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z1 z2

(10s)

w
w

w2

(8s)

(6s)(5s)
w1

(7s)

(3s)

w2 w2

w1 w1

(12s)(11s)

(4s)

(9s)

Fig. 4.1. The special acyclic graphs (1s)–(12s).

The blackened vertices in Figure 4.1 constitute the centers of the special acyclic
graphs S. We denote by Z(S) the set of these centers.

Let σ = Z(S) for a special acyclic graph S. We observe that Sσ is of the same
type as S except for a few of the cases: A graph of the type (3s) switches into a graph
of the type (4s) (and vice versa); the graphs (11s) and (12s) switch into each other.

We shall often want to use the fact that a certain special acyclic graph S has a
singular acyclic switch, that is, a unique acyclic switch by a nonconstant selector. We
shall now give, in Lemma 4.2, a list of small special acyclic graphs that have such a
switch. We omit the proof, because the graphs in it are small and the claim can be
easily checked even by hand although some work is required.

Lemma 4.2. The following special acyclic graphs S have a singular acyclic switch:
(i) S1,2,2 and S0,3,3 of the type (1s),
(ii) SA(2, 2) of the types (As) for A = 2, 3, 4,
(iii) SA(2, 1) of the types (As) for A = 5, 7, 8, and
(iv) S6(3, 3) of the type (6s).

In these cases the singular acyclic switch Sσ is obtained by the selector σ = Z(S) and
its complement σ̄.
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We turn now to special acyclic graphs that are more general in their structure.
Lemma 4.3. The special acyclic graph S = SA(k,m) has a singular acyclic switch

if
(i) k,m ≥ 2 for the types (2s), (3s), and (4s),
(ii) k ≥ 2,m ≥ 1 for the types (5s), (7s), and (8s),
(iii) k,m ≥ 3 for the type (6s).

In these cases the singular acyclic switch Sσ is obtained by the selector σ = Z(S) and
its complement σ̄.

Proof. In each of the cases under consideration the special acyclic graph S =
SA(k,m) has two centers, say Z(S) = {z1, z2}. Let Sσ �= S for a nonconstant selector
σ such that Sσ is acyclic. We may assume that σ(z1) = 1. In each of these cases
every pair x, y /∈ Z(S) of distinct vertices of S belongs to an induced subgraph Rx,y

from Lemma 4.2 such that Z(S) ⊆ Rx,y and Rx,y is of the same type as S. When
σ is restricted to Rx,y, we have that the switch Rσ

x,y is acyclic. By Lemma 4.2,
σ(x) = σ(y), from which the claim follows.

Lemma 4.4. The special acyclic graph S = Sk,m,l has a singular acyclic switch
in the following cases:

(i) k ≥ 3,
(ii) k = 2 and m + l ≥ 2,
(iii) k = 1 and m, l ≥ 2, and
(iv) k = 0 and m, l ≥ 3.

In these cases the singular acyclic switch Sσ is obtained by the singleton selector
σ = Z(S) and its complement σ̄.

Proof. Let S = Sk,m,l with Z(S) = {z} be as described in (S1)–(S3), where k,m,
and l satisfy the requirements of the claim. Let σ be a nonconstant selector such that
Sσ is acyclic. Since Sσ = Sσ̄, we may assume that σ(z) = 1. We shall show that
σ = {z}, from which the claim follows. Note that the induced subgraph S − z of S
equals the disjoint union k · P2 ∪ (m + l) ·K1.

Suppose that k ≥ 3. Now S − z is not special, and by Theorem 4.1, σ must be
constant on S − z. Therefore σ = {z}.

Suppose then that k = 2 and m+ l ≥ 2. In this case, S − z equals 2 · P2 ∪ 2 ·K1,
which is not special. As in the above, we have σ = {z}.

For the rest of the cases where k ≤ 1, the claim follows from Lemma 4.2 as in
the proof of Lemma 4.3, since now every pair of vertices of S belongs to an induced
subgraph S1,2,2 or S0,3,3 that contains the center z of S.

5. Isolated vertices. In this section we give constraints for the isolated vertices
in critically cyclic graphs. In particular, we prove our main tool for the final proof: if
G is critically cyclic and is such that G− x is acyclic for a vertex x, then G− x has
no isolated vertices.

Lemma 5.1. A critically cyclic graph G has at most two isolated vertices, or else
G = K3,3 ∪ 3 ·K1 (see (9-2) in Figure 3.3).

Proof. Let I = {x1, x2, . . . , xm} be the set of the isolated vertices in G. We assume
that m ≥ 3. The graph G is critically cyclic, and hence G− x1 is not acyclic but has
an acyclic switch (G− x1)

τ . The induced subgraph G− I has a cycle, and therefore
τ is not constant on G− I, say τ(v0) = 0 and τ(v1) = 1 for some v0, v1 ∈ V (G) − I.

We show that τ has different values on the elements of I − {x1}. From this it
follows that m = 3. For this purpose, suppose that there are two vertices, say x2 and
x3, in I−{x1} having the same value. Without loss of generality we may assume that
τ(x2) = 1 = τ(x3). If τ(v) = 0 for a vertex v ∈ V −{v0, x1, x2, x3}, then (x2, v0, x3, v)
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is a cycle in (G− x1)
τ , which contradicts the choice of τ . Therefore, τ(v) = 1 for all

v /∈ {x1, v0}. Whatever we choose for τ(x1), all cycles in Gτ should go through x1.
However, if τ(x) = 1 for all x ∈ I − {x1, x2, x3}, then x1 is a leaf at v0 in Gτ when
we choose τ(x1) = 1. This proves that the vertices of I − {x1} have different values
in τ . Hence m = 3 with τ(x2) �= τ(x3).

Since (G − x1)
τ is acyclic, Gτ (x2x3) = 1, and every vertex of V − I is adjacent

to either x2 or x3, it follows that V − I is independent in (G − x1)
τ . The switching

class of a discrete graph of order n consists of the complete bipartite graphs of order
n (see [7]), and therefore G = Kr,s ∪ 3 · K1, where r, s ≥ 2 since G is not acyclic.
Since K3,3 ∪ 3 ·K1 is a critically cyclic graph, and each K2,s ∪ 3 ·K1, for s ≥ 4, has
an acyclic switch (by switching one of the vertices in the part of size 2 of K2,s), the
claim follows.

The following lemma is an immediate corollary to the previous result.
Lemma 5.2. Let G be critically cyclic of order n ≥ 10. Then no vertex v ∈ V is

adjacent to more than two leaves of G.
Proof. Let L be a set of leaves of G such that G(uv) = 1 for all u ∈ L. Then the

vertices of L are isolated in Gσ for the selector σ = {v}. By Lemma 5.1, L has at
most two elements, since the graph K3,3 ∪ 3 ·K1 is of order 9.

In the proof of the following result we require knowledge of the small critically
cyclic graphs. We shall say that a graph G avoids (c-i) if G does not contain (as an
induced subgraph) the graph in Figure 3.1(c-i) if c = 5, 6, 7, Figure 3.2(c-i) if c = 8,
or Figure 3.3(c-i) if c = 9.

Recall that every proper induced subgraph of a critically cyclic graph can be
switched to a graph with no cycles. In particular, we have the following corollary that
is used often in the rest of this paper.

Lemma 5.3. Let G be a critically cyclic graph of order n ≥ 10. Then G avoids
the graphs in Figures 3.1, 3.2, and 3.3.

The next lemma is our first general tool concerning isolated vertices.
Lemma 5.4. Let G be a critically cyclic graph of order n ≥ 10. Then G has at

most one isolated vertex.
Proof. By Lemma 5.1, G has at most two isolated vertices. Suppose that G has

exactly two isolated vertices, say I = {x1, x2}. By assumption, G is critically cyclic,
and therefore there exists a selector τ such that (G− x1)

τ is acyclic. We can assume
without restriction that τ(x2) = 0.

The set τ is independent in G, as well as in (G − x1)
τ , for otherwise, there is a

triangle containing x2 in (G− x1)
τ . In fact, τ contains at most one vertex from each

connected component of (G − I)τ , since x2 is adjacent to each x ∈ τ in the switch
(G − x1)

τ . Notice that these connected components are trees, because (G − x1)
τ is

acyclic.
We extend the domain of τ by setting τ(x1) = 0. Let τ = {z1, · · · , zr}. In

Figure 5.1 we have depicted the graph

Gτ = (H + (T1 ∪ T2 ∪ . . . ∪ Tr)) ∪ F,

where
• H = K2,r has the bipartition ({x1, x2}, {z1, . . . , zr}),
• the induced subgraphs Ti are disjoint trees with H ∩ Ti = {zi}, and
• F is an acyclic induced subgraph or is empty.

In the following we let C(i,j) denote the cycle (x1, zi, x2, zj) for different i and j.
Since Gτ is not acyclic, we must have r ≥ 2, and thus C(1,2) always exists in Gτ .
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z1
...

F

zr· · ·z2

T2

H

Tr

T1

x2x1

Fig. 5.1. The graph Gτ = (H + (T1 ∪ T2 ∪ · · · ∪ Tr)) ∪ F .

Claim 1. We have |F | ≤ 2. Hence F is either empty, discrete, or a path P2.
To see this, suppose that F �= ∅. To avoid (7-1) and (7-2’) in C(1,2) ∪ F , F must

be either discrete or a path P2. If F is discrete, then |F | ≤ 2 by Lemma 5.1.
Claim 2. At most two of the trees T1, . . . , Tr have more than one vertex.
Indeed, x1, x2 together with different zi, zj , zk ∈ τ induce a K2,3 in Gτ . The

graph (8-6) then implies the present claim.
Claim 3. Each nonsingleton tree Ti has the form

Ti = Ski,si,0 or Ti = P4(si, 0),

where ki ≥ 0, si ≤ 2 and zi is the center of Ski,si,0 or the center of P4(si, 0) adjacent
to the si leaves.

For this, let Ti be a nonsingleton tree. By considering the subgraph of Gτ induced
by C(i,j) and Ti (for any j �= i) we deduce that

• to avoid (7-1) the longest path of Ti starting from zi has length at most 3,
• to avoid (7-1) each v �= zi in Ti with v /∈ NTi(zi) satisfies dTi(v) ≤ 2,
• to avoid (7-2) each v ∈ NTi(zi) satisfies dTi(v) ≤ 2,
• to avoid (7-2’) Ti cannot have edge disjoint paths P4 and P3 with the common

end zi.
Hence Ti has the required form. By Lemma 5.2, we have si ≤ 2.

We shall divide our considerations according to the number N of nonsingleton
trees Ti.

Case N = 0. In this case Gτ equals K2,r∪F , where |F | ≤ 2. All these graphs have
an acyclic switch. Indeed, in K2,r and K2,r∪K1 we can take the selector {x1, x2}, and
in K2,r ∪ 2 ·K1 and K2,r ∪P2 we can take {x1, x2, v}, where v ∈ F . These contradict
the assumption that G has no acyclic switches.

Case N = 1. Suppose Gτ has a unique nonsingleton tree, say T1, among the
trees T1, . . . , Tr.

(1) Suppose first that T1 = P4(s1, 0). We have r = 2, for if r ≥ 3, then C(2,3)

together with T1−z1 does not avoid (7-1). Also, necessarily F = ∅ to avoid the graph
(7-2’) in the subgraph induced by C(1,2) and F together with the edge at the leaf of
T1. However, now n ≤ 9 contradicts our assumption on the order n.

(2) Suppose then that T1 = Sk1,s1,0 with k1 > 0.
(2.1) Assume that r ≥ 3. Now F = ∅, s1 = 0, and k1 = 1, for otherwise the graph

(7-2’) is in the subgraph induced by C(2,3), F , and T1 − z1. Hence T1 is a path P3.
However, now Gτ has an acyclic switch for all r ≥ 3 (select all zi’s and the other end
of the path T1); a contradiction.

(2.2) Let r = 2. To avoid (7-2’), F cannot be P2, and hence it is discrete or
empty. However, now Gτ has an acyclic switch (select z1); a contradiction.
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(3) Finally, suppose that T1 = S0,s1,0. Since 1 ≤ s1 ≤ 2 and |F | ≤ 2, we must have
r ≥ 4. By considering the graph induced by C(2,3), F , and T1 − z1, we notice that to
avoid (7-2’) the induced subgraph F cannot be P2. To avoid (8-5) (K{x1,x2},{z1,z2,z3}
with a leaf of T1 and F ) necessarily |F | ≤ 1. If |F | = 1, then s1 = 1 to avoid the
graph (8-5’). Hence T1 is a path P2. In both of these cases (s1 = 1 and |F | = 1, and
s1 = 2 and F = ∅), we have an acyclic switch (select x1, x2 and a leaf adjacent to z1);
a contradiction.

Case N = 2. Suppose that Gτ has exactly two nonsingleton trees, say T1 and T2,
among the trees T1, . . . , Tr. Assume also without loss of generality that |T1| ≥ |T2|.

To avoid (8-4) and (8-8) in the subgraph induced by C(1,2) and F , necessarily
|F | ≤ 1. Since {x1, x2, z1, . . . , z4} forms a K2,4, we must have r ≤ 3 in order to avoid
(8-8’). Moreover, if r = 3, then F = ∅ to avoid (8-7). In any case we have r+ |F | ≤ 3.
Since n ≥ 10, it follows that |T1| + |T2| ≥ (10 − 2) − (r − 2) − |F | ≥ 7.

Let t be the length of the longest path in T1 starting from z1. By Claim 3 we
know that t ≤ 3. First suppose that t = 1 and hence that T1 = S0,s1,0. We know
s1 ≤ 2 and hence |T1| ≤ 3 and we have |T2| ≥ 4, which contradicts the assumption
|T1| ≥ |T2|. Therefore t ≥ 2. To avoid (8-1) in the subgraph induced by C(1,2), T1,
and T2, necessarily dT2(z2) = 1. Moreover, to avoid (8-2), T2 must be a path P2.
Consequently |T1| ≥ 5. If T1 = Sk1,s1,0, then k1 = 1. Indeed, if k1 ≥ 2, we remove
the middle vertex from one of the paths P3 in T1, to obtain the graph (8-3) in Gτ .
Now in all cases |T1| = t + 1 + s1 ≥ 5. However, the case where t ≥ 2 and s1 = 2 is
excluded by (9-1), and the cases t = 3 with 1 ≤ s1 ≤ 2 are excluded by (8-4) (remove
the neighbor of z1 on the longest path of T1 starting from z1).

Analogously to Lemma 5.2, we obtain the following result.

Lemma 5.5. Let G be a critically cyclic graph of order n ≥ 10. Then no vertex
v ∈ V is adjacent to more than one leaf of G.

We consider next isolated vertices in the induced subgraphs G − x for critically
cyclic graphs G.

Lemma 5.6. Let G be a critically cyclic graph of order n ≥ 10 and let x ∈ V .

(i) G − x can have at most two isolated vertices. Moreover, if G − x has two
isolated vertices, then x is adjacent to exactly one of these in G.

(ii) If a vertex v �= x is adjacent to m leaves of G− x, then m ≤ 2. Moreover, if
m = 2, then x is adjacent to exactly one of these.

Proof. For (i) we only need to observe that if G − x has three isolated vertices,
then in either Gx or G at least two of these are isolated and we can apply Lemma 5.4.
The same holds if the number of isolated vertices is two, but x is not adjacent to
exactly one of them in G.

For (ii) assume that there is a vertex v �= x adjacent to more than two leaves.
The vertex x is nonadjacent to at least two of these in either G or Gx, and the result
then follows from Lemma 5.5.

Let G be a graph and x and y be vertices of G such that G−x is acyclic. We say
that y is compatible with x if G− y and Gx − y are not acyclic.

Lemma 5.7. Let G be a critically cyclic graph such that G− x is acyclic.

(i) If y is compatible with x, then G− {x, y} is a special acyclic graph.
(ii) If G is of order n ≥ 8 and G /∈ [Cn], then there exists a vertex y ∈ V that is

compatible with x.

Proof. Since G is critically cyclic, G − y has an acyclic switch (G − y)τ . Let
S = G−{x, y}. Because S and Sτ are both acyclic graphs, it follows that either S is
special or τ is constant on S.
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Suppose τ is constant on S, and thus either τ = S ∪ {x} or τ = S. In the former
case (G− y)τ = G− y, a contradiction, because (G− y)τ is acyclic and G− y is not.
In the second case we have (G − y)τ = (Gx − y)S∪{x} = Gx − y. Again we have a
contradiction, since Gx − y is supposed to have a cycle. This proves that S is special.

For (ii), suppose G /∈ [Cn]. Since G has no acyclic switches, there are cycles in G
and Gx, and they all pass through x, because G− x is acyclic. Moreover, since Ck is
critically cyclic for k ≥ 7, the induced cycles of G and Gx have length at most 6.

If G or Gx has an induced cycle C5 or C6, let y be a vertex that is not on such a
cycle. It is clear that G− y and Gx − y both contain a cycle, and therefore each such
vertex y is compatible with x.

If G and Gx both have an induced cycle of length at most 4, then these two cycles
have altogether at most 7 vertices (since they share the vertex x). Since n ≥ 8, there
exists a vertex y that is not on these cycles. For such a vertex y, both G − y and
Gx − y are not acyclic. This proves the claim.

The next lemma is our second main tool for isolated vertices.

Lemma 5.8. Let G be a critically cyclic graph of order n ≥ 10 such that G− x is
acyclic. Then G− x has no isolated vertices.

Proof. Assume to the contrary that there is an isolated vertex u in G − x. Now
u is either a leaf adjacent to x in G (and hence isolated in Gx) or it is isolated in G
(and hence a leaf adjacent to x in Gx). Hence no cycle goes through u in G or Gx. It
follows that G− u and Gx − u are not acyclic, and by Lemma 5.7(i), S = G− {x, u}
is special.

Let τ be a selector for which (G − u)τ is acyclic. Since G − u and Gx − u both
have a cycle, τ is not constant on S.

If S = SA(k,m) is of the type (As) for A ∈ {2, . . . , 8}, then by Lemma 5.6(ii), the
centers of S are adjacent to at most two leaves of G− x and hence k,m ≤ 2. In this
case, S has at least eight vertices (since n ≥ 10), and this rules out the types (2s),
(3s), (4s), and (6s). Thus S is of the type (1s) or it is one of the types (5s), (7s), (8s)
with k = 2 = m.

In the cases (5s), (7s), and (8s), by Lemma 4.3, S has a singular acyclic switch with
respect to its centers Z(S) = {z1, z2} and therefore τ = {z1, z2} or τ = {x, z1, z2}.
However, by Lemma 5.6(ii), x is adjacent to two leaves of S, one leaf being adjacent
to z1 and one to z2. The same holds for Sτ .

This means that (G− u)τ is not acyclic, which is a contradiction.

Consider then the case S = Sk,m,l and adopt the notation (S1)–(S3) for it. With-
out restriction we can assume that τ(z) = 1 for the center z of S, since (G − u)τ̄ =
(G− u)τ . Extend τ to the whole domain by setting τ(u) = 0.

We have n = (2k+1)+m+l+2 ≥ 10, and thus k ≥ 1
2 (7−(m+l)). By Lemma 5.6,

m ≤ 2 and l ≤ 1. (Recall that u is isolated in G − x.) In particular, k ≥ 2, and if
k = 2, then m = 2, l = 1, and n = 10. (In Figure 5.2 we have depicted the graph
Sk,m,l obtained so far. In solid lines we indicate what must be there, in dotted lines
what may be there.)

In these cases, by Lemma 4.4, the special acyclic graph S has a singular acyclic
switch Sρ for ρ = {z}. Now (G − u)τ is acyclic, and hence so is Sτ . Since τ is not
constant on S, the uniqueness of ρ implies that ρ(v) = τ(v) for all v /∈ {x, u}. Also,
the only vertices in G that can be adjacent to u in Gτ are x and z, and because Gτ

is not acyclic, both must be adjacent to u. Moreover, x is adjacent in Gτ to exactly
one vertex v ∈ H ∪ I, since Gτ has a cycle but Gτ − u (= (G− u)τ ) is acyclic.

Suppose that v is a leaf of the part H of S, say v = x1. If l ≥ 1, then
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Fig. 5.2. The case of the special graph Sk,m,l.

{x, x1, z, u, y1, u1, y2} induces a graph (7-4) in Gτ . Similarly, if m ≥ 1, then we find
that {x, x1, z, u, y1, w, v1} induces a graph (7-4) in Gτ , where w = x2 if Gτ (xv1) = 1
and w = y2 otherwise. Therefore we have m = 0 = l. Now k ≥ 4, and Gτ contains
an induced graph (7-4) obtained by removing x2.

If v is a middle vertex in H, say v = y1, then {x, y1, x1, z, u} induces a cycle C5

in Gτ , and hence Gτ has an induced graph (6-1’) obtained by removing x2.
If v ∈ I is isolated in S, say v = u1, then to avoid (8-3) as being induced by the

set {x, u1, z, u, x1, y1, y2, vi} (for any vi ∈ M), we must have Gτ (xvi) = 0 (provided
that m > 0). However, now (Gτ )z is acyclic; a contradiction.

Finally, if v = z, then again (Gτ )z is acyclic. This contradiction completes the
proof of the lemma.

6. The proof of Theorem 3.5. In the following we shall consider every type of
special acyclic graph in turn and show that each case leads to a contradiction, thereby
proving our main theorem, that besides the graphs in [Cn] there are no critically cyclic
graphs of order n ≥ 10.

Throughout this section we let G be a critically cyclic graph of order n = |V | ≥ 10
such that G /∈ [Cn]. Also, let x ∈ V be a fixed vertex.

Since G is critically cyclic, there exists an acyclic switch (G− x)ρ of the induced
subgraph G− x. Since the switches of critically cyclic graphs are critically cyclic, we
can assume that ρ is constant on V , and therefore that G− x is acyclic already.

By Lemma 5.7(ii), there exists a vertex y that is compatible with x, that is, G−y
and Gx− y are not acyclic. Since G is critically cyclic, there is a nonconstant selector
σ such that (G− y)σ is acyclic. By Lemma 5.7(i), S = G− {x, y} is a special acyclic
graph, and it is of one of the types (1s)–(8s), since its order is at least 8.

In the following proofs a number of simple properties are often used, and we note
them here: first, the vertex y is adjacent to at most one vertex of each component of
S; if not, G− x would not be acyclic. Also, there must be a cycle in G that does not
contain y, because G− y is not acyclic. This also holds for Gx − y.

We shall now formulate a few conditions that hold for the special acyclic graphs
(1s)–(8s). For any graph G′ and vertex v, let LG′(v) be the set of leaves adjacent to
v in G′, and let IG′ denote the set of isolated vertices in G′.

Lemma 6.1. In the above notation, we have
(i) IS ⊆ NG(y);
(ii) for all v ∈ S, |LS(v)| ≤ 3. Moreover, |LS(v)| = 3 implies |NG(x)∩LS(v)| ≥ 1

and |NG(y) ∩ LS(v)| = 1.
Proof. By Lemma 5.8, G−x does not have isolated vertices, and hence (i) follows.
For (ii), we have |NG(y)∩LS(v)| ≤ 1, since G−x is acyclic. If |LS(v)| ≥ 3, then,

by Lemma 5.6(ii), |LS(v) − NG(y)| ≤ 2, and x is adjacent to at most one vertex of
LS(v)−NG(y). Hence, in this case, we must have |LS(v)| = 3 and in this case x and
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y are each adjacent to at least one vertex in LS(v). Because G − x is acyclic, y is
adjacent to exactly one vertex in LS(v).

Note how the previous Lemma restricts the values of k and m for the types (2s)–
(8s) and m for (1s). On the other hand, n ≥ 10 gives a lower bound on these values
for most types.

6.1. The case (1s). We shall now consider first the most difficult case, S =
Sk,m,l. We adopt the notation of (S1)–(S3) for it. Without restriction we may assume
that σ(z) = 1 for the center z of S. Also, we can assume that σ(x) = 0, by the
symmetry in the definition of compatibility, i.e., by the fact that both G − y and
Gx − y are not acyclic. We extend σ to the whole domain by setting σ(y) = 0. Note
that (G− y)σ = Gσ − y.

Lemma 6.2. We have

(i) k = 2,
(ii) 1 ≤ l ≤ 2, 1 ≤ m ≤ 2, and m + l ≥ 3,
(iii) M ⊆ NG(x),
(iv) if l = 2, then |NG(x) ∩ I| = 1,
(v) if m = 2, then |NG(y) ∩M | = 1,
(vi) |NG(x) ∩ (H ∪ I) − {z}| ≤ 1.

Proof. By Lemma 5.4, G has at most one isolated vertex; therefore |NG(x)∩I| ≤ 1.
Otherwise, switching by {x, y}, we obtain two isolated vertices, because y is connected
to all vertices in I by Lemma 6.1. When Lemma 5.6(ii) is applied to the vertex y, we
have that l ≤ 2 and also obtain part (iv).

If k = 0, then m + l ≥ 7, since n ≥ 10. This contradicts the bound m ≤ 3 of
Lemma 6.1(ii) and the above bound l ≤ 2. Hence k ≥ 1.

If k = 1, then m+ l ≥ 5. In this case, l = 2 and m = 3. If k = 2, then m+ l ≥ 3,
using reasoning similar to that for k = 1. By Lemma 4.4, in both cases Sz is the
singular acyclic switch of S and thus σ = {z}. Now M ⊆ NG(x); otherwise, there is
an isolated vertex of M in the acyclic graph Gσ − y, contradicting Lemma 5.8 (recall
that σ(x) = 0 = σ(y)). Therefore part (iii) is true. Moreover, when Lemma 5.6(ii)
is applied to Gσ, it follows that m ≤ 2, and as a consequence k ≥ 2, because as
was shown above, if k = 1, then we must have m = 3. Part (v) now follows from
Lemma 5.6(ii).

Part (vi) follows from the fact that the subgraph of Gσ induced by H ∪ I is
connected and Gσ − y is acyclic.

Suppose then that k ≥ 3. By (vi) it follows that there are at least two pairs
xiyi such that G(xxi) = 0 = G(xyi), say for i = 1, 2. For i = 1, 2 let τi be such
that (G− xi)

τi is acyclic, where we may choose τi(z) = 1. The special acyclic graph
S−xi, which is Sk−1,m+1,l, has a singular acyclic switch (S−xi)

z: the reason is that
n = 2k +m+ l + |{x, y, z}| ≥ 10 and either k ≥ 4, or else k = 3 and hence m+ l ≥ 1,
so that in the case of Sk−1,m+1,l we may apply Lemma 4.4.

Clearly τi = σ when we set τi(xi) = 0. By Lemma 5.8, the vertex yi is not
isolated in Gτi − xi, and therefore Gτi(yyi) = 1 = G(yyi) for i = 1, 2 (since G(xyi) =
0 = Gτi(xyi)) and we have a cycle in G− x. This contradiction proves parts (i) and
(ii).

In Figure 6.1 we have depicted part of the situation for the special graph Sk,m,l:
the requirements IS ⊆ NG(y), k = 2, 1 ≤ m ≥ 2, 1 ≤ l ≤ 2, M ⊆ NG(x) are all
implied by the drawing (again solid means what must be there, dotted means what
might be there). Notice that in the case at hand, Lemma 6.2 implies that n ≤ 11.
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Fig. 6.1. The case of the special graph Sk,m,l after Lemma 6.2.

We shall now finish the case S = Sk,m,l. In the following we consider the adja-
cencies of x and y to vertices in S and each other.

(1) Assume first that x is adjacent to a vertex u in I. By parts (ii) and (iv) of
Lemma 6.2, u is the only neighbor of x in I. Then also G(xz) = 1, since otherwise,
(x, u, z) is a triangle in Gσ−y, contradicting the fact that Gσ−y is acyclic. Moreover,
G(xxi) = 0 = G(xyi) for i = 1, 2, because Gσ − y is acyclic. We have G(xy) = 0, for
otherwise, (x, y, u) is a triangle in G, and to avoid (5-1) with the edges G(xiyi) = 1,
we would have to have that y is adjacent to two vertices in H −{z}, giving a cycle to
G− x. Now we know that NG(x) = M ∪ {z, u}, by Lemma 6.2(iii).

For any vertex v ∈ M , (x, z, v) is a triangle in G. Consider the subgraph of G
induced by {x, u, y, v, z, x1, y1}. To avoid (7-5’) we must have that either G(yz) = 1
or G(yv) = 1. Since Gσ − y is acyclic, y is adjacent in G to no other vertices of
H ∪M ∪ {x}.

(1.1) Suppose G(yz) = 1. By Lemma 6.2(v), we have m = 1 and so M = {v}.
Then Lemma 6.2(ii) implies that l = 2. But now {x, u1, y, z, y1, x2, u2} induces the
graph (7-4) in G; a contradiction.

(1.2) Suppose G(yv) = 1. Then {u1, y, x, v1, z, y1, x2} induces a (7-3); also a
contradiction.

(2) Therefore G(xu) = 0 for all u ∈ I, and thus by Lemma 6.2(iv), l = 1, I = {u1}.
We have from Lemma 6.2(ii) that m = 2 (and hence M = {v1, v2}) and from part
(v) that y is adjacent to exactly one vertex of M , say G(yv1) = 1. In conclusion, so
far we know that G(xv1) = 1 = G(xv2), G(yv1) = 1, G(yv2) = 0, and G(yu1) = 1,
G(xu1) = 0. Also, G(yw) = 0 for all w ∈ S − {u1, v1}, since G− x is acyclic.

Since Gσ − y is acyclic, we must have G(xxi) = 0 = G(xyi) for i = 1 or 2, say
i = 1. There are two cases to be considered here.

(2.1) Suppose G(xz) = 0. Now G(xy) = 1, since otherwise, {x, v1, v2, z, y, x1, y1, u1}
induces a graph (8-9) in G.

(2.2) Suppose G(xz) = 1. To avoid {x, z, v1, y1, x1, y, u1} inducing a (7-5’) we
must have G(xy) = 1.

In both of these cases, we have G(xy) = 1. But now {x, y, v1, x1, y1} induces a
graph (5-1’). This contradiction proves that the special graph S = G − {x, y} is not
of the type (1s).

6.2. The other cases. Let S = SA(k,m) for A ∈ {2, . . . , 8}, where we assume
that k ≥ m. Let z1 and z2 be the two centers of S, and L = {v1, v2, . . . , vk} and
M = {u1, u2, . . . , um} be the sets of leaves of S adjacent to z1 and z2, respectively.

We may assume that σ(z1) = 1 and, as in the previous case, we can assume that
σ(x) = 0. Again we extend σ to the whole domain by setting σ(y) = 0.

Lemma 6.3. We have k ≤ 3. Moreover,
(i) if S is of the types (3s)–(8s), then m ≤ 2;
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(ii) if k = 3 and if Sσ is the singular acyclic switch of S, then x and y are each
adjacent to exactly one vertex in L, but not the same vertex.

Proof. The fact k ≤ 3 is already stated in Lemma 6.1(ii).
For (i), assume that m ≥ 3, and thus that both z1 and z2 have three leaves

adjacent to them in S. By Lemma 6.1(ii), y is adjacent to a leaf in both L and M .
For the types (4s)–(8s) (where S is connected) G−x has a cycle; a contradiction. For
the type (3s) we apply the same argument but taking y in Gσ instead of x in G: we
first observe that SZ(S) has a singular acyclic switch by Lemma 4.3, and therefore
σ = Z(S). Now x is adjacent in Gσ − y to a leaf in both L and M . It follows then
that Gσ − y has a cycle; a contradiction.

For (ii), we first observe that x is adjacent to exactly one vertex in L, since Gσ−y
is acyclic. The claim then follows from Lemma 5.6(ii) and Lemma 6.1(ii).

Note that, by Lemma 6.1(ii), Lemma 6.2(i) and (ii), Lemma 6.3(i), it already
follows that there are no critically cyclic graphs of order at least 12 (unless they are
in [Cn]).

6.3. The cases (2s)–(4s). Let S be of the type (2s), (3s), or (4s). Since n ≥ 10,
Lemma 6.1(ii) implies that k = 3 and 2 ≤ m ≤ 3. By Lemma 4.3, S has a singular
acyclic switch which means that σ = {z1, z2}. (Recall that σ(z1) = 1 and σ(x) = 0 =
σ(y).)

By Lemma 6.3(ii), x is adjacent to one vertex in L, say G(xv1) = 1, and y is
adjacent to another vertex of L, say G(yv3) = 1. Furthermore, G(xv2) = 0 = G(yv2)
for the third vertex v2 of L. Since G(z2v1) = 0 and G(xv1) = 1, we must have that
G(xz2) = 1, for otherwise there is a cycle in Gσ − y. We now run through the cases
one by one.

Case (2s). Let S = S2(k,m). By Lemma 6.3 and the fact that n ≥ 10, we know
that k = 3 = m. Also, by Lemma 6.3(ii), x and y are both adjacent to one but not
the same vertex in M , say G(xu1) = 1 and G(yu3) = 1. By the uniqueness of σ, x
must be adjacent to z1 to ensure that Gσ − y is acyclic (or else {z1, x, u1} would be
a triangle). Because y can only be connected to one vertex in every component of S,
the only remaining unknown is G(xy). If G(xy) = 0, then {x, v1, z1, u3, y} induces the
graph (5-1), and if G(xy) = 1, then {u1, x, y, v3, z1, v2, u2} induces the graph (7-4).
These contradictions show that S is not of the type (2s).

Case (3s). Let S = S3(k,m). In this case Sσ is of the type (4s).
By the above, G(xz2) = 1 and G(xv2) = 0 = G(xv3). To avoid a cycle in Gσ − y,

necessarily G(xz1) = 1. G(xw) = 0 (for the isolated vertex w of S) and G(xu) = 0
for all u ∈ M . The reason is that x is adjacent to v1 in Sσ, and the above choices
prevent x from being adjacent to any other vertex of the connected graph Sσ.

By Lemma 5.6(ii), m = 2 and y is adjacent to one vertex in M , say G(yu2) = 1.
By Lemma 6.1(i), y is connected to w. The only unknown is the value G(xy). If
G(xy) = 0, then {v1, x, z2, u1, y, v3, z1} induces the graph (7-5’), and if G(xy) = 1,
then {v1, x, y, u2, z2, v2, u1} induces the graph (7-4). Hence S is not of the type (3s).

Case (4s). Let S = S4(k,m). Because S is connected, y is not adjacent to any
other vertex of S (except v3). Hence, m = 2, and x is adjacent to one vertex of M ,
say G(xu1) = 1 (see Lemma 5.6(ii)). Since Gσ − y is acyclic, x must be adjacent to
z1. If G(xy) = 0, then {x, u1, z2, v3, y} induces the graph (5-1). If G(xy) = 1, then
{v1, z1, v2, v3, x, u1, y} induces the graph (7-4) in Gx. Hence S is not of the type (4s).

6.4. The cases (5s)–(8s). We shall first consider the type (6s).
Case (6s). Let S = S6(k,m). In this case, n ≥ 10 implies that k,m ≥ 3. But this

contradicts Lemma 6.3(i). Hence S is not of the type (6s).
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For the remaining cases (5s), (7s), and (8s), let w1 be the neighbor of z1 of degree
at least 2. Let w2 be the vertex that is not adjacent to z1 and z2 in the types (5s)
and (7s), and which is adjacent to z2 in (8s) (see Figure 4.1(5s), (7s), and (8s)).

By Lemma 6.1(ii) and n ≥ 10, 2 ≤ k ≤ 3, m ≥ 1, and k + m ≥ 4. In all these
cases S has a singular acyclic switch by Lemma 4.3 and therefore σ = {z1, z2}.

We can assume that x is adjacent to a vertex in L, say G(xv1) = 1. This follows
from Lemma 6.3(ii) if k = 3. On the other hand, if k = 2, then necessarily m = 2,
since k + m ≥ 4 and by the general assumption that k ≥ m. Then NG(y) ∩ L = ∅ or
NG(y)∩M = ∅ in order to avoid a cycle in G−x. By Lemma 5.6(ii), NG(x)∩M �= ∅
or NG(x) ∩ L �= ∅, respectively. Because k equals m, we may interchange L and M ,
if necessary, to obtain G(xv1) = 1.

Claim 1. The following adjacencies for x exist: G(xz1) = 1 = G(xz2), and
G(xu) = 0 for all u /∈ {v1, z1, z2, w2, y}. Moreover, G(xw2) = 0 if dS(w2) �= 0 (that
is, excepting the case (5s)).

Proof. Recall that σ = {z1, z2} (and σ(x) = 0). In the cases under consideration
the centers z1 and z2 belong to the same connected component as v1 in both of the
acyclic graphs S and Sσ. Since Gσ − y is acyclic, x can be adjacent in Gσ − y only
to v1. Hence G(xz1) = 1 = G(xz2). Also, if dS(w2) > 0, then w2 is in the same
connected component, from which it follows that G(xw2) = 0 as required.

Claim 2. The following adjacencies for y exist: G(yv) = 1 holds for exactly one
vertex v ∈ S − {w2}, and either

(i) v ∈ L, say G(yv3) = 1, in which case k = 3 and m = 1,
(ii) v ∈ M , say G(yu2) = 1, in which case k = 2, m = 2.

Moreover, G(yw2) = 1 holds only in the case (5s).
Proof. For the first statement we observe that S is connected in the cases (7s)

and (8s) and S−w2 is connected in the case (5s). Hence y is adjacent to at most one
vertex in S −w2, since G− x is acyclic. By Lemma 5.8, G− x does not have isolated
vertices, and therefore G(yv) = 1 for a unique v ∈ S − {w2} as required.

Now if y is not adjacent to a vertex of M , then |M | = 1 by Lemma 5.6(ii) and
the fact that G(xu) = 0 for all u ∈ M . It follows that k = 3, and, consequently, y
is adjacent to a vertex of L. On the other hand, if G(yu) = 1 for a u ∈ M , then
G(yv) = 0 for all v ∈ L to avoid a cycle in G−x, and in this case, k = 2 by Lemma 5.6.
That G(yw2) = 1 in the case (5s) follows from Lemma 6.1(i). In the other two cases,
G(yw2) = 1 would result in a cycle in G− x.

These two claims together determine G with the exception of the value for G(xy).
We are ready to exclude the remaining cases.

Case (5s). Let S = S5(k,m). Now x is not adjacent to w1 in G and neither is y.
Hence in Gσ − y the vertex w1 is isolated, which contradicts Lemma 5.8.

Case (7s). Let S = S7(k,m). In both cases (i) and (ii) of Claim 2, G(xy) = 1 to
avoid (7-4) being the subgraph induced by the vertices {x, z1, w1, z2, v2, w2, y}. Now G
contains a switch of the graph (7-4) if k = 3 and m = 1 (this is G{z1} −{w1, w2, u1}),
and G contains the graph (7-5’) if k = 2 = m (this is G− {u1, v2, z2}).

Case (8s). Let S = S8(k,m). In both cases of Claim 2, G(xy) = 1 to avoid
(6-1) being the subgraph induced by the vertices {x, z1, w1, w2, z2, y}. Now the set
{x, z1, w1, w2, z2, y, u1} induces the graph (7-3’).

This proves Theorem 3.5.

7. Concluding remarks. Finding the critically cyclic graphs was done as fol-
lows: a program was written in C that listed, for a number n of vertices, a representa-
tive of each switching class that did not contain any acyclic switches. In a later phase,
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when we were looking for critically cyclic graphs on n vertices, we only had to make
sure that all critically cyclic graphs of lower order could not occur anymore in these
graphs. The program was run in this way for up to 12 vertices. We used here the files
from [9] which list generators for the switching classes up to isomorphism and up to
complementation for up to 10 vertices.

A computer program in the functional language Scheme verified that the critically
cyclic graphs found were in fact critically cyclic. Also, the authors verified this by
hand.

In our proofs, not all of the critically cyclic graphs were used. The graphs that
were not used are (8-10)–(8-15) and (9-3)–(9-5). Lemma 5.7 excludes the cycles C8

and C9. For the other graphs, except (8-12), the reason is that if they are induced
subgraphs of any graph of order at least 10, then this graph also contains one of the
cyclic graphs from Figures 3.1, 3.2, and 3.3 or it contains (8-12). The graph (8-12) does
not occur in our proofs, because it is overruled by Lemmas 5.7 and 5.8 in the following
sense. Consider a graph G of order 10 that does not have any acyclic switches. If G
has two isolated vertices and is such that G − x is acyclic and G − {x, y} is special,
then G contains an induced critically cyclic graph that was used in the proofs.

As an aside we note that our program found that the graphs (8-9) and (8-12) have
a similar property: adding two vertices to either of these graphs in any way always
results in a graph that contains a switch of one of the other critically cyclic graphs.
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Abstract. We relate the number of minimum cuts in a weighted undirected graph with various
structural parameters of the graph. In particular, we provide upper bounds for the number of
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1. Introduction. Let G = (V,E) be a graph or a multigraph with positive
weights on its edges. In this paper, we will use n to denote |V |. By an unweighted
graph, we mean that all the edges have unit weight. Let (A,A) denote a cut of G,
defined by the subsets A ⊂ V and A = V − A. We denote by E(A,A) the set of
edges in the cut, i.e., E(A,A) = {(u, v) ∈ E : u ∈ A and v ∈ A}. The weight of the
cut (A,A) is defined as the sum of weights on all the edges in E(A,A), and will be
denoted by w(A,A). A minimum cut (S, S) is one with the minimum weight over
all cuts in G. (Some authors use the words global minimum cuts or connectivity cuts
instead of minimum cuts). We will denote the weight of the minimum cut in G by
λ(G). Note that if G is unweighted, λ(G) is the same as the edge connectivity of the
graph, i.e., the minimum number of edges whose removal disconnects the graph.

Note that the minimum cut in a graph may not be unique. We use Λ(G) to denote
the number of minimum cuts in G. The problem of counting the number of minimum
cuts in a weighted undirected graph arises in various aspects of network reliability,
like testing the super-λ-ness of a graph [8], estimating the probabilistic connectedness
of a stochastic graph in which edges are subject to failure with probability p [4, 5,
6, 30], and other areas [29]. For example, for a sufficiently small p, the probabilistic
connectedness of G can be approximated as P (G, p) ≈ 1 − Λ(G)pλ(G)(1 − p)|E|−λ(G),
suggesting the importance of counting and bounding Λ(G).

It is well known that for any weighted (positive weights) graph G, Λ(G) ≤
(
n
2

)
,

and this upper bound is achieved if G is a cycle Cn of n nodes with each edge having

weight λ(G)
2 [12, 7, 22]. It is interesting to explore whether there exist tighter bounds

for Λ(G) when the graph satisfies various properties. For example, Bixby [7] studies
Λ(G) in terms of the weight of the minimum cuts λ(G) in the special case where all the
edge weights are positive integers and λ(G) is an odd integer. For this case, Bixby [7]
shows that Λ(G) ≤ � 3n

2 � − 2. In the case of unweighted simple graphs it is shown by
Lehel, Maffray, and Preissmann [23] that if λ(G) = k, where k ≥ 4 is an even positive
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integer, then Λ(G) ≤ 2n2

(k+1)2 + (k−1)n
k+1 . When k > 5 is an odd integer, they show that

Λ(G) ≤ (1 + 4
k+5 )n. The inherent structural difference between graphs with odd and

even edge connectivity was pointed out by Kanevsky [21] also.
In this paper, we provide upper bounds for Λ(G) in terms of many other important

parameters of graphs. We assume weighted graphs, unless otherwise specified. Multi-
graphs, as far as the results here are concerned, can be considered as a special case of
weighted graphs, since the multiedges can be replaced by a single edge of appropriate
weight without affecting the value of Λ(G). Our only assumption about the weights
is that they are positive. Note that, for the purposes of this paper, this assumption
is equivalent to the assumption that the weights are at least 1, since multiplying the
weights on every edge by the same constant will not change Λ(G). While our upper
bounds are valid for weighted undirected graphs and multigraphs, in most cases, the
properties in terms of which the upper bounds are stated depend only on the structure
of those graphs. In other words, the radius or minimum degree in terms of which we
describe the upper bounds are those of the underlying unweighted simple graph and
do not depend on the weights of the edges.

There is an abundance of literature regarding the determination of λ(G) and
finding a minimum cut in G. The problem of enumerating all the minimum cuts is
considered by many authors [12, 28, 14, 15], and various data structures are invented
to efficiently represent all the minimum cuts in a graph. (The currently fastest deter-
ministic algorithm for computing all minimum cuts in a nonnegative, real weighted
graph is due to Nagamochi, Nakamura, and Ishii [26].) The fact that the performance
of some of these algorithms depends on the number of minimum cuts in the graph
also makes it interesting to look for tighter upper bounds for Λ(G) when G satisfies
certain properties. (For example, a randomized algorithm due to Karger builds a data
structure that represents all minimum cuts in O(Λ(G) + n log n) space.) See [14] for
a brief survey of results regarding the enumeration of all minimum cuts.

The slightly different question of determining upper bounds for the number of
approximate minimum cuts, i.e., those cuts having weight at most fλ(G), where
f > 1 is a constant, is considered in [31, 22, 27, 20]. For example, Karger [22], uses
probabilistic analysis to show that there are at most O(n2f ) cuts of the above kind in
a graph of n nodes. Nagamochi, Nishimura, and Ibaraki [27] show that the number
of cuts of weight at most 4

3λ(G) is bounded above by
(
n
2

)
. Henzinger and Williamson

[20] show an upper bound of O(n2) for the number of cuts of weight at most 3
2λ(G),

extending the arguments of [27].

1.1. Our results. Radius and diameter. If G = (V,E) is a connected graph,
the eccentricity of a node v ∈ V is defined as e(v) = max distance(v, u) over all the
nodes u ∈ V . We define the radius of the graph G as r(G) = minv∈V e(v). A vertex v
is a central node if e(v) = r(G). We define the diameter of G as d(G) = maxv∈V e(v).
(Note that, in this paper, by “distance” we mean only the distances in the underlying
unweighted graph. Thus radius, eccentricity, and diameter have nothing to do with
the weights.) We show that the number of minimum cuts Λ(G) ≤ (r+1)n−(2r+1) ≤
(d + 1)n − (2d + 1), where G is a weighted graph (positive weights) and r, d are the
radius and diameter of G. As a special case, we observe that if there is a node which
is a neighbor of every other node in the graph, i.e., if r(G) = 1, then Λ(G) ≤ 2n− 3.
We illustrate the tightness of this bound by constructing a weighted clique Kn for
which Λ(Kn) = 2n− 3.

Minimum and maximum degree. Let the minimum degree and maximum degree of
G be δ and ∆, respectively. (Note that minimum and maximum degrees have nothing
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to do with the weights, i.e., δ = minu∈V |N(u)| and ∆ = maxu∈V |N(u)|, N(u) being
the set of neighbors of the node u). We show that Λ(G) ≤ ( 3n

2(δ+1) +1.5)n− ( 3n
δ+1 +2)

and Λ(G) ≤ (n−∆+3)n
2 − (n−∆+2). Note that these bounds become significant when

the involved parameters are reasonably large. Also it is easy to get an upper bound
involving both δ and ∆, by extending the techniques discussed in the paper.

Chordality. Let C be a simple cycle of a weighted undirected graph G. Any
edge in the induced subgraph on the nodes of C, G[C], other than the cycle edges
themselves, is called a chord of C. C is called an induced cycle (or chordless cycle)1

if and only if C does not have any chords. The length of the largest induced cycle
in a graph G is called chordality of G. A graph G is called k-chordal if and only if

the chordality of G is at most k. We show that Λ(G) ≤ (k+1)n
2 − k, where k is the

chordality of the underlying unweighted (simple) graph corresponding to G. We also
show the tightness of the bound by exhibiting a k-chordal graph G for arbitrarily

large n such that Λ(G) = (k+1)n
2 − k.

The word “chordality” originates from the well-known subclass of perfect graphs,
the chordal graphs. A graph G is chordal if and only if there is no induced cycle
of length 4 or more in G. We define the chordality of a chordal graph to be 3. All
graphs other than chordal graphs have chordality ≥ 4. Some other important classes
of graphs with low chordality value are the cocomparability graphs, chordal bipartite
graphs, and weakly chordal graphs, all of which are known to be 4-chordal. It can be
easily shown that asteroidal triple-free (AT-free) graphs have chordality at most 5.
Thus, by substituting the appropriate values for chordality in the above upper bound,
we obtain a list of results for various special classes of graphs.

Note that Cn (the cycle on n nodes) is the graph with maximum chordality
amongst all graphs on n nodes. Also, it is a graph which contains the maximum

number of minimum cuts possible, namely,
(
n
2

)
= (n+1)n

2 − n. (In fact, our bound

given above shows that Cn with each edge having weight λ
2 is the only graph which

contains
(
n
2

)
minimum cuts, the weight of the minimum cut being λ). The fact that

the maximum value of Λ(G) is achieved by the graph of largest chordality motivates
a study of the influence of chordality on Λ(G).

Girth. Girth is the length of the smallest cycle in G. We show that if G is an
unweighted graph with girth g and minimum degree δ, then Λ(G) < ( n

x+1 + 1)n −
( 2n
x+1 + 1), where x is an integer greater than e−2(2(δ − 1)

g−2
2 − 2). Note that this is

in contrast with the bound in terms of chordality, the length of the largest induced
cycle.

The Fiedler value. The Laplacian matrix of a graph G is defined as L = D − A,
where A is the adjacency matrix and D is the diagonal matrix whose (i, i)th entry is
the degree of the ith vertex in G. The smallest eigenvalue of L can be shown to be
equal to 0. The second smallest eigenvalue µ of L is sometimes known as the Fiedler
value of G. This is a well-studied graph parameter. It can be easily shown that if G is
a regular graph, then µ is equal to the gap between the two highest eigenvalues of the
adjacency matrix A of G. Various structural parameters of a graph (like diameter,
vertex connectivity, vertex and edge expansion, and bisection width) are known to be
related to µ and in general to the eigenvalues of A or L. (See [13, 3, 25, 1].)

We observe that if µ is above the threshold value 1+ δ
n−δ , where δ is the minimum

1An induced cycle or a chordless cycle is often called a “hole” in the perfect graph literature.
Recall that the strong perfect graph theorem characterizes perfect graphs in terms of odd holes and
antiholes.
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degree, then all the minimum cuts in an unweighted graph G are single vertex cuts.
In general, if µ is the Fiedler value and λ is the edge connectivity of G, we show that

Λ(G) ≤ (� 2λ
µ �+3)

2 n− (� 2λ
µ � + 2) provided � 2λ

µ � < n
3 .

2. Preliminaries. Consider an undirected graph G = (V,E) with a weight func-
tion w : E → 	+. Let U and W be disjoint subsets of V . Let E(U,W ) = {(u, v) ∈
E : u ∈ U , v ∈ W} be the set of edges between the vertices in U and the vertices
in W . Also, let w(U,W ) be the sum of the weights on the edges in E(U,W ). As
mentioned in the introduction, λ(G) denotes the weight of a minimum cut, and Λ(G)
denotes the number of minimum cuts in G. Let X ⊂ V . We will denote the induced
subgraph on X by G[X].

Lemma 2.1. If (S, S) is a minimum cut of a connected undirected graph G, then
G[S] and G[S] are connected.

Proof. Suppose that G[S] is not connected. Let G[S1] be a connected component
of G[S], where S1 ⊂ S. Clearly (S1, S1) is a cut of G and w(S1, S1) < w(S, S) since
E(S1, S1) ⊂ E(S, S). But this is a contradiction since (S, S) is assumed to be a
minimum cut.

Definition 2.2. Let (X,X) and (Y, Y ) be two cuts in a weighted undirected
graph. (X,X) and (Y, Y ) are said to cross each other if and only if all the four sets
X ∩ Y , X ∩ Y , X ∩ Y , and X ∩ Y are nonempty. Then (X,X) and (Y, Y ) are called
a crossing pair of cuts.

Lemma 2.3. A pair of cuts (S, S) and (P, P ) do not cross if and only if S (or
S) is a subset of P or P . (That is, S ⊆ P , S ⊆ P , S ⊆ P , or S ⊆ P .)

Proof. The proof follows from the definition of a crossing pair of cuts.

Lemma 2.4 (Bixby [7] and Dinic, Karzanov, and Lomosonov [12]). Let (X,X)
and (Y, Y ) be a crossing pair of minimum cuts in a weighted undirected graph G. Let
A = X ∩ Y , B = X ∩ Y , C = X ∩ Y , and D = X ∩ Y . Then,

1. w(A,B) = w(B,D) = w(D,C) = w(C,A) = λ(G)
2 ;

2. w(A,D) = w(B,C) = 0. That is, E(A,D) ∪ E(B,C) = ∅.
Lemma 2.5. If (P, P ) and (S, S) are a crossing pair of minimum cuts, then

E(P, P ) ∩ E(S, S) = ∅.
Proof. E(P, P ) ∩ E(S, S) = E(S ∩ P, S ∩ P ) ∪ E(S ∩ P, S ∩ P ) = ∅ by Lem-

ma 2.4.

Definition 2.6. A circular partition C = (U0, U1, U2, . . . , Uk−1) (where k ≥ 4)
of the vertices of a graph G is a partition of the set of vertices V of G into disjoint
nonempty subsets U0, U1, . . . , Uk−1 such that the following hold:

1. w(Ui, Ui+1 mod k) = λ(G)
2 for 0 ≤ i ≤ k − 1.

2. If i �= j+1 mod k or i �= j−1 mod k, then w(Ui, Uj) = 0; i.e., E(Ui, Uj) = ∅.
3. For 0 ≤ i ≤ k − 1, the cut (Ui, U i)—which is a minimum cut by conditions

1 and 2—does not cross with any other minimum cut (A,A) in G.

Definition 2.7. A cut (A,A) is called a union cut with respect to a circular
partition C = (U0, U1, . . . , Uk−1) if and only if there exists some i, 0 ≤ i ≤ k− 1, such

that A =
⋃i+b−1 mod k

j=i Uj, where 2 ≤ b ≤ k − 2. (Note that both A and A contain at

least two subsets in C). The cut (A,A) is called a subset cut with respect to C if and
only if A ⊆ Ui or A ⊆ Ui for some i.

Lemma 2.8. Let C = (U0, U1, . . . , Uk−1) be a circular partition of G. Then any
minimum cut (S, S) of G is either a union cut or a subset cut with respect to C.
Moreover, every union cut with respect to C is a minimum cut in G.
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Proof. By the definition of a circular partition, (S, S) does not cross with any of
the minimum cuts (Ui, U i). Therefore, by Lemma 2.3 S ⊆ Ui, S ⊆ Ui, S ⊆ U i, or
S ⊆ U i. Suppose (S, S) is not a subset cut. Then, we have Ui ⊆ S or Ui ⊆ S for all
i. Since by Lemma 2.1, G[S] and G[S] are connected, we infer that (S, S) is a union
cut. Also, that a union cut is a minimum cut follows easily from conditions 1 and 2
of the definition of a circular partition (Definition 2.6).

Lemma 2.9. Let G be a weighted undirected graph. Then G has a circular
partition C = (U0, U1, . . . , Uk−1), where k ≥ 4, if and only if there exists a crossing
pair of minimum cuts in G.

Proof. If there is a circular partition C = (U0, U1, . . . , Uk−1) with k ≥ 4, clearly the

minimum cuts (U0

⋃
U1, U0

⋃
U1) and (U1

⋃
U2, U1

⋃
U2) cross with each other. On

the other hand, if there is a crossing pair of minimum cuts in G, namely, (S1, S1) and
(S2, S2), due to a theorem of Bixby [7] and Dinic, Karzanov, and Lomosonov [12],
there exists a circular partition C = (U0, U1, . . . , Uk−1) such that each of S1 ∩ S2,

S1 ∩S2, S1 ∩S2, and S1 ∩S2 equals
⋃b−1

i=a Ui for appropriate choices for a and b. The
“if” part of the Lemma follows immediately from this.

For a circular partition C of G, let the partition number p(C) be defined as the
number of subsets in C. We define the partition number of the graph G as follows.

Definition 2.10. The partition number p(G) of a graph G is defined as p(G) = 3
if there is no circular partition for G. Otherwise, p(G) = max p(C), over all circular
partitions C of G.

Note that if there is a crossing pair of minimum cuts in G, then p(G) ≥ 4, by
Lemma 2.9. Otherwise, p(G) = 3.

Definition 2.11. By contraction of a subset of vertices X ⊂ V , we mean re-
placing all the vertices in X by a single vertex x and adding the edges (y, x) for each
y ∈ N(X), where N(X) is the set of neighbors2 of X. The weight of the edge (y, x)
(where y ∈ N(X)) is assigned to be w(y, x) =

∑
z∈X w(y, z), where (y, z) ∈ E(G).

We denote the graph obtained after the contraction operation by G/X. We will refer
to the operation of undoing the effect of a contraction (i.e., restoring G from G/X)
by putting back X in the place of x, as expanding the node x.

Lemma 2.12. If (S, S) is a minimum cut in a weighted undirected graph G
such that no other minimum cut (A,A) crosses with (S, S), then Λ(G) = Λ(G/S) +
Λ(G/S) − 1.

Proof. Note that since (S, S) is a minimum cut, the value of the minimum cut in
G/S and G/S will be the same as that in G. First we claim that Λ(G) ≤ Λ(G/S) +
Λ(G/S)− 1. This can be seen by observing that corresponding to each minimum cut
in G there is a minimum cut in either G/S or G/S. This follows from the assumption
that no minimum cut (A,A) of G crosses with (S, S) and so exactly one of the four
cases A ⊃ S, A ⊃ S, A ⊃ S, or A ⊃ S is true by Lemma 2.3. Thus the minimum cut
(A,A) remains intact either in G/S or G/S. Also, (S, S) appears in both G/S and
G/S, which accounts for subtracting 1. To see Λ(G) ≥ Λ(G/S)+Λ(G/S)−1, observe
that any minimum cut (A,A) in G/S or in G/S has a corresponding minimum cut in
G. For example, consider a minimum cut (A,A) in G/S. Without loss of generality,
let the node s in G/S (which corresponds to the contraction of S) be in A. When we

expand s, clearly the minimum cut (A
⋃
S − {s}, A

⋃
S − {s}) of G corresponds to

the minimum cut (A,A) of G/S. Moreover, it can be easily verified that the cuts of G
which correspond to the cuts of G/S are distinct from the cuts of G which correspond

2N(X) = {u ∈ V −X : There exists a node v ∈ X such that (u, v) ∈ E}.
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to the cuts of G/S except for (S, S), which is accounted for by subtracting 1. Hence
the result follows.

Lemma 2.13. If there are no crossing pairs of minimum cuts in G, then Λ(G) ≤
2n − 3. Moreover, there exists a graph on n nodes, Gn (for every n ≥ 2), such that
Λ(Gn) = 2n− 3.

Proof. If n = 2, clearly Λ(G) = 1, and the lemma is true. Assume that for all
graphs with number of nodes < n (where n ≥ 3), the lemma is true. Consider a graph
G on n nodes with no crossing pairs of minimum cuts. If all the minimum cuts of
G are singlenode cuts (i.e., of the form ({u}, {u})), then clearly there are at most n
minimum cuts. Then, Λ(G) ≤ n ≤ 2n− 3. Otherwise, there is a minimum cut (S, S)
such that |S| ≥ 2 and |S| ≥ 2. Let G1 = G/S and G2 = G/S. Also, let the number of
nodes in G1 and G2 be n1 and n2, respectively. Since any minimum cut (A,A) of G
does not cross with (S, S), by Lemma 2.12 we have Λ(G) = Λ(G1)+Λ(G2)− 1. Also,
it can be easily verified that there will not be any crossing pair of minimum cuts in
G1 or G2, since such a pair will give rise to a corresponding pair of crossing minimum
cuts in G also, which is a contradiction. Thus since G1 and G2 have < n vertices, we
have Λ(G) ≤ 2n1 − 3 + 2n2 − 3− 1 = 2(n+ 2)− 7 = 2n− 3, since n1 +n2 − 2 = n. In
Theorem 5.2, we show a way to assign weights to the edges of a clique Kn such that
Λ(Kn) = 2n− 3, illustrating the tightness of the bound given by this Lemma.

3. Partition number, p(G).
Lemma 3.1. Let G be a weighted undirected graph. If (X,X) is a minimum cut

of G such that no other minimum cut crosses with (X,X), then p(G/X) ≤ p(G).
Proof. Suppose p(G/X) = p′ > p(G) = p. Clearly p′ ≥ 4 (since by def-

inition of the partition number, p(G) = p ≥ 3). Consider a circular partition
C′ = (U0, U1, . . . , Up′−1) of G/X. Without loss of generality, assume that the node
x obtained by contracting X is present in U0. We claim that C = (W0, . . . ,Wp′−1),
where W0 = (U0 −{x})∪X and Wi = Ui for 0 < i ≤ p′ − 1, is a circular partition for
G. (This will clearly contradict the assumption that p(G/X) = p′ > p(G), proving
the lemma).

Suppose C = (W0,W1, . . . ,Wp′−1) is not a circular partition for G. Then, by
definition of circular partition, there exists a minimum cut (A,A) of G which crosses
with (Wi,W i) for some i.
Case 1. (A,A) does not cross with (W0,W 0) but it crosses with (Wi,W i) for some
i > 0. Since (A,A) does not cross with (W0,W 0) by Lemma 2.3, we have (1) A ⊆ W0,
(2) A ⊆ W0, (3) A ⊆ W 0, or (4) A ⊆ W 0.

Case 1.1. A ⊆ W0 or A ⊆ W0. Since W0 ⊆ W i, we have A ⊆ W i or
A ⊆ W i, respectively. So, in both cases (A,A) does not cross with (Wi,W i)
by Lemma 2.3, contradicting the assumption of Case 1.
Case 1.2. A ⊆ W 0 or A ⊆ W 0, i.e., W0 ⊆ A or W0 ⊆ A, respectively. Since
X ⊆ W0, X ⊆ A or X ⊆ A, which means that all the nodes in X are on the
same side of the cut (A,A). Thus, the cut (A′, A′) of G/X corresponding to
(A,A) is a minimum cut of G/X. Since X ⊆ W0 ⊆ W i, X ⊆ W i ∩ A or
X ⊆ W i ∩ A; i.e., all the nodes in X are either in W i ∩ A or W i ∩ A. But
since (Wi,W i) crosses with (A,A), the sets Wi ∩ A, W i ∩ A, Wi ∩ A, and
W i∩A are nonempty. Therefore, clearly when we contract X to get G/X, the
corresponding four sets Ui∩A′, U i∩A′, Ui∩A′, and U i∩A′ are also nonempty.
This means that in G/X, (A′, A′) crosses with (Ui, U i), contradicting the
assumption that C′ = (U0, U1, . . . , Up′−1) is a circular partition for G/X.

Case 2. (A,A) crosses with (W0,W 0). Remember that by assumption (A,A) does not
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cross with (X,X). We have the following four possibilities by Lemma 2.3: (1) A ⊆ X,
(2) A ⊆ X, (3) A ⊆ X, or (4) A ⊆ X.

Case 2.1. A ⊆ X or A ⊆ X. Since X ⊆ W0, we have A ⊆ W0 or A ⊆ W0,
respectively, which means that by Lemma 2.3, (A,A) does not cross with
(W0,W 0) in both cases, contradicting the assumption of Case 2.
Case 2.2. A ⊆ X or A ⊆ X; i.e., X ⊆ A or X ⊆ A, which means that
all the nodes in X are on the same side of (A,A). Thus, the cut (A′, A′) of
G/X corresponding to (A,A) is a minimum cut of G/X. Since X ⊆ W0, we
have X ⊆ W0 ∩ A or X ⊆ W0 ∩ A, i.e., all the nodes in X are completely in
W0 ∩A or W0 ∩A. But since (W0,W 0) crosses with (A,A), the sets W0 ∩A,
W 0 ∩ A, W0 ∩ A, and W 0 ∩ A are nonempty. Therefore, clearly when we
contract X to get G/X, the corresponding four sets U0∩A′, U0∩A′, U0∩A′,
and U0 ∩ A′ also are nonempty. This means that in G/X, (A′, A′) crosses
with (U0, U0), contradicting the assumption that C′ = (U0, U1, . . . , Up′−1) is
a circular partition for G/X.

Thus, we infer that no minimum cut (A,A) can cross with any cut (Wi,W i) in
the circular partition C = (W0,W1, . . . ,Wp′−1) for G. But p(C) = p′ > p = p(G), a
contradiction. Thus we have p(G/X) ≤ p(G).

In the following lemma, we provide an upper bound for Λ(G) in terms of the
partition number. The tightness of the lemma will be established in Theorem 9.1.

Lemma 3.2. Let G = (V,E) be a weighted undirected graph, where |V | = n ≥ 2,

and let the partition number p(G) ≤ p. Then, Λ(G) ≤ (p+1)n
2 − p.

Proof. The proof is by induction on n. If n = 2, by definition p(G) = 3, and

it is easy to verify that Λ(G) ≤ (p+1)n
2 − p. Now, assume that for all graphs with

number of nodes < n (where n ≥ 3), the lemma is true. Let G be a graph on n nodes
(n ≥ 3) with p(G) = p. If p = 3, then by Lemma 2.9 there are no crossing pairs of

minimum cuts in G, and hence by Lemma 2.13 Λ(G) ≤ 2n− 3 = (p+1)n
2 − p. Now, let

p ≥ 4. By Lemma 2.9 there exists a circular partition C = (U0, U1, . . . , Up−1) of G. If
p = n, then |Ui| = 1 for each i and clearly G = Cn, a cycle of n nodes with each edge

having weight λ(G)
2 . Therefore, it has

(
n
2

)
= n(n−1)

2 = (n+1)n
2 − n minimum cuts. If

p < n, then there exists a Ui ∈ C such that |Ui| ≥ 2. Let G1 = (V1, E1) = G/Ui and
G2 = (V2, E2) = G/U i be the graphs obtained by contracting Ui and U i, respectively.
Since |Ui| ≥ 2 and |U i| ≥ 3 (note that this follows from p(G) ≥ 4), clearly n > |V1| ≥ 4
and n > |V2| ≥ 3. Let p1 = p(G1) and p2 = p(G2). Note that by the definition of
a circular partition, no minimum cut (A,A) of G crosses with (Ui, U i). Hence by
Lemma 2.12 we have Λ(G) = Λ(G1) + Λ(G2)− 1. Now, by the induction assumption,

Λ(Gj) ≤ (pj+1)nj

2 − pj (for j = 1, 2) and we have

Λ(G) ≤ (p1 + 1)n1

2
− p1 +

(p2 + 1)n2

2
− p2 − 1.(3.1)

By Lemma 3.1 we have p1 = p(G/Ui) ≤ p and p2 = p(G/U i) ≤ p since the minimum
cut (Ui, U i) does not cross with any other minimum cut in G. For ni ≥ 2 and pi ≤ p

(i = 1, 2), it is easy to verify that (pi+1)ni

2 −pi ≤ (p+1)ni

2 −p. Substituting in inequality

(3.1) and noting that n1 + n2 − 2 = n, we get Λ(G) ≤ (p+1)n
2 − p.

In the rest of the paper, we show that various structural parameters of a graph
can influence the partition number p(G). Thus by means of Lemma 3.2 we relate
the number of minimum cuts, Λ(G), with many seemingly unrelated properties of the
graph.
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Remark. Please note that if n ≥ 2 and x ≥ p, then (x+1)n
2 − x ≥ (p+1)n

2 − p. In
most of the theorems below, we show that p is bounded above by a function f(y) of

y, where y is some parameter of G, thereby showing that Λ(G) ≤ (f(y)+1)n
2 − f(y).

4. Radius and diameter. If G = (V,E) is a connected graph, the eccentricity
of a node v ∈ V is defined as e(v) = max distance(v, u) over all the nodes u ∈ V .
We define the radius of the graph G as r(G) = minv∈V e(v). A vertex v is a central
node if e(v) = r(G). We define the diameter of G as d(G) = maxv∈V e(v). (Note that
by “distance” we mean only the distances in the underlying unweighted graph. Thus
radius, eccentricity, and diameter have nothing to do with the weights.)

Theorem 4.1. If r is the radius of a weighted undirected graph G, then Λ(G) ≤
(r + 1)n− (2r + 1) (where n ≥ 2).

Proof. Suppose there are no crossing pairs of minimum cuts in G. It follows by
Lemma 2.13 that Λ(G) ≤ 2n − 3. Since the radius is at least 1, it is easy to verify
that Λ(G) ≤ (r + 1)n − (2r + 1) in this case. Otherwise, by Lemma 2.9 there exists
a circular partition C = (U0, U1, . . . , Up−1) for G, where p = p(G) ≥ 4. Let x ∈ Ui

be a central node of G. Let y ∈ Ui+� p
2 � mod p. Clearly distance(x, y) ≥ �p

2�. That is,
r ≥ �p

2� or p ≤ 2r + 1. Now, by Lemma 3.2 we get Λ(G) ≤ (r + 1)n− (2r + 1).
We note that the bound given by the above theorem can be tight. For example,

consider C2n+1, the cycle on 2n + 1 nodes. Clearly the radius of C2n+1 is n, and the
number of minimum cuts =

(
2n+1

2

)
= (n + 1)(2n + 1) − (2n + 1).

Observe that similar arguments as given for the case of the radius also hold well
for the diameter. Thus,

Λ(G) ≤ (d + 1)n− (2d + 1).

This can also be verified from Λ(G) ≤ (r + 1)n − (2r + 1) ≤ (d + 1)n − (2d + 1) by
noting that d ≥ r and n ≥ 2.

5. Universal node. An interesting special case of Theorem 4.1 occurs when
radius(G) = 1. Then, there exists a node which is adjacent to every other node of
the graph. (Such a node is called a universal node.) Thus, if there is a universal node
in the graph, then Λ(G) ≤ 2n − 3 by Theorem 4.1. In fact, a stronger statement is
true.

Theorem 5.1. If there is a universal node u in G, then there cannot be any
crossing pairs of minimum cuts in G.

Proof. If there is a crossing pair of minimum cuts, then by Lemma 2.9 there is
a circular partition C = (U0, U1, . . . , Uk−1) (k ≥ 4). Without loss of generality let
u ∈ U0. Clearly u cannot be adjacent to any node in U2, by the definition of circular
partition, contradicting the assumption that u is a universal node.

Note that in a complete graph, Kn, every node is a universal node. Thus, there
are no crossing pairs of minimum cuts in a clique. Below, we show a way to assign
weights to the edges of Kn such that the number of minimum cuts Λ(Kn) = 2n− 3,
thus illustrating that the bound of Lemma 2.13 is tight. Moreover, since the radius
of a clique is 1, this is a tight example for Theorem 4.1 too. Since a complete graph
is a chordal graph, the example below also illustrates the tightness of Theorem 7.2.

Theorem 5.2. For any n ≥ 2 and λ > 0, there exists a weighted complete graph
Kn such that λ(Kn) = λ and Λ(Kn) = 2n− 3. Moreover, every node x of Kn defines
a minimum cut ({x}, {x}) of Kn.

Proof. For n = 2, it is trivial. For n = 3, let K3 be the triangle with each
edge having weight λ

2 . Clearly Λ(K3) = 2 · 3 − 3 = 3. Also, note that every node x
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in K3 defines a minimum cut ({x}, {x}). Now inductively assume that there exists
a weighted complete graph on n − 1 nodes Kn−1 (n ≥ 4) such that λ(Kn−1) = λ,
Λ(Kn−1) = 2(n − 1) − 3 = 2n − 5, and every node x of Kn−1 defines a minimum
cut ({x}, {x}) in Kn−1. We show how to construct a weighted complete graph Kn

from Kn−1 such that λ(Kn) = λ, Λ(Kn) = 2n − 3, and every node x of Kn defines a
minimum cut ({x}, {x}) in Kn.

Let u be any node of Kn−1. We remove u from Kn−1 (along with the edges
incident on it) and then add two other nodes u′, u′′ in its place. From each node
y in Kn−1 (y �= u), we add the edges (y, u′) as well as (y, u′′) to the new nodes

and assign weights w(y, u′) = w(y, u′′) = w(y,u)
2 . We also add the edge (u′, u′′) with

w(u′, u′′) = λ
2 .

It is easy to see that the new graph Kn is a complete graph. Let S = {u′, u′′}.
Since ({u}, {u}) is a minimum cut of Kn−1, w(S, S) = λ(Kn−1) = λ. We claim
that λ(Kn) = λ. If not, there exists a cut (A,A) in Kn such that w(A,A) < λ. If
both the nodes of S = {u′, u′′} are present on the same side of the cut (A,A), then
the corresponding cut in Kn−1 obtained by contracting S will also have weight < λ,
contradicting the assumption that λ(Kn−1) = λ. Therefore, without loss of generality,
we can assume that u′ ∈ A and u′′ ∈ A. Then clearly (u′, u′′) ∈ E(A,A). Also, for
each y in Kn (y �= u′ and y �= u′′), exactly one of the edges (u′, y) or (u′′, y) belongs to

E(A,A). Now recall that w(y, u′) = w(y, u′′) = w(y,u)
2 and

∑
y �=u w(y, u) = λ in Kn−1.

So we have w(A,A) ≥ w(u′, u′′) + 1
2

∑
y �=u′,u′′ (w(y, u′) + w(y, u′′)) = λ

2 + λ
2 = λ,

which is a contradiction to the assumption that w(A,A) < λ. Hence, λ(Kn) = λ
and (S, S) is a minimum cut of Kn. Also, since Kn is a clique, by Theorem 5.1 no
minimum cut (A,A) of Kn crosses with (S, S). By Lemma 2.12 we have Λ(Kn) =
Λ(Kn/S) + Λ(Kn/S) − 1. But Kn/S = Kn−1 and Kn/S = K3. Thus we have
Λ(Kn) = 2n − 5 + 3 − 1 = 2n − 3. Also it is easy to verify that every node x of Kn

defines a minimum cut ({x}, {x}) of Kn.

6. Maximum and minimum degree. The maximum degree ∆(G) (when it is
reasonably high) can also constrain the number of minimum cuts Λ(G).

Theorem 6.1. If ∆ is the maximum degree of a weighted undirected graph G,

then Λ(G) ≤ (n−∆+3)n
2 − (n− ∆ + 2), where n ≥ 2.

Proof. Suppose there are no crossing pairs of minimum cuts in G; then by Lem-

ma 2.13, Λ(G) ≤ 2n − 3 ≤ (n−∆+3)n
2 − (n − ∆ + 2), which will be true if 0 ≤

n2 − (∆ + 3)n + (2∆ + 2) or 0 ≤ (n − ∆ − 1)(n − 2), which is true since n ≥ 2 and
∆ ≤ n−1. Now, if there is a crossing pair of minimum cuts in G, then by Lemma 2.9
there is a circular partition C = (U0, U1, . . . , Up−1) (p = p(G) ≥ 4). Without loss of
generality, let the maximum degree node u ∈ U1. Then, |U0 ∪U1 ∪U2| ≥ ∆ + 1 since
every neighbor of u must be in U0, U1, or U2. Thus, p ≤ 3 + (n−∆− 1) = n−∆ + 2
since each Ui of the circular partition must contain at least one node. By Lemma 3.2,

Λ(G) ≤ (n−∆+3)n
2 − (n− ∆ + 2).

Interestingly, the minimum degree of the graph can also control the number of
minimum cuts.

Theorem 6.2. If δ is the minimum degree of a weighted undirected graph G,
then Λ(G) ≤ ( 3n

2(δ+1) + 1.5)n− ( 3n
δ+1 + 2), where n ≥ 2.

Proof. If there are no crossing pairs of minimum cuts in G, it can be easily verified
that Λ(G) ≤ 2n − 3 ≤ ( 3n

2(δ+1) + 1.5)n − ( 3n
δ+1 + 2) for n ≥ 2. Otherwise consider a

circular partition C = (U0, U1, . . . , Up−1) (p = p(G) ≥ 4). Group the subsets in C into
�p

3� triplets (U3i, U3i+1, U3i+2) for 0 ≤ i ≤ �p
3�−1. |U3i|+|U3i+1|+|U3i+2| ≥ δ+1 since
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each neighbor of a node u ∈ U3i+1 must be in one of the three sets in the corresponding
triplet. Thus, �p

3�(δ + 1) ≤ n, and the result follows by Lemma 3.2.

7. Chordality. Recall that the chordality of a graph is the length of the longest
induced cycle in the graph. We provide an upper bound for Λ(G) in terms of chordality
in the following theorem. Its tightness is established in Theorem 9.1.

Theorem 7.1. If G is a weighted undirected graph with chordality k, then Λ(G) ≤
(k+1)n

2 − k, where n ≥ 2.
Proof. If there are no crossing pairs of minimum cuts in G, then by Lemma 2.13,

Λ(G) ≤ 2n− 3 ≤ (k+1)n
2 − k, since k is at least 3 by definition and n ≥ 2. Otherwise,

consider a circular partition C for G such that p(C) = p(G). If p(C) > k, clearly there
is an induced cycle in G with length > k, contradicting the k-chordality of G. It

follows that p(G) ≤ k. Therefore, by Lemma 3.2, Λ(G) ≤ (k+1)n
2 − k.

Theorem 7.2. If G is a weighted chordal graph, then Λ(G) ≤ 2n − 3, where
n ≥ 2. Moreover, there are no crossing pairs of minimum cuts in G. Also, there
exists a weighted chordal graph G, for every n ≥ 2, such that Λ(G) = 2n− 3.

Proof. Since for chordal graphs k = 3 (by definition), Λ(G) ≤ 2n− 3 follows from
Theorem 7.1. If there is a crossing pair of minimum cuts in G, then there is a circular
partition C for G with p(C) ≥ 4 by Lemma 2.9. This immediately implies an induced
cycle of length ≥ 4, contradicting the fact that G is chordal. Finally, since complete
graphs are chordal graphs, the construction of Theorem 5.2 establishes the tightness
of this bound.

There are some interesting special classes of graphs which can be shown to have
low chordality value. We list below a few results which immeditately follow from
Theorem 7.1.

Cocomparability graphs consist of graphs whose complements are comparability
graphs. See [17] for the definition of a comparability graph. It can be shown that the
chordality of cocomparability graphs is at most four; see, for example, [16]. Thus by
Theorem 7.1 we have the following theorem.

Theorem 7.3. If G is a cocomparability graph on n vertices with positive edge
weights, Λ(G) ≤ 2.5n− 4.

The class of weakly chordal graphs was introduced by Hayward in [19]. G is
defined as a weakly chordal graph if and only if neither G nor the complement of G
contains a chordless cycle of length at least 5. It follows from this definition that the
chordality of weakly chordal graphs is at most 4. The class of weakly chordal graphs
is quite a large one, as it contains the classes of cochordal graphs, chordal bipartite
graphs, permutation graphs, trapezoid graphs, tolerance graphs, 2-threshold graphs,
and others. Applying Theorem 7.1, we have the following result.

Theorem 7.4. If G is a weakly chordal graph on n vertices with positive weights
on its edges, then Λ(G) ≤ 2.5n− 4.

An independent set of three vertices such that each pair is joined by a path that
avoids the neighborhood of the third is called an asteroidal triple. A graph is AT-free
if it contains no asteroidal triples. AT-free graphs provide a common generalization
of interval, permutation, trapezoid, and cocomparability graphs.

Theorem 7.5. If G is an AT-free graph on n nodes with positive weights on the
edges, then Λ(G) ≤ 3n− 5.

Proof. In view of Theorem 7.1, we just have to show that an AT-free graph doesn’t
contain a chordless cycle of length at least 6. Suppose it contains a chordless cycle of
length 6 or more. Then clearly we can pick three points from this cycle such that they
form an independent set and any two of them has a path between them, which avoids
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the neighborhood of the third. But this is not possible since the graph is assumed to
be AT-free.

In fact there are many more special classes of graphs with low chordality value.
The interested reader is referred to [10].

8. The stability number. The stability number α is defined as the size of the
maximum independent set in the graph.

Theorem 8.1.

Λ(G) ≤ (α + 1)n− (2α + 1).

Proof. Since α is at least 1, if there is no crossing pair of minimum cuts in G,
the theorem is clearly true. Otherwise it is easy to see that the partition number
p ≤ 2α + 1.

9. A tight construction. We establish the tightness of Theorem 7.1 and Lem-
ma 3.2 by the following construction.

Theorem 9.1. For each k ≥ 3 and λ > 0, there exists an infinite family G of
weighted undirected k-chordal graphs such that for each graph Gn ∈ G with n nodes (n

being an integer of the form k+ q(k−2) for q = 0, 1, . . .), Λ(Gn) = (k+1)n
2 −k, weight

of the minimum cut = λ, and p(Gn) = k. Moreover, every node u of Gn defines a
minimum cut ({u}, {u}).

Proof. When k = 3, the family of cliques constructed in Theorem 5.2 has the
desired properties; i.e., λ(Kn) = λ, Λ(Kn) = 2n− 3, p(Kn) = 3, and every node x of
Kn defines a minimum cut ({x}, {x}). In the rest of the proof we assume that k ≥ 4.
First note that Gk = Ck and that the cycle on k nodes with each edge of weight λ

2 is a

k-chordal graph with the desired properties, i.e., λ(Ck) = λ, Λ(Ck) =
(
k
2

)
= (k+1)k

2 −k,
and p(Ck) = k. Also every node x ∈ Ck defines a minimum cut.

Now we show how to inductively construct the desired family. Let Gn = (V,E) be

a k-chordal graph on n nodes such that Λ(Gn) = (k+1)n
2 −k, p(Gn) = k, and λ(Gn) =

λ. Also assume that each node x in Gn defines a minimum cut. We describe how to
construct a k-chordal graph Gn′ = (V ′, E′) from Gn, where |V ′| = n′ = n+k−2, such

that Λ(Gn′) = (k+1)n′

2 − k, λ(Gn′) = λ, p(Gn′) = k, and every node of Gn′ defines a
minimum cut, thereby proving the existence of the desired family.

Construction of Gn′ from Gn. Let u be any node in Gn. Then, let V ′ = (V −
{u}) ∪ P , where P = {y1, y2, . . . , yk−1} are not already present in V . Let N(u) =
{z1, z2, . . . , zl} be the neighbors of u in Gn. Let E′ = (E − {(u, zi) : 1 ≤ i ≤
l}) ∪ {(y1, zi) : 1 ≤ i ≤ l} ∪ {(yk−1, zi) : 1 ≤ i ≤ l} ∪ {(yj , yj+1) : 1 ≤ j ≤ k − 2},
where the weights w(zi, y1) = w(zi, yk−1) = w(zi,u)

2 for 1 ≤ i ≤ l and w(yj , yj+1) = λ
2

for 1 ≤ j ≤ k − 2. Thus, to get Gn′ , we remove u from Gn along with the edges
incident on it and add a path (y1, y2, . . . , yk−1) with each edge of weight λ

2 . Also each
neighbor zi of u in Gn is now connected to y1 and yk−1. Moreover, the weight of
(zi, y1) and (zi, yk−1) will be assigned half the weight of the edge (zi, u) in Gn. It
may be noted that the contracted graphs Gn′/P = Gn and Gn′/P = Ck with each
edge having weight λ

2 .

Claim 9.2. Let (S, S) be a minimum cut of Gn′ which crosses with the cut (P, P ),
where P = {y1, y2, . . . , yk−1}. Then, exactly one of the two edges (zi, y1) or (zi, yk−1)
( 1 ≤ i ≤ l) will belong to E(S, S). (Recall that {z1, z2, . . . , zl} are the nodes in Gn′

which correspond to the neighbors of u in Gn.)
Proof. First, we claim that both the nodes y1 and yk−1 cannot be on the same

side of the minimum cut (S, S). Suppose for example, {y1, yk−1} ⊆ S. Because all
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the edges from P to P are incident on either y1 or yk−1, E(S ∩ P, S ∩ P ) = ∅. (Note
that S ∩P and S ∩P will be nonempty since (S, S) is assumed to cross with (P, P ).)
Therefore the induced subgraph on S will be disconnected, which is a contradiction
of Lemma 2.1 since (S, S) is assumed to be a minimum cut. Now without loss of
generality assume that y1 ∈ S and yk−1 ∈ S. Then clearly one of the two edges
(zi, y1) or (zi, yk−1) (since both these edges exist by construction) will belong to
E(S, S).

Claim 9.3. λ(Gn′) = λ(Gn) = λ and (P, P ) is a minimum cut of Gn′ .
Proof. First note that the cut (P, P ) in Gn′ has weight w(P, P ) = λ. This is

easily seen from the fact that if we contract P , replacing the set P with the node
u, we will get Gn (i.e., Gn′/P = Gn), and the cut (P, P ) in Gn′ will correspond
to the single vertex minimum cut ({u}, {u}) in Gn. Now we will show that every
cut in Gn′ has weight at least λ, thereby establishing that λ(Gn′) = λ and (P, P )
is a minimum cut of Gn′ . Suppose λ(Gn′) < λ. Then let (S, S) be a minimum
cut of Gn′ . If S (or S) is a subset of P or P , then one of the contracted graphs
Gn′/P = Gn or Gn′/P = Ck will contain a corresponding cut with the same value,
which clearly will be a contradiction since λ(Gn) = λ and λ(Ck) = λ. Thus by
Lemma 2.3, (S, S) must cross with (P, P ) in Gn′ , which means S ∩ P, S ∩ P , S ∩ P ,
and S ∩ P are nonempty. Now, by Claim 9.2, exactly one of the two edges (zi, y1)
or (zi, yk−1) (1 ≤ i ≤ l) will belong to E(S, S). Recall that w(zi, y1) = w(zi, yk−1)

and
∑i=l

i=1 w(zi, y1) +
∑i=l

i=1 w(zi, yk−1) = w({u}, {u}) = λ(Gn) = λ. Therefore, the
total contribution to the weight of (S, S) due to the edges of the form (yj , zi) (j =
1, k − 1, and 1 ≤ i ≤ l) is λ

2 . Also, since each edge in the path defined by the

nodes in P has weight λ
2 , it is clear that w(S ∩ P, S ∩ P ) ≥ λ

2 . Thus, considering

both contributions, we infer that w(S, S) ≥ λ, contradicting the assumption that
w(S, S) < λ. So we have established that λ(Gn′) = λ, and therefore (P, P ) is a
minimum cut of Gn′ .

Claim 9.4. No minimum cut (S, S) of Gn′ crosses with the minimum cut (P, P )

and Λ(Gn′) = (k+1)n′

2 − k.

Proof. Suppose a minimum cut (S, S) crosses with the minimum cut (P, P ) in
Gn′ . Then by Claim 9.2, exactly one of the two edges (zi, y1) or (zi, yk−1) (1 ≤ i ≤ l)
will belong to E(S, S). Clearly both (zi, y1) and (zi, yk−1) are in E(P, P ). Thus
E(S, S)∩E(P, P ) �= ∅, contradicting Lemma 2.5. Therefore we infer that no minimum
cut (S, S) of Gn′ can cross with (P, P ). Now by applying Lemma 2.12 and noting
that n′ = n + k − 2, we have

Λ(Gn′) = Λ(Gn) + Λ(Ck) − 1

=
(k + 1)n

2
− k +

k(k − 1)

2
− 1

=
(k + 1)(n + k − 2)

2
− k

=
(k + 1)n′

2
− k

Claim 9.5. Each node x ∈ V ′ defines a minimum cut ({x}, {x}) of Gn′ .
Proof. It is easy to check that the sum of weights on edges incident on the

nodes of P has not changed from what it was in Gn. Also, it is clear that for 2 ≤
i ≤ k − 2, w({yi}, {yi}) = λ. Finally w({y1}, {y1}) = w(y1, y2) +

∑i=l
i=1 w(y1, zi)

= λ
2 + w({u},{u})

2 = λ
2 + λ

2 = λ. The same argument also holds for yk−1.
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Claim 9.6. Gn′ is k-chordal.
Proof. Suppose there is an induced cycle C of length > k in Gn′ . We consider

two cases, and show contradictions in both cases.
Case 1. C contains a node yi from P other than y1 or yk−1. In this case, clearly

C also must contain the nodes y1 and yk−1. Let zi be the neighbor of y1 in C from P .
Then zi must also be the neighbor of yk−1 in C, since otherwise the edge (zi, yk−1)
will form a chord for C. (Note that this edge exists by construction of Gn′ .) Thus C
will be (zi, y1, y2, . . . , yk−1, zi), a cycle of length k, contradicting the assumption that
|C| > k.

Case 2. C does not contain any node yi from P other than y1 or yk−1. In this
case clearly C is an (induced) subgraph of G[P

⋃
{y1, yk−1}]. We claim that C must

contain both the nodes y1 and yk−1. Otherwise, if, for example, C does not contain
y1, |C| > k cannot be true, since the structure of G[P

⋃
{yk−1}] is the same as that

of Gn (except for the weights) and Gn is assumed to be k-chordal. Thus we infer
that {y1, yk−1} ⊂ C. Now let zi and zj be the neighbors of y1 in the cycle C. (Note
that zi �= yk−1 and zj �= yk−1 since y1 and yk−1 are not adjacent in Gn′ .) Then zi
and zj also must be the neighbors of yk−1, in C. Otherwise, for example, if zi is not
a neighbor of yk−1 in C, clearly the edge (zi, yk−1) (which exists by construction)
will form a chord for C, contradicting the fact that C is a chordless cycle. Now if zi
and zj are the neighbors of both y1 and yk−1 in C, clearly C = (y1, zi, yk−1, zj , y1),
a cycle of length 4, contradicting the assumption that |C| > k, since k ≥ 4 by
assumption.

Claim 9.7. p(Gn′) = k.
Proof. By Claim 9.6, the chordality of Gn′ is k. Since the partition number is

upper-bounded by the chordality (see the proof of Theorem 7.1), we have p(Gn′) ≤ k.
Now, since by Claim 9.4, the minimum cut (P, P ) does not cross with any other
minimum cut in Gn′ , by applying Lemma 3.1 and the induction assumption that
p(Gn) = k, we get k = p(Gn) = p(Gn′/P ) ≤ p(Gn′) ≤ k. Therefore, it follows that
p(Gn′) = k.

10. Girth and minimum degree. In this section we give an upper bound for
Λ(G) in terms of the girth and minimum degree in the case of unweighted graphs. The
following classical results are not very difficult to prove.

Lemma 10.1. If (S, S) is a minimum cut of an unweighted undirected graph G,
then |S| = 1 or |S| ≥ δ, where δ is the minimum degree of G.

Lemma 10.2 (see Harary [18]). If δ is the minimum degree and λ(G) = λ is the
size of a minimum cut (i.e., edge connectivity) in an unweighted undirected graph G,
then δ ≥ λ.

Lemma 10.3. Let (X,X) be a minimum cut of an unweighted undirected graph
G with girth g and minimum degree δ ≥ 3. Then |X| = 1 or |X| ≥ g.

Proof. Suppose |X| > 1. If the induced subgraph G[X] on X is acyclic, then its
average degree dx < 2. Then clearly |E(X,X)| ≥ (δ − dx)|X| > |X|, since δ ≥ 3.
By Lemma 10.1, |X| ≥ δ. Thus |E(X,X)| > δ and this is a contradiction in view of
Lemma 10.2, since (X,X) is a minimum cut. Thus, G[X] contains a cycle. Clearly the
cycle contains at least g nodes since g is the girth of G. It follows that |X| ≥ g.

The following is a recent result from Alon, Hoory, and Linial [2]. (The reader
may recall that the average degree of a graph is defined as the sum of degrees of the
vertices divided by the total number of vertices in the graph.)

Lemma 10.4 (see [2]). The number of vertices n in a graph of girth g and average
degree at least d ≥ 2 satisfies n ≥ N(d, g), where
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N(d, 2r + 1) = 1 + d

r−1∑
i=0

(d− 1)i,

N(d, 2r) = 2

r−1∑
i=0

(d− 1)i

for integer r ≥ 1.

Remark. For d > 2, N(d, g) ≥ 2(d− 1)�
g−1
2 � − 2.

Lemma 10.5. Let G(V,E) be an unweighted undirected graph with girth g and
minimum degree δ ≥ 3. If (X,X) is a minimum cut of G, then either |X| = 1 or
|X| > e−2N(δ, g), where N(δ, g) is as defined in Lemma 10.4.

Proof. Suppose that (X,X) is a minimum cut and |X| > 1. We need to show that
|X| > e−2N(δ, g). Note that e−2N(δ, 3) = e−2(δ+1) < δ and e−2N(δ, 4) = e−22δ < δ.
Therefore in view of Lemma 10.1, the present lemma is true for g = 3 and g = 4.
Thus we can assume that g ≥ 5.

Case 1. g = 2r + 1. Note that since g ≥ 5, r ≥ 2. Assume for contradiction that
|X| ≤ e−2N(δ, 2r + 1). We claim that the average degree dx of the induced subgraph
G[X] on X is less than

(
δ − δ−1

r

)
. Suppose not. Then dx ≥

(
δ − δ−1

r

)
. Note that

since δ ≥ 3 and r ≥ 2, dx ≥ 2. Also note that G[X] is not acyclic (since dx ≥ 2) and
its girth is at least g = 2r + 1. Thus, Lemma 10.4 is applicable and we have

|X| ≥ N

(
δ − δ − 1

r
, 2r + 1

)
= 1 +

(
δ − δ − 1

r

) r−1∑
i=0

(
δ − δ − 1

r
− 1

)i

> 1 +

(
δ − δ

r

) r−1∑
i=0

(
δ − 1 − δ − 1

r

)i

> e−2 + δ

(
1 − 1

r

) r−1∑
i=0

(δ − 1)
i

(
1 − 1

r

)i

> e−2 +

(
1 − 1

r

)r

δ

r−1∑
i=0

(δ − 1)
i

≥ e−2N (δ, 2r + 1) ,

which contradicts the assumption that |X| ≤ e−2N(δ, 2r+1). (Note that the final step
follows from the inequality (1 − x) ≥ e−

x
1−x for x < 1. Thus (1 − 1

r )r ≥ e−
r

r−1 ≥ e−2

since r ≥ 2.)

Thus we infer that dx < δ − δ−1
r . It follows that |E(X,X)| > δ−1

r |X|. By

Lemma 10.3 we have |X| ≥ g and thus |E(X,X)| > (δ−1)(2r+1)
r > δ, which is a

contradiction in view of Lemma 10.2 since (X,X) is a minimum cut. We infer that
|X| > e−2N(δ, 2r + 1).

Case 2. g = 2r. Since g ≥ 5, r ≥ 3. Assume for contradiction that |X| ≤
e−2N(δ, 2r). We claim that the average degree dx of the induced subgraph G[X] on
X is less than δ− δ−1

r−1 . Suppose not. Then dx ≥ δ− δ−1
r−1 ≥ 2 since δ, r ≥ 3. Also G[X]

is not acyclic (since dx ≥ 2), and its girth is at least g = 2r. By applying Lemma 10.4,
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we get

|X| ≥ N

(
δ − δ − 1

r − 1
, 2r

)
= 2

r−1∑
i=0

(
δ − δ − 1

r − 1
− 1

)i

= 2

r−1∑
i=0

(δ − 1)
i

(
1 − 1

r − 1

)i

> 2

(
1 − 1

r − 1

)r−1 r−1∑
i=0

(δ − 1)
i

≥ e−2N (δ, 2r) ,

which is a contradiction to the assumption that |X| ≤ e−2N(δ, 2r). We infer that
dx < δ − δ−1

r−1 . It follows that |E(X,X)| > δ−1
r−1 |X|. Applying Lemma 10.3, we get

|E(X,X)| > δ−1
r−12r > δ, since δ ≥ 3. This is a contradiction in view of Lemma 10.2,

since (X,X) is a minimum cut. We conclude that |X| > e−2N(δ, 2r).

Theorem 10.6. If G is an unweighted undirected graph with minimum degree δ
(at least 3) and girth g, then Λ(G) < ( n

x+1 + 1)n− ( 2n
x+1 + 1), where x = e−2N(δ, g)

with N(δ, g) ≥ 2 (δ − 1)
� g−2

2 � − 2, is as defined in Lemma 10.4.

Proof. Suppose there is a circular partition C = (U0, U1, . . . , Up−1) for G. By
Lemma 10.5, |Ui| = 1 or |Ui| > x. If |Ui| = 1, then we claim that |Ui−1 mod p| > x
and |Ui+1 mod p| > x. This is because if |Ui| = 1 (i.e., (Ui, U i) defines a single-node
minimum cut), then the size of the minimum cut λ = δ. Now by the definition of
circular partition, |E(Ui+1 mod p, Ui)| = |E(Ui−1 mod p, Ui)| = λ

2 = δ
2 > 1, since δ ≥ 3.

Thus, |Ui−1 mod p| > 1 and |Ui+1 mod p| > 1 since G is an unweighted simple graph
and it follows from Lemma 10.5 that |Ui−1 mod p| > x and |Ui+1 mod p| > x. Now,
for each 0 ≤ i ≤ �p

2� − 1, |U2i

⋃
U2i+1| > x + 1. Therefore, �p

2�(x + 1) < n, and so
p < 2n

x+1 + 1 and the theorem follows by Lemma 3.2.

We don’t know whether the bound given by Theorem 10.6 is tight. But in view
of the following well-known conjecture,3 it is not too bad.

Conjecture 10.7. There exists a constant c such that for all integers g, δ ≥ 3,
there is a graph G(g, δ) of minimum degree at least δ and girth at least g whose order

(number of vertices) is at most c(δ − 1)�
g−1
2 �.

Let x = c(δ−1)�
g−1
2 �. If Conjecture 10.7 is true, let G1, G2, . . . , Gk be k copies of

G(g, δ) for k ≥ g. Now select a representative node from each of these copies. Let xi

be the representative node from Gi. Now connect together G1, G2, . . . , Gk by a cycle
of length k passing through the representative nodes x1, x2, . . . , xk. Let the weight of
the cycle edges (xi, xi+1) for i = 1, . . . , k − 1 be λ

2 , where λ is the edge connectivity
of Gi. Let this new graph be called G′. Clearly the number of minimum cuts in the

new graph is at least
(
k
2

)
. Thus if n = kx is the total number of nodes, λ(G′) = Ω(n

2

x2 )

while the upper bound given by Theorem 10.6 is O(n
2

x ).

3See, for example, [9, p. 164]. Also, see [11] for a brief history of the work toward constructing
such families of graphs—the so-called high girth graphs—as proposed by the conjecture. The current

best result is O((δ − 1)
3g
4 ), achieved, for example, by the Ramanujan graphs of [24].
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11. Spectral bounds for Λ(G).

11.1. A bound in terms of λ
µ
. Let X and Y be two disjoint subsets of V .

Let x = |X|
n and y = |Y |

n , and let ρ be the distance in G between X and Y ; i.e., ρ =
minu∈X,v∈Y distance(u, v). Also let EX denote the set of edges with both end points
in the subset X. Let µ denote the Fiedler value, i.e., the second smallest eigenvalue of
the Laplacian matrix of the graph. (See the introduction for the definition of Fiedler
value.) Alon and Millman [3] proved the following result.

Lemma 11.1. µn ≤ 1
ρ2 ( 1

x + 1
y )(|E| − |EX | − |EY |).

Let (X,X) be a cut of G. Then, the following corollary to the above lemma is
useful for us.

Corollary 11.2. If (X,X) is any cut in G, then µ ≤ ( 1
|X| + 1

|X| )|E(X,X)|,
where E(X,X) is the set of edges between the disjoint sets X and X.

Lemma 11.3. If µ is the second smallest eigenvalue of the Laplacian matrix L
of an unweighted undirected graph G, then for any minimum cut (S, S), |S| > n

2 or

|S| ≤ � 2λ
µ �, where λ = λ(G) is the edge connectivity of G.

Proof. Suppose |S| ≤ n
2 . By Corollary 11.2, µ ≤ ( 1

|S| + 1
n−|S| )|E(S, S)| ≤ 2λ

|S|
since (S, S) is a minimum cut. Since |S| is an integer, we have |S| ≤ � 2λ

µ �.
Corollary 11.4. � 2λ

µ � ≥ 1.

Proof. Let (S, S) be a minimum cut with |S| ≤ |S|. Thus |S| ≤ n
2 . So, by

Lemma 11.3, 1 ≤ |S| ≤ � 2λ
µ �.

Theorem 11.5. Let G be an unweighted undirected graph with λ(G) = λ and let
µ be the second smallest eigenvalue of the Laplacian matrix of G. If � 2λ

µ � < n
3 , then

Λ(G) ≤ (� 2λ
µ �+3)

2 n− (� 2λ
µ � + 2).

Proof. Let γ = � 2λ
µ �. Suppose there are no crossing pairs of minimum cuts

in G. Then by Lemma 2.13, Λ(G) ≤ 2n − 3 ≤ (γ+3)
2 n − (γ + 2), since γ ≥ 1

(by Corollary 11.4). Otherwise, by Lemma 2.9, there exists a circular partition
C = (U0, U1, . . . , Up−1) of G with p = p(G) ≥ 4. We claim that p ≤ γ + 2. Sup-
pose p > γ + 2. We will show a contradiction. Let Uj be the subset in C such that
|Uj | = maxi |Ui|. We will show first that |Ui| ≤ γ for all i ∈ {(j + 1) mod p,
(j + 2) mod p, . . . , (j + γ + 1) mod p}. If |Uj | ≤ γ, this is clearly true since
|Uj | = maxi |Ui| by assumption. Remembering that (Uj , U j) is a minimum cut,
by Lemma 11.3, if |Uj | > γ, then |Uj | > n

2 . Therefore, |V − Uj | < n
2 . Thus, for

i ∈ {(j + 1) mod p, (j + 2) mod p, . . . , (j + γ + 1) mod p}, |Ui| ≤ |V − Uj | < n
2 and

since (Ui, U i) is a minimum cut, by Lemma 11.3, |Ui| ≤ γ, as required.

Now let k be the smallest integer such that |
⋃j+k

i=j+1 Ui| > γ. (Note that γ + 1 ≥
k ≥ 2.) Let X =

⋃j+k
i=j+1 Ui. Note that since |X −Uj+k| ≤ γ and |Uj+k| ≤ γ, we have

|X| ≤ 2γ <
2n

3
.(11.1)

But (X,X) is a minimum cut by Lemma 2.8. Since |X| > γ, we have by Lemma 11.3
that |X| > n

2 . That is, |X| < n
2 . It follows from inequality (11.1) that γ < n

3 < |X| <
n
2 , which is again a contradiction by Lemma 11.3 since (X,X) is a minimum cut.
Thus we infer that p ≤ γ + 2 and hence by Lemma 3.2, the theorem follows. (Please

note that if n ≥ 2 and f ≥ p, then (f+1)n
2 − f ≥ (p+1)n

2 − p.)
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The above bound is interesting for certain ranges of λ and µ, for example, when
λ is relatively small and µ is not too small, say, not O( 1

n ). It may be noted that
restricting λ to be bounded above by a constant doesn’t imply that the value of µ
also will be small. In fact there are δ-regular graphs for which the value of µ can be
as high as Ω(

√
δ).

11.2. When µ is large. We observe that if µ is above a threshold value, then
all the minimum cuts are single-vertex cuts, i.e., cuts of the form ({x}, {x}), where x
is a node. This is captured in the following theorem.

Theorem 11.6. Let µ be the second smallest eigenvalue of the Laplacian L of
an unweighted undirected graph G. If µ > 1 + δ

n−δ , where δ is the minimum degree,
then all the minimum cuts in G are single-vertex minimum cuts.

Proof. If there is a minimum cut (S, S) with |S| ≤ |S| and |S| �= 1, then from
Lemma 10.1, we have |S| ≥ δ. By Corollary 11.2, µ ≤ ( 1

|S| + 1

|S| )λ. But this is a

contradiction when µ > 1 + δ
n−δ since λ ≤ δ by Lemma 10.2.

The threshold given by the above theorem is tight. For example, it can be verified
that for the graph C4, the cycle graph on four nodes, n = 4, δ = 2, and µ = 2. Thus
for C4, 1 + δ

n−δ = µ, but it has minimum cuts which are not single-vertex cuts. In
fact it is also possible to construct such examples with a larger number of nodes.
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Abstract. The band-, tree-, and clique-width are of primary importance in algorithmic graph
theory due to the fact that many problems that are NP-hard for general graphs can be solved in
polynomial time when restricted to graphs where one of these parameters is bounded. It is known that
for any fixed ∆ ≥ 3, all three parameters are unbounded for graphs with vertex degree at most ∆. In
this paper, we distinguish representative subclasses of graphs with bounded vertex degree that have
bounded band-, tree-, or clique-width. Our proofs are constructive and lead to efficient algorithms
for a variety of NP-hard graph problems when restricted to those classes.
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1. Introduction. The band-, tree-, and clique-width are of primary importance
in algorithmic graph theory due to the fact that many problems which are NP-hard for
general graphs can be solved in polynomial time when restricted to graphs where one
of these parameters is bounded. In fact, all problems expressible in monadic second-
order logic become polynomial time solvable when restricted to graphs of bounded
tree-width [7, 16], and all problems expressible in monadic second-order logic us-
ing quantifiers on vertices but not on edges become polynomial time solvable when
restricted to graphs of bounded clique-width [10, 11]. This includes, for example,
maximum clique, independent set, minimum dominating or independent dominating
set problems as well as k-colorability (for fixed k), maximum induced matching, in-
duced path, etc. Furthermore, graphs of bounded band-width are easily seen to be of
bounded tree- and clique-width (cf. Proposition 1 below) and the mentioned problems
are thus equally tractable.

It is known that for any fixed ∆ ≥ 3, all three parameters are unbounded for
graphs with vertex degree at most ∆. This is the case, for instance, for the so-
called walls which are planar graphs of maximum vertex degree 3 (cf. [16]) and have
arbitrarily large band-, tree-, and clique-width [9, 16].

The objective of the present paper is to distinguish subclasses of graphs of bounded
vertex degree that have bounded band-, tree-, or clique-width. To this end, we study
hereditary classes defined by forbidding large induced subgraphs. Two particular for-
bidden graphs play the critical role in our study. For integers i, j, k ≥ 0, these are the
two graphs Si,j,k and Ti,j,k depicted in Figure 1(a) and 1(b), respectively. (Note that
S0,j,k is a chordless path on j + k + 1 vertices and T0,0,0 is simply a triangle.) By S
we shall denote the class of graphs whose components are all of the form Si,j,k, and
by T the class of graphs whose components are all of the form Ti,j,k.
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Fig. 1. The graphs (a) Si,j,k and (b) Ti,j,k.

We prove that in connected graphs of bounded vertex degree that do not contain
Si1,j1,k1 and Ti2,j2,k2 (for arbitrary values of the indices) as induced subgraphs we can
find in polynomial time an induced path such that all vertices are within bounded
distance of this path. This implies, in particular, that for any hereditary class of
graphs X with bounded vertex degree that contains neither S nor T , the tree-width
and the clique-width are bounded by a constant. Under the assumption that P �= NP ,
this result is best possible for the classes of graphs defined by finitely many forbidden
induced subgraphs. This is a consequence of the following two facts: first, if a class
of graphs X defined by finitely many forbidden induced subgraphs contains S or T ,
then the independent dominating set problem is NP-hard in the class X [3], and
second, this problem is polynomially solvable for graphs with bounded tree-width or
clique-width. For the band-width, we discover some stronger conditions under which
this parameter is bounded. All our results are algorithmical in the sense that they
not only prove boundedness but also imply the existence of simple polynomial time
algorithms for the respective width problems.

The outline of our presentation is as follows. In the next section we provide
formal definitions and prove preliminary results. In section 3 we establish structural
properties of graphs of bounded vertex degree that do not contain Sk,k,k and Tk,k,k as
induced subgraphs. Section 4 contains our main results. In section 5 we illustrate the
results by applying them to asteroidal triple-free graphs (these include comparability,
permutation, and interval graphs) and chordal bipartite graphs.

2. Definitions and preliminary results. For standard graph-theoretical ter-
minology, the reader is referred to any of the classical textbooks on graph theory.
The set of vertices and set of edges of a graph G will be denoted by V (G) and E(G),
respectively. Given a vertex v ∈ V (G), NG(v) stands for the neighborhood of v in the
graph G, i.e., the set of vertices of G adjacent to v, and NG[v] stands for the closed
neighborhood of v, i.e. NG[v] = NG(v) ∪ {v}. For a subset of vertices U ⊆ V (G),
G − U is the subgraph of G obtained by deleting the vertices of U , NG(U) is the
neighborhood of U , i.e., the set of vertices of G outside U that have a neighbor in U ,
and NG[U ] is the closed neighborhood of U , i.e., NG[U ] = NG(U) ∪ U . A vertex v in
a graph G is a cutvertex if the number of connected components of G−{v} is strictly
greater than that of G. A block in G is a maximal connected induced subgraph
without cutvertices.

A graph G will be called H-free if G does not contain H as an induced subgraph.
The class of all graphs containing no induced subgraphs in a set M will be denoted

many (rauten@or.uni-bonn.de).



WIDTHS OF GRAPHS WITH BOUNDED VERTEX DEGREE 197

by Free(M). We shall write Freek(M) to denote the graphs with vertex degree at
most k in Free(M). It is well known that a class of graphs X is hereditary (i.e., closed
under deletion of vertices) if and only if X = Free(M) for a certain set M (possibly
infinite).

For a class of graphs Y, we denote by [Y]k the class of graphs G such that G−U
belongs to Y for a subset U ⊆ V (G) of cardinality at most k. Also, given a class of
graphs Y, [Y]B denotes the class of graphs whose blocks all belong to Y.

We now define the three width parameters that we consider in the paper. Let
L be an ordering of the vertices of a graph G; i.e., L is a bijection from V (G) to
{1, 2, . . . , |V (G)|}. The width of the ordering is defined as

max{|L(u) − L(v)| | uv ∈ E(G)}.

The band-width bw(G) of G [12] is the minimum integer k for which there exists an
ordering L of width k for G.

A tree decomposition [2, 5, 15, 16, 17, 18] of a graph G is a pair (T,W) where T
is a tree and W assigns a set Wt ⊆ V (G) to each vertex t of T such that

(i) V (G) =
⋃

t∈V (T ) Wt,

(ii) for every edge uv ∈ E(G), there is some t ∈ V (T ) such that u, v ∈ Wt, and
(iii) for every vertex u ∈ V (G), the set {t ∈ V (T ) | u ∈ Wt} induces a subtree

of T .
The width of a tree decomposition (T,W) is maxt∈V (T ) |Wt| − 1, and the tree-width
tw(G) of G is the minimum width of a tree decomposition of G.

Finally, the clique-width cw(G) [8] of a graph G is the minimum number of labels
needed to construct G using the following four operations:

(i) Create a new vertex v with label i (denoted i(v)).
(ii) Form the disjoint union of two labeled graphs G and H (denoted G⊕H).
(iii) Join all vertices with label i to all vertices with label j (i �= j, denoted by ηi,j).
(iv) Change the label of all vertices with label i to j (denoted by ρi→j).

Every graph can be defined by an algebraic expression using these four operations.
For instance, the cycle on five consecutive vertices a, b, c, d, and e can be defined as
follows:

η4,1(η4,3(4(e) ⊕ ρ4→3(ρ3→2(η4,3(4(d) ⊕ η3,2(3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))).

Such an expression is called a k-expression if it uses at most k different labels. Thus
the clique-width of G is the minimum k for which there exists a k-expression defin-
ing G.

After these definitions we proceed to some auxiliary results.
Proposition 1. Let G be a graph and U ⊆ V (G). Given an ordering of width k

of the vertices of G− U , one can construct in polynomial time
(i) a tree decomposition of G of width at most k + |U | and
(ii) a (k + 2 + |U |)-expression defining G.
Proof. Let n = |V (G) \ U |. Let L be the ordering of width k of the vertices of

G− U and let vi ∈ V (G) \ U be such that L(vi) = i for 1 ≤ i ≤ n.
Let T be such that V (T ) = V (G) \ U and

E(T ) = {vivi+1 | 1 ≤ i ≤ n− 1}.

For 1 ≤ i ≤ n, let

Wvi = U ∪ {vj | i ≤ j ≤ n, j − i ≤ k} .
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Now it is easy to check that (T,W) is a tree decomposition of G of width at most
k + |U | which implies (i).

To prove (ii) we describe a procedure to construct G using the four operations
described above and k + 2 + |U | different labels.

First, for all vertices u ∈ U , apply iu(u) such that iu �= iv for all u, v ∈ U with
u �= v. Next, for all edges uv ∈ E(G) with u, v ∈ U , apply ηiu,iv .

Let I be a set of (k + 1) different labels such that I ∩ {iu | u ∈ U} = ∅. Let i0 be
a label not in I ∪ {iu | u ∈ U}.

For r from 1 up to n, apply the following sequence of operations: Let is be the
label presently assigned to vertex vs with max{1, r − k} ≤ s ≤ r. Let

ir ∈ I \ {is | max{1, r − k} ≤ s ≤ r}.

Apply ir(vr). For all u ∈ NG(vr) ∩ U , apply ηir,iu . For all vs ∈ NG(vr) ∩ {v1, v2, . . . ,
vr−1}, apply ηir,is . Finally, apply ρir−k→i0 and proceed to r + 1.

It is obvious that this procedure constructs G using k + 2 + |U | different labels,
which completes the proof.

Corollary 1. If G is a graph and U ⊆ V (G), then
(i) tw(G) ≤ bw(G− U) + |U | and
(ii) cw(G) ≤ bw(G− U) + 2 + |U |.
Proposition 2. If the tree-width of graphs in a class Y is bounded by p, and

a tree decomposition of width at most p for any graph in Y can be constructed in
polynomial time, then one can construct in polynomial time a tree decomposition of
width at most p+k for any graph in [Y]k and a tree decomposition of width at most p
for any graph in [Y]B.

Proof. For the graphs in [Y]k, one can proceed as in the proof of Proposition 1.
Now let G ∈ [Y]B and let B1, B2, . . . , Bl be the blocks of G. Let (T (i),W(i)) be a
tree decomposition of Bi for 1 ≤ i ≤ l. We assume that all graphs G, T (1), T (2), . . . ,
T (l− 1), and T (l) are vertex disjoint. Let C be the set of cutvertices of G. For every
cutvertex u ∈ C and every block Bi such that u ∈ V (Bi), we fix an arbitrary vertex
t(u, i) ∈ V (T (i)) such that u ∈ W (i)t(u,i).

Let T be the tree such that V (T ) = C ∪ (
⋃l

i=1 V (T (i))),
⋃l

i=1 E(T (i)) ⊆ E(T ),
and E(T ) contains an edge ut(u, i) for every cutvertex u ∈ C and every block Bi such
that u ∈ V (Bi). Let Wt = W (i)t for all t ∈ V (T (i)), 1 ≤ i ≤ l, and let Wu = {u} for
all u ∈ B.

It is straightforward to verify that (T,W) is a tree decomposition of width at
most p of G, and thus the proof is completed.

Proposition 3. If the clique-width of graphs in a class Y is bounded by p, and a
p-expression for any graph in Y can be constructed in polynomial time, then one can
construct in polynomial time a (2k(p + 1) − 1)-expression for any graph in [Y]k and
a (p + 2)-expression for any graph in [Y]B.

Proof. To prove the result for graphs in [Y]k, it suffices to consider the case k = 1.
Let G ∈ [Y]1 and G−{v} ∈ Y. Given a p-expression F for G−{v}, we first construct
a 2p-expression F ′ for G − {v} in such a way that every labeled vertex l(u) in F
changes its label either to l′(u) or to l′′(u) in F ′ depending on whether or not it is
adjacent to v. Now we need only one additional label to obtain a (2p+ 1)-expression
for G from F ′. Thus, cw(G) ≤ 2cw(G−{v})+1, and the proposition holds for graphs
in [Y]k by induction.

To prove the result for graphs in [Y]B , consider a graph G ∈ [Y]B . By assumption,
the clique-width of every block of G is bounded by p. We show by induction on the
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number of blocks that cw(G) ≤ p + 2. Two additional labels needed to construct a
(p + 2)-expression for G will be denoted α and β. First, let G be a block and v be
an arbitrary vertex in G. Any p-expression F (G) defining G can trivially be modified
into a (p+1)-expression F ′

v(G) in which v is the only vertex labeled with α. We then
transform F ′

v(G) into a (p + 2)-expression Fv(G) by relabeling with β every vertex
different from v. Now let H be a graph with b > 1 blocks and let G be a block in H
with a single cutvertex v. By deleting from H all the vertices of G except v, we obtain
a graph with b− 1 blocks. Such a graph can be defined by a (p+ 2)-expression T due
to the inductive hypothesis. Assume the vertex v is created in T with label j. Then
substituting j(v) with ρα→j(Fv(G)) in T , we obtain a (p + 2)-expression defining H.
To see this, it is enough to notice that the label β is never renamed or used in any
η-operation in T by the inductive hypothesis. This completes the proof.

3. Properties of (Sk,k,k, Tk,k,k)-free graphs of bounded vertex degree.
In this section we establish a sequence of useful structural and algorithmical properties
of graphs that do not contain Sk,k,k and Tk,k,k as induced subgraphs and have bounded
vertex degree. Throughout this section we let k and ∆ be fixed positive integers.

Lemma 1. If G is an Sk,k,k-free and Tk,k,k-free graph of vertex degree at most ∆,
then G does not contain two vertex disjoint induced paths

P : x0x1 . . . x4∆k

and

Q : y0y1 . . . yk

such that y0x2∆k ∈ E(G) and all edges between vertices of P and vertices of Q are
incident to y0 (see Figure 2).

�

x0

� � . . . � �

x2∆k

� . . . � � �

x4∆k

� y0

�

�

...

� yk

Q

P

Fig. 2. P and Q.

Proof. For contradiction, we assume that two paths P and Q exist as in the
statement. If x2∆k is the only neighbor of y0 on P , then G is obviously not Sk,k,k-
free, which is a contradiction. Hence, for some 2 ≤ l ≤ ∆ − 1, let

NG(y0) ∩ V (P ) = {xi1 , xi2 , . . . , xil}

such that ij < ij+1 for each j = 1, . . . , l− 1. If ij+1 − ij ≥ 2k for some 1 ≤ j ≤ l− 1,
then the subgraph of G induced by the set

V (Q) ∪ {xij , xij+1, . . . , xij+(k−1)} ∪ {xij+1
, xij+1−1, . . . , xij+1−(k−1)}

is isomorphic to Sk,k,k, which is a contradiction. Hence ij+1 − ij < 2k for each
1 ≤ j ≤ l − 1. Since x2∆k ∈ NG(y0), this implies that

i1 > 2∆k − (∆ − 2)2k = 4k,

il < 2∆k + (∆ − 2)2k = 4∆k − 4k,
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and hence the subgraph induced by the set

V (Q) ∪ {xi1 , xi1−1, . . . , x0} ∪ {xil , xil+1, . . . , x4∆k}

contains either Sk,k,k or Tk,k,k as an induced subgraph. This contradiction completes
the proof.

Lemma 2. Let G be a connected (Sk,k,k, Tk,k,k)-free graph of vertex degree at
most ∆, and let

P : x0x1 . . . x∆k

be an induced path in G. Then the subgraph G−NG[V (P )] does not contain an induced
cycle

C : y1y2 . . . yly1

of length l ≥ 2(∆ − 1)(k + 1).
Proof. For contradiction, we assume that G − NG[V (P )] contains an induced

cycle C as in the statement. Since G is connected, we may consider a shortest path

Q : z0z1 . . . zr

connecting P to C such that z0 ∈ V (P ) and zr ∈ V (C). Note that r ≥ 2.
The vertex z1 has at most (∆− 1) neighbors in V (P ). These neighbors divide P

into at most ∆ edge-disjoint segments, one of which has length at least ∆k
∆ = k.

Without loss of generality, we assume that

NG(z1) ∩ {xi, xi+1, . . . , xi+k−1} = {xi}

for some 0 ≤ i ≤ ∆k − k.
If zr is the only neighbor of zr−1 in V (C), then G is obviously not Sk,k,k-free,

which is a contradiction. Therefore, we assume that zr−1 has at least two neighbors
in V (C). Clearly, zr−1 has at most (∆ − 1) neighbors in V (C). These neighbors
divide C into at least two and at most (∆ − 1) edge-disjoint segments, one of which

has length at least 2(∆−1)(k+1)
∆−1 = 2k + 2. Without loss of generality, we assume that

NG(zr−1) ∩ {yj , yj+1, . . . , yj+s} = {yj , yj+s}

for some 1 ≤ j ≤ 2(∆− 1)(k + 1)− s and some s ≥ 2k + 2. Note that yjyj+s ∈ E(G)
is possible (s = l − 1). Now the subgraph of G induced by the set (see Figure 3)

{z1, . . . , zr−1}∪{xi, xi+1, . . . , xi+k−1}∪{yj , yj+1, . . . , yj+k}∪{yj+s, yj+s−1, . . . , yj+s−k}

contains either Sk,k,k or Tk,k,k as an induced subgraph, which is a contradiction, and
the proof is completed.

Corollary 2. If G is a connected (Sk,k,k, Tk,k,k)-free graph of vertex degree at
most ∆, then there is a set U ⊆ V (G) of at most c1 = c1(k,∆) vertices such that
G−U contains no induced cycle of length at least 2(∆−1)(k+1). Furthermore, such
a set can be found in polynomial time.

Proof. Let c′1 = c′1(k,∆) = 1 +
∑∆k−1

i=0 (∆ − 1)i∆. If |V (G)| ≤ c′1, then let
U = V (G). If |V (G)| ≥ c′1 +1, then from the degree constraint we derive that for any
vertex u in the graph, there must exist a vertex v of distance ∆k from u. Therefore,
by considering the pairwise distances of the vertices of G, we can find in polynomial
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�

yj
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yj+s
C

�
zr−1

... Q
�

�

� z1

. . . . . .�

xi
P
. . .� � �

xi+k−1

Fig. 3. Parts of P , Q, and C.

time an induced path P of length ∆k. Since G has vertex degree at most ∆, the
set NG[V (P )] contains at most c′′1 = c′′1(k,∆) = (∆k + 1)(∆ − 1) + 1 vertices. Let
U = NG[V (P )]. By Lemma 2, the graph G − U contains no induced cycle of length
at least 2(∆ − 1)(k + 1). The desired result now follows with c1 = max{c′1, c′′1}.

Lemma 3. If G is a connected (Sk,k,k, Tk,k,k)-free graph of vertex degree at
most ∆, then G contains an induced path P such that for every vertex u ∈ V (G),

distG(u, V (P )) = min{distG(u, v) | v ∈ V (P )} ≤ 4∆k.

Moreover, such a path can be found in polynomial time.

Proof. A procedure that computes a path with the desired property can be roughly
described as follows:

(0) Find an arbitrary induced path P which is maximal under inclusion.
(1) Denote by l the length of P , and by x0x1 . . . xl the vertices of P . For each

vertex u ∈ V (G), compute distG(u, V (P )). If all these distances are at most
4∆k, then STOP: P is the path we sought for.

(2) Let u ∈ V (G) be a vertex of G with distG(u, V (P )) > 4∆k. If l ≤ 4∆k, then
a shortest path P ′ from u to P is longer than P . In this case, set P := P ′

and go to step (1).
(3) By considering the pairwise distance between u and the vertices of P , deter-

mine the set

D = {v ∈ V (P ) | distG(u, v) = distG(u, V (P ))}.

Up to symmetry, we let r be the smallest index such that xr ∈ D and r ≥
l − 2∆k + 1 (if there is no such r, define r to be the largest index such that
xr ∈ D and r ≤ 2∆k − 1). Let Q : u = y0y1 . . . ys = xr be a shortest path
connecting u to xr, where s = distG(u, V (P )) > 4∆k. Set

P := x2∆kx2∆k+1 . . . xrys−1ys−2 . . . y1u

and go to step (1).

Obviously, every step of the procedure can be implemented in polynomial time. Now
let us show that the loop (1)–(3) repeats at most |V (G)| times. First, notice that
since l > 4∆k in step (3),

D ∩ {x2∆k, x2∆k+1, . . . , xl−2∆k} = ∅;
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otherwise G would contain two vertex disjoint paths as described in Lemma 1, which
is a contradiction. Therefore,

D ⊆ {x0, x1, . . . , x2∆k−1} ∪ {xl, xl−1, . . . , xl−2∆k+1}.

Clearly, D �= ∅, and hence in step (3) of the procedure we find a new induced path of
length

r − 2∆k + s > l − 2∆k + 1 − 2∆k + 4∆k + 1 > l.

Summarizing, in both steps (2) and (3) we go to step (1) with a larger induced path.
Therefore, after at most |V (G)| loops the procedure terminates. This proves the
correctness of the procedure and a polynomial time bound.

4. Main results. We now proceed to our main results.
Theorem 1. If G is an Sk,k,k-free and Tk,k,k-free graph of vertex degree at

most ∆ that does not contain an induced cycle of length at least 2(∆−1)(k+1), then
the band-width of G is bounded by a constant c2 = c2(k,∆), and an ordering of the
vertices of G of width at most c2 can be determined in polynomial time.

Proof. Clearly, we can deal with different components of G separately. Hence we
may assume that G is connected.

By Lemma 3, we can find in polynomial time an induced path P : x0x1 . . . xl such
that distG(u, V (P )) ≤ 4∆k for every vertex u ∈ V (G).

We will now define a partition

V (G) =

l⋃
i=0

Vi

assigning every vertex of G to some vertex of the path P (see Figure 4). For each
i = 0, . . . , l, the set Vi will consist of the vertices assigned to xi ∈ V (P ).

�

�

�

�

�
x0

V0

�

�

�

�

�
x2

V2

�

�

�

�

�
xi

Vi

�

�

�

�

�
xl

Vl

. . . . . .

Fig. 4. The partition V (G) = V1 ∪ V2 ∪ . . . ∪ Vl.

Let u ∈ V (G). As in the proof of Lemma 3, we determine in polynomial time the
set

D(u) = {v ∈ V (P ) | distG(u, v) = distG(u, P )}.

Since G has vertex degree at most ∆ and distG(u, V (P )) ≤ 4∆k, we have

|D(u)| ≤ c′2 = c′2(k,∆) = 1 +

4∆k∑
ν=0

(∆ − 1)ν∆.

We choose an arbitrary vertex xi ∈ D(u) and assign u to xi, i.e., u ∈ Vi. The main
property to establish the boundedness of the band-width is expressed in the following
claim.
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Claim 1. If u ∈ Vi and v ∈ Vj for some 0 ≤ i < j ≤ l such that

j − i ≥ 2(∆ − 1)(k + 1) + 4(∆ − 1)(k + 1)c′2,

then uv /∈ E(G).
Proof of the claim. For contradiction, we assume that uv ∈ E(G).
Let xi′ be the vertex in D(u) with the maximum index; then

i′ − i ≤ 2(∆ − 1)(k + 1)c′2.

To show this, consider two consecutive vertices xs and xt in D(u), i.e., for each r ∈
{s+1, . . . , t−1}, xr /∈ D(u). Then t−s < 2(∆−1)(k+1), since otherwise the vertices
of two shortest paths connecting u to xs and xt, together with the vertices xs, . . . , xt,
would induce a graph containing a chordless cycle of length at least 2(∆ − 1)(k + 1).

Analogously, if xj′ is the vertex in D(v) with the minimum index, then

j − j′ ≤ 2(∆ − 1)(k + 1)c′2.

Consequently,

j′ − i′ ≥ j − i− 4(∆ − 1)(k + 1)c′2 ≥ 2(∆ − 1)(k + 1).

But now the vertices of two shortest paths connecting u and v, respectively, to
xi′ and xj′ , together with the vertices xi′ , xi′+1, . . . , xj′ , induce in G a graph contain-
ing a chordless cycle of length at least 2(∆− 1)(k + 1). This contradiction completes
the proof of the claim.

Since G has vertex degree at most ∆, by Lemma 3, we have |Vi| ≤ c′2 = c′2(k,∆)
for every 0 ≤ i ≤ l. Let v1v2 . . . vn be an ordering of the vertices of G in which u
comes before v whenever u ∈ Vs and v ∈ Vt with s < t. By the above claim, it is
obvious that vivj ∈ E(G) implies

|j − i| ≤ c2 = (2(∆ − 1)(k + 1) + 4(∆ − 1)(k + 1)c′2)c
′
2

and the proof is completed.
Whereas band-width is very sensitive to the deletion of a bounded number of

vertices from the graph (consider, e.g., the star K1,n−1), the tree-width and the clique-
width are not. Combining Proposition 1, Corollary 2, and Theorem 1, we obtain the
following corollary.

Corollary 3. If G is an Sk,k,k-free and Tk,k,k-free graph of vertex degree at
most ∆, then

(i) tw(G) ≤ c2 + c1 and
(ii) cw(G) ≤ c2 + 2 + c1.

Furthermore, a tree decomposition of G of width at most c2 + c1 and a (c2 + 2 + c1)-
expression of G can be found in polynomial time.

Note that given the conclusion (i) of Corollary 3, it follows from [1] or [14] that a
tree decomposition of small width can be found efficiently. Nevertheless, the procedure
we proposed in the proof of Proposition 1 is much simpler.

With the help of Propositions 2 and 3, a stronger result can be derived from
Corollary 3 for the tree- and clique-width of graphs with bounded vertex degree.
Recall that S denotes the class of graphs whose components are all of the form Si,j,k,
and T the class of graphs whose components are all of the form Ti,j,k.



204 V. LOZIN AND D. RAUTENBACH

Theorem 2. Let X be a hereditary class of graphs with bounded vertex degree.
If S � X and T � X , then

(i) the tree-width of graphs in X is bounded by a constant c3, and a tree decom-
position of width at most c3 can be constructed in polynomial time, and

(ii) the clique-width of graphs in X is bounded by a constant c4, and a c4-expression
can be constructed in polynomial time.

Proof. If S � X and T � X , we may consider two graphs H ∈ S\X and J ∈ T \X
such that every component of H is of the form Sk,k,k and every component of J is of
the form Tk,k,k for some fixed k ≥ 1.

Denote by s and t the number of components of H and J , respectively. Also, let
Hi and Ji denote, respectively, the subgraphs of H and J induced by the vertices of
exactly i components. In particular, H1 = Sk,k,k, J1 = Tk,k,k, Hs = H, and Jt = J .

For every graph G with vertex degree at most ∆, there are at most p = p(k,∆)
vertices in the closed neighborhood of the set of vertices that induces a subgraph
isomorphic to either Sk,k,k or Tk,k,k. Therefore, the following inclusion holds:

Free∆(Hs, Jt) ⊆ Free∆(H1, J1) ∪ [Free∆(Hs−1, J1)]p
∪[Free∆(H1, Jt−1)]p ∪ [Free∆(Hs−1, Jt−1)]2p.

From this inclusion and Propositions 2 and 3 we conclude by induction on s and t that
the tree-width and clique-width of graphs in the class X ⊆ Free∆(H, J) are bounded.
The basis of induction is provided by Corollary 3. Notice that s and t are constants
associated with the class X .

5. Examples. An asteroidal triple in a graph is an independent set of three
vertices such that for any two vertices in the set, there is a path between these two
vertices avoiding the neighborhood of the third vertex [6]. A graph is asteroidal
triple-free, or AT-free for short, if it contains no asteroidal triple. Asteroidal triple-
free graphs include several well-known graph classes such as comparability graphs,
permutation graphs, or interval graphs. All three graph parameters studied in this
paper are unbounded in the class of AT-free graphs (since they are unbounded even for
permutation graphs [13]), and several fundamental graph problems remain NP-hard
in that class. However, according to our main results, the situation changes crucially
whenever we deal with AT-free graphs with bounded vertex degree. Formally, we have
the following.

Proposition 4. The band-, tree-, and clique-width of AT-free graphs of vertex
degree at most ∆ are bounded by a constant c5 = c5(∆).

Proof. The proposition follows immediately from Theorem 1, Proposition 1, and
the observation that S2,2,2, T2,2,2, and induced cycles of length at least 6 contain an
asteroidal triple.

As another important example, let us mention chordal bipartite graphs, i.e., bi-
partite graphs without induced cycles of length at least 6. This class has applications
in the study of linear programming, as the bipartite adjacency matrices of chordal
bipartite graphs are totally balanced. Note that the class of chordal bipartite graphs
is not a subclass of AT-free graphs, since S2,2,2 is not forbidden in this class.

The clique-width (and hence the band- and tree-width) of chordal bipartite graphs
is unbounded, since it is unbounded even for bipartite permutation graphs [4], a proper
subclass of chordal bipartite graphs. We use Propositions 2 and 3 and Theorem 2
in order to show that chordal bipartite graphs with vertex degree at most 3 have
bounded tree- and clique-width.
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Proposition 5. The tree- and clique-width of chordal bipartite graphs with vertex
degree at most 3 are bounded by a constant.

Proof. We shall prove the proposition by showing that every chordal bipartite
graph G with vertex degree at most 3 containing S2,2,2 as an induced subgraph has
a cutvertex. We denote by x the center of S2,2,2; by y1, y2, and y3 the vertices of
degree 2; and by z1, z2, and z3 the respective vertices of degree 1 in S2,2,2.

Assume y1 is not a cutvertex in G, and consider a shortest path P : p0p1 . . . pk
connecting the vertex z1 = p0 to a vertex pk ∈ {y2, y3, z2, z3} in the subgraph G−{y1}.
If pk = z2, then k is even. Notice that the even-indexed vertices of P different from pk
are not adjacent to y2, since otherwise P is not a shortest path. Let j be the largest
index with y1pj ∈ E(G) (possibly j = 0). But now y1pj . . . pky2xy1 is an induced
cycle of length at least 6 in G, a contradiction. Analogously, pk �= z3.

If pk = y2, then k = 3. Indeed, because of the degree constraint the cycle
C : p1 . . . pkxy1p1 contains at most one chord, and this chord is of the form y1pj with
an even j. Therefore, if k > 3, then the vertices of C induce a chordless cycle of
length at least 6. Thus k = 3, and to avoid an induced cycle C6, y1p2 ∈ E(G) and
p1z2 /∈ E(G). But now y3 is a cutvertex in G. Indeed, if not, there must exist a path
in G − {y3} connecting z3 to a vertex in the set {z1, p1, z2} missing the vertices of
the set B = {x, y1, y2, p2} (since all vertices in B have degree 3 in G), but then the
vertices of the path together with some vertices in B and y3 would induce a forbidden
cycle.

Thus, the chordal bipartite graphs with vertex degree at most 3 form a subclass
of the class [Free3(S2,2,2, T0,0,0)]B . In the latter class the tree- and clique-width are
bounded according to Propositions 2 and 3 and Theorem 2.
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Abstract. In this paper we present improved combinatorial approximation algorithms for the
k-level facility location problem. First, by modifying the path reduction developed in [A. A. Ageev,
Oper. Res. Lett., 30 (2002), pp. 327–332], we obtain a combinatorial algorithm with a performance
factor of 3.27 for any k ≥ 2, thus improving the previous bound of 4.56 achieved by a combinatorial
algorithm. Then we develop another combinatorial algorithm that has a better performance guaran-
tee and uses the first algorithm as a subroutine. The latter algorithm can be recursively implemented
and achieves a guarantee factor h(k), where h(k) is strictly less than 3.27 for any k and tends to 3.27
as k goes to ∞. The values of h(k) can be easily computed with an arbitrary accuracy: h(2) ≈ 2.4211,
h(3) ≈ 2.8446, h(4) ≈ 3.0565, h(5) ≈ 3.1678, and so on. Thus, for the cases of k = 2 and k = 3 the
second combinatorial algorithm ensures an approximation factor substantially better than 3, which
is currently the best approximation ratio for the k-level problem provided by the noncombinatorial
algorithm due to Aardal, Chudak, and Shmoys [Inform. Process. Lett., 72 (1999), pp. 161–167].

Key words. facility location, approximation algorithm, performance guarantee, polynomial-
time reduction
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1. Introduction. In the k-level facility location problem (k-LFLP) we are given
a complete (k + 1)-partite graph G = (D ∪ F1 ∪ · · · ∪ Fk;E) whose node set is the
union of k + 1 disjoint sets D,F1, . . . ,Fk and the edge set E consists of all edges
between these sets. The nodes in D are called demand sites and the nodes in
F = F1 ∪ · · · ∪ Fk are facilities (of level 1, . . . , k, respectively). We are given edge
costs c ∈ R

E
+ and opening costs f ∈ R

F
+ (i.e., opening a facility i ∈ F incurs a cost

fi ≥ 0).
The objective is to open a set of facilities Xt ⊆ Ft on each level t = 1, . . . , k and

to connect each demand site j ∈ D to a path (or chain) ϕ(j) = (i1(j), i2(j), . . . , ik(j))
along open facilities i1(j) ∈ X1, i2(j) ∈ X2, . . . , ik(j) ∈ Xk so that the total cost of
opening and connecting∑

i∈X1∪···∪Xk

fi +
∑
j∈D

(
c(j, i1(j)) + c(i1(j), i2(j)) + · · · + c(ik−1(j), ik(j))

)
is minimized.

In this paper we consider the metric case of the problem where c is induced by a
metric on the whole set of nodes V = D∪F1∪· · ·∪Fk. Recent applications of metric
facility location problems include finding product clustering, cost-effective placement
of servers on the internet, and optimized supply chains [6].
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Since the metric k-LFLP is NP-hard, most research work is concentrated on
designing approximation algorithms. We say that an algorithm for a minimization
problem with nonnegative objective function is a ρ-approximation algorithm if it runs
in polynomial time and for any instance outputs a solution of cost at most ρ times
the optimum.

The special case of k-LFLP where k = 1 (1-LFLP) is nothing but the well-
known (metric) uncapacitated facility location problem (UFLP). It is known that the
existence of a 1.463-approximation algorithm for solving UFLP would imply NP /∈
DTIME[nO(log log n)] [7]. In recent years quite a number of approximation algorithms
have been developed for solving UFLP. The current best approximation algorithm,
due to Mahdian, Ye, and Zhang [11], achieves a factor of 1.517. See Shmoys [13] and
[11] for a detailed survey on approximation algorithms for UFLP.

Obviously, the approximability lower bound 1.463 also applies to k-LFLP. On
the positive side, it is known that k-LFLP can be solved within a factor of 3 by
an LP rounding algorithm due to Aardal, Chudak, and Shmoys [1]. A drawback of
this algorithm is that it includes a phase of solving a linear relaxation with expo-
nential number of variables. Although this relaxation can be solved by the ellipsoid
method in polynomial time, the algorithm would be inefficient in practice. For this
reason, several combinatorial approximation algorithms have been developed to solve
this problem. These algorithms run in strongly polynomial time but with a sacrifice
in the performance guarantee. The first such algorithm, by Meyerson, Munagala,
and Plotkin [12], had an approximation factor of O(ln |D|). A constant factor of 9.2
was later obtained by Guha, Meyerson, and Munagala [8]. Bumb and Kern [3] de-
veloped a dual ascent algorithm that had a performance guarantee of 6. Ageev [2]
established that any ρ-approximation algorithm for UFLP could be translated to a
3ρ-approximation algorithm for k-LFLP. Thus, the algorithm in [11] yields a combina-
torial 4.56-approximation algorithm for k-LFLP. We will refer to this approach as the
path reduction technique. It should be noted that Edwards [4] proposed a reduction
similar to that in [2] but his construction requires running time exponential in k.

None of the above algorithms has a performance guarantee better than 3. Whether
or not k-LFLP can be approximated in polynomial time by a factor less than 3 has
become a challenging open question in this field.

In this paper we present improved combinatorial approximation algorithms for
the k-level facility location problem.

First, by modifying the path reduction of the k-level problem to the 1-level case
developed in [2], we obtain a combinatorial algorithm with a performance guarantee
of 3.27 for any k, thus improving the previous bound of 4.56. The algorithm runs
in time O(m3

1n
3 + m2n), where m = |F|, m1 = |F1|, and n = |D|. Note that the

approximation ratio of this path reduction algorithm is fairly close to a factor of
3 provided by the LP rounding algorithm [1]. Furthermore, this theoretical result
in some sense explains why in computational experiments the path-reduction-based
algorithms perform better than the LP rounding algorithm, as has been observed by
Edwards [4].

Although intuition suggests that k-LFLP for small values of k ≥ 2 may be better
approximable than the general problem, our path reduction algorithm, as all the
previous algorithms, has the same approximation factor for each k. This drawback
motivated our work on a better algorithm whose performance factor would be an
increasing function of k with values strictly less than 3.27. Our efforts resulted in a
recursive combinatorial algorithm for k-LFLP, which is presented in the second part
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of this paper. It is based on a combination of our path reduction algorithm and a
recursive reduction of k-LFLP to (k − 1)-LFLP and UFLP. The algorithm runs in
time O(k(m3

1n
3 + m2n)) and achieves an approximation factor h(k), where h(k) is

strictly less than 3.27 for any k ≥ 1 and tends to 3.27 as k tends to ∞. The values of
h(k) can be easily computed with an arbitrary accuracy. In particular, h(2) ≤ 2.4211,
h(3) ≤ 2.8446, h(4) ≤ 3.0565, h(5) ≤ 3.1678. Thus, for 2-LFLP and 3-LFLP, the
second algorithm achieves an approximation factor substantially better than 3.

2. The path reduction algorithm. In this section we present a parameter-
ized version of the path reduction, which in combination with the greedy algorithm
developed in [11] yields a 3.27-approximation algorithm for solving k-LFLP.

2.1. Definitions and notation. Denote by P the set of all paths of length
k− 1 connecting a node in F1 to a node in Fk. For a path p = (i1, i2, . . . , ik) ∈ P, let

c(p) =
∑k

t=2 c(it−1, it). For any subset X ⊆ F , let f(X) =
∑

i∈X fi, and let P(X)
denote the subset of paths in P passing through facilities in X.

Let M be an instance of k-LFLP and SOL be a solution of it. Recall that SOL
is a pair (X,ϕ), where X is a set of open facilities and ϕ is an assignment mapping
D to P(X). We call a path in ϕ(D) a service path.

For our analysis it would be convenient to represent the total cost of any solution
SOL for k-LFLP in the split form FSOL + CSOL, where FSOL and CSOL stand for
the facility and connection costs, respectively. To break down CSOL further, for any
t = 2, . . . , k, let CSOL

t denote the total connection cost between open facilities on level

t−1 and open facilities on level t. Hence CSOL =
∑k

t=1 C
SOL
t , where CSOL

1 stands for
the total connection cost between demand sites and facilities on level 1. Similarly, let
FSOL
t denote the total cost to open facilities on level t, and thus FSOL =

∑k
t=1 F

SOL
t .

To exploit the cost-split character of the objective function in k-LFLP we modify
the standard definition of performance guarantee in the split way, as follows.

Definition 1. A feasible solution SOL of a k-LFLP is called (a, b)-approximate
if for any other feasible solution SOL∗ of the problem, the cost of SOL is at most
aFSOL∗

+ bCSOL∗
. An algorithm for a k-LFLP is an (a, b)-approximation algorithm

if the solution found by the algorithm is (a, b)-approximate.
Our path reduction algorithm was inspired by the observation that the path

reduction developed in [2] admits a slight modification implying that any (a, b)-
approximation algorithm for UFLP can be translated into a (a, 3b)-approximation
algorithm for k-LFLP. Therefore, to obtain a good approximation factor for k-LFLP,
we have to solve the reduced UFLP in such a way that the performance guarantee
pair (a, b) approximately satisfies a = 3b. To this point we apply the algorithm of
Mahdian, Ye, and Zhang [11] to obtain a guarantee pair (3.27, 1.09) for UFLP, which
then implies a 3.27-approximation for k-LFLP.

2.2. Parameterized path reduction. We now describe a path reduction with
positive parameters a, b that generalizes the reduction in [2] (corresponding to the
case a = b = 1).

Path reduction with parameters (a, b). Let M be an instance of k-LFLP. For each
i1 ∈ F1 and t ∈ {1, . . . , |D|}, compute a path p(i1, t) that has the minimum value
of t · bc(p) + af(p) over all paths p ∈ P starting from i1. (Note that the problem of
finding such paths can be easily reduced to the shortest path problem and there are
total |F1|·|D| of such paths.) Then, associate with M an instance S of UFLP in which
the set of demand sites is D and the set of “facilities” is the set of all pairs (i1, t),
where i1 ∈ F1 and t ∈ {1, . . . , |D|}. In S, for any demand site j ∈ D and “facility”
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(i1, t), the cost of connecting j to (i1, t) is defined to be c(j, i1) + c(p(i1, t)), and the
cost of opening (i1, t) is defined to be f(p(i1, t)) (i.e., equal to the cost of opening all
facilities on path p(i1, t)). Given a solution SOLS of S, we construct back a solution
SOLM of M as follows: for any j ∈ D, connect j to the service path p(i1(j), t) such
that (i1(j), t) is the “facility” serving j in SOLS, and open the facilities on all such
service paths.

The main result of this subsection is the following theorem.
Theorem 1. If SOLS is an (a, b)-approximate solution of I, then SOLM is an

(a, 3b)-approximate solution of M. Furthermore, for any solution SOL of M,

FSOLM + CSOLM ≤ aFSOL + bCSOL
1 + 3b

k∑
i=2

CSOL
i .(1)

Therefore, we have the following.
Corollary 1. Any (a, b)-approximation algorithm for solving UFLP yields an

(a, 3b)-approximation algorithm for solving k-LFLP.
Our proof of the theorem is based on Lemmas 1 and 2 below. The first lemma is

nothing but Lemma 2 in [2].
Lemma 1.

FSOLM ≤ FSOLS and CSOLM = CSOLS .

The second lemma is an improvement of Lemma 4 in [2].
Lemma 2. For any solution SOL of M, there exists a corresponding solution

SOL∗ of the reduced S such that

aFSOL∗
+ bCSOL∗ ≤ aFSOL + bCSOL

1 + 3b

k∑
t=2

CSOL
t .(2)

We first deduce Theorem 1 from the above lemmas.
Proof of Theorem 1. Let SOL∗ be any solution of M. By Lemma 2, there exists

a corresponding solution SOL of S such that

aFSOL + bCSOL ≤ aFSOL∗
+ bCSOL∗

1 + 3b

k∑
t=2

CSOL∗

t ≤ aFSOL∗
+ 3bCSOL∗

.

On the other hand, by using Lemma 1 and the fact that SOLS is an (a, b)-approximate
solution of S, we have

FSOLM + CSOLM ≤ FSOLS + CSOLS ≤ aFSOL + bCSOL,

which proves (1).
To prove Lemma 2 we need the following easy statement, which, being a bit

stronger than Lemma 3 in [2], has an almost identical proof.
Lemma 3. Let I be an instance of k-level FLP and SOL be a solution of I. Then

I has a solution SOL = (X,ϕ) such that
(i) if in paths ϕ(j′) = (i′1, . . . , i

′
k) and ϕ(j′′) = (i′′1 , . . . , i

′′
k) i′l = i′′l for some l,

then i′r = i′′r for all r ≥ l;

(ii) CSOL
1 = CSOL

1 ,
∑k

l=2 C
SOL
l ≤

∑k
l=2 C

SOL
l , FSOL ≤ FSOL.
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Lemma 3 implies that any solution SOL of k-LFLP can be replaced by a solution
SOL satisfying (ii) whose service paths constitute a forest consisting of trees rooted
at level k.

Proof of Lemma 2. Let SOL = (X,ϕ) be a solution of M. For any j ∈ D, let
ϕ(j) =

(
i1(j), . . . , ik(j)

)
. By Lemma 3 we may assume that SOL satisfies property

(i) and thus the service paths of SOL constitute a forest consisting of trees rooted at
open facilities in Fk.

For every open facility u ∈ Xk = X ∩ Fk lying on level k, let Du be the set of
demand sites assigned, by ϕ, to a path finishing in u, and let p(u) be a path having
minimum value of c(p) among all service paths p ending in u. Also, let µ(u) be the
starting facility of p(u) lying on level 1.

Define a new solution SOLP = (X,ϕ′) by reassigning each j ∈ Du to the path
p(u), i.e., by setting ϕ′(j) = p(u) for all u ∈ Xk. Thus, by definition, SOLP satisfies

FSOLP ≤ FSOL(3)

and

CSOLP =
∑
u∈Xk

∑
j∈Du

(
c(j, µ(u)) + c(p(u))

)
.

By the triangle inequality and the definitions of p(u) and µ(u),

c(j, µ(u)) + c(p(u)) ≤
(
c(j, i1(j)) + c(ϕ(j)) + c(p(u))

)
+ c(p(u))

≤ c(j, i1(j)) + 3c(ϕ(j)).

Thus we have

CSOLP ≤
∑
u∈Xk

∑
j∈Du

(
c(j, i1(j)) + 3c(ϕ(j))

)
= CSOL

1 + 3

k∑
t=2

CSOL
t .(4)

Now, by (3) and (4), it suffices to show that there exists a solution SOL∗ of S
such that

aFSOL∗
+ bCSOL∗ ≤ aFSOLP + bCSOLP .(5)

Since the service paths of SOLP are disjoint, we have

aFSOLP + bCSOLP =
∑
u∈Xk

(
af(p(u)) + b

∑
j∈Du

(
c(j, µ(u)) + c(p(u))

))

=
∑
u∈Xk

(
af(p(u)) + b|Du| · c(p(u)) + b

∑
j∈Du

c(j, µ(u))

)
=

∑
u∈Xk

(
af(p(u)) + b|Du| · c(p(u))

)
+ bCSOLP

1 .

Now we define a solution SOL∗ of S by declaring open all facilities lying on the paths
p(µ(u), |Du|), u ∈ Xk, and by connecting j to the path p(µ(u), |Du|) whenever j ∈ Du.
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Then we have

aFSOL∗
+ bCSOL∗

=
∑
u∈Xk

(
af(p(µ(u), |Du|)) + b|Du| · c(p(µ(u), |Du|))

)
+ bCSOLP

1

≤aFSOLP + bCSOLP .

The last inequality holds because for each u ∈ Xk, by the construction of paths p(i1, t)
in the parameterized path reduction,

af(p(µ(u), |Du|)) + b|Du| · c(p(µ(u), |Du|)) ≤ af(p(u)) + b|Du| · c(p(u)).

The next subsection analyzes particular values of parameters (a, b) to establish
our final result.

2.3. Algorithm PATH REDUCTION&GREEDY. To solve the instance S of
UFLP we use the greedy algorithm developed in [11], referred to as Greedy. For
completeness, we sketch the algorithm Greedy below; it is essentially a combination
of the algorithms of Jain, Mahdian, and Saberi [9] and Guha and Khuller [7].

Algorithm Greedy.

Phase 1. Given an instance S of the UFLP, scale up the opening costs of all facilities
by a factor of δ (≥ 1) (which is a constant that will be fixed later). Then do the
following:

1. At the beginning, all demand sites are unconnected, all facilities are unopened,
and the budget of every city j, denoted by Bj , is initialized to 0. At every
moment, each demand site j offers some money from its budget to each
unopened facility i. The amount of this offer is equal to max(Bj − cij , 0) if j
is unconnected or max(ci′j − cij , 0) if it is already connected to some other
facility i′.

2. While there is an unconnected demand site, increase the budget of each un-
connected demand site at the same rate, until one of the following two events
occurs:
(a) For some unopened facility i, the total offer that it receives from de-

mand sites is equal to the (scaled) cost of opening i. In this case, we
open facility i and connect j to i for every demand site j (connected or
unconnected) which has a positive offer to i,

(b) For some unconnected demand site j, and some facility i that is already
open, the budget of j is equal to the connection cost cij . In this event,
we connect j to i.

Phase 2. Scale down the opening costs of facilities back to their original values all at
the same rate. If at any point during this process, a facility could be opened without
increasing the total cost (i.e., if the opening cost of the facility equals the total amount
that the demand sites can save by switching their “service provider” to that facility),
then we open the facility and connect each demand site to its closest open facility.

In what follows we need only the following result from [11].
Let γf (δ) = γf + ln δ and γc(δ) = 1 + γc−1

δ , where γf = 1.11, γc = 1.78.
Lemma 4. Algorithm Greedy is an (γf (δ), γc(δ))-approximation algorithm for

any δ ≥ 1.
By this lemma, the path reduction algorithm produces a (γf (δ), 3γc(δ))-appro-

ximation algorithm for k-LFLP, where δ is an arbitrary number ≥ 1. By taking
δ = 8.67, one can see that our algorithm, which we will further refer to as Path

Reduction&Greedy, finds a solution within a factor of 3.27 of the minimal cost.
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Note that the paths p(i1, t) in the parameterized path reduction can be computed
in O(m2n) time. On the other hand, the total number of demand sites and facilities
in the reduced S is n + m1n and thus Greedy requires O(m3

1n
3) time to solve it.

Therefore, the overall running time of Path Reduction&Greedy is O(m3
1n

3+m2n).

We remark that the bound 3.27 cannot be improved much by just using Corol-
lary 1 as a tool box. It is known [9, 10] that for any x ≥ 1, the existence of (x, 1+2e−x)-
approximation algorithm for UFLP would imply NP ⊆ DTIME[nO(log log n)]. There-
fore, the best we could get by using Corollary 1 is 3.236 since x+3(1+2e−x) ≥ 6.472
for any x ≥ 1.

3. The recursive path reduction algorithm. A drawback of algorithm Path

Reduction&Greedy is that the approximation factor of 3.27 it provides does not
depend on the number of levels k, whereas 1-LFLP admits a 1.52-approximation and,
intuition suggests that k-LFLP for small values of k must be approximable within a
smaller ratio than the general problem.

In this section, we present an improved combinatorial algorithm for k-LFLP,
which we refer to as Split&Recursion. It is based on a combination of Path

Reduction&Greedy and a recursive reduction of k-LFLP to (k − 1)-LFLP and
UFLP. Algorithm Split&Recursion runs in time O(km3

1n
3 + km2n) and achieves

an approximation factor of h(k), where h(k) < 3.27 for any k ≥ 1 and tends to 3.27 as
k tends to ∞. The values of h(k) can be easily computed with an arbitrary accuracy.
In particular, h(2) ≈ 2.4211, h(3) ≈ 2.8446, h(4) ≈ 3.0565, h(5) ≈ 3.1678.

3.1. Definitions and high-level description. We first give a few definitions.

For any instance M of k-LFLP, we define an instance Mk−1 of (k−1)-LFLP and
an instance S of UFLP (1-LFLP) in the following way:

1. Mk−1 is obtained from M by deleting all facilities on level 1 (or, by opening
for free all facilities on level 1). Thus, in Mk−1 the set of facilities lying on
level r is Fr+1, and the connection cost between j ∈ D and i2 ∈ F2 is

min
v∈F1

{c(j, v) + c(v, i2)}.

2. S is obtained from M by deleting all facilities on levels greater than 1 (and
all edges incident with these facilities) and by doubling all the edge costs
between D and F1.

We are now ready to proceed to a high-level description of the algorithm.

In the case k = 2, M1 and S are both instances of UFLP and we solve them by
Greedy. Note that each j ∈ D is assigned to a facility i2(j) ∈ F2 by the solution for
M1 and to a facility i1(j) ∈ F1 by the solution for S. On the basis of these solutions
we construct a solution for M, denoted by SOLMS, by connecting each j to the path
(i1(j), i2(j)).

Note that the straightforward variant of the above construction where the con-
nection costs coincide with the original ones in both instances of UFLP yields a simple
factor-3 reduction of 2-LFLP to UFLP. This reduction was first observed by Gimadi
[5].

When k ≥ 3 our algorithm solves S by applying Greedy and calls itself to solve
Mk−1. Now we have that the solution of S assigns each j ∈ D to a facility i1(j) ∈ F1

while the solution to Mk−1 assigns each j ∈ D to a path (i2(j) ∈ F2, . . . , ik(j) ∈ Fk).
In this case the solution SOLMS for M is constructed by connecting each j to the
composite path (i1(j), i2(j), . . . , ik(j)).
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However, the constructed solution SOLMS is not yet the output of the algo-
rithm. In addition, we find another solution SOLPG for M by applying Path

Reduction&Greedy and finally output a solution having lower cost among the
two.

By unfolding this recursive description one can easily obtain a conventional im-
plementation as follows. The algorithm applies Greedy to solve k instances of UFLP
obtained from the original instance M by deleting the facilities on all levels except
a fixed one. It then applies Path Reduction&Greedy to solve k − 1 instances of
k-LFLP obtained from M by deleting the facilities on all levels smaller than a fixed
one. Finally, in k − 1 steps, on the basis of the retrieved solutions, it constructs an
output solution.

From the above implementation it is clear that Split&Recursion can be imple-
mented in O(k(m3

1n
3 + m2n)) time.

3.2. Algorithm SPLIT&RECURSION. Now we proceed to a formal descrip-
tion and analysis of the algorithm.

Algorithm Split&Recursion.
Input: An instance M of k-LFLP.
Output: A solution SOL for M.
if k = 1 then

SOL := the solution obtained by applying Greedy to M;
endif

if k ≥ 2 then

Apply Split&Recursion to find a solution SOLM for Mk−1 and Greedy to
find a solution SOLS for S;

Construct a solution SOLMS for M by connecting each j ∈ D to the path

(i1(j), i2(j), . . . , ik(j))

whenever j connects to i1(j) in SOLS and to the path (i2(j), . . . , ik(j)) in SOLM ;
Apply Path Reduction&Greedy to find a solution SOLPG of M;
SOL := a solution having lower cost among SOLMS and SOLPG.

endif

The following theorem is the main result of this section.
Theorem 2. Let k ≥ 2. For any solution SOL∗ of M and any δ ≥ 1, the

solution SOL retrieved by Split&Recursion satisfies

FSOL + CSOL ≤ γf (δ)FSOL∗
+ θ(k)γc(δ)C

SOL∗
,(6)

where

θ(k) = 3

(
1 − 1

2k−2

)
+

1

2k−3
.

Since γf (δ) is a strictly increasing function of δ on the interval [1,∞) whereas
θ(k)γc(δ) is strictly decreasing, the minimum value of

ρk(δ) = max(γf (δ), θ(k)γc(δ))

is attained at a unique root δk of the transcendent equation

γf (δ) = θ(k)γc(δ).
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Thus we derive the following.

Corollary 2. Split&Recursion is a ρk(δk)-approximation algorithm for k-
LFLP.

By using a binary search, it is easy to compute δk approximately for every k.
This gives

ρ2(δ2) ≤ ρ2(3.71) < 2.4211,

ρ3(δ3) ≤ ρ3(5.66) < 2.8446,

ρ4(δ4) ≤ ρ4(7.0) < 3.0565,

ρ5(δ5) ≤ ρ5(7.66) < 3.1678.

One can also see that as k → ∞, θ(k) tends to 3 and the performance factor tends to
3.27 as in algorithm Path Reduction&Greedy.

Proof of Theorem 2. We proceed by induction on k. Let SOL∗ be any solution
of M. Then, by Theorem 1,

FSOLPG + CSOLPG ≤ γf (δ)FSOL∗
+ γc(δ)C

SOL∗

1 + 3γc(δ)

k∑
t=2

CSOL∗

t .(7)

Observe that SOL∗ induces a solution, SOLS∗, to S and a solution, SOLM∗,
to Mk−1, as SOL∗ assigns every demand site j to a facility, say, i∗t (j) ∈ Ft for
each t = 1, . . . , k. That is, j in SOLS∗ is assigned to i∗1(j) of S with connection cost
2c(j, i∗1(j)), and j in SOLM∗ is assigned to (i∗2(j), . . . , i

∗
k(j)) of Mk−1 with connection

cost at most

c(j, i∗1(j)) + c(i∗1(j), i
∗
2(j)) + c((i∗2(j), . . . , i

∗
k(j))).

More precisely,

CSOLS∗
= 2CSOL∗

1 ,(8)

FSOLM∗
=

k∑
t=2

FSOL∗

t ,(9)

CSOLM∗

1 ≤ CSOL∗

1 + CSOL∗

2 ,(10)

CSOLM∗

t = CSOL∗

t+1 for t = 2, . . . , k − 1.(11)

Recall that the connections costs in S are doubled from the edge costs between
D and F1 in M. Hence, by Lemma 4 and (8)

FSOLS + CSOLS ≤ γf (δ)FSOLS∗
+ γc(δ)C

SOLS∗

= γf (δ)FSOL∗

1 + 2γc(δ)C
SOL∗

1 .(12)

Assume now that k = 2. In this case Mk−1 is an instance of UFLP, and thus by
using Lemma 4 and (9) and (10) we obtain

FSOLM + CSOLM ≤ γf (δ)FSOLM∗
+ γc(δ)C

SOLM∗

≤ γf (δ)FSOL∗

2 + γc(δ)(C
SOL∗

1 + CSOL∗

2 ).(13)
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By the construction of SOLMS and the triangle inequality,

FSOLMS + CSOLMS = FSOLS + FSOLM +
1

2
CSOLS +

∑
j∈D

c(i1(j), i2(j))

≤ FSOLS + FSOLM +
1

2
CSOLS +

(
1

2
CSOLS + CSOLM

)
= FSOLS + CSOLS + FSOLM + CSOLM ,

and thus, according to (12) and (13), we have

FSOLMS + CSOLMS ≤ γf (δ)FSOL∗
+ 3γc(δ)C

SOL∗

1 + γc(δ)C
SOL∗

2 .(14)

Since the cost of SOL is at most half as great as the sum of costs of SOLMS and
SOLPG, (7) and (14) imply

FSOL + CSOL ≤ γf (δ)FSOL∗
+ 2γc(δ)C

SOL∗

1 + 2γc(δ)C
SOL∗

2 ,

which is nothing but (6) for k = 2.
Now, assume that (6) is true for each instance of the r-LFLP with the number of

levels r at most k − 1. Thus, by applying the induction hypothesis to Mk−1, which
is an instance of (k − 1)-LFLP, we obtain

FSOLM + CSOLM ≤ γf (δ)FSOLM∗
+ θ(k − 1)γc(δ)C

SOLM∗

≤ γf (δ)

k∑
t=2

FSOL∗

t + θ(k − 1)γc(δ)(C
SOL∗

1 + CSOL∗

2 )

+ θ(k − 1)γc(δ)

k∑
t=3

CSOL∗

t ,(15)

where the second inequality follows from (9)–(11). Again, by the construction of
SOLMS and the triangle inequality,

FSOLMS + CSOLMS ≤ FSOLS + CSOLS + FSOLM + CSOLM ,

and thus, by (12) and (15),

FSOLMS + CSOLMS ≤ γf (δ)FSOL∗
+
(
θ(k − 1) + 2

)
γc(δ)C

SOL∗

1

+ θ(k − 1)γc(δ)

k∑
t=2

CSOL∗

t .

Together with (7), this yields

FSOL + CSOL ≤γf (δ)FSOL∗
+

θ(k − 1) + 3

2
γc(δ)C

SOL∗
.

Since

θ(k) =
θ(k − 1) + 3

2
,

(6) follows.
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Finally, we remark that the approximation factors of our algorithms seem to
be insensitive to the particular choice of (γf , γc) = (1.11, 1.78) used in the above
analysis. For example, if one makes use of the pair (γf , γc) = (1, 2) (whose correctness
was proved for the algorithm presented by Jain et al. [9, 10]), then h(k) is strictly
less than 3.301 for any k ≥ 1 and tends to 3.301 as k tends to ∞. In particular,
h(2) ≤ 2.462, h(3) ≤ 2.882, h(4) ≤ 3.091, h(5) ≤ 3.197.
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Abstract. We show an algorithm that finds cliques of size (log n/ log logn)2 whenever a graph
has a clique of size at least n/(logn)b for an arbitrary constant b. This leads to an algorithm
that approximates max clique within a factor of O(n(log logn)2/(logn)3), which matches the best
approximation ratio known for the chromatic number. The previously best approximation ratio
known for max clique was O(n/(logn)2).
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1. Introduction. Max clique is the problem of finding a clique of maximum
size in an input graph. This problem is NP-hard. An algorithm is said to have
approximation ratio ρ for max clique if, on every graph, it is guaranteed to find a
clique whose size is at most a factor of ρ smaller than that of the maximum clique.
We allow ρ to grow as a function of n (the number of vertices in the input graph).
H̊astad [8] shows that for every ε > 0 there is no polynomial algorithm that approx-
imates max clique within a ratio of n1−ε, unless NP has expected polynomial time
algorithms. (See [10] for additional information in this respect.) The best approx-
imation ratio known for max clique was O(n/(log n)2) by Boppana and Halldors-
son [4].

The problem of max independent set is strongly related to the max clique problem
(by complementing the graph), and hence shares the same approximation ratio. The
chromatic number of a graph is the smallest number of independent sets that cover all
vertices of the graph. It shares essentially the same hardness of approximation results
as max clique [5, 10] (this is an empirical observation rather than a theorem). In
terms of approximation algorithms, Halldorsson [6] shows that the chromatic number
can be approximated within a ratio of O(n(log log n)2/(log n)3), which is better than
the best approximation ratio known for max clique.

In this paper we show an algorithm that approximates max clique within a ratio of
O(n(log log n)2/(log n)3), matching the known approximation ratio for the chromatic
number. The technically new ingredient in our result is an algorithm that finds cliques
of size (log n/ log log n)2 whenever a graph has a clique of size at least n/(log n)b for
an arbitrary constant b. This algorithm is based on ideas which can be viewed as
natural extensions of ideas used by Boppana and Halldorsson [4] and by Berger and
Rompel [2].

In section 2 we describe our new algorithm. In section 3 we explain how (combined
with ideas from [6]) it leads to an O(n(log log n)2/(log n)3) approximation ratio for
max clique. In section 4 we discuss possible future research directions.
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2. The new algorithm. Let G(V,E) be an input graph with n vertices which
contains a clique of size n/k. In this graph we wish to find a large as possible clique.
For a parameter t � n/k, we shall give an algorithm that finds a clique of size at
least t(log3k(n/t) − 3). The running time of the algorithm is O(

(
2kt
t

)
nc), where c is

some universal constant. For every b > 0, whenever k < (log n)b, we can choose t =
Θ(log n/ log log n), and then our algorithm finds a clique of size Ω((logn/ log log n)2)
in polynomial time.

In the course of our algorithm, we shall consider vertex induced subgraphs of G.

Definition 2.1. Let G be a graph with a clique of size n/k. A vertex induced
subgraph S is called poor if it does not contain a clique of size |S|/2k.

Lemma 2.2. Let G be a graph with a clique of size n/k. Let S1, S2, . . . be arbi-
trary disjoint poor subgraphs of G (with no clique of size |Si|/2k, respectively). Let
G′(V ′, E′) be the vertex induced subgraph of G that remains after removing the poor
subgraphs. Then |V ′| ≥ n/2k, and G′ contains a clique of size at least |V ′|/k.

Proof. The union of disjoint poor subgraphs is itself a poor subgraph. Any
subgraph of G contains at most n vertices. Hence the poor subgraph cannot contain
a clique larger than n/2k. As G has a clique of size n/k, at least n/2k of the clique
vertices must remain in G′, proving |V ′| ≥ n/2k.

Removing a poor subgraph from G increases the relative density of the maximum
clique in the remaining graph. Hence G′ contains a clique of size at least |V ′|/k.

Our algorithm works in phases. The input to a phase is a vertex induced subgraph
G′(V ′, E′) of G. (The input to the first phase is the graph G itself.) This subgraph
contains a clique of size |V ′|/k. A phase is completed when one of the following two
conditions hold:

1. A clique of size t log3k(|V ′|/6kt) is found.
2. A poor subgraph is found.

If upon finishing a phase the first condition holds, then the algorithm terminates.
If upon finishing a phase the second condition holds, then the poor subgraph is re-
moved from G′ and a new phase begins with the resulting graph. From Lemma 2.2 it
follows that the invariant that the input graph contains a clique of size |V ′|/k is main-
tained when moving from phase to phase. Moreover, by removing poor subgraphs,
|V ′| cannot drop below n/2k, and hence eventually the algorithm must terminate and
output a clique of size at least t log3k(n/12k2t) > t(log3k(n/t) − 3).

It remains to show how a single phase is performed. Recall that the input to a
phase is a graph G′(V ′, E′) which has a clique of size at least |V ′|/k. The location of
the clique is unknown to the algorithm, but the value of k is known. The algorithm
has a parameter t. The larger the t, the larger the size of the clique eventually found.
However, the running time of the algorithm also increases with t, and eventually we
shall choose t = log n/ log log n to balance these two factors.

Each phase has several iterations. The input to an iteration is a subgraph
G′′(V ′′, E′′) of G′ and a set of vertices C that form a clique in V ′ \ V ′′. When
the iteration ends, either the set C grows (and V ′′ shrinks), or V ′′ is declared as poor.
In the first iteration G′′ = G′ and C is empty. We now describe a single iteration:

1. If |V ′′| < 6kt, end the phase and output C.
2. Partition V ′′ into disjoint parts, each with 2kt vertices. (For simplicity we

assume that 2kt divides |V ′′|. The algorithm can easily be modified to handle
the case that this is not so with negligible effect on the size of the final clique
output by the algorithm.)
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3. In each part Pi, consider all possible subsets Sij of vertices of cardinality t.
(Namely, for every part Pi, for every subset j, |Sij | = t.)

4. Let N(Sij) be the set of vertices in V ′′ \Sij that are neighbors in G′′ to every
vertex in Sij . (Hence Sij , N(Sij) form the two sides of a complete bipartite
graph in G′′.) Call Sij good if the subgraph of G′′ induced on Sij is a clique
and |N(Sij)| ≥ |V ′′|/2k − t.

5. If some set Sij described above is good, then C = C
⋃
Sij , and go to the next

iteration with the subgraph induced on N(Sij) serving as the new G′′.
6. If no set Sij is good, then declare V ′′ poor, and end the phase.

We first analyze the running time of a phase. The number of iterations in a phase
is clearly bounded by |V ′|/t, as each iteration removes at least t vertices from V ′.
The number of parts considered in an iteration is |V ′′|/2kt. In each part there are(
2kt
t

)
subsets to consider. For each subset, the test of whether it is good or not takes

polynomial time. Hence the whole phase takes polynomial time if
(
2kt
t

)
is polynomial

in n. This condition governs the choice of t. We shall be interested in the case where
k ≤ (log n)b for some constant b > 0, in which case we can take t = log n/ log log n,
ensuring a polynomial running time.

We now analyze the output of a phase.
Lemma 2.3. If a phase declares a set V ′′ poor, then indeed the subgraph of G

induced on V ′′ does not contain a clique of size |V ′′|/2k.
Proof. Assume that the subgraph induced on V ′′ contains a clique of size |V ′′|/2k.

Then by the pigeon-hole principle, at least one of the parts Pi will contain at least
t vertices from this clique. The subset that corresponds to these t vertices must be
good (it is a clique and has the rest of the clique vertices as its neighbors), and hence
V ′′ will not be declared poor.

Note that Lemma 2.3 does not claim an if and only if relation. Step 5 of an
iteration may succeed even if the subgraph induced on V ′′ does not contain a clique
of size |V ′′|/2k, and then the algorithm does not declare V ′′ poor.

Lemma 2.4. If a phase ends by outputting the set C, then this set contains at
least t log3k(n

′/6kt) vertices, and these vertices form a clique in G′.
Proof. Each iteration of the phase adds t vertices to C. To lower bound the

number of iterations in a phase, let n′′ denote the number of vertices in the beginning
of an iteration. Then the next iteration starts with at least n′′/2k− t vertices. When
t < n′′/6k, then this number is at least n′′/3k. Hence the number of iterations needed
to reduce |V ′′| from |V ′| to 6kt is at least log3k(|V ′|/6kt). This gives the desired lower
bound on the number of vertices in C.

The fact that the vertices of C form a clique in G′ (and hence also in G) follows
from the fact that each subset of vertices that is added into C is a clique and makes
a complete bipartite graph with all vertices added after it.

3. An O(n(log log n)2/(log n)3) approximation ratio. Without loss of gen-
erality we assume that the approximation algorithm for max clique knows the size of
the maximum clique in the input graph. (There are only n possible values to try out,
or even only logn, as it suffices for our purpose to know the size within a factor of
2.) We divide possible maximum clique sizes into three ranges, applying a different
algorithm in each case.

If the maximum clique size is below n/(log n)3, simply output a single vertex,
achieving an O(n/(log n)3) approximation ratio. If the maximum clique size is above
n/(log n)3, the algorithm presented in section 2 finds in polynomial time a clique
of size Ω((log n/ log log n)2). This gives an O(n(log log n)2/(log n)3) approximation
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ratio for max clique whenever the size of the maximum clique is O(n/ log n). If the
maximum clique size is above n/ log n, we use a modified version of our algorithm, as
described below, so as to find cliques of size larger than (logn/ log log n)2.

The key to the improvement is the use of a specialized algorithm for finding large
cliques in graphs that have cliques of size larger than 2n log log n/ log n. For this
purpose we shall use the algorithm of Boppana and Halldorsson [4]. (Potentially, the
more complicated algorithm of Alon and Kahale [1] can be used here instead of [4].)

The algorithm of [4] is based on the known fact from Ramsey theory that any
graph on n =

(
s+r−2
s−1

)
vertices contains either an independent set of size r or a clique

of size s. Moreover, there is an efficient algorithm for finding one of the two. In the
context of approximating clique, finding a clique of size s may be the desirable event
of the algorithm, whereas finding an independent set of size r can serve as the event
of discovering a poor subgraph (in the terminology of our paper, provided that the
input graph has a clique of size greater than n/r), and this subgraph can be removed.
We shall use the following proposition regarding the performance guarantee of the
algorithm of [4]. (For a proof, see [6], for example.)

Proposition 3.1. In a graph that has a clique larger than 2n log log n/ log n, the
algorithm of [4] produces a clique of size at least (log n)3/6 log log n.

The above immediately implies an O(n(log log n/ log n)3) approximation algo-
rithm for max clique. If the input graph has a clique larger than 2n log log n/
log n, use the algorithm of [4]. Otherwise, use our algorithm from section 2.

We can save an Ω(log log n) factor in the approximation ratio by adapting the
approach of Halldorsson [6] (which he used to save an Ω(log logn) factor in the ap-
proximation ratio for the chromatic number) to our context.

Recall the notion of a good subgraph Sij from section 2. It required in particular
that |N(Sij)| ≥ n′′/2k − t. Modify the definition of good to require that |N(Sij)| >
ntest − t, where ntest is the largest value still satisfying

ntest ≤
(

log ntest

2 log log ntest

)
·
(
n′′

2k

)
.

Include also the following test which is done in the case that n′′

2k − t ≤ |N(Sij)| ≤
ntest − t. Run the algorithm of [4] on the subgraph induced on Sij ∪ N(Sij). If it
finds a clique of size at least (log ntest)

3/6 log log ntest, join this clique to C and end
the algorithm. Otherwise, do not consider Sij to be good (and if no subset of size t
is found to be good in the new sense, declare V ′′ poor).

The analysis of the modified algorithm is similar in many respects to that of the
algorithm of section 2. We present here the changes to the proofs of Lemmas 2.3
and 2.4.

Lemma 3.2. If a phase of the modified algorithm declares a set V ′′ poor, then
indeed the subgraph of G induced on V ′′ does not contain a clique of size |V ′′|/2k.

Proof. Assume that the subgraph induced on V ′′ contains a clique of size |V ′′|/2k.
Then by the pigeon-hole principle, at least one of the parts Pi will contain at least
t vertices from this clique. Let Sij be such a subset. Then |N(Sij)| ≥ n′′/2k − t. If
|N(Sij)| > ntest − t, then Sij is good, and V ′′ will not be declared poor. If |N(Sij)| ≤
ntest − t, then the subgraph induced on Sij ∪ N(Sij) contains ntest vertices (if it
contains fewer vertices, add to it vertices arbitrarily) and a clique of size n′′/2k =
ntest2 log log ntest/ log ntest. Then by Proposition 3.1, the algorithm of [4] finds a clique
of size (log ntest)

3/6 log log ntest, and the phase ends without declaring V ′′ poor.
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Lemma 3.3. Let k and t be such that log n/2 log log n < k < log n and t =
log n/ log log n. If a phase ends by outputting the set C, then this set is a clique
on at least Ω(t logb n

′) vertices, where b = Θ(k log log n′/ log n′). In particular, if a
graph has a clique of size Θ(n log log n/ log n), the algorithm finds a clique of size
Ω((log n)2/ log log n).

Proof. The proof is a modification of the proof of Lemma 2.4. We present the
differences. The reader is advised to recall the new definition of a good subgraph
(that appears prior to Lemma 3.2).

Consider iterations only up to the point where n′′ <
√
n′ (ensuring that logn′′ =

Θ(log n′), a fact that simplifies our computations). If before that point the new test
finds a clique of size (logntest)

3/6 log log ntest, then we are done, because ntest is
large enough to make this clique size Ω((log n′)3/ log log n′). If the new test does
not find such a clique, then in every iteration the good set Sij that was found
had |N(Sij)| > ntest (where the value of ntest depends on the particular iteration).
This means that n′′ decreases by a factor of O(k log log n′/ log n′) between itera-
tions, rather than O(k). The number of iterations becomes at least logb

√
n′, where

b = Θ(k log log n′/ log n′).
Summing up, for every value of k we can approximate a clique within a ratio of

O(n(log log n)2/(log n)3), in graphs with cliques of size n/k. For k ≤ log n/2 log log n,
use the algorithm of [4]; for logn/2 log log n < k < log n, use the algorithm of this
section; for logn ≤ k ≤ (log n)3, use either the algorithm of this section or that of
section 2; and for k > (log n)3, just output a single vertex.

4. Discussion. Extending ideas from [4, 2, 6], an O(n(log log n)2/(log n)3) ap-
proximation ratio is obtained for max clique. This matches the best approximation
ratio for the chromatic number. The fact that the two approximation ratios are
essentially the same is a consequence of a general framework that we explain below.

Some algorithms for approximating the chromatic number (including [2, 6]) are
based on repeatedly finding large independent sets (which serve as color classes). To
find a large independent set, they use the fact that every subgraph of a k-colorable
graph is itself k-colorable. Hence every subgraph S has an independent set of size at
least |S|/k.

This principle cannot be applied directly when approximating maximum inde-
pendent set or max clique. It is not true that in a graph with a clique of size n/k
every subgraph S has a clique of size |S|/k. The new idea of our paper is to ignore
this fact. We run our approximation algorithms for max clique under the assump-
tion that every subgraph does have a clique of size |S|/k or, in fact, slightly smaller.
(We chose |S|/2k, but the constant 2 is arbitrary and can be replaced by any other
constant greater than 1.) For some subgraphs encountered by the algorithm, this as-
sumption is incorrect. However, then one of two things happens: either the algorithm
works anyway, or it gets stuck. The point is that, in any case, we make progress.
If the algorithm works, we do not care that the assumption was incorrect. If the
algorithm gets stuck, then we deduce that the subgraph on which the algorithm got
stuck is poor and remove it from the input graph. In the graph that remains the rel-
ative size of the maximum clique increases, making the task of finding a large clique
easier.

Some other principles that are used in algorithms for approximate coloring also
have an analogue in the context of max clique (or max independent set). An instruc-
tive example is the algorithm of Alon and Kahale [1] for finding independent sets of
size roughly n3/4 in graphs that have independent sets of size somewhat larger than
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n/3. This algorithm is based on the approach of Karger, Motwani, and Sudan [9]
for coloring 3-colorable graphs with roughly n1/4 colors. The approach of [9] uses
semidefinite programming to obtain a so-called vector 3-coloring of the graph and
also uses the idea of Wigderson [12] that the neighbors of a vertex in a 3-colorable
graph make a bipartite subgraph. Interestingly, both these principles have their ana-
logues in the algorithm of [1]. On the other hand, it is not clear to what extent the
principles used in the algorithms of [3, 7] can be used in the context of finding large
independent sets in graphs that are not k-colorable but do have an independent set
of size roughly n/k.

Let us note that approximate coloring can be performed by repeatedly approx-
imating maximum independent set. This combined with the known hardness of ap-
proximation results for maximum independent set implies that the approximation
ratio for max clique can be at most a constant factor better than that of min coloring.
(See [6] for more details.) This leads to the following interesting question.

• Are the best possible approximation ratios for max clique and the min chro-
matic number the same (up to multiplicative constant factors)?

Boppana and Halldorsson [4] pointed out connections between approximating
max clique and Ramsey theory. In an approach similar to our algorithm (in fact,
their algorithm inspired ours), they remove “poor” subgraphs from the input graph.
In their case, the poor subgraphs are large enough independent sets, whose existence
(if the graph has no large clique) is guaranteed by Ramsey theory. Moreover, their
nonexistence suggests an efficient algorithm for finding relatively large cliques (because
the relevant arguments in Ramsey theory are constructive). In our case, we define
a poor subgraph in such a liberal way that Ramsey theory becomes unnecessary in
order to argue about its existence. Specifically, a poor subgraph S is one that does
not contain a clique of size |S|/2k, whereas our approximation algorithm is satisfied
by finding a clique which is very much smaller than n/2k. Clearly, either such a clique
exists, or the whole graph is poor. Hence unlike Ramsey theory, existence is not an
issue here. The only issue is to have an efficient algorithm that finds either a clique
or a poor subgraph.

Nevertheless, there are connections between our algorithm and Ramsey theory,
and we point them out as they may prove fruitful in the future. There is a more general
version of the classical Ramsey numbers. Given parameters r and s, let f(r, s, n)
denote the minimum over all n vertex graphs that have no s-clique of the maximum
cardinality of a subgraph that has no r-clique. In our context of approximating clique,
we could use lower bounds on f(r, s, n), provided that certain conditions hold:

1. f(r, s, n) > kr.
2. The lower bound is constructive: there is an efficient algorithm for finding

either an s-clique or a subgraph on f(r, s, n) vertices without an r-clique.
Using an algorithm similar to that of section 2 we could then find cliques of size

roughly s in graphs that have cliques of size n/k. The current bounds known for the
function f(r, s, n) [11] are too weak to offer improved approximation ratios for max
clique. Let us remark that previously published work on f(r, s, n) dealt only with the
case that r < s, which is the only case that makes sense in the context of Ramsey
theory. However, in our context, where we seek a constructive version, the case r ≥ s
also makes sense.
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1. Introduction. A graph G is called perfect if the vertices of every induced
subgraph G′ of G can be colored with ω(G′) colors, where ω(G′) is the maximum
clique size in H. Berge [1] introduced perfect graphs and conjectured the following
characterization: A graph is perfect if and only if it contains no odd hole and no odd
antihole as an induced subgraph, where a hole is a chordless cycle with at least five
vertices, and an antihole is the complement of a hole. Graphs with no odd hole and
no odd antihole have become known as Berge graphs. This conjecture, known as the
strong perfect graph conjecture, was proved recently by Chudnovsky et al. [5]; thus
every Berge graph is perfect. One problem that is not yet solved in this context is
the existence of a combinatorial algorithm to compute the chromatic number of a
perfect graph. Here we will give such an algorithm for bull-free Berge graphs, i.e.,
graphs with no induced subgraph isomorphic to a bull, where a bull is a graph with
five vertices a, b, c, d, e and five edges ab, bc, cd, be, ce (see Figure 1). Our algorithm
is based on specific properties of these graphs. Let us recall that Chvátal and Sbihi
[3] proved the validity of the strong perfect graph conjecture for bull-free graphs, and
subsequently Reed and Sbihi [18] gave a polynomial algorithm for recognizing bull-free
Berge graphs.
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� �

�
�

�
�

Fig. 1. The bull.

In this paper, we present polynomial-time algorithms for solving the following op-
timization problems for bull-free perfect graphs: find a largest clique, a largest stable
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set, a minimum coloring, and a minimum clique covering. We actually present algo-
rithms which solve the weighted versions of these problems, defined as follows. We are
given a graph G with vertices v1, . . . , vn and positive integer weights w(v1), . . . , w(vn).

Maximum weighted clique problem. Find a clique K of G, such that the weight
of K, defined as the sum of the weights of the vertices of K, w(K) =

∑
x∈K w(x), is

maximum over all cliques of G.
Maximum weighted stable set problem. Find a stable set S of G, such that the

weight of S, defined as the sum of the weights of the vertices of S, w(S) =
∑

x∈S w(x),
is maximum over all stable sets of G.

Minimum weighted coloring problem. Find stable sets S1, . . . , St and integers
W (S1), . . ., W (St), such that∑

Si�vj

W (Si) ≥ w(vj) (∀vj)(1)

and the sum W (S1) + · · · + W (St) is minimum over all sets of integers that satisfy
(1).

Minimum weighted clique covering problem. Find cliques K1, . . . ,Kt and weights
W (K1), . . ., W (Kt), such that∑

Ki�vj

W (Ki) ≥ w(vj) (∀vj)(2)

and the sum W (K1) + · · · + W (Kt) is minimum over all sets of integers that satisfy
(2).

Recall that if G is a perfect graph, classical polyhedral considerations (see [12])
imply that (a) the optimal value of the maximum weighted clique problem and of the
minimum weighted coloring problem are equal; (b) there exists a minimum weighted
coloring that satisfies (1) with equality for every vertex. The same facts hold for the
maximum weighted stable set problem and the minimum weighted clique covering
problem.

It is possible to color every perfect graph optimally and in polynomial time, thanks
to the algorithm of Grötschel, Lovász, and Schrijver [12]; but that algorithm is based
on the ellipsoid method and may be rather complex and impractical. In contrast, the
algorithm we are going to present here exploits the combinatorial structure of bull-
free graphs and is fairly transparent. We will find it convenient, however, to use the
following argument. Let C be a self-complementary class of perfect graphs. If there
exists a strongly polynomial-time algorithm A that can compute the weighted clique
number of any graph G in C in time O(nk) (n being the number of vertices of G), then
there exists a strongly polynomial-time algorithm A′ that can construct a minimum
weighted coloring for any graph G in C in time O(nk+4). This argument is implicit
in [12, section 9.4] and in [19, Proof of Corollary 67.5c and Theorem 67.6], and we
do not copy its proof here. It suffices to note that A′ consists mainly in at most
n4 calls to A applied to weighted subgraphs of G and G; this is independent of the
method that A is based on. Since the class of bull-free Berge graphs that we consider
here is self-complementary, this argument can be applied; this allows us, therefore, to
focus on only one of the above four problems, namely, the maximum weighted clique
number.

Roughly speaking, our algorithm follows a decomposition procedure for bull-free
Berge graphs; with each bull-free Berge graph G a decomposition tree is associated;
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our algorithm uses some known polynomial-time algorithms to solve the problem
for the leaves of the tree (these indecomposable graphs turn out to belong to well-
known classical families); it then recursively combines solutions along the tree, upward
from children to parent, up to the root G. A key point in our proofs is the use of
decomposition theorems in order to show how to combine the solutions properly from
the children to the parent. Another key point is to show that the number of tree nodes
is polynomial so that the total running time of our algorithm itself is polynomial.

In order to present this algorithm exactly and to justify it, a number of definitions
and results must be recalled; also, some new results will be proved. The algorithm
will be described precisely in section 6.

2. Definitions. Apart from standard graph-theoretic terms, we use the verbs
“see” and “miss” instead of “be adjacent to” and “not be adjacent to.” The neigh-
borhood N(x) of a vertex x in a graph G is the set of all vertices of G\x that see x. A
chordless path on k vertices is denoted by Pk. Unless otherwise specified, the phrase
“G contains H” means “G contains H as an induced subgraph.” Note also that a
graph G is bull-free if and only if its complement G is bull-free. For any subset X of
vertices of a graph G, we let G[X] denote the subgraph of G induced by X.

Weakly triangulated graphs. A graph is called weakly triangulated if it does not
contain a hole or an antihole. Hayward [13] proved that all weakly triangulated graphs
are perfect. Subsequently, Hayward, Hoàng, and Maffray [14] gave polynomial-time
algorithms that solve the four optimization problems above for weakly triangulated
graphs.

Transitively orientable graphs. A graph is called transitively orientable if it admits
a transitive orientation, i.e., an orientation of its edges with no circuit and with no P3

abc with the orientation �ab and �bc. Such graphs are also called comparability graphs.
A well-known subclass of comparability graphs is the class of P4-free graphs, also
called cographs [8]. Indeed, a result Seinsche [20] states is that for every P4-free graph
G on at least two vertices, either G or its complement G is disconnected; from this it
is easy to derive that every P4-free graph is transitively orientable.

Partial vertices, homogeneous sets. Given a subset of vertices S in a graph G, a
vertex from G \ S is partial on S or S-partial if it has at least one neighbor and at
least one nonneighbor in S. A vertex from G \ S is impartial on S if it either sees all
vertices of S or misses all vertices of S.

A homogeneous set (or module) in a graph G = (V,E) is a subset S ⊆ V such
that every vertex from G \ S sees either all or none of S. A homogeneous set S is
proper if 2 ≤ |S| ≤ |V | − 1. Note that if S is a homogeneous set of G, then it is also
a homogeneous set of the complementary graph G. A graph is called prime if it has
no proper homogeneous set.

Homogeneous pairs. A homogeneous pair [3] in a graph G is a pair of disjoint
subsets of vertices Q1, Q2 such that all Q1-partial vertices are in Q2; all Q2-partial
vertices are in Q1; at least one of Q1, Q2 includes at least two vertices; and there are
at least two vertices in G \Q1 ∪Q2. Note that if Q1, Q2 is a homogeneous pair in G,
then it is also a homogeneous pair in G.

Whenever a graph G admits a homogeneous pair Q1, Q2, we will denote by Ti the
set of vertices of G \ (Q1 ∪Q2) that see all of Qi and miss all of Q3−i (i = 1, 2), by T
the set of vertices of G\ (Q1∪Q2) that see all of Q1∪Q2, and by Z the set of vertices
of G \ (Q1 ∪Q2) that miss all of Q1 ∪Q2. Following [3], we may decompose G along
this homogeneous pair into two graphs H and Q defined as follows. The graph H is
made from G \ (Q1 ∪Q2) by adding four vertices u1, u2, s1, s2 with edges u1s1, u2s2,
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u1s2, u2s1, s1s2 and with edges tui, tsi for every vertex t ∈ Ti ∪ T for each i = 1, 2.
The graph Q is the subgraph of G induced by Q1 ∪Q2.

Let us say that a homogeneous pair Q1, Q2 is interesting if both Q1, Q2 induce
connected subgraphs of G, Q1 ∪Q2 contains a square with an edge in Q1 and an edge
in Q2, T1 �= ∅, T2 �= ∅, and there exists an edge t1t2 with t1 ∈ T1, t2 ∈ T2.

In [7] the following result was proved (although not stated explicitly this way).

Theorem 2.1. Let G be a prime bull-free Berge graph G. If G contains an even
hole, then G admits a “box partition.”

The box partition is a structural concept whose exact definition we defer to sec-
tion 3. The proof of that theorem in [7] is actually a polynomial-time algorithm which,
given a bull-free Berge graph G, produces a proper homogeneous set of G, or asserts
that G contains no even hole, or produces a box partition. Our interest in the box
partition here is due mainly to the following lemma.

Lemma 2.2 (the transitive box partition lemma). Let G be a bull-free Berge graph
with no antihole. If G has a box partition, then G admits a transitive orientation.

This lemma will be proved in section 3.

Theorem 2.3. Let G be a prime bull-free Berge graph that contains a hole and
an antihole. Then the following hold.

(I) The graph G contains an interesting homogeneous pair Q1, Q2.
(II) If H,Q are the two graphs obtained by decomposing G along an interesting

homogeneous pair, then both H and Q are bull-free Berge graphs.
(III) It is possible to build a solution of the maximum weighted clique problem on

G from a solution of the same problem on H and Q with appropriately defined
vertex-weights.

This theorem will be proved in section 5.

3. Boxes and transitive orientations. For any subset B of vertices in a graph
G, we let M(B) denote the set of vertices of G \B that are partial on B.

Definition 3.1 (the box partition). Let G be a graph with vertex set V . We
call box partition any partition of V into disjoint nonempty subsets called the boxes,
inducing connected subgraphs which satisfy the following properties:

(i) Each box is labeled either “odd” or “even” (each vertex will be labeled odd or
even accordingly), and there is no edge between two odd boxes or between two
even boxes.

(ii) For each box B such that M(B) �= ∅, there exist in V − B two auxiliary
adjacent vertices aB and a′B, such that aB sees all of B and misses all of
M(B), while a′B sees all of M(B) and misses all of B.

Remark 1. When G is bull-free, the fact that a′B sees every vertex of M(B) is a
consequence of the other facts given in property (ii).

Indeed, if a′B missed a vertex x of M(B), then there should exist adjacent vertices
u, v in B such that x sees u and misses v, and then aB , u, v, x, a

′
B would be a bull.

Let us note that if a bull-free perfect graph G with no proper homogeneous set
and no C6 admits a box partition, then two further properties hold. Say that two
neighborhoods N(u), N(v) are comparable if N(u) ⊆ N(v) or N(v) ⊆ N(u) holds.

(iii) Every box is P4-free.
(iv) Any two adjacent vertices in B have comparable neighborhoods in M(B).

To prove (iii), we recall that a broom is the graph made up of a P4, plus a fifth
vertex adjacent to all vertices of the P4, plus a sixth vertex adjacent to the fifth vertex
only. We proved the following result.
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Lemma 3.2 (the broom lemma [7]). If a bull-free, C5-free graph contains a broom,
then it has a proper homogeneous set which contains the P4 of the broom.

Now observe that if a box B contains a P4, then adding the vertices aB and
a′B we obtain a broom, and then by the broom lemma G should contain a proper
homogeneous set, which is a contradiction.

To prove (iv), suppose on the contrary that some two adjacent vertices u, v in
a box B have incomparable neighborhoods in M(B). So there exist a vertex x in
M(B) ∩ N(u) − N(v) and a vertex y in M(B) ∩ N(v) − N(u). Recall the auxiliary
vertices aB , a

′
B for B, so that aB sees u, v, and a′B and misses x and y, while a′B sees

x and y and misses u and v. If xy is an edge in G, then aB , u, v, x, y, a
′
B is a C6. If

xy is not an edge in G, then aB , u, v, x, y is a bull. So (iv) is proved.

3.1. Proof of the transitive box partition lemma. Given a box partition,
any edge whose endpoints are in different boxes will be called a vertical edge. (Nec-
essarily, for any such edge, one endpoint is in an odd box and the other is in an even
box.) The other edges will be called horizontal; i.e., a horizontal edge is any edge
whose two endpoints are in the same box. Recall from (iii) that each box B is P4-free,
and recall that every P4-free graph admits a transitive orientation [11]. Let L(B) be
a transitive orientation for each box B. All edges xy of G are oriented according to
the following rules:

• Rule V0. If an edge is vertical, orient it from its even extremity to its odd
extremity.

• Rule H1. If x, y are in an even (resp., odd) box B and x has strictly more
neighbors than y in M(B), then orient xy from x to y (resp., from y to x).

• Rule H2. If x, y are in an even (resp., odd) box B and have the same neigh-
borhood in M(B), and if there exists a P4 yxvu with u ∈ M(B) and v ∈ B,
then orient the edge yx from y to x (resp., from x to y).

• Rule H3. If x, y are in a box B and do not satisfy the hypotheses of Rules
H1 and H2, then orient xy according to L(B).

After these rules are applied, every edge of G has received an orientation. We
claim that this is a transitive orientation of G. To certify this claim, we have to
check that these combined rules are consistent (i.e., noncontradictory) and that they
produce no P3 xyz with orientation �xy and �yz and no circuit. Note that a result of
Ghouila-Houri [10] shows that if a graph admits an orientation with no directed P3,
then it admits an acyclic transitive orientation.

Claim 1. The rules are consistent.

Proof. We need only prove that no edge must be oriented by the rules in two
opposite ways. Clearly, the vertical edges are oriented consistently. Since Rules H1,
H2, and H3 apply to edges of different types, they cannot contradict each other. Rule
H1 cannot orient an edge in two opposite ways, by property (iv) of the box partition.
Clearly Rule H3 also cannot orient an edge in two opposite ways. So the only case of
inconsistency would be the following: some horizontal edge xy (x, y ∈ box B) must
be oriented in one way because there is a P4 uvxy with u ∈ M(B) and v ∈ B (Rule
H2) and must also be oriented in the opposite way because there is a P4 ztyx with
z ∈ M(B) and t ∈ B, and x and y have the same neighbors in M(B). Clearly v �= t
(but u = z is possible). Let a′B be the auxiliary vertex of B given by property (ii) of
the box partition; so a′B sees u and z and misses all of v, x, y, t. In addition, v must
see t or else vxyt is a P4 in B. Now, either u sees t or z sees v, or else property (iv) is
contradicted for v, t. By symmetry we may assume that u sees t, but then v, t, u, a′B , x
is a bull. So Claim 1 is proved.
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Claim 2. The rules produce no P3 xyz with orientation �xy and �yz.
Proof. Suppose the contrary. Rules V0 and H1 imply easily that the vertices

x, y, z cannot be in different boxes. So, and by symmetry, we may assume that they
lie in one odd box B. Note that one of the edges xy, yz must have been oriented by
Rule H1 or by Rule H2.

Case 1. The edge xy was oriented from x to y by Rule H1. This hypothesis
means that there exists a vertex u in M(B) ∩ N(y) − N(x). If u misses z, then yz
should be oriented by Rule H1 from z to y, which is a contradiction; so u sees z. Now
x, y, z, u, a′B is a bull, which is a contradiction.

So xy is not oriented by Rule H1, and then x and y have the same neighborhood
in M(B).

Case 2. The edge xy was oriented from x to y by Rule H2. This means that x
and y have the same neighborhood in M(B) and that there exists a P4 uvxy with
u ∈ M(B) and v ∈ B. Because B has no P4, we have that v sees z. In addition, if
u sees z, then u, v, z, y, a′B is a bull. Moreover, y and z have the same neighborhood
in M(B). For, if y has more neighbors than z in M(B), then by Rule H1, we have
yz oriented from z to y. If there exists w ∈ M(B) ∩ N(z) − N(y), then w misses
x also and Rule H2 orients xy from y to x, which is a contradiction. Thus we can
apply Rule H2 to the P4 uvzy which forces yz to be oriented from z to y, which is a
contradiction.

Case 3. The edge yz was oriented from y to z by Rule H1. This hypothesis means
that there exists a vertex u in M(B)∩N(z)−N(y). Recall that x and y have the same
neighborhood in M(B). Thus we can apply Rule H2 to the P4 uzyx which forces xy
to be oriented from y to x, which is a contradiction.

Case 4. The edge yz was oriented from y to z by Rule H2. This means that
there exists a P4 uvyz with u ∈ M(B) and that y and z have the same neighborhood
in M(B). Recall that x and y also have the same neighborhood in M(B). Vertex
x misses v or else u, v, x, y, z is a bull. Thus we can apply Rule H2 to the P4 uvyx
which forces xy to be oriented from y to x, which is a contradiction.

In all cases a contradiction arises; so Claim 2 is proved.
Claim 3. The rules produce no circuit.
Proof. By Rule V0, a circuit may occur only inside a box. Without loss of

generality, let us assume that an odd box B contains a circuit C = c1 · · · cr. Observe
that if an edge xy in B is oriented from x to y, then y has at least as many neighbors
as x in M(B) because of Rule H1. Therefore, if somewhere along the circuit two
consecutive vertices ci, ci+1 satisfy N(ci)∩M(B) ⊂ N(ci+1)∩M(B) (where ⊂ denotes
strict inclusion), then necessarily elsewhere on the cycle some two consecutive vertices
cj , cj+1 must satisfy N(cj+1) ∩ M(B) ⊂ N(cj) ∩ M(B). But then this inclusion
contradicts the fact that the edge cjcj+1 is oriented from cj to cj+1. So, all vertices
along C have the same neighborhood in M(B). Moreover, since L(B) has no circuit,
at least one edge of C must have been oriented by Rule H2. So let us assume that
there is a P4 uvc1c2 with u ∈ M(B) and v ∈ B. Since all the vertices of C have the
same neighborhood in M(B), in particular, they all miss u, and v is not one of the
ci’s. Let j be the last subscript such that v misses cj (j ≥ 2). Then uvcj+1cj is a P4

implying that the edge cjcj+1 is oriented from cj+1 to cj , which is a contradiction.
So Claim 3 is proved.

Now the proof of Lemma 2.2 is complete.

4. More about the box partition. Everywhere in this section we reserve the
letter G for a prime bull-free Berge graph that contains a hole. We let k denote the
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length of a shortest even hole in G. So there are k nonempty sets V1, . . . , Vk such
that every vertex in Vi sees every vertex in Vi+1 (modulo k) and there is no other
edge between two Vi’s. By [7] G admits a box partition built from the Vi’s. We will
need to use some properties and notation from [7] concerning this box partition. In
particular, the boxes of this partition are classified as either “central” or “peripheral”
with the following properties that will be used here:

(a) If k ≥ 8, every central box is a homogeneous set. (To see this, recall from [7]
that when k ≥ 8 the central boxes are the connected components of the k sets
V1, . . . , Vk. If B ⊆ V1, then the proof of [7, Lemma 3] gives M(B) ⊆ A2, where
A2 is the set of vertices that are adjacent to all of V1 ∪ V3 ∪ · · · ∪ Vk−1; hence
every vertex adjacent to B is adjacent to all of B, and B is a homogeneous
set.)

(b) If k = 6, there are eight sets D1, . . . , D6, A1, A2 such that the central boxes
are exactly the connected components of these eights subgraphs. The sets
D1, . . . , D6 play symmetrical roles; the sets A1, A2 play symmetrical roles.
Moreover, if B is a box in D1 or in A1, then M(B) ⊆ D4 ∪ A2. There are
vertices v2, v6 that see all of D1 ∪A1 and none of D4 ∪A2; there are vertices
v3, v5 that see all of D4 ∪A2 and none of D1 ∪A1; v2v3 and v5v6 are the only
edges between v2, v3, v5, v6.

(c) [7, Lemma 4, Property (v)] In a peripheral box B any two adjacent vertices
have comparable neighborhoods in M(B).

Lemma 4.1. The graph G contains an antihole if and only if it contains a C6.

Proof. The “if” part is trivial. Conversely, suppose that G contains no C6.
Then Lemma 2.2 implies that G is transitively orientable, and hence it contains no
antihole.

When a C4 (a “square”) is denoted uvxy it is understood that ux and vy are the
two nonadjacent pairs.

Definition 4.2 (blocking square). We say that a square uvxy is blocking if u, v
belong to one box B and x, y belong to another box B′. The edges uv and xy are called
the blocking edges of the square. Likewise any edge uv with both endpoints in one box
is called blocking whenever it is one of the two blocking edges of a blocking square.

Remark 2. In Definition 4.2, clearly one of B,B′ is an even box and the other is
an odd box. Clearly too, we have {x, y} ⊆ M(B) and {u, v} ⊆ M(B′).

Lemma 4.3. The graph G contains a C6 if and only if G contains a blocking
square.

Proof. First suppose that G contains a blocking square uvxy with the notation as
in Definition 4.2. Let aB and a′B be the auxiliary vertices for B. Then aB , a

′
B , u, v, x, y

induce a C6.

Conversely, suppose that six vertices u1, u2, . . . , u6 form in G a C6, such that
the nonadjacent pairs are uiui+1 (subscripts here are understood modulo 6). In the
triangle u1, u3, u5 at least two vertices are on the same side of the box partition; say,
u1 and u3 are in one even box B. If both u4, u6 are in an odd box, then u1u3u6u4 is
a blocking square. So let us assume without loss of generality that u4 is in an even
box and hence in B. Then u2 is in an odd box or else u3u1u4u2 would be a P4 in B.
If u5 is on the odd side, then u1u4u2u5 is a blocking square. So let us assume that
u5 is on the even side and hence in B. Then u6 is on the odd side or else u5u3u6u4

would be a P4 in B. But now u3u5u2u6 is a blocking square.

Lemma 4.4. An edge uv in a box B is a blocking edge if and only if the vertices
u, v have incomparable neighborhoods in M(B).
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Proof. The “only if” part of the lemma is trivial. Conversely, suppose that u, v
have incomparable neighborhoods in M(B); i.e., there exist a vertex x ∈ M(B) ∩
N(v)−N(u) and a vertex y ∈ M(B)∩N(u)−N(v). Recall that the auxiliary vertex
aB sees both u, v and misses both x, y. Then x must see y or else aB , u, v, x, y would
be a bull. Now uvxy is a blocking square and uv is a blocking edge.

At this point it is useful to recall the graph called H0 in [3] and featured in
Figure 2.
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Fig. 2. The graph H0.

Lemma 4.5. If G contains an antihole, then G contains an H0.
Proof. By the preceding lemmas we may assume that G admits a blocking square

uvxy, with blocking edges uv in a box B and xy in a box B′. So the vertices u, v have
incomparable neighborhoods in M(B). By [7, Lemma 4, Property (v)] as recalled
above, B cannot be a peripheral box. So B is a central box. If k ≥ 8, then item (a)
above implies that B is a proper homogeneous set, which is impossible because u, v
have incomparable neighborhoods in M(B). So we have k = 6, and we may assume,
without loss of generality, that B ⊆ D1 ∪A1, with the notation of item (b). Now we
have

u, v ∈ B ⊆ D1 ∪A1, x, y ∈ B′ ⊆ D4 ∪A2.

Using the vertices v2, v3, v5, v6 whose properties are recalled in (b) above, we note
that vertex v2 sees all of {u, v, v3}, vertex v6 sees all of {u, v, v5}, vertex v3 sees all
of {x, y, v2}, vertex v5 sees all of {x, y, v6}, and there are no other edges between the
vertices u, v, x, y, v2, v3, v5, v6. Hence these eight vertices induce an H0.

The following result will be useful. Recall that, given a homogeneous pair Q1, Q2

in a graph G, we denote by Ti, i = 1, 2, the set of vertices in G \ (Q1 ∪Q2) that see
all of Qi and miss all of Q3−i, by T the set of vertices in G \ (Q1 ∪Q2) that see all of
Q1 ∪Q2, and by Z the set of vertices in G \ (Q1 ∪Q2) that see none of Q1 ∪Q2.

Theorem 4.6 (see [3]). Let G be a bull-free graph that contains an H0 (with the
notation as in Figure 2). Then the following hold.

(i) G contains a homogeneous pair Q1, Q2 such that a, b ∈ Q1, c, d ∈ Q2, e, f ∈
T1, g, h ∈ T2, and G[Q1] and G[Q2] are connected.

(ii) If G is connected and prime, then Z = ∅.
Proof. Part (i) of the theorem is proved in [3, Theorem 2]; it consists in a

polynomial-time algorithm that builds the homogeneous pair Q1, Q2 from a given
H0.

To prove part (ii) suppose on the contrary that Z �= ∅. Since G is connected,
there exists an edge zt with z ∈ Z and t ∈ T ∪T1∪T2. If t ∈ T1, then z, t, a, b, c induce
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a bull, which is a contradiction. So we may assume that t ∈ T , and z misses e since
e ∈ T1. Then t sees e, or else z, t, e, a, c would induce a bull. But then z, t, e, a, c, d
induce a broom, which is a contradiction to Lemma 3.2.

5. Proof of Theorem 2.3. Let G be a prime bull-free Berge graph that contains
a hole and an antihole. Recall that we want to prove that (I) the graph G contains
an interesting homogeneous pair Q1, Q2; (II) if H,Q are the two graphs obtained
by decomposing G along an interesting homogeneous pair, then both H and Q are
bull-free Berge graphs; and (III) it is possible to build a solution of the maximum
weighted clique problem on G from a solution of the same problem on H and Q with
appropriately defined vertex-weights.

To prove (I), we need only apply Lemma 4.5 and Theorem 4.6 above.
Now let us prove (II). Let abcd be a square with edge ab in Q1 and edge cd in

Q2. Here again Ti (resp., T ) is the set of vertices of G \ (Q1 ∪Q2) that see all of Qi

and none of Q3−i (resp., all of Q1 ∪Q2), and Z = V \ (Q1 ∪Q2 ∪ T1 ∪ T2 ∪ T ); i.e.,
no vertex of Z sees any of Q1 ∪Q2.

Recall that the graph H is obtained from G \ (Q1 ∪ Q2) by adding vertices
u1, u2, s1, s2, edges u1s1, u2s2, u1s2, u2s1, s1s2, and edges tui, tsi for each i and each
vertex t ∈ Ti ∪ T .

Lemma 5.1. H is perfect and bull-free.
Proof. Call G∗ the subgraph of G induced by V \ ((Q1 \ {a, b}) ∪ (Q2 \ {c, d})).

Observe that H \ s1s2 is isomorphic to G∗.
First we prove that H is perfect. Consider any induced subgraph H ′ of H. If

H ′ contains at most one of u1, s1 and at most one of u2, s2, then H ′ is isomorphic
to one of the subgraphs G∗ \ {a, c}, G∗ \ {a, d}, so H ′ is perfect. Suppose now by
symmetry that H ′ contains both u1 and s1. Note that s1 dominates u1 in H (i.e.,
NH(u1) ⊂ NH(s1)∩{s1}), and thus also in H ′. It is well known (see, e.g., [11]) that a
minimally imperfect graph cannot contain a pair of vertices such that one dominates
the other. So all induced subgraphs of H are perfect, including H itself.

Now suppose that H contains a bull B. It is easy to see that any induced subgraph
of H that contains none of the two triangles formed by u1, s1, s2 and u2, s1, s2 is
contained in one of the subgraphs G∗ \ {a, c}, G∗ \ {a, d} and thus cannot be a bull.
So we may assume by symmetry that B contains the triangle u1, s1, s2. Now B
must have a vertex adjacent to exactly one of u1, s1 and not adjacent to s2. But H
contains no such vertex since u2 is the only vertex adjacent to exactly one of u1, s1.
This completes the proof of the lemma.

Since Q is the subgraph of G induced by Q1 ∪Q2, the next claim is obvious.
Claim 4. Q is perfect and bull-free.
We now prove part (III) of Theorem 2.3. Let us denote by w(x) the weight of

a vertex x in G. Define weights for vertices in H as follows. Denote by ω(X) the
maximum weight of a clique in X, and set

wH(u1) = wH(u2) = ω(Q1) + ω(Q2) − ω(Q1 ∪Q2),

wH(s1) = ω(Q1 ∪Q2) − ω(Q2),

wH(s2) = ω(Q1 ∪Q2) − ω(Q1),

wH(x) = w(x) ∀x ∈ G \ (Q1 ∪Q2).

Say that a set X of vertices in H is of type 0 if X ∩ {u1, s1, u2, s2} = ∅, of type 1 if
X∩{u1, s1} �= ∅ and X∩{u2, s2} = ∅, of type 2 if X∩{u1, s1} = ∅ and X∩{u2, s2} �= ∅,
and of type 3 if X ∩ {u1, s1} �= ∅ and X ∩ {u2, s2} �= ∅.
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Let q be the maximum weight of a clique in H with respect to the weighting wH ,
and let CH be a clique of weight q. We can transform CH into a clique CG of weight
q in G as follows. If CH is of type 0, set CG = CH . If CH is of type i ∈ {1, 2}, let CG

be the union of CH \ (Q1 ∪Q2) and of a clique of size ω(Qi) in Qi. If CH is of type 3,
let CG be the union of CH \ (Q1 ∪Q2) and of a clique of size ω(Q1 ∪Q2) in Q1 ∪Q2.

Lemma 5.2. We have ω(G) = q and CG is a maximum weighted clique of G.
Proof. We need only exhibit a q-weighted coloring of G: that will prove both that

the clique CG defined above for G is maximum and that this coloring has minimum
weight. The proof of this lemma is essentially the weighted version of the proof of [3,
The Homogeneous Pair Lemma].

Recall that q = ω(H). So there exists a weighted coloring of H of total weight
q, that is, a collection of stable sets SH

1 , . . . , SH
t of H with corresponding weights

W (SH
1 ), . . . ,W (SH

t ), such that∑
{W (SH

i ) | SH
i � x} = wH(x) (∀x ∈ H)

and W (SH
1 ) + · · · + W (SH

t ) = q. Split the subscripts 1, 2, . . . , t into sets I0, I1, I2, I3
by writing j ∈ Ii if and only if SH

j is of type i. Thus

wH(ui) ≤
∑

{W (SH
j ) | j ∈ Ii ∪ I3},

wH(si) ≤
∑

{W (SH
j ) | j ∈ Ii}.

In addition, since ui and si are adjacent,

wH(ui) + wH(si) ≤
∑

{W (SH
j ) | j ∈ Ii ∪ I3}.

Define a graph F by adding to the subgraph Q = G[Q1 ∪ Q2] adjacent vertices
x1, x2 and edges xiy for all vertices y in Qi (i = 1, 2). Note that F is isomorphic to
the subgraph of G induced by Q1 ∪Q2 ∪ {t1, t2}, where t1 ∈ T1, t2 ∈ T2, and t1t2 is
an edge of G; such vertices exist because Q1, Q2 is an interesting homogeneous pair.
So F is a perfect graph. Define a weight function WF on the vertices of F as follows:

wF (x1) =
∑

{W (SH
j ) | j ∈ I2},

wF (x2) =
∑

{W (SH
j ) | j ∈ I1},

wF (y) = w(y) (∀y ∈ Q1 ∪Q2).

We have

wF (x1) + ω(Q1) = wF (x1) + wH(u1) + wH(s1)

≤
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3},

and similarly

wF (x2) + ω(Q2) = wF (x2) + wH(u2) + wH(s2)

≤
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3}.

In addition,

ω(Q1 ∪Q2) = wH(u1) + wH(s1) + wH(s2)

≤
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3}.
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Hence each clique CF has weight at most qF =
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3}.

Since F is perfect, there exist a family of stable sets SF
1 , . . . , SF

r of F and weights
W (SF

1 ), . . . ,W (SF
r ) such that

W (SF
1 ) + · · · + W (SF

r ) ≤ qF

and ∑
{W (SF

j ) | x ∈ SF
j } = wF (x) (∀x ∈ F ).

Since x1 and x2 are adjacent, no SF
j contains both x1, x2. The definition of

wF (x1) implies ∑
{W (SF

j ) | x1 ∈ SF
j } =

∑
{W (SH

j ) | j ∈ I2},

and similarly for x2.
Now we build a family of stable sets of G by “merging” the families of stable

sets of H and of F defined above. This is done as follows: First we merge the family
{SH

i | i ∈ I1} with the family of those stable sets SF
j that cover x2. Note that the

total weight is the same for both families, by the definition of wF (x2), though the
individual weights may be different. Also, each set (SF

j ∩(Q1∪Q2))∪(SH
i \(Q1∪Q2))

is a stable set, because the choice of j, i is such that SF
j covers x2 and i ∈ I1.

Merging procedure. Take the heaviest set S of the two families (say, the first
family), then take the heaviest set T of the second family, and merge them. That is,
make the set S ∪ T \ {u1, s1, x2}; remove S and T from their respective families; if
the weight α of S is strictly larger than the weight β of T , put a copy of S in the first
family with weight α − β; repeat with the remaining families until they are emptied
out. Clearly, at the end of each step of the merging subroutine at least one of the
two families has one less element, so the merging procedure produces a finite family
of stable sets of G (more precisely, the total number of steps, and thus of merged sets
that are created, is at most the total size of the two families).

Likewise, we merge the family {SH
i | i ∈ I2} with the family of stable sets SF

j

covering x1. Note that these two families have the same total weight, by the definition
of wF (x1).

Likewise, we merge the family {SH
j | j ∈ I3} with the remaining family of stable

sets SF
j (i.e., those stable sets SF

j that do not cover any of x1, x2).
Finally, the three families of stable sets produced by the mergings above, plus

the family {SH
j | j ∈ I0}, form a family S1, . . . , St of stable sets of G with weights

W (S1), . . . ,W (St), such that∑
Si�vj

W (Si) = w(vj) (∀vj).(3)

Since the total weight of S1, . . . , St is q, these stable sets form a minimum weighted
coloring of G, and this certifies that CG is a maximum weighted clique of G.

This completes the proof of Lemma 5.2 and of Theorem 2.3.

6. The algorithm. We can now present the algorithm BFCLIQUE, which, given
a bull-free Berge graph G = (V,E) with a weight w(x) on each vertex x, finds in
polynomial time a maximum weighted clique of G. Along with the description of the
algorithm it is convenient to maintain a decomposition tree TG associated with G.
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Step 1. In a first phase, we test whether G has any nontrivial homogeneous set.
Determining the homogeneous sets of a graph is a problem that is essentially solved by
the theory of modular decomposition; see, in particular, [4, 6, 17], stemming from the
seminal work of Gallai [9, 16]. This theory is rich and complex, and we outline only
the aspects that will be used here. Say that a homogeneous set S is strong if every
homogeneous set S′ satisfies S′ ⊆ S or S ⊆ S′ or S′∩S = ∅. It is known [9, 16] that the
strong homogeneous sets form a nested family, and so there are at most 2n of them,
including V and every singleton {v} (v ∈ V ). One can associate with every graph
G a unique rooted tree MG defined as follows. Let X1, . . . , Xr be the (inclusionwise)
maximal strong homogeneous sets of G, and let G′ be the graph obtained from G by
contracting each Xi into one vertex xi. The root of MG is G, and the children of node
G in MG are the graphs G[X1], . . . , G[Xr], G

′. For each i = 1, . . . , r, the subtree of
MG rooted at node G[Xi] is the tree MG[Xi] defined recursively. As for G′, it follows
from the theory of modular decomposition that G′ is a clique, or an edgeless graph,
or a prime graph, so G′ is a leaf of MG. This tree is called the modular decomposition
tree of G and can be computed in time linear in the number of edges of G [4, 6, 17].

To obtain a maximum weighted clique for G, we can follow this tree from the
bottom up. Assume that we have a maximum weight clique Q(Xi) for each graph
G[Xi]. We then assign the weight of Q(Xi) to vertex xi in G′. We then apply the
algorithm BFCLIQUE (step 2) on G′ and obtain a clique Q′ of maximum weight in
G′. From Q′ we can obtain a clique Q of G by replacing any xi that lies in Q′ by the
vertices of Q(Xi). Then Q is a maximum weighted clique of G. (To see this, take a
minimum weighted coloring for each of the G[Xi]’s, of weight ω(G[Xi]) since G[Xi] is
perfect, and for G′, of weight ω(G′) since G′ is perfect, and merge them in the obvious
way; thus a weighted coloring is obtained for G, whose weight is the weight of Q.)

This first step shows that the computation of a maximum clique for G by BF-
CLIQUE is reduced to calls of BFCLIQUE on at most n graphs (the leaves of the
modular decomposition tree). We represent this situation in the associated tree TG

by saying that if G has a nontrivial homogeneous set, then the children of node G in
TG are the leaves of the modular decomposition tree MG. In that case we say that
node G is a modular node of TG.

Step 2. We are now dealing with a bull-free Berge graph K that is a clique, or
an edgeless graph, or a prime graph. We use the algorithm from [7], whose output is
one of the following cases.

2.1. K is weakly triangulated. We use the algorithm due to Hayward, Hoàng, and
Maffray [14] to produce a maximum weighted clique of K; it is strongly polynomial
and its time complexity is O(n4m). Since K is not subject to a decomposition, node
K is a leaf of TG.

2.2. K contains an even hole and the algorithm produces a box partition for K,
and there is no blocking square with respect to this partition. Lemmas 4.1 and 4.3,
Theorem 2.1, and Lemma 2.2 imply that K is transitively orientable. A transitive
orientation can be found in linear time using the algorithm in [17]. A maximum
weighted clique and a minimum weighted coloring can be found using the algorithm
in [15], which is strongly polynomial and whose time complexity is O(nm). Here too,
node K is a leaf of TG.

2.3. K contains an even hole and the algorithm produces a box partition for K,
and there is a blocking square. Then Lemmas 4.1 and 4.5, and Theorem 2.3 imply
that we can decompose K into the two graphs H and Q as above. The proof of part
(III) of Theorem 2.3 describes how to obtain a solution to our problem on K from



238 CELINA M. H. DE FIGUEIREDO AND FRÉDÉRIC MAFFRAY

a solution of the same problems on each of H,Q. Therefore, H and Q are the two
children of node K in the tree TG. We will say that node K is an H0-node of TG.

2.4. K contains no even hole, its complementary graph K contains an even hole,
and the algorithm produces a box partition for K. Then K is a leaf of TG. Lemmas 4.3
and 4.1, Theorem 2.1, and Lemma 2.2 imply that K is transitively orientable. A
transitive orientation of K can be found rapidly using the algorithm in [17]. Finding
a maximum weighted clique and a minimum weighted coloring for K is equivalent to
finding a maximum weighted stable set and a minimum weighted clique covering for
the transitively orientable graph K; this problem can be solved in strongly polynomial
time by the algorithm described in [2]. Here too, node K is a leaf of TG.

7. Complexity analysis. As noted several times, each step of the algorithm
can be done in polynomial time. So, in order to prove polynomiality of the whole
algorithm, we need only establish the following lemma.

Lemma 7.1. There is a polynomial number of nodes in the tree TG.

Proof. Let n and m be the number of vertices and edges in G. There are two types
of nonleaf nodes in TG: modular nodes and H0-nodes. Let β(G), β1(G), β0(G) be,
respectively, the number of nodes, of modular nodes, and of H0-nodes in TG. Note that
each node of TG has no more vertices than its parent. (The “H” child of an H0-node
K may have exactly as many vertices as K; this happens if its sibling the “Q” child of
K has exactly four vertices.) Thus every node of TG has at most n vertices. So each
node has at most n children, and β(G) ≤ n(β0(G)+β1(G)). The principle of modular
decomposition implies that the parent of a modular node is an H0-node. Since each
H0-node has exactly two children, we see that β1(G) ≤ 2β0(G) + 1. Therefore,
β(G) ≤ n(3β0(G) + 1), and we need only prove that β0(G) is a polynomial of n. Our
counting argument now focuses on the subgraphs (of nodes of TG) that induce a 2K2,
i.e., a graph on four vertices with two nonincident edges. We want to see how the
number of 2K2’s evolves along TG.

First, suppose that K is a modular node of TG. Then it is a routine matter to
check that the total number of 2K2’s that are induced in its children in MG is not
larger than the number of 2K2’s induced in K, and thus that the same holds with
respect to the children of K in TG.

Second, suppose that K is an H0-node of G, decomposed along an interesting
homogeneous pair Q1, Q2 (with the notation T1, T2, T, Z as usual), and call H,Q the
two children of K in the tree. Let us prove that in total H and Q have strictly fewer
2K2’s than K. For this purpose let us define a one-to-one mapping f that maps every
subgraph D that induces a 2K2 in H or Q to a subgraph f(D) that induces a 2K2

in K. If D is in Q, then set f(D) = D. If D is in H, we observe that D does not
have an edge with an endvertex in {u1, s1} and the other in {u2, s2}, for otherwise
the remaining two vertices of D should be in Z, which is a contradiction to (ii) of
Theorem 4.6. Therefore, if D is in H, we let f(D) be the 2K2 of K obtained from
D by replacing u1, s1, s2, u2 (whichever appear in D), respectively, by a, b, c, d. It is a
routine matter to check that f is indeed a one-to-one mapping. Moreover, the 2K2 of
G induced by b, c, e, h is not the image f(D) of any 2K2 D of H or Q. This ensures
that H and Q have in total strictly fewer 2K2’s than K.

Now let T ′
G be the tree obtained from TG by contracting each node that is not an

H0-node with its parent. The number of nodes of T ′
G is β0(G) (if G is an H0-node)

or β0(G) + 1 (if G is a modular node). The preceding two paragraphs imply that the
total number of 2K2’s at a given level of T ′

G decreases strictly as the level is farther
from the root (viewed as level 0), with the only possible exception of the first level
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if G is an H0-node. This implies that the number of nodes in T ′
G is bounded by the

number of 2K2’s in G plus 1, which is O(m2).

With this final claim, we obtain that the total number of recursive calls to the
algorithm is at most O(m2). It follows that the algorithm is strongly polynomial,
with worst-case complexity O(n5m3).

Let us conclude with a remark. The proof of Lemma 5.2 shows how a minimum
weighted coloring can be found directly from a minimum weighted coloring of H and
of the graph F defined in Lemma 5.2. This method could be the basis for a coloring
algorithm that does not involve n4 calls to the maximum weighted clique algorithm
as mentioned in the introduction. However, this method leads to a decomposition
algorithm in which a node K that contains an H0 must be decomposed into three
graphs H,Q,F . In that case, note that the vertices of Q also appear in F , and so we
cannot guarantee that the total number of nodes of the decomposition tree remains
polynomial in the size of the root graph.
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Abstract. We view a loopless multigraph as a complete graph with nonnegative integer edge
weights indicating the multiplicity of each edge. A multigraph realization of a given degree sequence
is parsimonious if it has the least number of positive weight edges. We characterize the graphs that
can appear as components in a parsimonious multigraph and show that minimizing the number of
positive weight edges is equivalent to maximizing the number of cycle-free components.
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1. Introduction. A sequence of integers d = (d1, . . . , dn) is graphic if it is the
degree sequence of some loopless multigraph G, in which case we say that G is a
realization of d. We view a loopless multigraph as a complete graph with nonnegative
integer edge weights indicating the multiplicity of each edge. The support graph for
a multigraph is the simple graph consisting of the edges with positive weight. We
call a multigraph realization of a degree sequence parsimonious if no other realization
has fewer edges in its support graph. And we call a simple graph a parsimonious
support graph if it appears as the support graph of some parsimonious multigraph.
Parsimonious multigraphs have also been studied in [1] and [7] with the restriction
that edges have a maximum multiplicity of 2.

To construct a parsimonious multigraph one attempts to minimize the number
of positive weight edges. The opposite extreme was studied by Kleitman [5] and
others. They provided efficient algorithms for producing multigraph realizations that
minimize the number of multiple edges, where an edge of weight w > 1 is counted as
w − 1 multiple edges. Since a multigraph with degree sum D and m multiple edges
has D

2 − m positive weight edges, they were in effect producing realizations with a
maximum number of positive weight edges. Multigraph realizations subject to other
constraints have been studied in [2], [4], [6].

A potential application of parsimonious multigraphs arises in network design.
Suppose a length n degree sequence represents the desired number of connections per
node in an n node network. Suppose further that establishing the first connection
between a pair of nodes comes at unit cost, but subsequent connections between the
same pair come with no cost. For example, digging a trench between two nodes is
expensive, but once the trench is open the number of wires laid in the trench makes
little difference. In such a context a parsimonious realization yields the cheapest
network.

In this paper we show that finding a support graph of minimum size is equivalent
to finding a support graph with the maximum number of cycle-free components. We
then characterize a component of a parsimonious support graph as either a tree or a
tree plus one edge where the unique cycle formed has odd length.
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2. Necessary conditions. We begin by describing a method of producing a
new graph with the same degree sequence as a given graph. Let T = (v1, . . . , v2n)
be an even length closed walk in a multigraph G. (We allow edges of weight zero in
the walk.) We call edges of the form (v2k, v2k+1) even edges and edges of the form
(v2k−1, v2k) odd edges. Let m be the minimum weight of any even edge in T . If none
of the even edges of T is repeated, we perform a T -interchange on G by subtracting m
from the weight of the even edges and adding m to the weight of the odd edges. If an
odd edge is used k times, then a total of km is added to the weight of this edge. After
showing that a T -interchange preserves the degree sequence, it will be our primary
tool for manipulating realizations of a given degree sequence.

Lemma 2.1 (interchange lemma). If T is an even length closed walk in a multi-
graph G which repeats no even edge, then a T -interchange on G produces a multigraph
G′ with the same degree sequence as G.

Proof. Let T = (v1, . . . , v2n) be an even length closed walk which repeats no even
edge in a multigraph G. Since the T -interchange subtracts the minimum weight of
any edge, all of the edge weights remain nonnegative. Since any vertex v on T is
incident to an equal number of odd and even edges on T , we conclude that G and G′

have the same vertex degrees.

Lemma 2.2. A parsimonious support graph contains no even length closed trails.

Proof. Suppose that the support graph of the multigraph G contains an even
length closed trail T . By definition of a support graph all of the edge weights in T are
positive. A T -interchange on G reduces at least one of these weights to zero, showing
that G is not parsimonious.

The following lemma guarantees that each component of a parsimonious support
graph is either a tree or a tree plus one edge.

Lemma 2.3. A parsimonious support graph has at most one cycle in each com-
ponent.

Proof. Suppose that the support graph of a parsimonious multigraph G has two
distinct cycles C1 and C2 in the same component. By Lemma 2.2, C1 and C2 have
odd length.

Case 1. Suppose the cycles are not vertex disjoint. Let e be an edge on C1 but
not on C2. Starting on e, follow cycle C1 in each direction until reaching vertices u
and v on C2, with u possibly equal to v. If u = v, then C1 and C2 can be combined at
vertex u to give an even length closed trail, contradicting Lemma 2.2. If u �= v, then
u and v split C2 into two paths P1 and P2 of opposite parity, one of which can be
combined with the uv portion of cycle C1 containing e to form an even length closed
trail, contradicting Lemma 2.2.

Case 2. Suppose the cycles are vertex disjoint. Let P be a shortest (u, v) path
from C1 to C2. Label C1 = (u1, . . . , u2j+1) with u1 = u and label C2 = (v1, . . . , v2k+1)
with v1 = v.

Case 2(a). Suppose P has length 1. Applying the interchange lemma (Lemma
2.1) to the closed walk T = (u1, v1, . . . , v2k+1, v1, u1, . . . , u2j+1) yields a multigraph
with the same degree sequence but fewer edges in its support graph, showing that G
is not parsimonious.

Case 2(b). Suppose the path P = (u1, w1, . . . , w2r, v1) has odd length 2r+1 > 1.
Apply the interchange lemma to the even length closed walk (u1, w1, . . . , w2r, v1).
Since P is a shortest path, the edge v1u1 has weight zero. Consequently the T -
interchange adds v1u1 to the support graph, producing a realization which falls under
Case 2(a).
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Case 2(c). Suppose the path P = (u1, w1, . . . , w2r+1, v1) has even length. Ap-
ply the interchange lemma to the even length closed walk (u1, w1, . . . , w2r+1, v1, v2).
Again using the fact that P has minimum length, the interchange adds the edge v2u1

to the support graph. Since G is assumed to be parsimonious, exactly one other edge
of the walk must be removed from the support graph. If (v1, v2) is removed, then the
interchange produces a new cycle (v2, . . . , v2k+1, v1, w2r+1, . . . , w1, u1) incident to C1,
contradicting Case 1. If it is an edge from P that is removed, then again we have a
realization which falls under Case 2(a).

Lemma 2.3 can now be used to show that minimizing the number of positive
weight edges is equivalent to maximizing the number of cycle-free components. We
state this result in the following theorem and leave the proof to the reader.

Theorem 2.4. A parsimonious support graph on n vertices with k cycle-free
components has n− k edges.

3. Sufficient conditions. In the previous section we showed that each compo-
nent of a parsimonious support graph is either a tree or a tree plus one edge where the
unique cycle has odd length. In this section we show that these necessary conditions
on the components of a parsimonious support graph are also sufficient. We begin with
a simple requirement for a realization to have multiple components.

Lemma 3.1. The sequence d = (d1, . . . , dn), where each di is even, has a realiza-
tion with more than one component if and only if there exists a partition of [n] into
sets A and B such that

∑
i∈A di − 2 maxi∈A di ≥ 0 and

∑
i∈B di − 2 maxi∈B di ≥ 0.

Proof. Since each degree is even, all subsets have even sums. So the result follows
from the well-known property that a sequence is realizable by a loopless multigraph
if and only if the sum is even and the maximum degree is no greater than the sum of
the remaining degrees.

The next lemma shows when a degree sequence has a cycle-free realization.
Lemma 3.2. The sequence d = (d1, . . . , dn) has a cycle-free realization if and only

if there exists a partition of [n] into sets A and B such that
∑

i∈A di =
∑

i∈B di.
Proof. A cycle-free realization of the sequence is a bipartite graph, the two partite

sets of which have equal degree sums. In the other direction, given the sets A and
B with equal sums, it is easy to form a bipartite realization. There can be no odd
length cycles in the bipartite graph, and any even length cycles can be removed by
performing T -interchanges.

In the following three lemmas, we create degree sequences for which the given
graph will be parsimonious. First, we construct edge weights to show that any tree
can appear in a parsimonious multigraph.

Lemma 3.3. Every nontrivial tree is a parsimonious support graph.
Proof. We prove by induction on the number of vertices n that every tree

can be assigned edge weights so that the resulting degree sequence has all even
degrees and is not multicomponent realizable. Theorem 2.4 then implies that the
tree is parsimonious. For n = 2, give the single edge weight 2. Given a tree T
on n > 2 vertices, let uv be a pendant edge with leaf v. Form T ′ by deleting v,
and apply induction to obtain edge weights for T ′ and a resulting degree sequence
d′ = (d′1, . . . , d

′
n−1) of even degrees which cannot be realized by more than one com-

ponent. Without loss of generality, assume d′n−1 is the degree of vertex u in T ′,
and for convenience define d′n = 0. In T assign the edge uv weight 2, and assign
all other edges three times their weight in T ′. This gives T the degree sequence
d = (d1, . . . , dn) = (3d′1, . . . , 3d

′
n−2, 2 + 3d′n−1, 2 + 3d′n). It remains to show that d is

not multicomponent realizable.
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Let A and B be a partition of [n]. Since T ′ is not multicomponent realizable,
we may assume without loss of generality that

∑
i∈A d′i − 2 maxi∈A d′i ≤ −2. Then∑

i∈A 3d′i − 2 maxi∈A 3d′i ≤ −6, which implies
∑

i∈A di − 2 maxi∈A di ≤ −2. Thus T
is not multicomponent realizable.

Next, we construct edge weights to show that any odd length cycle can appear in
a parsimonious graph.

Lemma 3.4. Every odd length cycle is a parsimonious support graph.
Proof. For k ≥ 1, let C = (v1, . . . , v2k+1) be an odd length cycle. For i = 1, . . . , 2k

assign to edge vivi+1 weight 2i, and assign to edge v2k+1v1 weight 22k+1. These edge
weights produce the degree sequence d = (3 · 22k, 2 + 22k+1, 3 · 22k−1, . . . , 3 · 22, 3 · 21).
We prove that C is parsimonious by showing that d cannot be realized by a tree or
by a graph with more than one component.

If d could be realized by a tree, then d could be realized by a bipartite graph.
This would imply that the sequence d could be partitioned into two sets with equal
sums. However, the fact that 2 + 22k+1 is the only number in the sequence which is
not divisible by 3 precludes this possibility.

Note that 3 · 21 + 3 · 22 + · · · + 3 · 2i−1 = 3 · 2i − 6. Since the largest degree in a
component can be at most the sum of the remaining degrees, no degree of the form
3 · 2i, with i ≤ 2k− 1, can be the largest degree in a component. Moreover, 2 + 22k+1

is required to be in the same component as 3 · 22k, and hence, any realization of d can
have only one component.

Finally, we construct edge weights to show that any tree with an extra edge
forming an odd cycle can appear in a parsimonious support graph.

Lemma 3.5. If G is a tree plus one edge forming an odd length cycle, then G is
a parsimonious graph.

Proof. We prove by induction on the number of edges k not belonging to the
cycle that edge weights can be assigned so that the resulting degree sequence has
all even degrees, is not multicomponent realizable, and is not cycle-free realizable.
Theorem 2.4 then implies that the graph is parsimonious. For k = 0, Lemma 3.4
applies. Given a graph G with k > 0 edges not on the cycle, let uv be a pendant edge
with leaf v. Form G′ by deleting v, and apply induction to obtain edge weights for G′

and a resulting degree sequence d′ = (d′1, . . . , d
′
n−1) which cannot be realized by more

than one component and cannot be realized as a tree. Without loss of generality,
assume d′n−1 is the degree of vertex u in G′, and for convenience define d′n = 0. In
G assign the edge uv weight 2 and assign all other edges three times their weight
in G′. This gives G the degree sequence d = (d1, . . . , dn) = (3d′1, . . . , 3d

′
n−2, 2 +

3d′n−1, 2 + 3d′n). The argument in the proof of Lemma 3.3 again shows that d is not
multicomponent realizable. It remains to show that d is not cycle-free realizable.

Let A and B be a partition of [n]. Since G′ is not cycle-free realizable, Lemma 3.2
implies |

∑
i∈A d′i −

∑
i∈B d′i| ≥ 2. Then |

∑
i∈A 3d′i −

∑
i∈B 3d′i| ≥ 6, which implies

|
∑

i∈A di −
∑

i∈B di| ≥ 2 and shows again by Lemma 3.2 that G is not cycle-free
realizable.

Combining the necessary and sufficient conditions gives the final theorem.
Theorem 3.6. A simple graph T can be a component of a parsimonious support

graph if and only if T is a tree or T is a tree plus one edge where the unique cycle
formed has odd length.

4. Complexity. As mentioned in the introduction, Kleitman and others found
efficient algorithms for maximizing the number of edges in a support graph. We
conjecture that there is not an efficient algorithm for minimizing the number of edges



PARSIMONIOUS MULTIGRAPHS 245

in the support graph.
Our conjecture is based on a connection to the NP-complete problem of

NUMERICAL THREE DIMENSIONAL MATCHING (N3DM) [3]. One variant of
this problem asks if a collection of 3k positive integers can be split into k triples such
that in each triple one of the numbers is equal to the sum of the other two.

Let DISTINCT NUMERICAL THREE DIMENSIONAL MATCHING (DN3DM)
be the restriction of N3DM to the case where all integers are distinct. If we view the
3k integers as a degree sequence d, it is relatively easy to see that there is a successful
matching into triples if and only if the support graph of the parsimonious multigraph
for d consists of k disjoint length 2 paths.

Of course it is possible that DN3DM is no longer NP-complete. However, intu-
itively it seems that repeated numbers should make matching easier, and therefore
restricting N3DM to the case where all the numbers are distinct would be a restriction
to the “hardest case” of N3DM.
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Abstract. This paper investigates the local uniqueness of designs of m-circles (lines and circles)
in the plane up to inversion under a set of angles of intersection as constraints. This local behavior
is studied through the Jacobian of the angle measurements in a form analogous to the rigidity
matrix for a framework of points with distance constraints. After showing directly that the complete
set of angle constraints on v distinct m-circles gives a matrix of rank 3v − 6, we show that the
Jacobian is column equivalent by a geometric correspondence to the rigidity matrix for a bar-and-
joint framework in Euclidean 3-space. As a corollary, the complexity of the independence of angle
constraints on generic plane circles is the complexity of the old unsolved combinatorial problem of
generic rigidity in 3-space. This theory is not known to have a polynomial time algorithm for generic
independence that offers a warning about the complexity of general systems of geometric constraints
even in the plane.

Our correspondence extends to all dimensions. Angle constraints on spheres in 3-space then
match the even more complex first-order theory of frameworks in 4-space. This theory is not predicted
to have a polynomial time algorithm for generic points.

Key words. computer aided design, constraint, inversive geometry, circles and angles, generic
rigidity, hyperbolic geometry
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1. Introduction. A standard problem in computer aided design (CAD) is to
find stable combinatorial techniques to decide when a set of constraints is independent,
and solvable algebraically, in a reasonable time (or real time in parametric CAD
programming) [16, 10]. In the study of combinatorial algorithms for independence, the
classical example is points and distance in a plane or, equivalently, generic rigidity of
plane frameworks. Given a graph, there is a fast combinatorial algorithm to decide the
independence of the edges, as distance constraints, for almost all (generic) placements
of the vertices as distinct points in the plane [15, 7, 24]. At the other extreme, there
are sample problems, including points and distances in 3-space, for which there is no
known polynomial time combinatorial algorithm to decide independence [7, 25, 32].

It is of interest to consider other geometric objects beyond points and other
geometric constraints beyond distances (e.g., angles) and to discover the combinatorics
and the geometry of their independence structure. In this paper, we consider circles
of variable radii in the plane, with the angle of intersection of pairs of circles as the
constraint. The case of mutually tangent circles, or even lines tangent to circles, are
special cases of this problem, as outlined below. This problem of circles of variable
radii with angles of intersection (including tangency) is a real problem in practical
CAD programming [17, 12, 13]. We describe some new results and some important
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Fig. 1.1. Are three mutually tangent circles unique up to inversion?

connections, which we hope will offer insights for CAD programmers working on this
problem, embedded in general systems of constraints.

Of course, answering this combinatorial question is only one step in the process.
Once we have a combinatorial algorithm, there is still the problem of determining alge-
braic methods for solving the constraints for maximal independent sets of constraints
and the problem of “special position” in which the constraints that are typically in-
dependent become dependent, such as the lengths of the third edge of a collinear
triangle for distance constraints. We will not address either of these hard problems
in detail in this paper.

Consider the two sets of mutually tangent circles in Figure 1.1. The following
question arises: Is there an angle preserving map of the plane (a series of inversions)
that carries the three circles on the left onto the three circles on the right preserving
tangency? The question can be broadened. Suppose that the constraints on circles are
not limited to tangency but include a fixed angle for each designated pair of circles.
A similar question can be posed for any design: a set of circles and lines under angle
constraints at their intersections.

This problem of uniqueness, which is typical of underlying problems which arise
in CAD, is hard once we move to larger sets [14, 16, 17]. As an important analogy,
recall that for points in the plane, constrained by distances, the general problem of
“global” rigidity (uniqueness up to congruence) is unsolved, and we have no general
algorithm which applies to all designs [5, 8].

A simpler problem, which is required for parametric CAD programming, is to test
“local uniqueness” of the design—a property that can be predicted using the linear
algebra of the Jacobian of the constraints for almost all configurations [4, 16, 23, 32].
The rank of this Jacobian matrix for the constraints, often called the rigidity matrix
(for distances) or the constraint matrix (for more general constraints), is determined
through two layers of analysis:

1. the combinatorial level, which determines the maximum rank by the combi-
natorics of which constraints are selected (in our case, a graph with vertices
for the circles and an edge for each angle constraint);

2. the geometric level, which describes when the rank of the matrix drops below
the maximum in (1).

Whenever the rank is maximal, the linear algebra of the Jacobian predicts whether
the design is locally unique or has a continuous path of configurations satisfying the
same constraints but which is geometrically inequivalent (section 4.3). Since this
maximal rank occurs for “almost all” choices of the objects, this combinatorial theory
gives a strong prediction of what will happen in a CAD problem for “generic” circum-
stances. Moreover, even if a lower rank configuration remained locally unique, the
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usual numerical algorithms will become ill-determined in these nongeneric situations.
In short, the rank of the Jacobian is a critical factor in any analysis of a design.

For angle constraints among circles and lines, the appropriate geometry is inver-
sive geometry. Under inversions, the set of circles and lines goes to the set of circles
and lines, and all angles are preserved. Thus, at best, angle constraints can make a
design unique, or locally unique, up to inversion. Because inversive geometry may
not be familiar to many readers in CAD, in section 2 we provide a brief introduc-
tion to inversions in the plane, including both synthetic and analytic representations.
This is followed by an introduction to a representation of the circles as points in R

3

(section 3).
We then present the Jacobian of the system of angle constraints, proving a basic

theorem on the minimum number of constraints which makes a design unique up to
local inversion: |E| = 3|V | − 6 (section 4).

Within this initial analysis, we find a striking similarity to the theory of rigid
bar-and-joint frameworks in Euclidean 3-space with the same graph [4, 25, 30, 32].
After a brief recollection of the first-order theory of such frameworks (section 5), we
present an unexpected isomorphism between the Jacobian for these three-dimensional
frameworks and the constraint matrix for circles and lines with angle constraints in
the plane (section 6). This permits the complete transfer of known results as well
as longstanding conjectures from the first-order theory of frameworks of points and
distances into this first-order theory for circles, lines, and angles (section 7). This
complete transfer raises the likelihood that there is no polynomial time algorithm for
determining the independence of generic patterns of angle constraints on circles in
the plane, in contrast to the desirable model of a O(|E|2) algorithm offered by points
and distances in the plane.

These results extend to all dimensions, giving, for example, a transfer between
the first-order theory of spheres and planes in 3-space, constrained by angles, and the
first-order theory of bar-and-joint frameworks in Euclidean 4-space (section 8).

To this point, the theory assumes circles with variable radii and only angle con-
straints. In section 9 we introduce additional constraints to fix some or all of the radii
of the circles. An extension of the transfer to 3-space confirms that, with all radii
fixed, the theory simplifies to the theory of the centers of the circles with distance con-
straints replacing the angle constraints. This special case does have fast algorithms.
However, when we mix fixed and variable radii (with more than two variable circles),
the theory returns to at least the complexity of spatial rigidity.

Beneath this first-order isomorphism with Euclidean frameworks lies a stronger
isomorphism between the inversive theory of m-circles constrained by angles in the
plane and the congruence theory of planes in hyperbolic 3-space constrained by (hy-
perbolic) angles—or, dually, the theory of ideal points in hyperbolic space, constrained
by hyperbolic distance. This correspondence applies beyond the first order to all lev-
els of rigidity and flexibility and is presented in [21]. These isomorphic theories then
share a common first-order isomorphism with Euclidean and spherical frameworks,
which is explored in detail in [21]. While some aspects of this correspondence of plane
circles and hyperbolic geometry are well known, there remain new insights to be ex-
tracted. It may be a surprise to people in CAD programming that simple plane and
3-space CAD contains, as a subset, the theory of planes and hyperplanes with angle
constraints in hyperbolic 3- and 4-space.

This study continues a series of papers which investigate constraints among points,
lines, and circles in the plane [2, 21, 22, 33]. One central problem is appropriate
algorithms for “generic” behavior of configurations of objects and constraints. The
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Fig. 2.1. Inversion in a circle: �op· �op′ = r2.

results in this paper emphasize that there are plane problems that, unlike simple
distance constraints in the plane, have a complexity that may not be polynomial. We
offer further observations and unsolved problems in section 10.

2. Circles in the inversive plane. While people familiar with hyperbolic ge-
ometry and inversive geometry will be familiar with all the material in this section,
we feel it is important to make this paper more self-contained for workers in CAD
programming.

2.1. The plane model. Plane inversive geometry is the underlying geometry
in this investigation, so this section will recall the definition and some useful results.
Our two primary sources for these sections are [18, 34]. While this paper will focus on
the plane, we will indicate how the results generalize directly to n dimensions n ≥ 1
in section 8. The interested reader can find a nice treatment of inversive geometry in
n-dimensional space in [34].

Let C be a circle centered at an arbitrary point o with radius r and p a point
different from o. Then to the point p associate the point p′ on the ray �op satisfying
�op· �op′ = r2 (Figure 2.1). One easily finds that this association is a bijection of the
plane onto itself, except for the point o. To complete the bijection, we adjoin exactly
one point to the plane, the point at infinity, denoted by o′, and pair it with o under
this correspondence. The plane augmented with the point at infinity is the inversive
plane, denoted Π.

Definition 2.1. Let C be a circle centered at a point o with radius r, o′ the point
at infinity, and p a point in the inversive plane. Then the inverse of p in C is

1. o′ if p = o,
2. o if p = o′,
3. the point p′ on the ray �op satisfying �op· �op′ = r2 otherwise.

The point o is called the center of inversion and C the circle of inversion.
Note the points of the circle C are invariant under inversion in C.

2.2. The sphere model. This section describes the sphere model of the in-
versive plane. We include the sphere model because it sometimes provides a more
convenient image for results about inversive geometry.

Definition 2.2. Let Σ be a sphere, p a point on Σ, and C a circle on Σ. Let
tC be the tip of the cone tangent to Σ at C. Then the inverse of p in C is the second
point of intersection of the line through p and tC with Σ (Figure 2.2).

If the circle C in the above definition is a great circle (the intersection of a plane
through the center of Σ with Σ), then tC is a “point at infinity” in 3-space, and all
lines through tC and a point on Σ are parallel to the normal of the great circle. That
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Σ Σ

C

C

p′

p′

p
p

tC

Fig. 2.2. Inversion in a circle on the sphere model.

−p

q′Π

p

q
Σ

Fig. 2.3. Stereographic projection from the sphere to the inversive plane.

is, the inverse of a point p in a great circle is obtained by reflecting p in the great
circle. Notice that in this spherical model the bijection of the sphere onto itself is
complete; there is no need to augment the sphere with an additional point.

2.3. Connecting the plane model and the sphere model. The plane and
sphere models of the inversive plane are connected through stereographic projection.
Let p be a point on the sphere Σ and −p the antipodal point of p. Let Π be a plane
tangent to Σ at −p. Then we have a bijection between Σ and Π: q ∈ Σ corresponds to
q′ ∈ Π, where q′ is the point of intersection of the line pq with Π, and p corresponds
to the point at infinity of Π (Figure 2.3).

Hence, the plane model Π of the inversive plane is obtained from the sphere Σ
model by stereographic projection of the sphere from a point p onto a plane tangent
to the sphere at the −p. Similarly, the sphere model is obtained from the plane
model by lifting the plane onto the sphere (the inverse mapping of stereographic
projection). Note that the point p of stereographic projection corresponds to the
point at infinity in the plane model. Also note that circles through the projection
point go to lines in the plane. Figure 2.4 illustrates that stereographic projection
preserves angles of intersection of circles.

Notice that inversion in a great circle through the north and south poles is a
reflection in the vertical plane of this great circle. This corresponds to an “inversion”
in the projected line in the plane—now seen as a reflection in the line. Since we had
not previously defined inversion in a line, we define this inversion as the reflection.
Since all isometries of the plane are products of reflections, all isometries of the plane
can be viewed as products of inversions.
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Θ

Θ

Θ

Fig. 2.4. Stereographic projection preserves angles. The angles on the sphere are equal by
symmetry. The vectors at the north pole are in a plane parallel to the inversive plane, so a translation
gives the equality with the angle in the plane.

2.4. Properties of inversions. The choice of the size of the sphere and the
point of tangency of the sphere with the plane in the stereographic projection from
the previous section is arbitrary. However, there is one such choice that makes many
important facts about inversions visually obvious. Suppose C is the circle of inversion
in the inversive plane Π centered at o with radius r. Take a sphere Σ of diameter r
tangent to Π at o. Lifting Π onto Σ maps the circle of inversion onto the “equator” of
the sphere—a great circle. Also, the point at infinity in the inversive plane maps onto
the point of projection p on the sphere. The inversion in the sphere model is merely
a reflection in this equatorial great circle. Stereographic projection of the reflected
sphere back onto a plane through the great circle yields the image of the plane Π
under the inversion.

This approach to inversion lends itself well to proving properties of inversions in
the plane.

Proposition 2.3. Properties of inversions.
(1) The product of two inversions in the same circle is the identity mapping.
(2) Inversion preserves angles.
(3) The circle of inversion is invariant under inversion.
(4) Lines through the center of inversion are invariant under inversion.
(5) Circles orthogonal to the circle of inversion are invariant under inversion.
(6) The inverse of a circle through the center of inversion is a line not through

the center of inversion.
(7) The inverse of a line not through the center of inversion is a circle through

the center of inversion.
(8) The inverse of a circle not through the center of inversion is a circle not

through the center of inversion.
Proof. (1) follows from the fact that the product of two reflections of the sphere

in the same great circle is the identity mapping.
(2). Since stereographic projection and reflections on the sphere preserve angles,

it follows that inversion preserves angles.
(3), (4), (5). The mentioned objects lift onto objects invariant under the reflection

in the “equator” of the sphere. Therefore, they are invariant under an inversion.
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(a) (b)

(c)

Fig. 2.5. Proof without words of (6) and (7) of Proposition 1: (a) stereographic lifting of the
circle; (b) inversion of the lift in the equator; (c) stereographic projection of the image.

(6), (7). See Figure 2.5 for a proof without words of (6) and (7).
(8) follows from (6) and (7) and the fact that stereographic projection carries

circles on the sphere onto circles on the plane.
The following section develops some of these properties of inversions algebraically.

2.5. An algebraic look at inversion. Since we will be working with circles
and lines simultaneously, we introduce the following definition.

Definition 2.4. A Möbius-Circle (or m-circle) in the plane is a line or circle in
the plane.

Inversion can now be described as a map that carries m-circles to m-circles. For
an algebraic representation of m-circles we begin with the equation

M ≡ a(x2 + y2) − 2bx− 2cy + d = 0,

where one of a, b, or c is nonzero (a2 + b2 + c2 �= 0). If a �= 0, then M is a circle; if
a = 0, then M is a line.

To study the inverse of an m-circle, take the circle of inversion to be the circle
centered at the origin of radius k. Then the inverse of the point (x, y) is (x′, y′), where

x′ = k2 x

x2 + y2
, y′ = k2 y

x2 + y2
.

The inverse of the m-circle ax2 + ay2 − 2bx− 2cy + d = 0 is

d(x2 + y2) − 2bk2x− 2ck2y + ak4 = 0.

The following is now obvious: the inverse of a circle through the center of inversion
(a �= 0 and d = 0) is a line not through the center of inversion; the inverse of a line
through the center of inversion (a = 0 and d = 0) is a line through the center of
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(b, c, d)

z = x  + y2 2

(b, c, b  + c  ) 2 2

(x - b) + (y - c) = 022

x  + y  - 2bx - 2cy + d = 02 2

Fig. 3.1. Representation of circles as points in R
3.

inversion; the inverse of a line not through the center of inversion (a = 0, d �= 0) is a
circle through the center of inversion.

An inversion in an arbitrary circle with the center at (x0, y0) is obtained by
translating the center of inversion to the origin, performing an inversion about the
origin, and translating back to (x0, y0).

3. Representation of circles as points in R
3. We introduce a third model

for m-circles in the inversive plane that will be central to our analysis (Figure 3.1).

3.1. Representation of circles as points in R
3. Properties of a circle may

be read from the representation

M ≡ a(x2 + y2) − 2bx− 2cy + d = 0.

If a �= 0, the center of the circle M is ( b
a ,

c
a ), and the square of the radius is b2+c2−ad

a2 .

If a = 0 and c �= 0, then the slope of line M is given by − b
c and the y-intercept by d

2c .

If c = 0, then b �= 0, and the line is x = d
2b .

We can represent M by the four-tuple (a, b, c, d). These are homogeneous coordi-
nates of M since (λa, λb, λc, λd) represents the same m-circle as (a, b, c, d) for nonzero
λ. It is convenient to normalize to make the coordinates unique.

One choice would be to set d = 1. This is equivalent to insisting that the circles
(and lines) do not pass through the origin, since the origin is not a point on any circle
with d = 1. Every m-circle in the plane not through the origin would be represented
by a unique four-tuple (a, b, c, 1) such that (a, b, c) �= (0, 0, 0).

Instead we will take a second normalization, a = 1. So now we are dealing
directly with circles only, with the circles through the origin corresponding to lines
by an inversion in the unit circle. This representation of a circle now takes the form
of a triple (b, c, d), insisting that a = 1. The center of a circle is (b, c), and the square
of the radius is b2 + c2 − d. This normalization is the inverse of the normalization
d = 1 above. That is, we are omitting all the circles through the point at infinity (i.e.,
lines).

In [18] Pedoe presents a nice three-dimensional representation of this model. The
three-tuple (b, c, d) corresponds to the circle centered at (b, c) of radius

√
b2 + c2 − d,

so given a point in R
3, the center of the corresponding circle is the vertical projection

of that point onto the xy-plane. If Ω denotes the paraboloid z = x2 +y2, then a point
on Ω represents a circle with radius zero (a point circle), a point above Ω represents
a circle with complex radius, and a point below Ω represents a circle with a positive



254 FRANCO SALIOLA AND WALTER WHITELEY

l

m
p q

r

p q

r
l m’ ’

Ri
Rj

Dp
q

r

Fig. 3.2. Measuring the angle of intersection of two circles: rotate by 90◦ and form a triangle
with the centers.

radius. Since we are primarily interested in circles with positive radius, we will focus
on the points outside the paraboloid. We refer to this model as the paraboloid model
of the inversive plane.

3.2. The angle of intersection between two circles. In order to eliminate
the ambiguity of the angle of intersection between two circles, we introduce a con-
vention. We orient circles in the counterclockwise direction and measure the angle
between the oriented tangents to the circles at the point of intersection. In Figure 3.2,
the angle of intersection of the two circles is the angle subtended by l and m in the
counterclockwise direction. A rotation of π

2 sends l, m onto l′, m′. Since l, m are
tangents to the circles, l′, m′ pass through the centers of the circles. Therefore, the
angle of intersection is ∠prq, where p and q are the centers of the circles and r is
the point of intersection. (Note that the angle at the second point of intersection of
the circles is identical.)

The cosine law applied to the triangle prq in Figure 3.2 yields

cos(∠prq) =
R2

i + R2
j −D2

2RiRj
,(3.1)

where Ri, Rj are the radii of the circles, and D is the distance |pq|. Representing the
circles by points (bi, ci, di) and (bj , cj , dj) in R

3, (3.1) becomes

Kij ≡ cos(∠prq) =
2bibj + 2cicj − di − dj

2
√

(b2i + c2i − di)(b2j + c2j − dj)
.(3.2)

As a special case, two circles (bi, ci, di) and (bj , cj , dj) are orthogonal iff

2bibj + 2cicj − di − dj = 0.(3.3)

This condition is equivalent to R2
i + R2

j = D2.

3.3. Coaxal systems and bundles of circles. There is a rich geometry of
circles that would be needed to explore examples in these designs and to explore
special position configurations. However, for the specific content of this paper, we will
just briefly describe two specific families related to linear dependence of m-circles.

Two distinct circles m1 = (b1, c1, d1) and m2 = (b2, c2, d2) span the family of
circles called the coaxal system of circles generated by m1 and m2, obtained by taking
affine combinations of m1 and m2,

λm1 + (1 − λ)m2 = (λb1 + (1 − λ)b2, λc1 + (1 − λ)c2, λd1 + (1 − λ)d2).

Therefore, a coaxal system of circles is represented by a line l in R
3. This line projects

onto a line in the xy-plane; hence the centers of the circles in the coaxal system are
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(a) (b) (c)

Fig. 3.3. Coaxal system of circles: (a) where the line missed the paraboloid; (b) where the line
is tangent to the paraboloid; (c) where the line intersects the paraboloid.

C

C

(a) (b) (c)

p

Fig. 3.4. Bundles of circles: (a) circles orthogonal to the fixed circle C; (b) circles through the
fixed point p; (c) circles intersecting antipodal points of the fixed circle C or, equivalently, circles
orthogonal to a circle with a complex radius.

collinear. Visually and algebraically, there are three different types of coaxal systems
of circles corresponding to whether l misses, is tangent to, or intersects the paraboloid
Ω. The three types of coaxal systems of circles are illustrated in Figure 3.3.

A bundle of circles is generated by three affinely independent circles, represented
by a plane P in R

3. There are three types of bundles depending on whether P misses,
is tangent to, or intersects the paraboloid z = x2 + y2. The three types of bundles
are illustrated in Figure 3.4.

4. m-circle designs. An m-circle design (G,m) is a graph G = (V,E) together
with a point m ∈ R

3|V |, where m = (m1, . . . ,mi, . . . ,m|V |), i ∈ V , such that b2i +
c2i − di > 0 for each mi = (bi, ci, di). We wish to track when two m-circle designs
are equivalent under inversion, but that problem is too difficult. Instead we will
consider a simpler problem: When is the design (G,m) unique, with the given angles,
in a neighborhood of m in R

3|V |? In full generality, this local uniqueness is also
too hard—but it does have a linearized version that answers the question of local
uniqueness for almost all designs m ∈ R

3|V |. This linearized or first-order version is
studied in the next few subsections. We will then return to state the standard results
about how this first-order analysis demonstrates the local uniqueness.
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4.1. The constraint function. The constraint function Ki,j for two circles mi

and mj of nonzero radius is

Ki,j =
2bibj + 2cicj − di − dj

2
√

(b2i + c2i − di)(b2j + c2j − dj)
.(4.1)

Note that the constraint function has an obvious geometric interpretation only if
Ki,j ∈ [−1, 1]—it measures the cosine of the angle of intersection between the circles
mi and mj . However, the constraint function exists for nonintersecting circles as
well and can be used for geometric purposes. It takes the value cosh δ, where δ is
the natural logarithm of the ratio (larger to smaller) of the radii of two concentric
circles. It can be shown that any two nonintersecting circles can be inverted into two
concentric circles and that this ratio is constant. δ is called the inversive distance
between the two circles [34].

In general, a single inversion in a circle multiplies the value of Ki,j by −1. Since
inversion preserves angles and inversive distance, |Ki,j | is invariant under all inver-
sions.

However, for local uniqueness, we will restrict ourselves to the group of direct
circular transformations: products of an even number of inversions. In general, a
single inversion is not local—it takes a configuration to a “faraway” configuration in
the appropriate metric for configurations in R

3. This group includes translations,
rotations, dilations by a positive factor, etc. The value of Ki,j is invariant under this
group for all circles with positive radii. In fact, the constraint function is invariant
even for circles with imaginary radii. The function is not defined for point circles (of
radius 0).

4.2. Shakes and the constraint matrix. Let mi = (bi, ci, di) and mj =
(bj , cj , dj) be two m-circles, with nonzero radius and constraint Ki,j = C, where C
is some constant. If m(t) = (mi(t),mj(t)) is a path differentiable at t = 0 with
m(0) = (mi,mj), then(

d

dt
Ki,j

)
(0) =

ki,j

h
· m′

i +
kj,i

h
· m′

j = 0,(4.2)

where

ki,j

h
=

[
∂

∂bi
Ki,j ,

∂

∂ci
Ki,j ,

∂

∂di
Ki,j

]
,

m′
i =

[
d

dt
bi,

d

dt
ci,

d

dt
di

]
,

h = 2
√

(b2i + c2i − di)(b2j + c2j − dj).

Since h �= 0, (4.2) is equivalent to

ki,j · m′
i + kj,i · m′

j = 0.(4.3)

This prompts the following definition.
Definition 4.1. Let (G,m) be an m-circle design. The vector m′ ∈ R

3|V | is a
first-order motion or shake of (G,m) if for every {i, j} ∈ E,

ki,j · m′
i + kj,i · m′

j = 0.
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This system of linear equations generates the constraint matrix C(G,m) of the m-circle
design (G,m). The space of shakes of (G,m) is precisely the nullspace of C(G,m).

Remark. The constraint matrix has one row for each constraint in E and three
columns for each m-circle mi (one column for each of bi, ci, di). So C(G,m) is a
|E| × 3|V | matrix. For reference we note that ki,j = [h ∂

∂bi
Ki,j , h

∂
∂ci

Ki,j , h
∂

∂di
Ki,j ],

where

h
∂

∂bi
Ki,j =

bidj + 2bjc
2
i − 2bjdi − 2bicicj + bidi

bi
2 + ci2 − di

,

h
∂

∂ci
Ki,j =

cidj + 2cjbi
2 − 2cjdi − 2cibibj + cidi

bi
2 + ci2 − di

,

h
∂

∂di
Ki,j = −1

2

2bi
2 + 2ci

2 − 2bibj − 2cicj − di + dj

bi
2 + ci2 − di

,

and

K(G,m) =

⎛⎜⎜⎜⎜⎝

1 2 · · · i · · · j · · · v

{1, 2} k1,2 k2,1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
...

...
{i, j} 0 0 · · · ki,j · · · kj,i · · · 0

...
...

. . .
...

...
...

. . .
...

⎞⎟⎟⎟⎟⎠.

4.3. The trivial shakes. The following six vectors, called the trivial shakes, are
in the nullspace of C(G,m) for any graph G on the given circles m.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b21 − 1
2d1

b1c1
b1d1

...
b2v − 1

2dv
bvcv
bvdv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1c1
c21 − 1

2d1

c1d1

...
bvcv

c2v − 1
2dv

cvdv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2c1

− 1
2b1
0
...

1
2cv

− 1
2bv
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2

0
−b1

...
− 1

2
0

−bv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
− 1

2
−c1

...
0
− 1

2
−cv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1
−c1
−2d1

...
−bv
−cv
−2dv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(4.4)

These six vectors are linearly independent provided v = |V | ≥ 3 and at least three
circles do not lie in a coaxal system.

Remark. The six solution vectors described above correspond to instantaneous
velocities experienced by the m-circle design at the beginning of each type of even
inversive transformation. The first two vectors correspond to translations in the x-
and y-directions, respectively. The third vector corresponds to a rotation about the
origin. The fourth and fifth vectors correspond to a reflection in an axis followed
by an inversion in a circle tangent to that axis. The sixth vector corresponds to the
product of two inversions in concentric circles—a dilation.

4.4. Stiff m-circle designs. A configuration m of m-circles is in general po-
sition if no set of 4 of the m-circles lie in a bundle, and if |V | = 3, then the circles
are not coaxal. An m-circle design (G,m) with |V | ≥ 3 and m in general position is
inversively stiff, or just stiff, if the kernel of C(G,m) is generated by the trivial shakes
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Fig. 4.1. Extending the graph G of a stiff design to a graph H for a larger stiff design.

(rank(C(G,m)) = 3|V | − 6). Otherwise, (G,m) is said to be inversively shaky, or just
shaky.

This section proves the following characterization of stiff m-circle designs (see
Theorem 4.5): An m-circle design (G,m) with |V | ≥ 3 and m in general position is
stiff iff the nullspace of C(G,m) is equal to the nullspace of C(K|V |,m), where K|V |
is the complete graph on |V | vertices.

Lemma 4.2. If |V | ≥ 3, then rank(C(G,m)) ≤ 3|V | − 6.
Proof. If we have at least three inversively independent circles, then the assertion

follows directly from the independence of the six trivial motions (see (4.4)). If all of the
m-circles are dependent on two m-circles, then it is a simple matter to see that the rank
of the matrix can drop only from the maximum dimension achieved for independent
m-circles. In fact, in this case, the rank becomes |V | − 1 < 3|V | − 6.

Lemma 4.3. For |V | ≥ 3 and m = (m1, . . . ,m|V |) in general position, there
exists a graph G = (V,E) such that rank(C(G,m)) = 3|V | − 6.

Proof. The proof will induct on the number of vertices of G. For |V | = 3, take
the design (G,m), where G is the complete graph on three vertices K3 (a triangle)
and m1 = (1, 0, 0), m2 = (0, 1, 0), m3 = (0, 0, 1). Note that m1, m2, and m3 are in
general position. The constraint matrix for (G,m) is

C(G,m) =

⎡⎣ 0 2 −1 2 0 −1 0 0 0
1 0 −3/2 0 0 0 2 0 −1/2
0 0 0 0 1 −3/2 0 2 −1/2

⎤⎦ .

The second, seventh, and eighth columns of C(G,m) yield a 3 × 3 matrix of rank 3,
so C(G,m) has rank 3 = 3|V | − 6.

Suppose there exists a graph G with v vertices such that rank(C(G,m)) = 3v−6.
Let H be the graph obtained from G by adding a new vertex v + 1 to G and three new
edges, each connecting v+1 to the distinct vertices i, j, k of G (Figure 4.1). Therefore,
a new circle mv+1 is added to the design (G,m) with three distinct constraints,
creating the new design (H,n). So if the constraint matrix of (G,m) is

C(G,m) =

⎛⎜⎝ k1,2 k2,1 0 0 0 0 · · · 0
...

...
...

...
0 0 0 0 0 kf,g · · · kg,f

⎞⎟⎠ ,
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then the constraint matrix C(H,n) is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j k v + 1

k1,2 k2,1 0 0 0 0 · · · 0 | 0
...

...
...

... | 0
0 0 0 0 0 kf,g · · · kg,f | 0
− − − − − − − − − − − − − −

{i,v+1} 0 0 ki,v+1 0 0 0 · · · 0 | kv+1,i

{j,v+1} 0 0 0 kj,v+1 0 0 · · · 0 | kv+1,j

{k,v+1} 0 0 0 0 kk,v+1 0 · · · 0 | kv+1,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where n = (m,mv+1). The three added columns account for the m-circle mv+1, and
the three added rows account for the constraint equations. Now, rank(C(H,n)) =
3(v + 1)− 6 = 3v − 3 iff the three new rows of C(H,n) add 3 to the rank of C(G,m).
The rank of C(G,m) increases by 3 iff∣∣∣∣∣∣

kv+1,i

kv+1,j

kv+1,k

∣∣∣∣∣∣ �= 0.

This condition is equivalent to

2

r2
v+1

∣∣∣∣∣∣∣∣
bv+1 cv+1 dv+1 1
bi ci di 1
bj cj dj 1
bk ck dk 1

∣∣∣∣∣∣∣∣ �= 0,

where rv+1 is the radius of the circle mv+1. Therefore, unless mv+1 is a linear
combination of the circles mi, mj , and mk, that is, unless mi, mj , mk, and mv+1

lie in the same bundle, rank(C(H,n)) = 3v − 3. By assumption, the m-circle design
is in general position, so this determinant is nonzero, and the new design has rank
3(|V | + 1) − 6 as required.

Lemma 4.4. For |V | ≥ 3 and m = (m1, . . . ,m|V |) in general position, the
nullspace of C(K|V |,m) is generated by the trivial shakes.

Proof. Let S denote the span of the trivial shakes. Since the trivial shakes
are solutions to the linear system C(G,m)m′ = 0 for any graph G, we have that
S ⊂ null(C(G,m)).

By Lemma 4.3, for any |V | ≥ 3 and any m = (m1, . . . ,m|V |) in general position,
there exists a graph G = (V,E) with rank(C(G,m)) = 3|V | − 6. Add edges to G to
obtain the complete graph K|V | on the vertex set V . Therefore,

3|V | − 6 = rank(C(G,m)) ≤ rank(C(K|V |,m),

and Lemma 4.2 gives

rank(C(K|V |,m)) ≤ 3|V | − 6.

Therefore, rank(C(K|V |,m)) = 3|V | − 6 and

dim null(C(G,m)) = 3|V | − rank(C(K|V |,m)) = 6 = dimS.

Therefore, null(C(G,m)) = S.
Theorem 4.5. An m-circle design (G,m) with |V | ≥ 3 and m in general position

is stiff iff the nullspace of C(G,m) is equal to the nullspace of C(K|V |,m), where K|V |
is the complete graph on |V | vertices.



260 FRANCO SALIOLA AND WALTER WHITELEY

4.5. Stiffness and local uniqueness. Our original goal was to study whether
an m-circle design (G,m) was locally unique, up to inversions. Explicitly, we have
a map fG : R

3|V | → R
|E| that measures the “cosine of the angle” or the value of

Ki,j for each edge in the graph: f(m) = (. . . , ki,j , . . .). Let I(m) be the set of all
configurations equivalent to m by inversions.

Definition 4.6. A design (G,m) is locally unique if there is an open neighbor-
hood Nm of m such that f−1

G fG(m) ∩Nm ⊂ I(m).
Our constraint matrix is then the Jacobian dfG of the function fG. Moreover,

the function fG is (up to squaring entries) a polynomial function. There are stan-
dard results about how this Jacobian at m predicts the dimension of the space
f−1
G (fG(m)) ∩Nm, provided the point is regular , that is, that the Jacobian achieves

its maximum rank at the point m [4, 20].
For polynomial functions, there are also standard results that state the failure of

local uniqueness is equivalent to the existence of an analytic path m(t), 0 ≤ t < 1, of
inversively inequivalent configurations inside f−1

G (fG(m)) (that is, all constraints are
the same as at m, but some other value of Kh,l is changing for some {h, l} �∈ E). The
following is a translation of the analogous result for bar-and-joint frameworks [4, 20].
We say that an m-circle design is flexible if there is an analytic path m(t), 0 ≤ t ≤ 1
of inversively equivalent designs with the same constraints.

Theorem 4.7. If an m-circle design (G,m) is stiff, then the design is locally
unique. If (G,m) is never stiff for any m-circle configuration, then (G,m) is flexible
for all regular points m at which C(G,m) achieves its maximum rank.

Proof. For |V | = 1, all designs are stiff, and all single circles are inversively unique
up to translations (of the center) and dilation (of the radius).

For |V | = 2, with distinct circles, there are two cases. If the edge is not present,
then the design is not stiff, nor is the design even locally unique (e.g., change the
distance between the centers without changing radii). However, if the edge is present,
then all the solutions to C(G,m) × m′ = 0 are trivial, and the design is stiff. In this
case, any two circles with the same value of K1,2 are equivalent under inversion, and
the design is, again, unique.

Assume that (G,m) is stiff with |V | ≥ 3. Therefore, the only inversive shakes are
the trivial shakes that are derivatives of direct circular maps.

Assume we have an analytic path m(t) preserving the constraints; then this can
be replaced by an analytic flex. If we take the first derivatives along this path, with
the angles fixed, we will find a shake of the design. If this shake is not the derivative
of an angle preserving map, then we know that the design was not stiff. This is a
contradiction.

However, if a flex is not angle preserving, it may be the kth derivative that is not
the derivative of an angle preserving map. By adding some angle preserving map, we
can ensure that the first k − 1 derivatives of the flex are all zero. (For example, we
can assume that an initial circle is fixed and that other circles are fixed as long as the
derivatives match angle preserving maps.) With this assumption, it is easy to verify
that the kth derivative of the constraint functions gives a (nontrivial) shake to the
design. This is the desired contradiction.

On the other hand, assume that (G,m) is never stiff for any m-circle configuration.
The inverse function theorem guarantees that, at regular points, the dimension of
f−1
G (fG(m)) ∩Nm is more than 6. There is a sequence m(n), n = 1, 2, . . . of designs

converging to m that preserve the angle constraints. By the curve selection theorem
of Milnor, which applies to the constraints, if there is such a converging sequence
preserving these constraints (which can be written in polynomial form), then there
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is a piecewise analytic path preserving the constraints [4, 20]. This gives the desired
flex at the selected regular point.

5. Bar-and-joint frameworks in Euclidean 3-space. So far, our study of
circles in the plane under angle constraints is clearly analogous to the study of
bar-and-joint frameworks in Euclidean 3-space. The constraints for a bar-and-joint
framework take the form of a distance constraint (a bar) between two vertices (joints)
and generate graphs and constraint matrices for which the results precisely match the
results of the previous sections [24, 25, 32]. We will briefly summarize this theory in
order to present a precise isomorphism that underlies this analogy.

As before, we start with a graph G = (V,E) and create a framework by realizing
the vertices as points in 3-space.

Definition 5.1. A bar-and-joint framework or framework (G,p) in R
3 is a

graph G = (V,E) together with a configuration or point p ∈ R
3|V |, where p =

(p1, . . . ,pi, . . . ,p|V |), i ∈ V .

5.1. First-order motions and the rigidity matrix. A first-order motion of
the framework (G,p) is a map u : V → R

3, where we denote u(i) by ui, such that
for every edge {i, j} ∈ E,

(pi − pj) · (ui − uj) = 0.

This gives rise to the rigidity matrix of the bar-and-joint framework (G,p):

R(G,p) =

⎛⎜⎜⎝
i · · · j
...

...
{i, j} · · · pi − pj · · · pj − pi · · ·

...
...

⎞⎟⎟⎠
(with all other entries zero). The nullspace of the rigidity matrix is the space of first-
order motions of (G,p). A first-order motion of a framework is trivial if the motion is
a restriction of the derivative of a Euclidean motion of R

3, restricted to the vertices of
the framework. The framework (G,p) is first-order rigid if all the motions of (G,p)
are trivial.

5.2. Trivial solutions of the rigidity matrix. The following are six linearly
independent vectors in the space of first-order motions for any framework in R

3 with
at least 3 noncollinear vertices. They correspond to translations in the x-, y-, and
z-directions and rotations about the x-, y-, and z-axes, respectively:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
...
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
...
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−z1

y1

...
0

−z|V |
y|V |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z1

0
x1

...
−z|V |

0
x|V |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y1

x1

0
...

−y|V |
x|V |
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A framework is first-order rigid if its space of first-order motions is generated by these
motions.
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6. An isomorphism between frameworks and m-circle designs. It can
shown that a first-order rigid framework on v ≥ 3 joints requires at least 3v− 6 bars.
The proof is identical to the proofs presented in section 4. In fact, the proofs from
section 4 were adapted from proofs for the equivalent statements for bar-and-joint
frameworks. Therefore, the counts for rigid bar-and-joint frameworks and stiff m-
circle designs are identical. This is not a coincidence: there is a geometric isomorphism
between the two first-order theories.

The key observation is the following identity relating the determinant of a sub-
matrix of C(G,m) with the determinant of a submatrix of R(G,m):∣∣∣∣∣∣

kn,i

kn,j

kn,k

∣∣∣∣∣∣ =
2

r2
n

∣∣∣∣∣∣∣∣
bn cn dn 1
bi ci di 1
bj cj dj 1
bk ck dk 1

∣∣∣∣∣∣∣∣ =
2

r2
n

∣∣∣∣∣∣
bn − bi cn − ci dn − di
bn − bj cn − cj dn − dj
bn − bk cn − ck dn − dk

∣∣∣∣∣∣ .
This identity suggests the existence of a linear transformation carrying C(G,m) onto
R(G,m). Indeed, the system⎡⎣ kn,i

kn,j

kn,k

⎤⎦Tn =

⎡⎣ bn − bi cn − ci dn − di
bn − bj cn − cj dn − dj
bn − bk cn − ck dn − dk

⎤⎦
has the solution

Tn =

⎡⎣ − 1
2 0 −bn

0 − 1
2 −cn

−bn −cn −2dn

⎤⎦ .

In general, C(G,m)Tm = R(G,p), where Tm is the block diagonal matrix, which
depends only on the point m,

Tm =

⎡⎢⎢⎢⎣
T1 0 · · · 0
0 T2 · · · 0

0
...

. . . 0
0 0 0 Tv

⎤⎥⎥⎥⎦ .

We summarize this discussion.
Theorem 6.1. Given an m-circle design (G,m), there is an invertible transfor-

mation Tm such that C(G,m) × Tm = R(G,m). In particular, the m-circle design
(G,m) is stiff iff the bar-and-joint framework (G,m) is first-order rigid.

Notice that not all configurations in 3-space for frameworks are m-circle config-
urations, since we have restricted ourselves to circles of positive radius (points in R

3

below the paraboloid).
Remark. It is important to note that the two theories are only infinitesimally

equivalent. That is, on the level of Jacobians, the two theories are equivalent. There
is no transformation that carries the constraint equation of one system into the con-
straint equation of the other system. Rigidity is not equivalent, but first-order rigidity
is equivalent to stiffness. The regular points of the two maps for a fixed G are identical
(they are defined by the rank of the isomorphic Jacobians). The rigidity or flexibility
of frameworks or designs at these regular points (which form an open dense subset of
R

3v) are also equivalent. The distinctions all occur on the singular points of the two
maps, where one configuration may still give a locally unique design for one map but
a flexible framework for the other.
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Fig. 7.1. Although the framework satisfies all the conditions of Proposal 1, the framework is
not rigid: there is a rotation of one half of the framework about the dotted line.

Fig. 7.2. An m-circle design corresponding to the framework in Figure 7.1.

7. Transferring between theories. There are many results and conjectures
for the widely studied first-order theory of frameworks in 3-space that convert easily
into the less studied theory of circles and angles in the inversive plane [9, 29, 30, 32].
However, it is important to emphasize that both equivalent theories are incomplete.

7.1. The failure of the counts. A question that arises naturally is to charac-
terize graphs that result in a stiff design for some configuration of circles. A quick
conjecture may take the following form.

Proposal 1. If a graph G with |V | ≥ 3 satisfies |E| = 3|V |−6 and all subgraphs
G′ of G with |V ′| ≥ 3 satisfy |E′| = 3|V ′| − 6, then the m-circle design is stiff.

This is the immediate generalization of a theorem of Laman [15] characterizing
edge-minimal first-order rigid bar-and-joint frameworks in the plane. This proposal
does not hold in the theory of bar-and-joint frameworks, as is evident in Figure 7.1.
This framework satisfies the conditions of the proposal but is obviously flexible with a
rotation of one piece about the dotted line. If we construct an m-circle design on the
same graph, then the resulting design is also not uniquely determined, as is evident
in Figure 7.2.

7.2. Projective transformations. Since inversions are angle preserving trans-
formations, if m is an m-circle configuration and we apply any inversive transforma-
tion T , then T (m) gives an isomorphic constraint matrix for any graph. The stiffness,
independence, etc. of any design (G,m) is invariant under inversion.
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Similarly, it is clear that if p is a spatial configuration and we apply any congru-
ence map T , then T (p) gives an isomorphic set of distance constraints, and for any
graph the rank of the rigidity matrix is unchanged. The first-order rigidity, indepen-
dence, etc. of any framework (G,p) is invariant under congruence.

Now it is not true that an inversion in the plane induces a congruence of the 3-
space paraboloid model. However, there is a family of transformations that includes
both the spatial versions of inversions and the congruences of Euclidean 3-space.
These are the projective transformations of 3-space.

It is well known that these projective transformations leave the rank of the corre-
sponding rigidity matrices unchanged for any graph G and any configuration m where
the points remain finite. (For projective points at infinity, there is a full projective
form of the theory, including a projective rigidity matrix, which incorporates such
constraints involving such points [3, 26, 27].)

From our correspondence, it follows that these projective transformations also
leave the rank of the constraint matrix unchanged, provided that none of the points
of the configuration move onto the paraboloid, where both the constraint matrix and
the isomorphism are undefined. In fact, the inversive maps are precisely the projective
transformations which preserve the paraboloid.

We close by stating (without proof) this conclusion.
Theorem 7.1 (see [20]). Given an m-circle design (G,m) and a projective

transformation T of 3-space such that T (m) is another configuration of real circles,
the constraint matrices C(G,m) and C(G,T (m)) have isomorphic row spaces.

8. Extensions to other dimensions. Up to this point, we have studied m-
circle designs for the plane and their connection to bar-and-joint frameworks in 3-
space. However, the basic problems of CAD lie in three dimensions, and frameworks
have been studied in all dimensions. It is natural to ask whether our results extend
immediately to m-sphere designs with spheres in 3-space constrained by angles of
intersection and bar-and-joint frameworks in 4-space. They do.

All the correspondences extend to designs of (hyper)spheres in n dimensions and
bar-and-joint frameworks in n + 1 dimensions. We will present only this extension
explicitly for m-sphere designs and frameworks in 4-space, but the reader will easily
see how the general extension works.

As an aside, we note that there is also a correspondence between the first-order
theory of plane bar-and-joint frameworks and m-interval designs along the line. While
we know of no direct use for these m-interval designs, such an analysis is useful anytime
an m-circle design or an m-sphere design contains a substantial piece which lies in a
linear family, as this piece will behave as an m-interval design. See section 9.

For spheres in 3-space, we choose a similar normalization to that for circles and
represent the sphere with equation

x2 + y2 + z2 − 2bx− 2cy − 2dz + e = 0

by the four-tuple (b, c, d, e), where the orthogonal projection of (b, c, d, e) onto the xyz-
space yields the center of the sphere, (b, c, d). The radius of the sphere is b2+c2+d2−e.
The cosine of the angle of intersection between two intersecting spheres (b1, c1, d1, e1)
and (b2, c2, d2, e2) is

K1,2 =
2b1b2 + 2c1c2 + 2d1d2 − e1 − e2

2
√

(b21 + c21 + d2
1 − e1)(b22 + c22 + d2

2 − e2)
.
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From this equation, one has the constraint equation and can easily derive the |E|×4|V |
constraint matrix C(G,m) for a design (G,m), m ∈ R

4|V |.
The first-order theory of bar-and-joint frameworks in 4-space gives the analogous

|E| × 4|V | rigidity matrix R(G,m) for the configuration.
To translate between the first-order theory of bar-and-joint frameworks in 4-space

and the m-spheres in 3-space, we use the following transformation:

Tm =

⎡⎢⎢⎢⎣
T1 0 · · · 0
0 T2 · · · 0

0
...

. . . 0
0 0 0 T|V |

⎤⎥⎥⎥⎦ ,

where

Ti =

⎡⎢⎢⎣
− 1

2 0 0 −bi
0 − 1

2 0 −ci
0 0 − 1

2 −di
−bi −ci −di −2ei

⎤⎥⎥⎦ .

As before, C(G,m) × Tm = R(G,m) for all graphs and all configurations with no
points on the paraboloid.

At this point, we hope it is obvious how the results continue to generalize into
3-space and also generalize into higher dimensions.

Remark. It is surprising to find a geometric structure in 3-space whose constraints
geometrically model the problems of rigidity in 4-space. Previous work [32] provided
a structure from bivariate splines in CAGD which was analogous to the generic prop-
erties of rigidity in 4-space, but this structure is known to not be even generically
equivalent [32]. m-sphere designs in 3-space provide a full 3-space embodiment of the
geometric and combinatorial first-order theory of frameworks in 4-space.

The limited studies of first-order rigidity in 4-space suggest major complexity
that does not arise simply from the counting (matroidal) level [32]. This complexity
is a warning that general geometric constraints in 3-space are much harder than the
simple theory of distances in plane frameworks.

9. Circles of fixed radius. Within CAD programming, it is possible that some
or all of the circles have a fixed radius. The theory presented offers a simple extension
for this case, independent of whether the fixed radii are distinct numbers or all the
same size.

9.1. A fixed radius. The radius r of a circle (b, c, d) is given by the equation

r2 = b2 + c2 − d.

If r is constant, the usual process for finding the Jacobian turns this into the homo-
geneous linear equation,

(2b)b′ + (2c)c′ − d′ = 0.

This gives a row for our constraint matrix which has only nonzero entries [2b, 2c,−1]
under the single circle.

If we partition the circles into two classes, indexed by V for variable radii circles
and U for fixed radii circles, we simply add such a row for each circle of fixed radius
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��

����

ri rj

√
r2
i + r2

j − 2rirj cos(α)

α

Fig. 9.1. If we have two circles of fixed radii with a fixed angle of intersection, then the distance
between the centers is also fixed.

to create the extended constraint matrix C((V,U ;E),m). While we could analyze this
directly, it will be simpler to translate immediately to the corresponding matrix for
first-order rigidity: C((V,U ;E),m) × Tm = R((V,U ;E),m).

If we examine the transfer multiplication for the added rows for circles in U , we
find

[2b 2c − 1] ×

⎡⎣ − 1
2 0 −b

0 − 1
2 −c

−b −c −2d

⎤⎦ = [b− b c− c − b2 − c2 + d] = [0 0 − r2].

We have an extended rigidity matrix that forces the third coordinates of each of the
points in U to have derivative 0 (assuming r �= 0 as we have throughout the entire
translation process). Alternatively, we can use these rows to do a row reduction which
makes all other entries in the third columns into 0 and sets off a set of |U | independent
rows at the bottom.

9.2. All circles of fixed radius. If V = ∅ and all radii are fixed, the extended
rigidity matrix is now the rigidity matrix for a plane framework with vertices at the
centers of the circles, plus an added, spread copy of the identity at the bottom. The
angle constraints on the circles are isomorphic, at first-order, to distances constraints
between the centers.

This equivalence is also evident from elementary geometry. If we have two circles
with constant radii ri and rj , respectively, then the angle constraint α actually does
fix the distance between the centers, and this distance is given by the law of cosines√
r2
i + r2

j − 2rirj cosα (Figure 9.1). (Note that this is even true when the circles are

nonintersecting and the constraint is an inversive distance. The only real limitation
in this is that the circles have nonzero, though possibly imaginary, radii.)

As mentioned in section 7.1, this theory of plane points, with distance constraints
or, equivalently, plane circles with fixed radii and angle constraints, has a combinato-
rial theory represented by the counts for independence [15]:

|E′| ≤ 2|U ′| − 3 for all nonempty subsets U ′ ⊆ U.

Similarly for all n, if we work with hyperspheres in n-space with angle constraints
and all radii fixed, we find the theory is isomorphic to the theory of points in n-space
with distance constraints.
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Fig. 9.2. Although the mixed framework satisfies all the necessary counting conditions for mixed
structures, the framework is not rigid: there is a rotation of one half of the framework about the
dotted line.

9.3. Some circles of fixed radius. A more interesting middle situation is
where we have some circles of fixed radii and others of variable radii. Equivalently, we
may be looking to see which subsets of angles and radii are independent constraints in
a design, as new constraints of either type are considered for addition to a currently
independent design.

Assume that |V | ≥ 3 and |U | ≥ 3. With this assumption on |U |, the only trivial
motions are generated by the translations parallel to the x- and y-axes and rotation
about the z-axis, which occurred for plane rigidity. (The reader can verify this, even
in the original circle constraint representation with the initial list of generators for
the trivial motions and the initial representation of a fixed radius constraint.) This
leaves the following obvious counting condition for independence:

|E′| ≤ 3|V ′| + 2|U ′| − 3 for all |U ′| ≥ 3.

If |U | < 3, we have other spaces of trivial motions, as follows:
1. for |U | = 2 and |V | ≥ 1, the space of trivial motions has dimension 4, adding

the 3-space rotations about the line through the two points in U ;
2. for |U | = 1 and |V | ≥ 2, the space of trivial motions has dimension 5, adding

the 2-space of spatial rotations fixing this point to the trivial motions of the
plane;

3. for |U | = 0 and |V | ≥ 3, the space of trivial motions has dimension 6.
These observations can be pulled together into necessary counting conditions for

independence. However, provided the design is large enough to contain structures
such as the two bananas of Figure 7.1 or the adapted mixed version of Figure 9.2,
these conditions will not be sufficient for independence.

9.4. Lines among circles of fixed radius. All of this analysis for fixed radii
works within our simplifying assumption that our m-circles did not include lines. Of
course, with no fixed radii, or only one, we could use inversion (fixing the radius) to
pull the lines into circles and continue the analysis of this equivalent configuration
containing no lines.

However, with several fixed radii, we are restricted in our transformations, and
lines are not incorporated into the simple theory. Intuitively, if we fix the “radii of
lines” as circles of infinite radius, then we would restrict them to remain lines. (The
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transformations should be reversible, and no fixed finite radius can become infinite.)
By an elementary observation, an angle constraint between a circle of fixed radius
and a line fixed to remain a line, still fixes the distance from the center of the circle
to the line.

A detailed analysis here would again require a fully projective presentation, using
homogeneous coordinates for all points in the model (or, equivalently, for lines and
circles, including the effects of fixed radii). It can be done if there are specific situations
where this would be significant.

9.5. Fixed radius circles in the spherical model. If we work with circles and
angle constraints on the sphere, the condition for a fixed radius changes. Recall that a
circle is represented by the point at the tip of a cone tangent to the sphere at the circle:
t = (x, y, z). To hold the radius of such a circle fixed, we just fix the distance (squared)
from this point to the center of the sphere (the origin): x2 + y2 + z2 = d2. In the
Jacobian, this gives the row whose only nonzero entries are (x, y, z). This is equivalent,
for any analysis of independence or dependence of constraints, to adding the center
of the sphere as a vertex and a bar from this center to the circle point, creating an
overall 3-space framework for these radial constraints and the angle constraints. This
equivalence holds both combinatorially and at the specific geometric level of possible
special positions in which a generically independent set of constraints drops in rank
and becomes dependent.

If we constrain the radius of each of the circles, then we have the center of the
sphere as a vertex joined to all the other vertices. By the cone theorem for frameworks
[28, 32], this is equivalent to the constraint matrices for the framework created by
projecting from the center onto a projection plane tangent to the sphere at z = 1.
(This is a general projection, so points below the equatorial plane are joined to the
center and the line extended to intersect the projection plane.) It is also equivalent to
the spherical framework in which each of the circle vertices is pulled onto the initial
sphere (at the center of the original circle), and one studies the framework constrained
to remain on the sphere.

It is worth recalling that the central projection to a plane framework is different
from the stereographic projection into a plane circle configuration from the top of
the sphere. The plane framework here is distinct from the framework in which the
plane radii were fixed. In general, these two frameworks for fixed radii in the plane
and fixed radii on the sphere are not even projectively equivalent. They do have the
same graph and will, generically, have the same independence structure. However,
for special positions arising from the geometric placement of the plane vertices, they
may have distinct behavior.

10. Concluding remarks. We have analyzed correspondences among circles
and lines in the inversive plane, circles on the sphere, and points in Euclidean (and
hyperbolic) space. An identical pattern happens for other dimensions. For example,
if we study the angle constraints between intersecting (and nonintersecting) spheres
in inversive 3-space, these are isomorphic to angle constraints between correspond-
ing hyperplanes in hyperbolic 4-space and the K constraints among ideal points in
hyperbolic 4-space. At first order, they are also identical to the distance constraints
between points in Euclidean 4-space, as we noted in section 8.

There are geometric connections between these interconnected problems of circles
in the plane or the sphere and Andreev’s theorem and its extensions [1]. Via the
correspondence offered here and the related correspondences in [21], these results of
Andreev are also connected to the rigidity theorems for convex polyhedra of Cauchy
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and Alexandrov (see [19, 30]). We will explore these connections more extensively in
a forthcoming paper.

By giving a correspondence between angle constraints in the inversive plane and
distance constraints in the Euclidean space, we raised the question of a polynomial
time algorithm for the generic rank of a configuration of circles and angles. The
corresponding unsolved problem for 3-space has been studied, and conjectured about,
for over a century. At least one other plane geometric problem, that of bivariate C1

2 -
splines, is also conjectured to be isomorphic at a generic (but not a geometric) level
for the rank of a corresponding matrix on a given graph [32]. The study of each of
these variants has contributed to our store of shared techniques and results, but we
need new approaches to solve the shared problem.

A natural question to ask is whether the situation with m-circles can contribute
any additional insights. In [21] we describe the equivalence of first-order rigidity in all
the Cayley–Klein geometries extracted from the underlying projective geometry, in-
cluding the hyperbolic, spherical, and Euclidean spaces [6]. This isomorphism suggests
that we will not easily find new combinatorial results by switching so transparently
among these equivalent theories.

There remain other variants of these problems of plane objects such as points,
lines, and circles with geometric constraints in CAD. Many are unsolved, and some
are simply unstudied. Consider including points which are assigned to lie on one
or several circles in an m-circle design. In its most general form, such an incidence
pattern would include the projective configurations of lines and incident points. After
all, lines are simply inversive circles which all share a common point (chosen to be
the inversive point at infinity). Without some additional restrictions, this problem
with circles should be at least as hard as the specific problem of incident lines and
points in the plane, which we have previously conjectured to have no polynomial time
algorithm [32].

However, if we insist that all circles intersect at one specific point, with fixed an-
gles at that point, then we have a problem which has been solved. This is inversively
equivalent to the problem of lines with fixed angles—or, equivalently, parallel draw-
ings of configurations of lines—and has a polynomial time algorithm related to the
counting algorithms for the generic rigidity for plane frameworks [22, 31]. Moreover,
the analogous problem for parallel drawings of planes in 3-space with fixed angles also
has a polynomial time algorithm [31].

If we drop the condition that all angles at the common point of intersection are
fixed, we return, once more, to an unsolved (and difficult) problem. In the plane,
we have studied lines, incidences, and angles with additional simplifying restrictions
that all lines are “short” (have no more than two assigned incident points). These
incidence constraints can then be extended by additional selected angle constraints
among the points and lines. Even this very special case is hard and is conjectured not
to have a polynomial time algorithm [2].

All of these interconnected problems, many unsolved, confirm the complexity
of various sets of constraints in plane and spatial CAD. The specific case of points
and distance constraints in the plane, plane first-order rigidity, stands out as an
exceptional case in which we do have a polynomial time algorithm. This is not typical
of constraints in CAD, and strategies based on the assumption of polynomial time
algorithms for even generic rigidity or independence of constraints are limited in their
applications [10, 11]. The need for fast symbolic algorithms does, in effect, restrict
the patterns of constraints that are handled well in CAD programs, before resorting
to more brute force (and more unstable) numerical analysis of the constraints [16, 17].



270 FRANCO SALIOLA AND WALTER WHITELEY

The study of various sets of constraints, even in plane CAD, continues to generate
rich connections backward into classical geometry in all its forms, new connections
among these classical problems, and new insights. When we started this investigation
of circles and angles, we had no expectation that it would lead to hyperbolic 3-space
and correspondences to Euclidean space. We look forward, with anticipation, to the
next piece of the puzzle and the connections it will bring forward for our geometric
play.
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Abstract. Dynamic data structures are presented for directed graphs that maintain (a) transi-
tive closure and (b) decomposition into strongly connected components in a “semionline” situation
with perfect deletion lookahead but no lookahead for insertions or queries. These algorithms give
us “semionline” algorithms for dynamic 2-SAT, as a consequence of which the best known static
algorithms for minimum sum-of-diameters clustering are improved by a O(logn) factor.
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1. Introduction. Clustering of data is a very old and well-studied problem
that dates back to Aristotle, with applications in the natural sciences, psychology,
engineering, and a variety of other fields [10]. A basic problem of cluster analysis is
to partition a given set of entities into homogeneous and/or well-separated classes,
called clusters. Separation is commonly characterized by the dissimilarity between
objects, which can be expressed as the distance between objects. A measure often
used in characterizing the homogeneity of a set is the diameter, which is defined as
the largest distance between any pair of items in the set [9].

The minimum sum of diameters clustering problem is described as follows:
Input. A set of n items, a1, a2, . . . , an, and an integer k; associated with each pair

(ai, aj) is a length lij , which represents the distance between ai and aj .
Output. A partitioning of the set into k subsets such that the sum of the diameters

of the subsets is minimized.
The input can be represented by a weighted graph, which we shall call the cluster

graph, as follows: represent each item ai by a vertex numbered i; add an edge eij
between vertex i and vertex j with length lij . The output is a partitioning of the vertex
set into k clusters C0, C1, . . . , Ck−1 with diameters D0, D1, . . . , Dk−1, respectively.

Minimum diameter or minimum sum-of-diameter partitions are of interest in
many situations where homogeneity of the clusters is the main concern of the an-
alyst. Brucker has shown that both these problems are NP-hard when k ≥ 3 [2]. In
[15], Rao showed that when k = 2, the minimum diameter clustering problem can be
solved in O(n2) time. However, it is well known that minimum diameter partitions
suffer from the dissection effect: very similar entities may be assigned to very different
clusters, and the requirement that the clusters have fairly equal diameters can cause
a natural cluster to be split [2, 4, 5, 15]. Since no such equalizing factor is at play,
this effect is usually much less damaging when the sum of diameters is minimized [9].
It also appears that, in practice, a bipartitioning algorithm can be recursively applied
to approximate a partitioning into three or more clusters that minimizes the sum of
the diameters [9].
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In the case of minimum sum-of-diameters clustering, the first approximation algo-
rithms for general k were recently given by Doddi et al. [8]. For the case k = 2, Hansen
and Jaumard gave an O(n6) algorithm, which they then improved to O(n3 log n) [9].
Monma and Suri have shown that in the case of sparse cluster graphs, this algorithm
in fact runs in O(mn log n), where m is the number of edges [14]. (Here, the diameter
of a cluster is defined as the length of the longest edge in the cluster.) We shall assume
that k = 2 for the rest of this paper.

The algorithm used in [9] to find the best partitioning solves O(n log n) 2-SAT
instances, each of which could take O(m) time in the worst case. Here we present two
algorithms that dynamically solve O(m) 2-SAT instances, performing an average of
O(n3/m) and O(n) operations, respectively, for each instance. As a result of these,
we obtain algorithms for minimum sum-of-diameters clustering that run in O(n3) and
O(mn), respectively. (Although the second result asymptotically subsumes the first,
the data structures and overheads are significantly higher for the second algorithm, in
particular due to the need for pointers.) The first algorithm dynamically maintains
the transitive closure, and the second one dynamically maintains the partitioning of
a graph into strongly connected components (SCCs). Both these approaches use the
notion of perfect deletion lookahead: at any instant we know all the deletable edges
in the graph and the order in which these edges are to be deleted. By doing some
additional bookkeeping at insertions, we are able to speed up the deletion process.
There is no foreknowledge of insertions and queries, and these can be interleaved
with the deletes in any arbitrary order. As has been observed in earlier articles on
dynamic digraph connectivity, deletion is an expensive operation when dynamically
maintaining the transitive closure. In [3], for instance, it is shown that a series of
edge insertions can be done in O(n) amortized time per insert, but a similar result for
edge deletions works only if the graph is acyclic. The problem becomes even harder if
we consider arbitrarily interleaved sequences of inserts and deletes. Consequently, the
update times obtained for digraph connectivity by the earlier researchers [12, 6, 11,
3, 13] do not help reduce the complexity of the clustering problem. In particular, the
dynamic approach to the clustering operation requires in the worst case a sequence
of O(m + n) updates (inserts and deletes, interleaved) and O(n) queries after each
update. To improve the algorithm in [9] would therefore mean an amortized/average
update time of O(n). In this paper we use the perfect lookahead available to us to
speed up the update operations. The idea of using lookaheads to speed up updates
has been explored earlier by Khanna, Motwani, and Wilson in [11]. However, they use
partial lookahead, and the resulting update times (O(n2.18) with n0.18 lookahead) are
not good enough to improve the upper bounds for clustering in [9, 14]. Semionline
dynamic algorithms (which are equivalent to perfect lookahead on one operation)
have been considered previously for geometric problems, most notably in [7]. No such
approaches appear to have been tried for graph connectivity. The scheme used in this
paper to maintain transitive closure performs insertions in O(n2) time and deletions
in O(1) time; the scheme to maintain a decomposition into SCCs has an amortized
cost of O(m + n) for each deletable edge and a cost of O(n) for each nondeletable
edge.

The next section presents an overview of the approach in [9] and some background
on the relationship between 2-SAT and directed graphs. The two following sections
present the O(n3) and O(mn) algorithms; the last section concludes the paper.

2. Preliminaries. As described earlier, our problem is to partition a given set
of items into two clusters with diameters D0 and D1 such that the sum of D0 and
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D1 is minimized. We assume without loss of generality that D0 ≥ D1. We say that
an edge belongs to a cluster if both end vertices of the edge belong to the cluster.
Since the diameter of a cluster is the length of the longest edge in the cluster, the only
candidates for D0 and D1 that we need to consider are the edge lengths. We shall
assume that the cluster graph is not bipartite (if it were bipartite, we would have a
trivial solution). Let Sl denote the set of edge lengths.

The algorithm in [9] works as follows.

Algorithm Cluster.

Step 1: Identify all edge lengths, d0, in Sl that are possible candidates for D0.

Step 2: For each candidate edge d0, found in Step 1, identify the smallest value
d1 in Sl such that there exists a partitioning of the cluster graph into two sets with
diameters not exceeding d0 and d1, respectively.

Step 3: Choose D0 and D1 to be the pair (d0, d1) such that the sum of d0 and
d1 is minimized.

end Cluster

The following three results are from [9]; short proofs are included here for the
sake of completeness.

Lemma 2.1. Consider a maximum spanning tree (MST) for the cluster graph,
constructed using Kruskal’s algorithm. The only edges whose lengths are candidates
for D0 are the edge that completed the first odd cycle and the edges included in the
spanning forest before the first odd cycle was encountered. It follows that there are at
most n candidates for D0 and that all these candidates can be found in time O(m +
n log n).

Proof. Consider any odd cycle in the cluster graph. At least one edge of the cycle
must fall inside a cluster; therefore, at least one cluster has a diameter no smaller
than the length of the shortest edge in the odd cycle; i.e., D0 must be at least as large
as the length of this edge. Since Kruskal’s algorithm for the MST will consider all the
edges in nonincreasing order of lengths, the edge that completed the first odd cycle
will be a shortest edge in that odd cycle.

Next, consider all the edges that completed even cycles before the first odd cycle
was completed. For each such edge, e, there exists an even cycle such that all the
other edges of the even cycle have a length no less than the length of e. If in any given
partitioning e were to fall inside a cluster, then there must be at least one other edge
from this even cycle that also falls inside a cluster; since this other edge has length
no less than e, the length of e need not be considered as a candidate for D0. Since
Kruskal’s algorithm to find the MST runs in O(m+ n log n) time, we can find all the
candidates for D0 in the time bounds claimed in the lemma.

The above lemma tells us how to compute Step 1 of Algorithm Cluster in O(m+
n log n) time. Since there are at most n candidates for D0, Step 3 is trivially done
in O(n) time. Step 2 is the most expensive part of the computation for which we
describe improved algorithms in the following sections.

Lemma 2.2. Let Dmin denote the length of the edge that completed the first odd
cycle. All candidates for D1 are lesser than or equal to Dmin.

Proof. From Lemma 2.1 we know that D0 ≥ Dmin. If we choose D0 = Dmin,
then D1 ≤ Dmin. Now, if we increase the choice for D0, the value of D1 cannot
increase.

Lemma 2.3. Consider the following assertion: There is a partitioning of the
vertices into two clusters with diameters not exceeding d0 and d1. This assertion can
be represented as a 2CNF expression with n variables and p + q conjuncts, where p
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is the number of edges with length greater than d0 and q is the number of edges with
length greater than d1.

The construction of the 2CNF expression uses two kinds of constraints. If for
some edge eij , lij > d1, then we need to add a condition that vertex i and vertex j
cannot both be in C1; if xi is a boolean variable set to 0 if vertex i falls in C0 (set
to 1 if vertex i falls in C1), then this condition is expressed by the disjunct (not(xi)
OR not(xj)). Likewise, if lij > d0, we add the disjunct (xi OR xj). We shall refer
to the constraint (xi OR xj) as the Type0 constraint and the constraint (not(xi) OR
not(xj)) as the Type1 constraint of the edge eij . It has been shown in [1] that any
2CNF expression with n variables and m conjuncts can be represented as a digraph
with 2n vertices and 2m directed arcs as follows: For each variable xi, 1 ≤ i ≤ n,
add two vertices—ui, labelled xi and vi, labelled not(xi). For each constraint a OR b,
where a and b are literals, add two directed edges—one from the vertex labelled by the
simplest expression equivalent to not(a) (since a could itself be negated, we may have
to remove the double negation to obtain the vertex label) to the vertex labelled b and
another directed edge from the vertex labelled by the simplest expression equivalent
to not(b) to the vertex labelled a. The 2CNF expression is unsatisfiable if and only
if there is a directed cycle containing both ui and vi for some i, 1 ≤ i ≤ n. It was
shown in [1] that the satisfiability of a 2CNF expression can be decided by looking
for such directed cycles in O(m + n) time.

Hansen and Jaumard [9] compute Step 2 as follows: construct a list of edge
lengths, l1, l2, . . . , lq, sorted in nonincreasing order, where lp = Dmin, 1 ≤ p ≤ q.
Further, let li, i ≤ p, be some candidate for D0. If tij is a boolean value that holds the
truth value of the assertion “there is a partitioning of the vertices into two clusters
with diameters not exceeding li and lj ,” then the sequence of values tip, t

i
p+1, . . . , t

i
q

is monotone, and the largest j for which tij is true can be found by a binary search.
Since this would involve verifying the truth of O(log n) assertions of the above kind,
each requiring O(m) time, we can find j for any given i in O(m log n) time. Since
there are no more than n candidates for D0, the entire process can be completed in
O(mn log n) steps.

Our approach differs from that in [9] in two ways: (1) Instead of carrying out
a binary search for the largest j that satisfies tij , we find j by a sequential search.
(2) Instead of solving each 2-SAT instance from scratch, we do this incrementally/
decrementally for each new value of j or i.

To decide a 2-SAT instance, we construct a directed graph. In this digraph we
have to look at O(n) pairs of vertices to check if any of these pairs falls in the same
SCC. If we have the transitive closure or the decomposition into SCCs, this check can
be performed with O(n) queries, each requiring O(1) time.

There are at most p instances of d0, namely, l1, l2, . . . , lp. In the process of
finding d1 for each d0, we can either start with d0 = l1 and then decrease d0 all
the way down to lp, or we can start with d0 = lp and increase to l1. If we choose
the former, we perform O(n) inserts and O(m) deletes; this is the approach we use
in section 3, where we dynamically maintain the transitive closure for a digraph,
with each insertion taking O(n2) time and each deletion taking O(1) time, giving
us a cost that is O(n3). If we choose the latter, we have O(n) deletes and O(m)
inserts; i.e., the graph has O(n) deletable edges. The scheme presented in section
4 maintains the decomposition into SCCs in such a way that each deletable edge
requires O(m) operations and each nondeletable edge requires O(n) operations. Both
these approaches must decide O(m) 2-SAT instances, which would require O(mn)
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steps. Thus we have an O(n3) algorithm if we maintain the transitive closure and an
O(mn) algorithm if we maintain the decomposition into SCCs.

We designate the directed graph used to represent a 2CNF expression as the con-
straint graph. Looking at the types of constraints imposed by the clustering problem,
it is obvious that no two negated literals are connected by a directed arc, and, likewise,
no two nonnegated literals are connected by a directed arc. Each Type0 constraint
induces two edges that are directed from negated literals to nonnegated ones, and
each Type1 constraint induces two edges that are directed from nonnegated literals to
negated ones. We designate these edges Type0 and Type1 edges, respectively. In the
following sections, we shall dynamically insert these edges into the constraint graph
to obtain faster algorithms. Whenever we insert a constraint, it means that both
the induced edges are added to the constraint graph. The following lemma tells us
something about the edges in the cluster graph that complete even cycles in Kruskal’s
algorithm.

Lemma 2.4. Let e1, e2, . . . , em be a valid order in which Kruskal’s algorithm
considers the edges of the cluster graph in order to construct the MST; let Ti denote the
subset of edges from e1, e2, . . . , ei that are included in the MST by Kruskal’s algorithm,
and let ei, 1 ≤ i ≤ m, be an edge connecting vertices is and it that completes an even
cycle. Then, in the constraint graph induced by the Type0 and Type1 constraints of
the edges in Ti−1, we have the following:

1. uis and vit belong to the same strongly connected component.
2. uit and vis belong to the same strongly connected component.

Proof. Since ei completes an even cycle, there is a path is, iα1 , iα2 , . . . , iα2j
, it such

that all edges on this path were considered before ei by Kruskal’s algorithm. If we
add the Type0 and Type1 constraints for all the edges on this path, it is easy to verify
that we have a path uis , viα1

, uiα2
, . . . , uiα2j

, vit in the constraint graph, comprised

of alternating Type0 and Type1 edges. Similarly, we can find paths from vit to uis ,
from uit to vis , and from vis to uit .

What this implies is that if we have a situation where (1) an edge eij that com-
pletes an even cycle in Kruskal’s algorithm and (2) the Type0 and Type1 constraints
for all the remaining edges in the even cycle have been added to the constraint graph,
then adding the constraints for eij does not affect the connectivity (i.e., does not
modify the transitive closure) of the constraint graph. Therefore, in a situation where
we are inserting constraints in decreasing order of edge lengths, the edges of length
greater than Dmin that complete even cycles in Kruskal’s algorithm can be ignored.
All the constraints that we consider in the course of step 2 can therefore be classified
into three kinds:

(1) Type1 constraints of edges of length greater than Dmin,
(2) Type0 constraints of edges of length greater than Dmin,
(3) Type1 constraints of edges of length less than or equal to Dmin.

Since all candidates for d1 are less than or equal to Dmin, the constraints in (1)
must always be satisfied. These can therefore be added as nondeletable edges to the
constraint graph.

The constraints in the other two categories are related as follows: If we choose
a smaller value for d0, we have more constraints from (2), and consequently we may
be forced to remove more constraints from (3) and thus increase the value of d1. By
Lemma 2.4, the number of constraints that we need to consider from (2) is O(n).
The algorithm in the next section first inserts all the constraints from (3) and then
removes these as constraints from (2) are added. The approach in section 4 is to first
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insert all the constraints from (2) and then remove these as constraints from (3) are
added.

3. An O(n3) algorithm. In this section we describe an O(n3) algorithm for
minimum sum-of-diameters clustering. We first present a fully dynamic graph con-
nectivity algorithm and then use this to obtain the clustering algorithm

3.1. A fully dynamic connectivity algorithm. In this section we describe a
fully dynamic graph connectivity algorithm with the following characteristics:

• Complete lookahead for deletion; i.e., at any point in time, we know all the
edges currently in the graph that are going to be deleted at some future point,
and we know the order in which these edges are going to be deleted. There
is no knowledge of insertions and queries—these can be interleaved with the
deletes in any arbitrary order.

• O(n2) time for each insertion.
• O(1) time for each deletion.
• O(1) query time. (The query checks if there exists a directed path connecting

two specified vertices.)
• O(n3) precomputation time—given an input graph, the required data struc-

tures can be precomputed in O(n3) time.

We define the following concepts:

• Deletion time stamp (DTS): Associated with each edge is a DTS that gives
the order in which the edge will be deleted, the edge with the largest DTS
being the next edge to be deleted. For deletable edges, this is a unique integer
in the range [1 . . . n2]. Edges that will never be deleted have a DTS = 0.

• Current time stamp (CTS): An integer between 0 and n2. When we delete
an edge, the CTS is decremented. A CTS of i indicates that the graph has
i deletable edges. When we add a deletable edge, CTS is incremented. At
any point, CTS is equal to the largest DTS for all the edges in the graph.
If an edge has a DTS that is greater than CTS, then the edge is not in the
graph.

• Persistence number (PN): Associated with each directed path in the graph is
a PN that is computed as the maximum of all the DTS values of the edges
on that path. Intuitively, the PN of a path is a measure of how many deletes
it will take to disconnect the path . For a path with a PN of p, this measure
is computed as CTS − p + 1. Therefore, given two paths, the one with a
lower PN is more persistent. If a path has a PN equal to CTS, the next
delete will disconnect the path; after the delete, the CTS drops below the
PN, i.e., CTS − PN + 1 ≤ 0, implying that this path no longer exists in the
graph.

• Connectivity number (CN): For each pair of vertices (u, v), we have a CN
that is computed as the minimum of the PNs over all paths that connect
from u to v. Intuitively, the CN gives us a measure of the number of deletes
needed to eliminate all paths from u to v. If CN(u, v) = c, then this measure
is computed as CTS − c + 1. Thus, if CN(u, v) >CTS, there is no directed
path from u to v.

Our data structure for a graph with n vertices is an n×n matrix, which contains,
for each pair of vertices (u, v), the DTS of the edge (u, v) and CN(u, v).

Lemma 3.1. Given a graph G, with a DTS for each edge, the required data
structure can be computed in O(n3) time.
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Proof. We need to compute a CN for each pair of vertices (i, j). Let D(k)(i, j)
denote the PN for the most persistent path from i to j, such that none of the
intermediate vertices has an index greater than k. We have the following dynamic
programming recurrence:

D(0)(i, j) =DTS(i, j),

D(k+1)(i, j) = min[D(k)(i, j),max(D(k)(i, k + 1), D(k)(k + 1, j))].

Since CN(i, j) = D(n)(i, j), our data structure can be precomputed in O(n3)
time.

The only work done to update the data structure is at the time of insertion, when
the CN values are updated in accordance with the dynamic programming recurrence
given in the above proof. If (u, v) is the new edge to be inserted with DTS t, then, for
each pair (x, y), we have a new potential path from x to y, namely, x to u to v to y,
and the PN of this path must be taken into account to determine CN(x, y). There are
two other issues we must deal with: (1) Some deletes may have been performed since
the last insert; therefore, all the CN values that are greater than the CTS must be
set to ∞. (2) If t > 0, there may be an existing edge in the graph with DTS = t; i.e.,
the new edge is inserted somewhere in the middle of the deletion sequence. In this
case, we must increment the DTS of edges with DTS ≥ t and increment all the CNs
that are greater than or equal to t. These operations are detailed in Insert(u, v, t).

The data structure supports the following operations:

• Insert(u, v, 0): (Insert a nondeletable edge from u to v). For all pairs of
vertices (p, q) such that CTS < CN(p, q) < ∞, set CN(p, q) = ∞. For each
pair of vertices (x, y), CN(x, y) = min(CN(x, y), max (CN(x, u), CN(v, y))).

• Insert(u, v, t): (Insert an edge with DTS t from u to v). For all pairs of
vertices (p, q) such that CTS < CN(p, q) < ∞, set CN(p, q) = ∞. If CTS
≥ t, increment the DTS for each edge that has a current DTS value greater
than or equal to t. Increment the CTS. For each pair of vertices (p, q) with
CN ≥ t, increment CN(p, q). For each pair of vertices (x, y), CN(x, y) =
min(CN(x, y), max (CN(x, u), CN(v, y), t)).

• Delete(u, v): (Deletes the next edge in sequence). Decrement the CTS;
DTS(u, v) = ∞.

• Path(u, v): (Returns True if there is a path connecting from u to v; False
otherwise). If CTS < CN(u, v), return False; else return True.

Theorem 3.2. The data structure described above maintains the transitive clo-
sure of a digraph, satisfying the following conditions:

(1) O(n2) time for each insertion.
(2) O(1) time for each deletion.
(3) O(1) query time.
(4) Given an input graph, the required precomputation can be done in O(n3) time.

Proof. To prove that the data structure does indeed maintain the transitive
closure, we observe the following: If an edge has a DTS that is less than the CTS,
then this edge is present in the graph; and therefore if a path from u to v has a PN
that is less than the CTS, the graph has a directed path from u to v. It follows then
that if a pair (u, v) of vertices has a CN that is less than the CTS, then there exists a
path from u to v and that the operation Path(u, v) correctly tells us whether or not
there is directed path from u to v.

To establish (1), note that any pair of vertices (x, y), x �= u, y �= v, is examined
at most four times; pairs of the form (u, y) or (x, v) are examined at most O(n)
times each, and there are O(n) such pairs. It follows that both the Insert operations
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described above are completed in O(n2) time. (2) and (3) are obvious, and (4) follows
from Lemma 3.1.

3.2. A O(n3) clustering algorithm. We compute Step 2 of Algorithm Cluster
as follows: Add all the Type1 constraints to the constraint graph in nonincreasing
order of edge lengths. Next, add the Type0 constraints for all the edges with length
greater than Dmin in nonincreasing order. As soon as we get a cycle containing a
variable and its negation, we remove Type1 constraints in nondecreasing order of
lengths until the cycle is removed. By keeping track of the length of the edges whose
constraints created the cycle and the length of the edges whose constraints were
removed to eliminate the cycle, we can obtain all the (d0, d1) pairs needed in Step 2
of Algorithm Cluster. This idea is elaborated below.

Let l1, l2, . . . , lq be the q distinct edge lengths in the cluster graph sorted in
nonincreasing order, and let Si denote the set of all edges of length li in the cluster
graph. To simplify the presentation, we define l0 = ∞, lq+1 = 0, and S0 and Sq+1 as
the associated (empty) sets. Let Dmin = lp, 1 ≤ p ≤ q.

Algorithm Cluster1.

1. Insert all the Type1 constraints for edges with length greater than Dmin into
the constraint graph as follows:
For i = 1 to p-1

For each edge ejk in Si,
Insert(uj , vk, 0); Insert(uk, vj , 0);

end for;
end for;

2. Insert all the Type1 constraints for edges with length less than or equal to
Dmin, into the constraint graph as follows:
DTS = 1;
For i = p to q

For each edge ejk in Si,
Insert(uj , vk, DTS + +); Insert(uk, vj , DTS + +)

end for;
end for;

3. j = q + 1;
For i = 0 to p-1

For each edge ekl in Si that does not complete an even cycle
in Kruskal’s algorithm,

Insert(vk, ul, 0); Insert(vl, uk, 0);
/*insert the Type0 constraints*/

end for;
While (constraint graph is unsatisfiable)

j= j-1; Delete all Type1 constraints for edges in Sj ;
end while;
Record (li+1, lj) as a (d0, d1) pair.

end for;

Theorem 3.3. Algorithm Cluster1 correctly computes Step 2 of Algorithm Clus-
ter in O(n3) time.

Proof. The correctness follows from the way we find the (d0, d1) pairs. If d0

= li+1, then the constraint graph must contain Type0 constraints for all edges in⋃i
k=1 Sk. From the “while” condition, it is clear that to attain satisfiability, we need

to remove at least some Type1 constraints imposed by the edges in Sj . This implies
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that d1 must be at least lj ; i.e., (li+1, lj) form a (d0, d1) pair.
To establish the complexity, note that steps 1 and 2 perform a series of edge

insertions with no interleaving deletes or queries. By Lemma 3.1, all these operations
can be done in O(n3) time. In step 3, we insert Type0 constraints. From Lemma 2.4,
we know that Type0 constraints of the edges that completed even cycles in the MST
need not be added. Therefore, we have only O(n) Type0 edges to insert, which can be
done in O(n3) steps. In each iteration of the “while” loop, we check if the constraint
graph is satisfiable; i.e., for all i, 1 ≤ i ≤ n, we check if ui and vi are on a directed
cycle. Since our query time is a constant, each check of satisfiability takes O(n) steps.
Since j is initially q (q < n2) and decreases in each iteration of the “while” loop,
there are fewer than n2 checks for satisfiability, and the entire computation can be
completed in O(n3) steps.

4. A O(mn) algorithm.

4.1. Dynamically maintaining SCCs. The algorithm in the previous section
cannot do better than O(n3) in general. The reason for this is that we have Ω(n)
Type0 constraints to be inserted, each of which takes O(n2) time in the worst case.
We shall now present a different technique to take care of sparse cluster graphs.
Unlike the previous algorithm, this technique maintains a collection of all SCCs in the
constraint graph. The problem of dynamically maintaining SCCs in directed graphs
does not seem to have received much attention from researchers, except for [13], where
King and Sagert have used the idea of SCC decomposition to maintain the transitive
closure.

Definition (strongly connected subgraph). A strongly connected subgraph (SCS)
of a digraph G(V,E) is a set of vertices C ⊆ V such that for every pair of vertices
(u, v), u, v ∈ C, there exist directed paths pf from u to v and pb from v to u in G,
such that neither pf nor pb contains an intermediate vertex that does not belong to
C. A SCC is a maximal SCS.

The approach used here to maintain the decomposition of the graph into SCCs
adapts a basic technique from [3], which works as follows: Maintain n incomplete
breadth first search (BFS) traversals, one starting at each vertex. Whenever an edge
(u, v) is added, consider all vertices x, whose BFS has reached u, and restart these
traversals by adding v to the queue of each such x. Since there are n BFS traversals
and each edge that is inserted can be traversed by a traversal at most once, the amor-
tized cost of insertion is O(n). Cicerone et al. [3] use this method to maintain the
transitive closure of a graph under a series of insertions at an amortized cost of O(n)
per insert. This method, however, works well for deletions only in the case of acyclic
digraphs; furthermore, it performs very poorly in situations where inserts and deletes
are interleaved.

To adapt this technique for our situation (i.e., maintain the decomposition into
SCCs), we make the following observations:

• Let it be that each of the vertices in the graph is arbitrarily assigned a unique
integer value, called the priority of the vertex. (The priority of vertex x is
denoted pr(x).) We can then associate an integer with each SCS, which is
the highest priority of all the vertices in the SCS. We also associate a SCS
with each vertex x, denoted xSCS , consisting of all vertices y such that the
digraph contains a directed path from x to y and a directed path from y to
x, neither of which pass through a vertex with priority greater than pr(x).

• Consider a situation where we delete a given sequence of edges. Deleting
an edge causes the SCC that contained the edge to be partitioned into one
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or more SCCs. If we represent the SCCs created by this partitioning as
children of the original SCC, we get an inheritance structure. Since the
relation xSCCy (read “x and y belong to the same SCC”) is transitive, the
inheritance structure defined by a sequence of edge deletions must be a forest.
(If the graph was strongly connected to begin with, this structure is a tree.
Note also that the inheritance structure can be represented as a forest of SCSs
prior to any edge being deleted. We shall exploit these ideas in the following
paragraphs.)

• If there are no deletions, it is easy to maintain the decomposition into SCCs
using the technique in [3]. For each vertex v, we maintain the largest integer
vmax such that there is a directed path from v to the vertex with priority
vmax and vice versa. v is then designated as belonging to SCC vmax.

• To deal with deletable edges, we introduce the concept of enodes (or “edge-
nodes”). Associated with a deletable edge directed from node u to node v
is an enode (β, say). Instead of adding an edge from node u to node v, we
add two directed edges: one from u to β and the other from β to v. Each
deletable edge has an associated DTS; the enode β is assigned a priority of
(n + the DTS of the edge from u to v), where n is the number of nodes in
the original graph.

• When an edge is deleted, we need to ensure that the connectivity provided
by the deleted edge is not being used anymore. To ensure this, the following
constraint is imposed on the BFS traversals from each vertex: Consider a
BFS traversal rooted at v; a vertex u is visited by this traversal only if
pr(v) > pr(u). Since an edge with a higher DTS corresponds to an enode
with a higher priority, any path from a vertex v to a vertex u, discovered by a
BFS rooted at v, cannot pass through any enode β such that pr(β) > pr(v).
Consequently, this path cannot be disconnected due to the deletion of the
edge associated with any enode β that has a priority greater than pr(v).
This constraint does create a new problem: given vertices u, v, and w with
pr(u) > pr(v) > pr(w) such that v lies on every path from w to u, the BFS
traversal from w will not find a path to u. Nonetheless, u and w must be
recognized as belonging to the same SCC. To overcome this problem, we carry
out two BFS traversals from each vertex—one following the forward arcs and
one following the backward arcs. Thus with each vertex x (a vertex could
be a node or an enode) we have an associated SCS consisting of all vertices
y such that there is a path pf from x to y following the directed arcs in
the forward direction, and a path pb from x to y following the directed arcs
in the reverse direction, such that neither path has a a vertex with priority
greater than pr(x). Such an arrangement correctly finds all the SCCs, since
the node x which has the highest priority of all nodes in the SCC, will reach
all nodes in the SCC both forwards and backwards, without passing through
any node with priority greater than pr(x). This arrangement also yields the
SCS, xSCS , for each vertex x; xSCS contains all vertices y which can be
reached from x both forwards and backwards without passing through any
vertex with priority greater than pr(x).

We formally define the concepts introduced above:

• enode: When a deletable edge is to be inserted from node u to node v, we
introduce a special vertex called an enode (β, say). β has one incoming edge,
(u, β), and one outgoing edge, (β, v). Each vertex of the graph can therefore
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be a node or an enode. When an edge is deleted, the associated enode is
removed from the graph.

• Forward BFS: A breadth first traversal of the graph starting at a specified
root, v, that traverses the outgoing edges from each vertex that is visited.

• Backward BFS: A breadth first traversal of the graph starting at a specified
root, v, that traverses the edges coming into each vertex that is visited, i.e.,
follows the directed arcs in the reverse direction.

• SCS associated with x: Associated with each vertex x is a SCS, xSCS , con-
sisting of all vertices y such that there exist two directed paths, pf from x to
y, and pb from y to x, such that neither pf nor pb contains any vertex with
a priority greater than pr(x). As defined earlier, a SCS that is maximal is a
SCC.

• Forest of SCSs: Consider an enode β such that β is the vertex with the
highest priority in its SCC (Denote this SCC as βSCC . Let β be associated
with the deletable edge (x, y) and v be some vertex in βSCS . Let w be the
vertex in βSCS with the highest priority such that wSCS contains v. If the
edge (x, y) were to be deleted at this point, then v would belong to the SCC
in which w is the vertex with the highest priority (denoted wSCC). Since
wSCC directly inherits v from βSCC , we designate wSCS as a child of βSCS .
This parent-child relationship defines a forest of SCSs, denoted by FSCS . It
follows that the size of FSCS is O(m+ n). A SCS that is a root of some tree
in FSCS is maximal and is therefore a SCC.

Our data structure keeps track of the following information with each vertex x:

1. Two boolean arrays: Fx, which stores all the nodes visited by the forward
BFS from x, and Bx, which stores all the nodes visited by the backward BFS
from x. If x is an enode, these arrays are of size n2; if x is a node, these are
of size n.

2. The parent of xSCS , if any, in FSCS .
3. Two lists: a list of nodes in the corresponding SCS xSCS and the list of

children of xSCS in FSCS .
4. If x is a node, then we keep two lists—these are Lf

x, which stores all vertices
whose forward BFS has visited x, and Lb

x, which stores all vertices whose
backward BFS has visited x.

5. Two BFS queues: Qf
x and Qb

x

6. An integer xmax, which is the highest priority of all vertices y such that both
forward and backward traversals from y have visited x.

The data structure supports the following operations.

• Insert(u, v, t): Insert a deletable edge from node u to node v, with DTS t.
1. Create an enode β and add directed edges from u to β and β to v.
2. For each enode α such that pr(α) ≥ n + t, increment the priority of α;

for each vertex x such that xmax ≥ n + t, increment xmax.
3. For each enode α in Lf

u, such that pr(α) > n + t, insert β in Qf
α and

restart that traversal.
4. For each enode α in Lb

v, such that pr(α) > n + t, insert β in Qb
α and

restart that traversal.
5. Do a forward BFS and a backward BFS from β and enumerate the items

in βSCS by taking the intersection of the sets of nodes visited by the two
traversals.

6. Find the enode α with the smallest priority such that β ∈ αSCS and
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make βSCS the child of αSCS in FSCS .
• Insert(u, v, 0): Insert a nondeletable edge from node u to node v.

1. For each vertex x in Lf
u, such that pr(x) > pr(v), insert v into Qf

x and
restart the forward BFS from x.

2. For each vertex x in Lb
v, such that pr(x) > pr(u), insert u into Qb

x and
restart the backward BFS from x.

• SCC (u, v): Check if node u and node v belong to the same strongly connected
component.
Return umax = vmax.

• delete(): Delete the edge with the highest DTS.
Let w be the enode with the highest priority.
For each child vSCS of wSCS

For each vertex x in vSCS

xmax = pr(v).

The algorithms for forward and backward BFSs from a vertex x are as follows.

FORWARD BFS(x)

While Qf
x is not empty

y = dequeue(Qf
x); Fx[y] = 1; visit(y, x); add x to Lf

y .

For each vertex z such that there is a directed edge

from y to z, pr(z) < pr(x) and Fx[z] = 0,

enqueue(Qf
x, z);

end for;

end while;

BACKWARD BFS(x)

While Qb
x is not empty

y = dequeue(Qb
x); Bx[y] = 1; visit(y, x); add x to Lb

y.

For each vertex z such that there is a directed edge

from z to y, pr(z) < pr(x) and Bx[z] = 0,

enqueue(Qb
x, z);

end for;

end while;

In both BFS algorithms, the operation visit(y, x) does the following.

VISIT(y, x)

If Fx[y] = Bx[y] = 1 then

ymax = max(ymax, pr(x))

Let pSCS denote the parent of ySCS

If pr(p) > pr(x) then

Make xSCS the parent of ySCS .

end if;

Update xSCS to contain y.

end if;

Theorem 4.1. The data structure described above has the following characteris-
tics:

1. It incurs an expense of O(m� + n) for each deletable edge, where m� is the
maximum number of edges present in the graph at any time in the lifespan of
the deletable edge.

2. It inserts nondeletable edges in O(n) amortized time.
3. It correctly answers SCC queries in O(1) time.
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Proof.

1. Consider the operation Insert(u, v, t). Step 1 takes O(1) time. Since the
number of enodes in the graph at the time of insertion is no more than m�,
step 2 can be completed in O(m�) time. Since we have two queues for each
enode and no vertex is inserted into a queue more than once, the number
of insert operations performed on the BFS queues of any enode is bounded
by O(m� + n). Step 5 consists of two BFS traversals and can therefore be
completed in O(m� + n) time. Step 6 and the operation delete() spend a
constant amount of time on each vertex, and thus the total time spent dealing
with a deletable edge is bounded by O(m� + n).

2. Consider the operation Insert(u, v, 0). When each forward BFS reaches u,
the edge (u, v) would cause v to be inserted into a queue. There is one
forward queue for each node and one for each enode. The cost of inserting
into the enode queues is accounted for when we calculate the cost of inserting
deletable edges. Since the graph has n nodes, the cost of inserting into the
node queues is O(n). Likewise, the vertex u is inserted into a queue when a
backward BFS reaches v, giving us a total cost of O(n).

3. The complexity follows immediately from the operation. To establish cor-
rectness, we make the following claim.
Claim. For any two vertices x and y, such that pr(y) > pr(x), x ∈ ySCS if
and only if ySCS is an ancestor of xSCS in FSCS . Furthermore, if there are
two vertices y and w, such that x ∈ ySCS and x ∈ wSCS and pr(y) > pr(w),
then ySCS is an ancestor of wSCS .
Proof. For the if part, note that if ySCS is the parent of xSCS , both the BFS
traversals from y must visit x, i.e., x ∈ ySCS . Since the relation xSCSy (read
“x belongs to ySCS”) is transitive, it follows that for any ancestor ySCS of
xSCS , x ∈ ySCS . The only if part can be argued by induction on the length of
the path from xSCS to ySCS . From the way we carry out the visit operation
during the traversals, it is obvious that if z is the vertex with the smallest
priority such that both the forward and the backward BFS from z visit x,
then zSCS is the parent of xSCS . By the induction hypothesis, ySCS must be
an ancestor of zSCS and therefore an ancestor of xSCS as well. This argument
also tells us that if we have x ∈ ySCS and x ∈ wSCS and pr(y) > pr(w), then
ySCS is an ancestor of wSCS .
For any vertex x, let β be the enode with the highest priority in the SCC
containing x. If there are no deletions, for every vertex z in βSCS , zmax will
be set to pr(β) when the traversals from β visit z; i.e., the SCC queries will be
answered correctly for any pair of vertices in βSCS . When we delete the edge
associated with the enode β, this SCC will be partitioned, and xmax will be
assigned the value pr(y), where ySCS is a child of βSCS . From the description
of the delete operation, we know that the property x ∈ ySCS holds, and from
the above claim we know that y is the vertex with the highest priority that
satisfies this property. It follows that, after the deletion, y is the vertex with
the highest priority in the SCC containing x, and therefore all SCC queries
will continue to be answered correctly.

4.2. A O(mn) clustering algorithm. The approach here is to first add to the
constraint graph all the Type0 and Type1 constraints for edges with length greater
than Dmin. We then add Type1 constraints for edges of length less than Dmin in
decreasing order of edge lengths. Whenever we reach an unsatisfiable 2-SAT instance,
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Type0 constraints are deleted in increasing order of edge lengths until satisfiabil-
ity is restored. By keeping track of the length of the edges whose constraints cre-
ated unsatisfiability and the length of the edges whose constraints were removed to
restore satisfiability, we can obtain all the (d0, d1) pairs needed in Step 2 of Algorithm
Cluster.

Once again, let l1, l2, . . . , lq be the q distinct edge lengths in the cluster graph
sorted in nonincreasing order, and let Si denote the set of all edges of length li in the
cluster graph. To simplify the presentation, we define l0 = ∞, lq+1 = 0, and S0 and
Sq+1 as the associated (empty) sets. Let Dmin = lp, 1 ≤ p ≤ q.

Algorithm Cluster2.

1. Insert all the Type1 constraints for edges with length greater than Dmin into
the constraint graph as undeletable edges.

2. Insert all the Type0 constraints for edges with length greater than Dmin as
follows:
DTS = 1;
For i = 1 to p-1

For each edge ejk in Si that does not complete an even cycle
in Kruskal’s algorithm,

Insert(vj , uk, DTS + +); Insert(vk, uj , DTS + +)
end for;

end for;
3. j = p-1;

For i = p-1 down to 1
While (constraint graph is satisfiable)

j = j +1; Insert all Type1 constraints for edges in Sj ;
end while;
Record (li+1, lj) as a (d0, d1) pair.
Remove Type0 constraints for all edges in Si.

end for;

Theorem 4.2. Algorithm Cluster2 correctly computes Step 2 of Algorithm Clus-
ter in O(mn) time.

Proof. The argument for correctness is similar to the one for Theorem 3.3. If
d0 is li+1, the constraint graph contains Type0 constraints for all edges in

⋃i
k=1 Sk.

Since the constraint graph became unsatisfiable when Type1 constraints for edges in
Sj were added, d1 should be set to lj to avoid these constraints.

There are O(m) nondeletable edges inserted in step 1, each taking O(n) time, and
O(n) deletable edges inserted in step 2, each requiring O(m) time. Therefore both
these steps can be done in O(mn) time. In step 3, inside the while loop, at most
O(m) edges are inserted at an amortized cost of O(n) per edge; the edges inserted in
step 2 are deleted outside the while loop, but the cost of these deletions is already
accounted for. Thus the entire process takes O(mn) steps.

5. Conclusion. We have discussed algorithms that solve the minimum sum-of-
diameters clustering problem in O(n3) and O(mn) time, respectively. In practice,
the O(n3) algorithm may be better due to the fact that the only data structure
used is an array. It would be interesting to determine experimentally at what value
of m the second algorithm becomes more efficient. It is possible to use the ideas
described in this paper to obtain an O(qm) algorithm for minimum sum-of-diameters
clustering, where q is the number of distinct edge lengths. This would actually give
us better performance if q is o(n). Whether there is a o(mn) algorithm for the general
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case remains an open question. Another interesting question would be to determine
the relative complexities of maintaining the transitive closure vs. maintaining the
decomposition into SCCs for general digraphs in the absence of lookahead.
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Abstract. Given a graph G with distinguished nodes s and t, a cost on each edge of G, and
a fixed integer L ≥ 2, the two edge-disjoint hop-constrained paths problem is to find a minimum
cost subgraph such that between s and t there exist at least two edge-disjoint paths of length at
most L. In this paper, we consider that problem from a polyhedral point of view. We give an
integer programming formulation for the problem when L = 2, 3. An extension of this result to the
more general case where the number of required paths is arbitrary and L = 2, 3 is also given. We
discuss the associated polytope, P (G,L), for L = 2, 3. In particular, we show in this case that the
linear relaxation of P (G,L), Q(G,L), given by the trivial, the st-cut, and the so-called L-path-cut
inequalities, is integral. As a consequence, we obtain a polynomial time cutting plane algorithm for
the problem when L = 2, 3. We also give necessary and sufficient conditions for these inequalities
to define facets of P (G,L) for L ≥ 2 when G is complete. We finally investigate the dominant of
P (G,L) and give a complete description of this polyhedron for L ≥ 2 when P (G,L) = Q(G,L).
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1. Introduction. Given a graph G = (N,E), with distinguished nodes s and
t, and a fixed integer L ≥ 2, an L-st-path in G is a path between s and t of length
at most L, where the length of a path is the number of its edges. Given a function
c : E → R which associates a cost c(e) with each edge e ∈ E, the two edge-disjoint
hop-constrained paths problem (THPP) is to find a minimum cost subgraph such that
between s and t there exist at least two edge-disjoint L-st-paths.

The THPP arises in the design of reliable communication networks. In fact,
with the introduction of fiber optic technology in telecommunications, designing a
minimum cost survivable network has become a major objective in the telecommuni-
cations industry. Survivable networks have to satisfy some connectivity requirements.
As pointed out in [28], 2-edge connected networks have been shown to be cost effective
and to provide an adequate level of survivability. In such networks, there are at least
two edge-disjoint paths between each pair of nodes. So, if a link fails, it is always
possible to reroute the traffic between two terminals along the second path.

However, this requirement is often insufficient regarding the reliability of a telecom-
munications network. In fact, the alternative paths could be too long to guarantee
an effective routing. In data networks, such as the Internet, the elongation of the
route of the information could cause a strong loss in the transfer speed. For other
networks, the signal itself could be degraded by a longer routing. In such cases, the
L-path requirement guarantees exactly the needed quality for the alternative routes.
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The THPP can also be seen as a special case of the more general problem when
more than one pair of terminals is considered. This is the case, for instance, when
several commodities have to be routed in the network. Thus an efficient algorithm for
solving the THPP would be useful to solve (or produce upper bounds for) this more
general problem.

It is clear that an optimal solution of the THPP can be computed in polynomial
time by enumerating all the L-st-paths. However, in a complete graph G = (N,E)
with |N | = n, there are O(nL−1) L-st-paths, which can also be enumeratively gen-
erated in O(nL−1) time. For every pair of such paths, one has to verify their edge-
disjunction, which requires O(L2) comparisons. Consequently, the whole enumerative
algorithm for the THPP runs in O(L2n2(L−1)) time. Clearly, such a method is far
from being applicable in practice. One of the principal aims of this paper is to de-
vise a more efficient algorithm for the THPP. This algorithm, which will be a cutting
plane method, will be based on a complete description of the associated polytope by
a system of linear inequalities.

Given a graph G = (N,E) and an edge subset F ⊆ E, the 0-1 vector xF ∈ R
E ,

such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called the incidence vector
of F . For L ≥ 2, the convex hull of the incidence vectors of the solutions of the THPP
on G, denoted by P (G,L), will be called the THPP polytope. Given a vector w ∈ R

E

and an edge subset F ⊆ E, we let w(F ) =
∑

e∈F w(e). If W ⊂ N is a node subset of
G, then the set of edges that have only one node in W is called a cut and is denoted
by δ(W ). We will write δ(v) for δ({v}). A cut δ(W ) such that s ∈ W and t ∈ V \W
will be called an st-cut.

If xF is the incidence vector of the edge set F of a solution of the THPP, then
clearly xF satisfies the inequalities

x(δ(W )) ≥ 2 for all st-cut δ(W ),(1.1)

1 ≥ x(e) ≥ 0 for all e ∈ E.(1.2)

Inequalities (1.1) will be called st-cut inequalities and inequalities (1.2) trivial inequal-
ities.

In [12], Dahl considers the problem of finding a minimum cost path between
two given terminal nodes s and t of length at most L. He describes a class of valid
inequalities for the problem and gives a complete description of the associated L-path
polyhedron when L ≤ 3. In particular, he introduces a class of valid inequalities as
follows.

Let V0, V1, . . . , VL+1 be a partition of N such that s ∈ V0, t ∈ VL+1, and Vi �= ∅
for all i = 1, . . . , L. Let T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj , and
|i− j| > 1. Then the inequality

x(T ) ≥ 1

is valid for the L-path polyhedron.
Using the same partition, this inequality can be generalized in a straightforward

way to the THPP polytope as

x(T ) ≥ 2.(1.3)

The set T is called an L-path-cut (or L-star), and a constraint of type (1.3) is called
an L-path-cut (or L-star) inequality.
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Let Q(G,L) be the solution set of the system given by inequalities (1.1)–(1.3).
In this paper, we show that inequalities (1.1)–(1.3), together with the integrality
constraints, give an integer programming formulation of the THPP and of its gener-
alization when more than two edge-disjoint L-st-paths are required for L = 2, 3. We
then discuss the THPP polytope, P (G,L), and show that P (G,L) = Q(G,L) when
L = 2, 3 for any graph. This yields a polynomial time cutting plane algorithm for the
THPP in this case. We also give necessary and sufficient conditions for inequalities
(1.1)–(1.3) to define facets for any L ≥ 2 when the graph is complete. We finally
investigate the dominant of P (G,L), for which we give a complete description for
any L ≥ 2 when P (G,L) = Q(G,L). As a consequence, we obtain the dominant of
P (G,L) when L = 2, 3.

Despite its interesting applications, the THPP has, to the best of our knowledge,
never been studied before. There has been, however, a considerable amount of research
on many related problems. In [14], Dahl and Johannessen consider the 2-path network
design problem, which consists of finding a minimum cost subgraph connecting each
pair of terminal nodes by at least one path of length at most 2. This problem is
NP-hard. Dahl and Johannessen give an integer programming formulation for the
problem and describe some classes of valid inequalities. Using these, they devise a
cutting plane algorithm and present some computational results.

The closely related problem of finding a minimum cost spanning tree with hop-
constraints is considered in [19], [20], [23]. Here, the hop-constraints limit the number
of links between the root and any terminal in the network to a positive integer H.
This problem is NP-complete even for H = 2. Gouveia [19] gives a multicommodity
flow formulation for that problem and discusses a Lagrangian relaxation improving
the LP bound. Gouveia [20] and Gouveia and Requejo [23] propose more efficient
Lagrangian-based schemes for the problem and its Steiner version. Dahl [11] studies
the problem for H = 2 from a polyhedral point of view and gives a complete descrip-
tion of the associated polytope when the graph is a wheel. Gouveia and Janssen [21]
discuss a generalized problem where connectivity requirements are considered. They
formulate the problem as a directed multicommodity flow model and use Lagrangian
relaxation together with subgradient optimization to derive lower bounds. Gouveia
and Magnanti [22] consider the problem that consists in finding a minimum spanning
tree such that the number of edges in the tree between any pair of nodes is limited
to a given bound (diameter). They present directed and undirected multicommodity
formulations along with some computational experiments. Further hop-constrained
survivable network design problems are studied in [1], [4], [5], [33], [34], [37].

In the framework of the minimum cost spanning tree problem with hop-constraints,
Dahl and Gouveia [13] consider the hop-constrained path problem, that is, the prob-
lem of finding between two distinguished nodes s and t a minimum cost path with no
more than K edges when K is fixed. They describe various classes of valid inequal-
ities and show that some of these inequalities are sufficient to completely describe
the associated polytope when K ≤ 3. Then they discuss some applications to the
hop-constrained minimum spanning tree problem. In [10], Coullard, Gamble, and Liu
investigate the structure of the polyhedron associated with the st-walks of length K
of a graph, where a walk is a path that may go through the same node more than
once. They present an extended formulation of the problem, and, using projection,
they give a linear description of the associated polyhedron. They also discuss classes
of facets of that polyhedron.

Itai, Perl, and Shiloach [30] study the complexity of several variants of the maxi-
mum disjoint hop-constrained paths problem. This consists in finding the maximum
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number of disjoint paths between two nodes s and t of length equal to (or bounded
by) K, where K is a positive integer. They show that the problem is NP-complete for
K ≥ 5 and polynomially solvable for some of the variants for K ≤ 4. In particular,
they devise a polynomial time algorithm for the problem when the paths must be
node- (resp., edge-) disjoint and of length bounded by K, with K ≤ 4 (resp., K ≤ 3).
Bley [7] addresses approximation and computational issues for the edge- (node-) dis-
joint hop-constrained paths problem. In particular, he shows that the problem of
computing the maximum number of edge-disjoint paths between two given nodes of
length equal to 3 is polynomial. This answers an open question in [30]. In [35], Li, Mc-
Cormick, and Simchi-Levi study the problem of finding K disjoint paths of minimum
total cost between two distinguished nodes s and t, where each edge of the graph has
K different costs and the jth edge-cost is associated with the jth path. They show
that all the variants of the problem, when the graph is directed or undirected and the
paths are edge- or node-disjoint, are NP-complete, even when K = 2.

Besides hop-constraints, another reliability condition, which is used in order to
limit the length of the routing, requires that each link of the network belongs to a
ring (cycle) of bounded length. In [16], Fortz, Labbé and Maffioli consider the 2-node
connected subgraph problem with bounded rings. This problem consists in finding a
minimum cost 2-node connected subgraph (N,F ) such that each edge of F belongs to
a cycle of length at most L. They describe several classes of facet defining inequalities
for the associated polytope and devise a branch-and-cut algorithm for the problem.
In [17], Fortz et al. study the edge version of that problem. They give an integer
programming formulation of the problem in the space of the natural design variables
and describe different classes of valid inequalities. They study the separation problem
for these inequalities and discuss a branch-and-cut algorithm.

The related 2-edge connected subgraph problem and its associated polytope have
also been the subject of extensive research in the past years. Grötschel and Monma
[25] and Grötschel, Monma, and Stoer [26], [27] study the 2-edge connected subgraph
problem within the framework of a general survivable model. They discuss the poly-
hedral aspects and devise cutting plane algorithms. In [36], Mahjoub shows that if
G is series-parallel, then the 2-edge connected subgraph polytope is completely de-
scribed by the trivial and the cut inequalities. This has been generalized by Bäıou and
Mahjoub [2] for the Steiner 2-edge connected subgraph polytope and by Didi Biha
and Mahjoub [6] for the Steiner k-edge connected subgraph polytope for k even. In
[3], Barahona and Mahjoub characterize this polytope for the class of Halin graphs.
In [15], Fonlupt and Mahjoub study the fractional extreme points of the linear re-
laxation of the 2-edge connected subgraph polytope. They introduce an ordering
on these extreme points and characterize the minimal extreme points with respect
to that ordering. As a consequence, they obtain a characterization of the graph for
which the linear relaxation of that polytope is integral. Kerivin, Mahjoub, and Nocq
[32] describe a general class of valid inequalities for the 2-edge connected subgraph
polytope, which generalizes the so-called F -partition inequalities [36], and introduce
a branch-and-cut algorithm for the problem based on these inequalities, the trivial
and the cut inequalities. Further work on the 2-edge and 2-node connected subgraph
problems can be found in [9], [18], [28], [31].

The paper is organized as follows. In the next section, we give an integer pro-
gramming formulation of the THPP and its generalization when the number of paths
is arbitrary for L ≤ 3. In section 3, we study the THPP polytope when L = 2, 3
and give our main result. In section 4, we study some structural properties of the
facet defining inequalities of P (G,L), which are used in section 5 for proving our main
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result. In section 6, we describe necessary and sufficient conditions for the inequalities
(1.1)–(1.3) to be facet defining. In section 7, we discuss the dominant of P (G,L), and,
in section 8, we give some concluding remarks.

The rest of this section is devoted to more definitions and notation. We assume
the reader has familiarity with graphs and polyhedra. For specific details, the reader
is referred to [8] and [38]. The graphs that we consider are finite, undirected, loopless,
and may have multiple edges. A graph is denoted by G = (N,E), where N is the
node set and E is the edge set. Given W , W ′ two disjoint subsets of N , [W,W ′] will
denote the set of edges of G having one endnode in W and the other one in W ′. If
W = {v}, we will write [v,W ′] instead of [{v},W ′]. If G is a graph and e is an edge of
E, then G− e will denote the graph obtained from G by removing e. A path P of G
is an alternate sequence of nodes and edges (u1, e1, u2, e2, . . . , uq−1, eq−1, uq), where
ei ∈ [ui, ui+1] for i = 1, . . . , q−1. We will denote a path P by either its node sequence
(u1, . . . , uq) or its edge sequence (e1, . . . , eq−1).

2. Formulation for L = 2, 3. In this section, we show that the st-cut, L-path-
cut, and trivial inequalities, together with integrality constraints, suffice to formulate
the THPP as a 0-1 linear program when L = 2, 3. To this end, we first give a lemma.

Lemma 2.1. Let G = (N,E) be a graph, s, t be two nodes of N , and L ∈ {2, 3}.
Suppose that there do not exist k edge-disjoint L-st-paths in G, with k ≥ 2. Then
there exists a set of at most k − 1 edges that intersects every L-st-path.

Proof. We first show the statement for L = 3. The proof uses ideas from [30] and
[17]. Consider the capacitated directed graph D = (N ′, A) obtained from G in the fol-
lowing way. The set N ′ consists of a copy s′, t′ of s, t and two copies N1, N2 of N\{s, t}.
For u ∈ N\{s, t}, let u1 and u2 be the corresponding nodes in N1 and N2, respectively.
To each edge e ∈ [s, u], with u ∈ N\{s, t}, we associate an arc e′ from s′ to u1 of
capacity 1. To each edge e ∈ [v, t], with v ∈ N\{s, t}, we associate an arc e′ from v2 to
t′ of capacity 1. For an edge e ∈ [u, v], with u, v ∈ N\{s, t}, we consider two arcs, one
from u1 to v2 and the other from v1 to u2, both of capacity 1. Finally, we consider in
D an arc from s′ to t′ of capacity 1 for every edge in [s, t] and an arc from each node
of N1 to its peer in N2 with infinite capacity (see Figure 1 for an illustration). Note
that multiple edges in G yield multiple arcs in D. Observe that there is a one-to-one
correspondence between the 3-st-paths in G and the directed s′t′-paths in D.

Now consider a maximum flow φ ∈ R
A
+ from s′ to t′ in D. As the capacities of

D are integer, φ can be supposed to be integer. Hence the flow value of each arc of
capacity 1 is either 0 or 1. We claim that φ can be chosen so that no two arcs (u1, v2)
and (v1, u2), corresponding to the same edge uv in G, have a positive value. Indeed,
suppose that φ(u1, v2) = 1 and φ(v1, u2) = 1. Let φ′ ∈ R

A
+ be the flow given by

φ′(e) =

⎧⎨⎩
φ(e) + 1 if e ∈ {(u1, u2), (v1, v2)},
0 if e ∈ {(u1, v2), (v1, u2)},
φ(e) otherwise.

As (u1, u2) and (v1, v2) have infinite capacity and the flow going into u2 and v2 has
not changed, φ′ is still feasible. Moreover, φ′ has the same value as φ.

As a consequence, an s′t′-flow of value q in D corresponds to q edge-disjoint 3-st-
paths in G. Since there do not exist, in G, k edge-disjoint 3-st-paths, the maximum
flow in D is of value at most k− 1. Hence a minimum st-cut in D is of value at most
k − 1 as well. Observe that such a cut does not contain arcs with infinite capacity.
Hence, a minimum cut corresponds to a set of at most k − 1 edges that intersects all
the 3-st-paths of G, and the proof for L = 3 is complete.
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If L = 2, then we can similarly show the statement by considering the digraph
D = (N ′, A), where N ′ is a copy of N and to every edge e ∈ [s, u] (resp., [u, t]), where
u ∈ N\{s, t}, corresponds an arc e′ from s′ to u′ (resp., u′ to t′) of capacity 1 in D.
Here u′ is the copy of u in N ′ for every u ∈ N .

Theorem 2.2. Let G = (N,E) be a graph and L ∈ {2, 3}. Then the THPP is
equivalent to the integer program

Min{cx; x ∈ Q(G,L), x ∈ {0, 1}E}.

Proof. To prove the theorem, it is sufficient to show that every 0-1 solution
x of Q(G,L) induces a solution of the THPP. Let us assume the contrary. Suppose
that x does not induce a solution of the THPP but satisfies the st-cut and trivial
constraints. We will show that x necessarily violates at least one of the L-path-cut
constraints x(T ) ≥ 2. Let Gx be the subgraph induced by x. As x is not a solution
of the problem, Gx does not contain two edge-disjoint L-st-paths. As L ∈ {2, 3}, it
follows, by Lemma 2.1, that there exists at most one edge in Gx that intersects every
L-st-path. Consider the graph G̃x obtained from Gx by deleting this edge. Obviously,
G̃x does not contain any L-st-path.

We claim that G̃x contains at least one st-path of length at least L + 1. In fact,
as x is a 0-1 solution and satisfies the st-cut inequalities, Gx contains at least two
edge-disjoint st-paths. Since at most one edge was removed from Gx, at least one path
remains between s and t in G̃x. However, since G̃x does not contain an L-st-path,
that path must be of length at least L + 1.

Now consider the partition V0, . . . , VL+1 of N , with V0 = {s}, Vi the set of nodes

at distance i from s in G̃x for i = 1, . . . , L, and VL+1 = N \ (
⋃L

i=0 Vi), where the
distance between two nodes is the length of a shortest path between these nodes.
Since there does not exist an L-st-path in G̃x, it is clear that t ∈ VL+1. Moreover, as,
by the claim above, G̃x contains an st-path of length at least L+1, the sets V1, . . . , VL

are nonempty. Furthermore, no edge of G̃x is a chord of the partition (that is, an
edge between two sets Vi and Vj , where |i− j| > 1). In fact, suppose that there exists
an edge e = vivj ∈ [Vi, Vj ] with |i− j| > 1 and i < j. Therefore vj is at distance i+ 1
from s, a contradiction.

Thus, the edge deleted from Gx is the only edge that may be a chord of the
partition in Gx. In consequence, if T is the set of chords of the partition in G, then
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ts
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x(T ) ≤ 1. But this implies that the corresponding L-path-cut inequality is violated
by x.

If L ≥ 4, inequalities (1.1)–(1.3), together with the integrality constraints x(e) ∈
{0, 1} for all e ∈ E, do not suffice to formulate the THPP as an integer program.
Indeed, suppose that L = 4 and consider the graph shown in Figure 2. It is not hard
to see that the solution induced by this graph satisfies inequalities (1.1)–(1.3), whereas
the graph itself is not a feasible solution of the THPP.

However, using Lemma 2.1, Theorem 2.2 can be easily extended to the case where
L ∈ {2, 3} and the number k of required L-st-paths is arbitrary. In other words, the
problem in this case is equivalent to the integer program

Min {cx; x ∈ Qk(G,L), x ∈ {0, 1}E},(2.1)

where Qk(G,L) is obtained from Q(G,L) (= Q2(G,L)) by replacing the right-hand
side of inequalities (1.1) and (1.3) by k.

The separation problem for a system of inequalities consists in verifying whether
a given solution x∗ ∈ R

E satisfies the system and, if not, in finding an inequality
of the system that is violated by x∗. The separation problem for inequalities (1.1)
can be solved in polynomial time using any polynomial max-flow algorithm (see, e.g.,
[29]). Inequalities (1.3) can also be separated in polynomial time when L ≤ 3. In
fact, in this case, it is not hard to see that the separation problem reduces to finding
a minimum weight edge subset that intersects all L-st-paths. Recently, Fortz et al.
[17] have shown that this problem reduces to a max-flow problem (as described in the
proof of Lemma 2.1) and hence can be solved in polynomial time.

Thus, by the ellipsoid method [24], problem (2.1) can be solved in polynomial
time. It would then be interesting to characterize the graphs for which Qk(G,L) is
integral. In what follows, we will show that for k = 2, that is, when (2.1) corresponds
to the THPP, Qk(G,L) is integral for any graph for L = 2, 3.

3. THPP polytope for L = 2, 3. We first state our main result.
Theorem 3.1. P (G,L) = Q(G,L) if L = 2, 3.
The proof of this theorem will be given in section 5. In what follows, we shall

discuss the dimension of P (G,L) and study some properties of its facial structure.
Let G = (N,E) be a graph. An edge e ∈ E will be called L-st-essential if e belongs
to an st-cut of cardinality 2 or an L-path-cut of cardinality 2. Let E∗ denote the set
of L-st-essential edges. Thus, P (G− e, L) = ∅ for all e ∈ E∗. The following theorem,
which is easily seen to be true, characterizes the dimension of the polytope P (G,L).

Theorem 3.2. If L = 2, 3, dim(P (G,L)) = |E| − |E∗|.
Corollary 3.3. If G = (N,E) is complete with |N | ≥ 4 and L = 2, 3, then

P (G,L) is full dimensional.
The following theorem gives a procedure for obtaining a linear description of the

THPP polytope for a subgraph of G from that corresponding to G.
Theorem 3.4. Let G = (N,E) be a graph, s, t be two nodes of N , and L ≥ 2 be

an integer. Let e be an edge of E. Let G′ = (N,E′) be the graph obtained from G by
deleting e. Then a linear system describing P (G′, L) can be obtained from a system
describing P (G,L) by removing the variables corresponding to e.
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Proof. The proof is easy.
In the following, we will suppose that G = (N,E) is complete with |N | ≥ 4 and

L = 2, 3. Hence, by Theorem 3.2, P (G,L) is full dimensional. If G = (N,E) is not
complete, then a description of P (G,L) can be obtained from that of P (G,L), by
repeatedly using Theorem 3.4. Here G is the complete graph obtained from G by
adding the missing edges. Moreover, it is clear that the problem can be reduced to
that case by associating a big cost with the missing edges in the graph.

Let

T (G) = {F ⊆ E | (N,F ) is a solution of the THPP}.

Given an inequality ax ≥ α that defines a facet of P (G,L), we let

τa = {F ∈ T (G) | axF = α}.

In what follows, we will consider a(e) as a weight on e. Hence, any solution S of τa
will have a weight a(S) equal to α and any solution of T (G) a weight ≥ α.

Lemma 3.5. (i) Let ax ≥ α be a facet defining inequality of P (G,L) different
from the trivial inequalities. Then for every edge e ∈ E, there exists an edge subset
in τa that contains e and another one that does not.

(ii) Let ax ≥ α be a facet defining inequality of P (G,L) different from the st-cut
inequalities. Then, for every st-cut δ(W ), there exists an edge subset in τa containing
at least three edges of δ(W ).

Proof. The proof is easy.
Lemma 3.5 will be frequently used in what follows. At times we will use it without

referring to it explicitly.
Lemma 3.6. Let ax ≥ α be a facet defining inequality of P (G,L) different from

a trivial inequality. Then a(e) ≥ 0 for all e ∈ E and α > 0.
Proof. Assume, on the contrary, that there is an edge e ∈ E such that a(e) < 0.

Since ax ≥ α is different from −x(e) ≥ −1, by Lemma 3.5(i), there must exist a
solution S of τa that does not contain e. As S′ = S ∪ {e} still belongs to T (G), this
yields α ≤ axS′

= axS + a(e) < axS = α, a contradiction. Thus, a(e) ≥ 0 for all
e ∈ E. Since ax ≥ α defines a facet of P (G,L), there must exist at least one edge,
say f , with a(f) > 0. Now, as ax ≥ α is different from the inequality xf ≥ 0, there
is an edge set of τa containing f . This implies that α > 0.

The following lemma shows that parallel edges in G have the same coefficient in
every nontrivial facet defining inequality of P (G,L) for L = 2, 3.

Lemma 3.7. Let ax ≥ α be a facet defining inequality of P (G,L) different from
the trivial inequalities. Let [u, v] = {e1, e2, . . . , ep} be the set of the parallel edges
between two nodes u and v in G. Then a(ei) = a(ej) for i, j = 1, . . . , p.

Proof. We will show the result for L = 3. The proof for L = 2 is similar. First
we show that all edges in [u, v] have the same coefficient, except possibly one, that
may have a smaller coefficient. Indeed, if there are three edges e1, e2, e3 ∈ [u, v] such
that a(e1) > a(e2) ≥ a(e3), then there cannot exist an edge subset of τa containing e1.
Otherwise, one could replace e1 by either e2 or e3 and get a solution which violates
ax ≥ α, a contradiction. Now, suppose that there are two edges e1, e2 ∈ [u, v] such
that a(e1) > a(e2). By the remark above, it follows that a(e) = a(e1) for all e ∈
[u, v]\{e1, e2}.

Claim 1. Let S be a solution of τa.
(i) If S contains e1, then it must contain e2.
(ii) If S does not contain e2, then it does not intersect [u, v].
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Proof. (i) If e1 ∈ S and e2 /∈ S, then S′ = (S\{e1}) ∪ {e2} is in T (G). As
axS′

< α, we have a contradiction.
(ii) Assume the contrary. Then we may suppose that S contains an edge ei,

i ∈ {1, . . . , p}\{2}, and e2 /∈ S. Since a(ei) > a(e2), this is impossible by the argument
given above.

Now, since ax ≥ α is different from a trivial inequality, by Lemma 3.5(i), there
is an edge set of τa, say S1, containing e1. Let L1 be a 3-st-path of S1 that contains
e1. By Claim 1(i), it follows that e2 belongs to the second 3-st-path of S1, say L2.
Note that L1 ∩ L2 = ∅. It is not hard to see that L1 and L2 go through e1 and e2,
respectively, in the same direction starting from s. If not, one would have one path of
the form (s, u, v, t) and the other one of the form (s, v, u, t). But then the edges e1, e2

might be deleted and one would obtain a feasible solution of weight smaller than α,
a contradiction. So, let us assume, without loss of generality (w.l.o.g.), that u is the
first node of e1, e2 used by L1, L2 going in this direction.

Let Ls
1, L

t
1 (resp., Ls

2, L
t
2) be the subpaths of L1 (resp., L2) between s and u and

between v and t. Obviously, |Ls
i ∪ Lt

i| ≤ 2 for i = 1, 2. Note that we have either
Ls

1 = ∅ = Ls
2 or Ls

1 �= ∅ �= Ls
2. Moreover, if the latter case holds, we have that

|Lt
1| ≤ 1 and |Lt

2| ≤ 1. Note also that, by symmetry, these properties remain true
if we exchange s and t. Thus every st-path consisting of a combination of subpaths
Ls
i ∪ {ej} ∪ Lt

k is of length at most 3 for i, j, k = 1, 2. In other words, we have that

|Ls
i ∪ Lt

k| ≤ 2 for all i, k ∈ {1, 2}.

By Lemma 3.5(i), there must also exist an edge set of τa, say S2, that does not
contain e2. By Claim 1(ii), we have that [u, v] ∩ S2 = ∅. Let P1 and P2 be two
edge-disjoint 3-st-paths in S2. We have the following claim.

Claim 2. At least one of the sets P1 ∩ L1 and P2 ∩ L2 (P2 ∩ L1 and P1 ∩ L2) is
nonempty.

Proof. Assume, on the contrary, that, for instance, P1 ∩L1 = ∅ = P2 ∩L2. Then,
since P2 ∪L2 ∈ T (G), it follows that a(P2) ≥ a(L1). Now, let L′

1 = (L1\{e1})∪ {e2}.
As e2 /∈ S2 and hence e2 /∈ P1, we have that P1 ∩ L′

1 = ∅. Thus P1 ∪ L′
1 ∈ T (G), and

therefore a(L′
1) ≥ a(P2). As a consequence, a(L′

1) ≥ a(L1), and hence a(e2) ≥ a(e1),
a contradiction.

By Claim 2, we may assume, w.l.o.g., that P1 ∩ L2 �= ∅. Also by the same claim,
at least one of the sets P1 ∩L1 and P2 ∩L2 is nonempty. In what follows, we suppose
that P2 ∩ L2 �= ∅. The case where P1 ∩ L1 �= ∅ can be treated along the same lines.
As e2 /∈ S2, it follows that |L2| = 3. If |Ls

2| = 2, then v = t, and L2 is of the form
(s, w, u, t) with w �= s, t, u. Let e0 be the edge of L2∩ [u,w]. Note that one of the 3-st-
paths of S2, say P1, uses e0. Then P1 is of the form (s, u, w, t). Let {f} = P1 ∩ [w, t].
As (S1\{e0, e1}) ∪ {f} and (S2\{e0, f}) ∪ {e2} are edge sets of T (G), we obtain that
a(f) ≥ a(e0) + a(e1) and a(e2) ≥ a(e0) + a(f), respectively. But this implies that
a(e2) ≥ a(e1), a contradiction.

Consequently, |Ls
2| ≤ 1, and, by symmetry, we also have that |Lt

2| ≤ 1. Since
|L2| = 3, it follows that |Ls

2| = |Lt
2| = 1. So L1 and L2 are both of the form

(s, u, v, t). As P1∩L2 �= ∅ �= P2∩L2 and S2∩ [u, v] = ∅, we may assume, w.l.o.g., that
P1 ∩ [s, u] �= ∅ and P2 ∩ [v, t] �= ∅. Moreover, this implies that P1 ∩L1 = ∅ = P2 ∩L1.
Now, by replacing e1 and Lt

1 by the subpath Put
1 of P1 between u and t, we get a

solution, yielding a(Put
1 ) ≥ a(e1) + a(Lt

1). Similarly, if we replace Put
1 by e2 and Lt

1

in S2, we obtain that a(e2) + a(Lt
1) ≥ a(Put

1 ). But this again yields a(e2) ≥ a(e1),
which is impossible.



296 D. HUYGENS, A. R. MAHJOUB, AND P. PESNEAU

By Lemma 3.7, the multiple edges have the same coefficient in any nontrivial facet
of P (G,L). For the rest of the paper, if u, v ∈ N , we will denote by uv a fixed edge
of [u, v]. If P is a path of the form (u1, u2, . . . , uq), then we will suppose that P uses
the edges u1u2, . . . , uq−1uq. If for a solution S ∈ T (G) and two nodes u, v ∈ N we
have that S intersects [u, v], then we will suppose that S uses edge uv and eventually
further edges parallel to uv.

4. Structural properties. In this section we give some structural properties
of the facet defining inequalities of P (G,L) different from the trivial and the st-cut
inequalities. These will be useful for the proof of our main result in section 5.

Let L = 2, 3 and ax ≥ α be a facet defining inequality of P (G,L) different from
the trivial and the st-cut inequalities. First, we give the following technical lemma,
which will be frequently used in the subsequent proofs.

Lemma 4.1. Let S1 and S2 be two edge sets of τa. Let P1 and P ′
1 be two edge-

disjoint L-st-paths of S1. Suppose that there is an L-st-path P2 in S2 such that
P2∩P ′

1 = ∅. Then, for every L-st-path P not intersecting S2, we have a(P ) ≥ a(P1).
Proof. Let S′

1 (resp., S′
2) be the edge set obtained from S1 (resp., S2) by

replacing P1 by P2 (resp., P2 by P ). As S′
1, S

′
2 ∈ T (G), it follows that a(P2) ≥ a(P1)

and a(P ) ≥ a(P2). Hence, a(P ) ≥ a(P1).
Lemma 4.2. There cannot exist an L-st-path containing only edges with zero

weight.
Proof. We will show the result for L = 3. The proof for L = 2 can be done in a

similar way.
Let us assume the contrary. Let P0 be a shortest st-path such that a(e) = 0 for

all e ∈ P0. In what follows, we consider the case where |P0| = 3. The cases where
|P0| = 2 or 1 can be treated similarly.

Let P0 = (s, u1, u2, t). Then a(e) > 0 for every chord of P0. By Lemma 3.7, we
have a(e) = 0 for all e ∈ [s, u1]∪ [u1, u2]∪ [u2, t]. As ax ≥ α is different from a trivial
inequality, by Lemma 3.5(i), there must exist an edge set S of τa not containing the
edge u2t of P0. Let P1, P2 be two edge-disjoint 3-st-paths of S.

Claim 1. Let T be a solution of τa and T1, T2 be two edge-disjoint 3-st-paths of
T . Then at least one of the paths T1, T2 has only edges with zero value if one of the
following statements holds:

(i) u2t /∈ T ,
(ii) su1 /∈ T ,
(iii) u1u2 /∈ T and |[u2, t]| ≥ 2.
Proof. Suppose that both T1 and T2 use edges with positive weight. We first

claim that both T1 and T2 intersect P0. Otherwise, if, for instance, T1 ∩ P0 = ∅, then
T1 ∪ P0 ∈ T (G), yielding a(P0) ≥ a(T2). As a(P0) = 0, we then have a(T2) = 0, a
contradiction.

Now suppose that u2t /∈ T . As T1 ∩ T2 = ∅, one of the paths, say T1, uses edge
u1u2. Since T1 uses at least one edge of positive weight and a(e) = 0 for all e ∈ [s, u1]∪
[u2, t], T1 must be of the form (s, u2, u1, t). By the remark above, we have indeed that
a(u1t) > 0. Now if we replace in T the edges u1u2 and u1t by u2t, we get a solution of
T (G). Moreover, as a(u2t) = a(u1u2) = 0, it follows that a(u1t) = 0, a contradiction.

If su1 /∈ T , then the statement follows by symmetry.
Suppose now that u1u2 /∈ T and |[u2, t]| ≥ 2. Denote by f an edge of [u2, t]\{u2t}.

Since u1u2 /∈ T and T1∩P0 �= ∅ �= T2∩P0, we may suppose, w.l.o.g., that su1 ∈ T1 and
u2t ∈ T2. Let Tu1t

1 be the subpath of T1 between u1 and t. Observe that a(Tu1t
1 ) > 0.

Consider the solution obtained from T by replacing Tu1t
1 by the edges u1u2 and f .
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As a(f) = a(u1u2) = 0, this yields a(Tu1t
1 ) = 0, a contradiction, which ends the proof

of the claim.
As u2t /∈ S, by Claim 1(i), it follows that at least one of the paths P1 and P2, say

P1, contains only edges with zero coefficient. Moreover, we have that P1 ∩ P0 �= ∅.
Otherwise, there would exist a solution formed by P1 and P0 of weight zero, contra-
dicting the fact that α > 0.

Claim 2. (i) |[u2, t]| ≥ 2.
(ii) |[s, u1]| ≥ 2.
Proof. We will prove (i); the proof of (ii) follows by symmetry. Suppose that

|[u2, t]| = 1. We claim that the edge su1 of P0 belongs to P1. In fact, if this is
not the case, as u2t /∈ S and P1 ∩ P0 �= ∅, P1 must contain the edge u1u2. As
|[u2, t]| = 1 and u2t /∈ S, P1 must use an edge of [u1, t] which is of positive weight,
a contradiction. Thus P1 is of the form (s, u1, v, t) with v �= u2. We thus have
|[s, u1]| = 1. Otherwise, we would have two edge-disjoint 3-st-paths of zero weight,
yielding α = 0, a contradiction. By considering a solution of τa not containing su1

and using Claim 1(ii) together with similar arguments as above, we can show that
there exists a path P ′

1 of the form (s, w, u2, t), with w �= u1, constituted of edges with
zero coefficient. As P1 and P ′

1 are edge-disjoint and hence form a solution of T (G),
this yields α = 0, a contradiction.

Since there are no two edge-disjoint 3-st-paths of weight zero, at least one of the
sets [s, u1], [u1, u2], [u2, t] must be reduced to a single edge. Consequently, by Claim
2, it follows that |[u1, u2]| = 1. Consider now a solution S′ of τa not containing u1u2.
Let P ′

1 and P ′
2 be two edge-disjoint 3-st-paths of S′. As, by Claim 2(ii), |[u2, t]| ≥ 2,

we may, w.l.o.g., suppose by Claim 1(iii) that a(P ′
1) = 0. Also, since α > 0, one should

have P ′
1∩P0 �= ∅. Since u1u2 /∈ S′, we may, w.l.o.g., suppose that su1 ∈ P ′

1. Therefore
P ′

1 = (s, u1, v
′, t) with v′ �= u2. As, by Claim 2, |[s, u1]| ≥ 2, the solution given by

P0∪ P̃1, where P̃1 = (f, u1v
′, v′t) with f ∈ [s, u1]\{su1}, would be in T (G) and of zero

weight. But this is a contradiction, and the proof of the lemma is complete.
Let us denote by U (resp., V ) the subset of nodes u such that a(e) = 0 for all

e ∈ [s, u] (resp., e ∈ [u, t]). Note that, by Lemma 3.7, if for an edge f ∈ [s, u] (resp.,
f ∈ [u, t]) for some u ∈ N\{s, t} we have a(f) = 0, then u ∈ U (resp., u ∈ V ). By
Lemma 4.2, we have that U∩V = ∅. Moreover, a(e) > 0 for all e ∈ [s, t]∪[s, V ]∪[U, t].
If L = 3, we also have that a(e) > 0 for all e ∈ [U, V ]. Let W = N\({s, t} ∪ U ∪ V ).
Note that if W �= ∅, a(e) > 0 for all e ∈ [s,W ] ∪ [W, t].

Lemma 4.3. U �= ∅ �= V .
Proof. We will prove the lemma for U . The proof for V is similar. Since ax ≥ α

is different from the st-cut constraint corresponding to the node s, by Lemma 3.5(ii),
there is an edge set F of τa that contains at least three edges of δ(s). As only two
of these edges can be used by two edge-disjoint L-st-paths of F , there is an edge of
F ∩ δ(s), say e0 ∈ [s, u] with u ∈ N\{s, t}, such that F\{e0} ∈ T (G). This implies
that a(e0) = 0, and therefore u ∈ U .

Lemma 4.4. Let S ∈ τa and P1 be a 3-st-path of S going through a node u of
N\{s, t}. Let P̃1 be the subpath of P1 between s (resp., t) and u. Let P be a path
between s (resp., t) and u such that a(P ) = 0 and |P | ≤ |P̃1|. If a(P̃1) > 0, then
P ∩ P2 �= ∅ for any 3-st-path P2 of S, where P2 ∩ P1 = ∅.

Proof. If P ∩ P2 = ∅, as |P | ≤ |P̃1|, the edge set (S\P̃1) ∪ P belongs to T (G),
and hence a(P̃1) ≤ a(P ). As a(P ) = 0 and a(P̃1) > 0, this is impossible.

The following lemma shows that the edges having both endnodes in U (V ) all
have zero coefficient. Moreover, if L = 2, the same holds for the edges between U
and V .
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Lemma 4.5. (i) If L = 2, then a(e) = 0 for all e ∈ [U, V ].
(ii) a(e) = 0 for all e ∈ E(U) ∪ E(V ).
Proof. (i) Let e ∈ [U, V ], and let S be a solution of τa containing e. As e cannot

belong to a 2-st-path of S, S\{e} is also a solution of T (G), and therefore a(e) = 0.
(ii) If L = 2 and e ∈ E(U) ∪ E(V ), we can show as in (i) that a(e) = 0. Now

let us consider the case where L = 3. Let us assume, on the contrary, that there
exists an edge u1u2 with u1, u2 ∈ U (the case where u1, u2 ∈ V is similar) such that
a(u1u2) > 0. Note that by Lemma 3.7 it follows that a(e) > 0 for all e ∈ [u1, u2].
Let us consider an edge set of τa, say S1, that contains u1u2, and let P1, P

′
1 be two

edge-disjoint 3-st-paths in S1. As a(u1u2) > 0, u1u2 must be in one of the 3-st-paths,
say P1. We can suppose, w.l.o.g., that P1 is (s, u1, u2, t). Moreover, as a(e) = 0 for
all e ∈ [s, u2], by Lemma 4.4, P ′

1 must contain every edge of [s, u2]. However, this is
possible only if |[s, u2]| = 1. Consequently, we will assume in the rest of the proof that
[s, u2] = {su2} and su2 ∈ P ′

1. Let us assume that P ′
1 is of the form (s, u2, z, t) with

z �= s, t, u2. If P ′
1 consists of only two edges, then the proof is similar. Furthermore,

z /∈ U . Otherwise, one can consider the edge set S′
1 = (S1\{su1, u1u2, u2z}) ∪ {sz},

which is a solution of T (G). As a(sz) = 0, we get a(su1) + a(u1u2) + a(u2z) ≤ 0, and
hence a(u1u2) = 0, a contradiction. Therefore z ∈ V ∪W .

Moreover, we have that a(e) > 0 for all e ∈ [U\{u1, u2}, u2]. Indeed, if a(e) = 0,
then the edge set (S1\{su1, u1u2}) ∪ {su, e}, where u is the endnode of e different
from u2, would be a solution of T (G) with a weight smaller than α, a contradiction.

Now, let us consider an edge set of τa, say S2, that does not contain the edge su2.
Let P2, P

′
2 be two edge-disjoint 3-st-paths in S2. We claim that [u2, t]∩S2 = ∅. In fact,

if one of the 3-st-paths of S2, say P2, uses an edge of [u2, t], say u2t, as |[s, u2]| = 1 and
su2 /∈ S2, one should have P2 = (sw,wu2, u2t), where w ∈ N\{s, u2, t}. Moreover,
we have a(sw) + a(wu2) > 0. In fact, this is clear if w /∈ U . If w ∈ U , then, as shown
above, a(wu2) > 0 and the statement follows. Now, by replacing in S2 the subpath
(sw,wu2) by su2, we get a solution of smaller weight, which is impossible.

Thus [u2, t] ∩ S2 = ∅, and hence, as su2 /∈ S2, no 3-st-path in S2 goes through
the node u2. Let P be the path (su2, u2t). Thus, P ∩ S2 = ∅. Moreover, as neither
su2 nor u2z belongs to S2, at most one of the paths P2, P

′
2 intersects P ′

1. W.l.o.g., we
may suppose that P2 ∩ P ′

1 = ∅. From Lemma 4.1, it then follows that a(P ) ≥ a(P1).
But this implies that a(u1u2) = 0, a contradiction.

Lemma 4.6. (i) If L = 2, then W = ∅.
(ii) If L = 3, then W �= ∅.
Proof. (i) Assume the contrary, and let w ∈ W . Then a(e) > 0 for all e ∈

[s, w] ∪ [w, t]. We will show that |[s, w] ∩ F | = |[w, t] ∩ F | for every F ∈ τa. In
fact, suppose, by contradiction, that there exists F ∈ τa such that, for instance,
|[s, w] ∩ F | > |[w, t] ∩ F |. Since at most |[w, t] ∩ F | edge-disjoint 2-st-paths can go
through w, there must exist an edge, say ē, of [s, w]∩F such that F\{ē} ∈ T (G). This
implies that a(ē) = 0, a contradiction. Thus, the incidence vector of any solution of
τa verifies the equation x([s, w]) = x([w, t]). As, by Lemma 3.6, this equation cannot
be a positive multiple of ax ≥ α, we get a contradiction.

(ii) Assume that, on the contrary, W = ∅. Let U ′ = U ∪ {s}. Since ax ≥ α is
different from the st-cut inequality associated with δ(U ′), there exists an edge set of
τa, say F1, that uses at least three edges of δ(U ′). Let P1, P

′
1 be two edge-disjoint 3-st-

paths of F1. Since W = ∅, a(e) > 0 for all e ∈ δ(U ′), and hence every edge of F1∩δ(U ′)
must belong to one of the paths P1 and P ′

1. So, one of these paths, say P1, must use at
least two edges of δ(U ′). As any st-path intersects any st-cut an odd number of times,
we have that P1 contains exactly three edges of δ(U ′). Therefore, P1 is of the form
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(s, v, u, t), where u ∈ U and v ∈ V . Let F2 = (F1\(P ′
1 ∪ {vu})) ∪ {su, vt}. Obviously,

F2 ∈ T (G). As a(su) = a(vt) = 0, it follows that a(vu) = 0, a contradiction.
For the rest of this section, we assume that L = 3.
Lemma 4.7. (i) If there are a node w ∈ W and a node u1 ∈ U such that

a(u1w) = 0, then a(e) = 0 for all e ∈ [U,w].
(ii) If there are a node w ∈ W and a node v1 ∈ V such that a(wv1) = 0, then

a(e) = 0 for all e ∈ [w, V ].
Proof. We show the result for U ; the proof for V is similar. If |U | = 1, then the

statement follows from Lemma 3.7. So, let us suppose that |U | ≥ 2 and assume, on
the contrary, that there is a node u2 ∈ U such that a(u2w) > 0. Let S1 be a solution
of τa such that u2w ∈ S1. As a(u2w) > 0, u2w must belong to a 3-st-path P1 in S1.
Let P ′

1 be a further 3-st-path of S1 with P1 ∩ P ′
1 = ∅.

Claim 1. P1 = (s, u2, w, t).
Proof. As u2w ∈ P1, P1 is either of the form (s, w, u2, t) or (s, u2, w, t). Suppose

that the first case holds. As a(e) > 0 for all e ∈ [s, w] and a(e) = 0 for all e ∈ [s, u2],
it follows from Lemma 4.4 that P ′

1 uses all the edges between s and u2. Therefore
[s, u2] ⊆ P ′

1. Moreover, since, by Lemma 4.5(ii), all the 2-su2-paths going through
u1 have weight zero, again by Lemma 4.4, P ′

1 must also intersect all these paths. As
P ′

1 cannot use more than one edge incident to s, one should have [u1, u2] ⊆ P ′
1. As

a consequence, |[s, u2]| = |[u1, u2]| = 1, and P ′
1 is of the form (s, u2, u1, t). But, by

adding edge su1 and removing the edges sw,wu2, we obtain a solution of lower weight,
which is impossible.

Consequently, P1 = (s, u2, w, t). As a(u2w) > 0 and therefore the weight of the
subpath of P1 between s and w is positive, it follows by Lemma 4.4 that P ′

1 must
intersect every 2-sw-path of weight zero going through u1. Since a(u1w) = 0, by
Lemma 3.7 a(e) = 0 for all e ∈ [u1, w]. Thus, as a(e) = 0 for all e ∈ [s, u1], we obtain
that at least one of the sets [s, u1] and [u1, w] is reduced to a single edge. If there is
a node u ∈ U\{u1, u2} such that a(e) = 0 for some edge e ∈ [u,w], then by Lemma
4.4, P ′

1 must also intersect the 2-sw-paths going through u. But as |P ′
1| ≤ 3, this is

not possible. Therefore a(e) > 0 for all e ∈ [U\{u1}, w].
Claim 2. P ′

1 ∩ [u1, w] = ∅.
Proof. Suppose, on the contrary, that P ′

1 uses, for instance, u1w. If P ′
1 =

(s, w, u1, t), then, as the weight of the subpath of P ′
1 between s and u1 is positive

and a(e) = 0 for all e ∈ [s, u1], by Lemma 4.4 it follows that P1 uses all the edges
between s and u1. But this contradicts Claim 1. Hence P ′

1 is of the form (su1, u1w, h),
where h ∈ [w, t]\{wt}. We consider two cases.

Case 1. |[s, u1]| = 1. Consider an edge set S2 of τa such that su1 /∈ S2. We
may suppose that S2 is minimal. Let P2 and P ′

2 be the two edge-disjoint 3-st-paths
of S2. If S2 uses an edge u1z with z ∈ V ∪ W , then u1z belongs to one of the
3-st-paths of S2, say P2. As su1 /∈ S2, P2 = (s, z, u1, t). Observe that a(e) > 0
for all e ∈ [s, z]. Now by replacing the edges sz, zu1 by su1, we get a solution of
T (G) of weight less than α, a contradiction. As a consequence, we have [u1, V ∪
W ] ∩ S2 = ∅, and therefore [u1, w] ∩ S2 = ∅. Suppose now that S2 ∩ [w, t] �= ∅
and, for instance, that P2 ∩ [w, t] �= ∅. Since a(e) > 0 for all e ∈ [U\{u1}, w], the
subpath of P2, say P sw

2 , between s and w has a positive weight. As {su1, u1w}
is a 2-sw-path of weight zero which does not intersect S2, if we replace P sw

2 by
su1, u1w, we get a solution of lower weight, which is impossible. Thus S2 ∩ [w, t] = ∅,
and, in consequence, P ′

1 ∩ S2 = ∅. Let P = P ′
1. By Lemma 4.1, it follows that

a(P ) = a(P ′
1) ≥ a(P1). As a(h) = a(wt) and a(su1) = a(u1w) = 0, this yields

a(u2w) = 0, a contradiction.
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Case 2. |[s, u1]| ≥ 2. Since one of the sets [s, u1], [u1w] contains exactly one edge,
we have that [u1, w] = {u1w}. Let S̄2 be a solution of τa not containing u1w. Suppose
that S̄2 is minimal, and let P̄2 and P̄ ′

2 be the two edge-disjoint 3-st-paths of S̄2. We
can show, in a similar way as in Case 1, that [w, t] ∩ S̄2 = ∅. As u1w /∈ S̄2, it follows
that |S̄2 ∩ P ′

1| ≤ 1. Hence, there is a 3-st-path of S̄2, say P̄2, that does not intersect
P ′

1. Therefore P̄2 ∪ P ′
1 is a solution of T (G), yielding a(P̄2) ≥ a(P1). On the other

hand, since |[s, u1]| ≥ 2, we may suppose that P̄ ′
2 ∩ P ′

1 = ∅. So, if we replace, in
S̄2, P̄2 by P ′

1, we get a solution of T (G), implying that a(P ′
1) ≥ a(P̄2). Therefore

a(P ′
1) ≥ a(P1), and hence a(u2w) = 0, a contradiction.
By Claim 2, we then have P ′

1 ∩ [u1, w] = ∅. As P ′
1 intersects all the 2-sw-paths

going through u1, it follows that [s, u1] = {su1} and su1 ∈ P ′
1.

If P ′
1 uses an edge of [u1, t], then, by removing the edge u2w and adding edges

u1w and u1u2, we get a solution of T (G). But this implies that a(u2w) = 0, which is
impossible. Along the same lines, we can also show that P ′

1 does not go through any
node of U . Hence P ′

1 must use a node of V ∪W , say v.
Consider now a solution S3 of τa not containing su1. Let P3 and P ′

3 be two edge-
disjoint 3-st-paths of S3. Suppose that there is an edge, say u1z, of [u1, V ∪W ] that
belongs to S3. Since su1 /∈ S3, the 3-st-path containing u1z, say P3, must be of the
form (s, z, u1, t). Note that the subpath between s and u1 has a positive weight. As
a(su1) = 0, by Lemma 4.4, it follows that su1 ∈ P ′

3, and hence su1 ∈ S3, contradicting
our hypothesis. Thus [u1, V ∪ W ] ∩ S3 = ∅, and hence ([u1, v] ∪ [u1, w]) ∩ S3 = ∅.
Thus |P ′

1 ∩ S3| ≤ 1. Consequently, there must exist a 3-st-path of S3, say P3, such
that P ′

1 ∩ P3 = ∅. Also we may show in a similar way that [w, t] ∩ S3 = ∅. Consider
now the path P = (s, u1, w, t). Observe that P ∩S3 = ∅. By Lemma 4.1, with respect
to S1 and S3, it follows that a(P ) ≥ a(P1). But this implies that a(u2w) = 0, a
contradiction, and the proof of the lemma is complete.

Lemma 4.8. For all e, e′ ∈ [U, t] (resp., e, e′ ∈ [s, V ]), a(e) = a(e′).
Proof. We will prove the lemma for U ; the proof for V is similar. If |U | = 1,

the statement follows from Lemma 3.7. So suppose |U | ≥ 2. Let u1, u2 ∈ U such
that a(u1t) = min{a(e), e ∈ [U, t]} and a(u2t) = max{a(e), e ∈ [U, t]}. Assume that
a(u2t) > a(u1t).

Claim. (i) Let S ∈ τa. If S ∩ [u2, t] �= ∅, then [u1, t] ⊆ S.
(ii) |[u1, t]| = 1.
Proof. (i) Suppose that u2t ∈ S, and let T1 and T2 be two edge-disjoint 3-st-paths

of S. As a(u2t) > 0, we may suppose, for instance, that u2t ∈ T2. Assume that there
is an edge e1 of [u1, t] that is not in S. If there is an edge e ∈ [s, u1] that is not in
T1, then we can replace u2t by e and e1 and get a solution of T (G) of lower weight,
a contradiction. Hence [s, u1] ⊆ T1, and therefore [s, u1] = {su1}, su1 ∈ T1, and
[s, u2]∩T1 = ∅. Furthermore, if T1 contains an edge e′ ∈ [u1, u2], then, as su1 ∈ T1, T1

must use an edge f of [u2, t]\{u2t}. Now it is easy to see that (S\{f})∪{e1} ∈ T (G).
Since by Lemma 3.7, a(e1) = a(u1t) and a(f) = a(u2t), it follows that a(u1t) ≥ a(u2t).
But this contradicts our hypothesis. Therefore [u1, u2] ∩ T1 = ∅. Consider now the
solution S′ = (S\{u2t}) ∪ {su2, u1u2, e1}. As a(su2) = a(u1u2) = 0, we have that
a(u1t) = a(e1) ≥ a(u2t), a contradiction.

(ii) Let S̄ ∈ τa such that u2t ∈ S̄. We may suppose that S̄ is minimal. Let T 1, T 2

be the edge-disjoint 3-st-paths of S̄, and suppose, w.l.o.g., that u2t ∈ T 2. From (i), it
follows that [u1, t] ⊆ S̄. Moreover, as u2t ∈ T 2, T 2∩ [u1, t] = ∅, and hence [u1, t] ⊆ T1.
This implies that |[u1, t]| = 1.

Let S1 be a solution of τa containing u2t. By the claim above, S1 also contains
u1t. As a(su1) = a(su2) = 0 and {su1, su2, u1t, u2t} is a solution of T (G), we may
assume that S1 = {su1, su2, u1t, u2t}.
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Consider now a solution S2 ∈ τa that does not contain u1t, which may be supposed
minimal. Since u1t /∈ S2, by the claim it follows that [u2, t] ∩ S2 = ∅; and, as a
consequence, [u1, u2] ∩ S2 = ∅. Suppose that S2 contains an edge su1. Since S2

is minimal, one of the two 3-st-paths of S2, say T , contains su1, and hence T is
of the form (s, u1, z, t), where z ∈ N\{s, t, u1, u2}. Let Tu1t be the subpath of T
between u1 and t. As the sets (S2\Tu1t) ∪ {u1t} and (S1\{u2t}) ∪ ({u1u2} ∪ Tu1t)
are both solutions of T (G), and, as by Lemma 4.5(ii) a(u1u2) = 0, we have that
a(u1t) ≥ a(Tu1t) ≥ a(u2t), a contradiction. Consequently, [s, u1] ∩ S2 = ∅.

Let P1 = (su2, u2t) and P ′
1 = (su1, u1t) be the two 3-st-paths of S1. Let P = P ′

1

and P2 be any 3-st-path of S2. Note that P ∩S2 = P ′
1∩S2 = ∅, and hence P2∩P ′

1 = ∅.
By Lemma 4.1, it follows that a(P ) ≥ a(P1). However, as a(su1) = a(su2) = 0, this
implies again that a(u1t) ≥ a(u2t), which is impossible.

Lemma 4.9. Let S be a minimal solution of τa.
(i) If U = {u} and S ∩ [s, u] = ∅, then δ(u) ∩ S = ∅.
(ii) If V = {v} and S ∩ [v, t] = ∅, then δ(v) ∩ S = ∅.
Proof. We will show (i); the proof of (ii) is similar. We first show that [u, t]∩S =

∅. Assume, on the contrary, that ut ∈ S. Then, as a(ut) > 0, one of the 3-st-paths of
S, say P , must contain ut. As [s, u]∩S = ∅, P must be of the form (s, w, u, t), where
w ∈ N\{s, t, u}. Note that w /∈ U , and hence a(sw) > 0. Thus, one can replace sw
and wu by su in S and get a solution of T (G) of weight less than α, a contradiction.
Thus [u, t] ∩ S = ∅. Now, by the minimality of S, no other edge of δ(u) may be used
by S.

Lemma 4.10. a(e) = a(e′) for all e ∈ [U, t] and e′ ∈ [s, V ].
Proof. Assume the contrary. Thus, by Lemma 4.8, we may assume, w.l.o.g., that

a(e) > a(e′) for all e ∈ [U, t] and e′ ∈ [s, V ].(4.1)

Let u1 ∈ U . Consider a solution S1 of τa that contains u1t, and suppose that S1 is
minimal. Let P1 and P ′

1 be the two edge-disjoint 3-st-paths of S1, and suppose that
u1t ∈ P1.

Claim. |V | = 1.
Proof. Assume that |V | ≥ 2. First observe that P1 cannot go through a node

v ∈ V . Otherwise, P1 would be of the form (s, v, u1, t). Since the subpaths of P1

between s and u1 and between v and t both have positive weight, by Lemma 4.4, P ′
1

must use edges su1 and vt. Now, if we remove the edges of S1 between u1 and v, we
still have a solution of T (G). This implies that a([u1, v]) = 0. But this contradicts the
fact that a(u1v) > 0. In consequence, since S1 is minimal, S1 may contain at most
one edge from [s, V ]. Suppose that S1 contains edge sv1, where v1 ∈ V . Note that
sv1 ∈ P ′

1. As |V | ≥ 2, there is an edge sv2, with v2 ∈ V , that does not belong to S1.
If there is an edge e ∈ [v2, t] such that e /∈ S1, then, by replacing u1t by sv2 and e,
we get a solution of T (G). As a(e) = 0, this yields a(sv2) ≥ a(u1t), which contradicts
(4.1). Thus [v2, t] ⊆ S1 and therefore [v2, t] ⊆ P ′

1. This implies that [v2, t] = {v2t}
and P ′

1 = (s, v1, v2, t). By considering the solution obtained by replacing u1t by sv2

and v1t, we obtain that a(sv2) ≥ a(u1t), which once again contradicts (4.1).
Consequently, S1 ∩ [s, V ] = ∅. Now we remark that, since S1 is minimal and

u1t ∈ S1, S1 cannot use two edges of [V, t]. Thus there is a node z ∈ V such that
([s, z]∪ [z, t])∩S1 = ∅. By replacing u1t by sz and zt in S1, we get a solution of T (G),
yielding a(sz) ≥ a(u1t). This contradicts (4.1), and the claim is proved.

Let V = {v}. Let P = (s, v, t) be an st-path of length 2 going through v. We
claim that P ′

1 ∩ P �= ∅. In fact, if this is not the case, then, as the edge set obtained
from S1 by replacing P1 by P is in T (G), we would have that a(sv) ≥ a(u1t). But
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this contradicts (4.1). Therefore, P ′
1 must contain at least one of the sets [s, v] and

[v, t]. Thus at least one of the sets [s, v] and [v, t] is reduced to a single edge.
Case 1. [v, t] = {vt}. Consider a solution S2 ∈ τa not containing vt, which is

supposed minimal. Then, by Lemma 4.9, S2 ∩ δ(v) = ∅, and hence P ∩ S2 = ∅.
Moreover, as P ′

1 ∩ P �= ∅, P ′
1 does meet v, and therefore |P ′

1 ∩ S2| ≤ 1. Thus there
exists a 3-st-path of S2, say P2, that does not intersect P ′

1. As P ∩S2 = ∅, by Lemma
4.1, we have that a(P ) ≥ a(P1), and hence a(sv) ≥ a(u1t). But this contradicts (4.1).

Case 2. [s, v] = {sv}. By Case 1, we may suppose that |[v, t]| ≥ 2. As P ′
1 contains

one of the sets [s, v] and [v, t], it follows that sv ∈ P ′
1. Note that {su1, u1t, sv, vt} ∈

T (G). As a(su1) = a(vt) = 0 and S1 is minimal, we may suppose, w.l.o.g., that
S1 = {su1, u1t, sv, vt}. Hence P1 = (su1, u1t) and P ′

1 = (sv, vt). Consider now an
edge set S3 of τa not containing sv and suppose that S3 is minimal. Since |P ′

1∩S3| ≤ 1,
there must exist a 3-st-path in S3, say P3, such that P3 ∩P ′

1 = ∅. If we replace, in S1,
P1 by P3, the resulting set is still a solution of T (G), and therefore a(P3) ≥ a(P1).
On the other hand, if there is an edge h ∈ [v, t] such that h /∈ S3, then one can replace
the path P3 by the one formed by sv and h and get a solution of T (G). But this
implies that a(P3) ≤ a(sv) + a(h). As a(P3) ≥ a(P1) and a(h) = 0, we obtain that
a(u1t) ≤ a(sv), contradicting (4.1). Thus [v, t] ⊆ S3. As |[v, t]| ≥ 2 and S3 is minimal,
it follows that P3 ∩ [v, t] �= ∅. Let P sv

3 be the subpath of P3 between s and v. By
replacing, in S3, P

sv
3 by sv, we get a solution of T (G), which yields a(sv) ≥ a(P sv

3 ).
As a(P3) ≥ a(P1) and therefore a(P sv

3 ) ≥ a(u1t), we get a(sv) ≥ a(u1t). But this
again contradicts (4.1), which ends the proof of the lemma.

Lemma 4.7 allows a partition of the set W into four subsets:
W1 = {w ∈ W | a(e) = 0 for all e ∈ [U,w], and a(e′) > 0 for all e′ ∈ [w, V ]},
W2 = {w ∈ W | a(e) = 0 for all e ∈ [U,w] ∪ [w, V ]},
W3 = {w ∈ W | a(e) > 0 for all e ∈ [U,w], and a(e′) = 0 for all e′ ∈ [w, V ]},
Z = W\(W1 ∪W2 ∪W3).
Lemma 4.11. (i) If U = {u}, then a(e) = a(e′) for all e ∈ [u, t] and e′ ∈

[W1 ∪W2, t].
(ii) If V = {v}, then a(e) = a(e′) for all e ∈ [s, v] and e′ ∈ [s,W2 ∪W3].
Proof. We will prove only (i); the proof of (ii) is similar. Assume by contradiction

that a(ut) �= a(wt) for some w ∈ W1 ∪W2. We will first give the following claim.
Claim. No solution of τa uses at the same time an edge of [u, t] and an edge of

[w, t].
Proof. It suffices to show that there is no solution of τa containing at the same

time ut and wt. Let us suppose, on the contrary, that there exists a solution S ∈ τa
with ut, wt ∈ S. Let T1 and T2 be two edge-disjoint 3-st-paths of S. As a(ut) > 0
and a(wt) > 0, we may suppose that ut ∈ T1 and wt ∈ T2.

Suppose that a(wt) < a(ut). The case where a(wt) > a(ut) can be treated along
the same lines. If [s, u]∩T1 = ∅, T1 must go through a node z ∈ N\{s, t, u}, and hence
the subpath T su

1 of T1 between s and u is of positive weight. By Lemma 4.4, it follows
that [s, u] ⊆ T2, and therefore [s, u] = {su} and T2 = (s, u, w, t). If z ∈ V , then, by
replacing wt by zt in S, we get a solution of T (G). But, as a(zt) = 0, this implies
that a(wt) = 0, a contradiction. Thus T1 cannot go through V . As a consequence,
as by Lemma 4.3, V �= ∅, there is a node v ∈ V such that sv and vt belong neither
to T1 nor to T2. So, by replacing T1 by (sv, vt), we get a solution of T (G). However,
since, from Lemma 4.10, we have a(ut) = a(sv), we get a(T su

1 ) = 0, a contradiction.
Consequently, [s, u] ∩ T1 �= ∅ and T1 = (s, u, t). By using similar arguments, we can
also show that T2 is of the form (f, uw,wt), where f is an edge parallel to su, and
hence |[s, u]| ≥ 2. Furthermore, at least one of the sets [u,w] and [w, t] is reduced to
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a single edge. If not, one may replace ut by a 2-ut-path going through w and get a
solution of T (G). But this would imply that a(wt) ≥ a(ut), a contradiction.

Suppose that |[w, t]| = 1. The case where |[u,w]| = 1 is similar. Hence [w, t] =
{wt}. Let S′ ∈ τa such that wt /∈ S′ and suppose that S′ is minimal. If S′ contains
an edge e ∈ [u,w], then, as S′ is minimal, there must exist in S′ a 3-st-path T
containing e. Therefore T is of the form (s, w, u, t). Observe that in this case, the
edge set obtained by deleting ut and adding wt is in T (G), and then a(ut) ≤ a(wt),
a contradiction. Consequently, [u,w] ∩ S′ = ∅. Hence, as |T2 ∩ S′| ≤ 1, there is a
3-st-path, say T ′

1, in S′ such that T ′
1 ∩ T2 = ∅. By replacing T1 by T ′

1 in S, we get a
solution of T (G), and hence a(T ′

1) ≥ a(T1). Note that only one edge of [s, u] can be
used by the second 3-st-path of S′. Thus one can replace T ′

1 by T2 in S′ and obtain
a feasible solution, which yields a(T2) ≥ a(T ′

1), and therefore a(T2) ≥ a(T1). But this
implies that a(wt) ≥ a(ut), which is impossible.

Suppose that a(ut) > a(wt). The case where a(ut) < a(wt) can be treated sim-
ilarly. Let S1 be a minimal solution of τa that contains ut, and let P1 and P ′

1 be
two edge-disjoint 3-st-paths of S1. Suppose, w.l.o.g., that ut ∈ P1. By the claim,
we have [w, t] ∩ S1 = ∅. If S1 contains an edge of [u,w], then there is a 3-st-path
of S1 of the form (s, w, u, t). However, by removing ut and adding wt, we obtain
a solution of T (G), yielding a(wt) ≥ a(ut), a contradiction. Thus [u,w] ∩ S1 = ∅.
Moreover, if there is an edge e of [s, u] such that e /∈ P ′

1, one can replace ut by
(e, uw,wt) and get a solution of T (G). But this implies that a(wt) ≥ a(ut), a
contradiction. Consequently, we have that [s, u] ⊆ P ′

1. Hence [s, u] = {su} and
P1 = (s, z, u, t) with z ∈ N\{s, t, u, w}. Observe that the subpath P su

1 of P1 be-
tween s and u is of positive weight. If there are two edges f ∈ [s, v] and f ′ ∈ [v, t]
such that f, f ′ /∈ P ′

1, where v ∈ V , then we can replace P1 by the edges f and
f ′ and still have a feasible solution. As by Lemma 4.10, a(f) = a(ut), we ob-
tain that a(P su

1 ) = 0, a contradiction. Thus, for every node v ∈ V , the path P ′
1

must use all the edges of at least one of the sets [s, v] and [v, t]. This implies that
V = {v}. Moreover, as su ∈ P ′

1, we have that [s, v] ∩ P ′
1 = ∅, [v, t] = {vt}, and

P ′
1 = (s, u, v, t).

Let S2 be a solution of τa that does not contain su. Recall that [s, u] = {su}.
Suppose that S2 is minimal. Thus S2 consists of two edge-disjoint 3-st-paths, say P2

and P ′
2. As |U | = 1, by Lemma 4.9, we have that δ(u) ∩ S2 = ∅. If S2 contains an

edge e of [w, t], as a(e) > 0, e must belong to one of the 3-st-paths of S2, say P2.
Since ({su}∪ [u,w])∩S2 = ∅, P2 must be of the form (s, z′, w, t), where z′ /∈ {s, t, u}.
We remark that the subpath of P2 between s and w is of positive weight. Hence, by
Lemma 4.4, P ′

2 must intersect every 2-sw-path going through u. But this contradicts
the fact that ({su} ∪ [u,w]) ∩ S2 = ∅. It then follows that [w, t] ∩ S2 = ∅. As
|P ′

1 ∩ S2| ≤ 1, there is a 3-st-path in S2, say P2, which does not intersect P ′
1. Let P

be a 3-st-path going through the nodes s, u, w, t. From Lemma 4.1, it follows that
a(P ) ≥ a(P1). But then we have that a(wt) ≥ a(ut), a contradiction.

5. Proof of Theorem 3.1. In this section, we prove Theorem 3.1; that is,
P (G,L) = Q(G,L) for L = 2, 3. For this, we consider an inequality ax ≥ α that
defines a facet of P (G,L) different from the trivial and the st-cut inequalities. We
will show that ax ≥ α is necessarily an L-path-cut inequality.

Case 1. L = 2. Let U, V,W be as defined in the previous section. By Lemma
4.6, it follows that W = ∅, and thus each 2-st-path uses exactly one edge with a
nonzero coefficient. Thus, any solution of τa contains exactly two edges with a positive
coefficient, which are exactly the edges of the 2-path-cut inequality induced by the
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partition {s}, U, V, {t}. This implies that ax ≥ α is the 2-path-cut inequality induced
by this partition.

Case 2. L = 3. Let U, V,W1,W2,W3, Z be as defined in the previous section. We
consider two cases.

Case 2.1. W1 ∪ W3 ∪ Z �= ∅. Let F1 = [{s} ∪ U,Z] ∪ [s,W1] ∪ [U,W3] and
F2 = [Z, V ∪ {t}] ∪ [W3, t] ∪ [W1, V ] (see Figure 3). We remark that F1 ∩ F2 = ∅ and
that there is no st-path of length 3 in G formed by edges only from F1 and F2. We
have the following.

Lemma 5.1. For every solution S of τa, we have that |S ∩ F1| = |S ∩ F2|.
Proof. Assume the contrary. Then there exists a solution, say S1, such that,

for one of its 3-st-path, say P1, we have |P1 ∩ F1| �= |P1 ∩ F2|. Let P ′
1 be the second

3-st-path in S1. W.l.o.g., we may suppose that P1 ∩ F1 �= ∅.
Claim 1. P1 ∩ F2 = ∅.
Proof. Since P1 ∩ F1 �= ∅ and F1 ∩ F2 = ∅, we have that |P1 ∩ F2| ≤ 2. If

|P1 ∩ F2| = 1, as |P1 ∩ F1| �= |P1 ∩ F2| and P1 ∩ F1 �= ∅, |P1 ∩ F1| = 2. Then, P1

is of length 3 and contained in F1 ∪ F2, which is impossible by the remark above.
If |P1 ∩ F2| = 2, then |P1 ∩ F1| = 1, and again we have that P1 is of length 3
and contained in F1 ∪ F2, a contradiction. Thus, |P1 ∩ F2| = 0 and the claim is
proved.

Claim 2. (i) P1 ∩ [s, U ] = ∅.
(ii) P1 = (s, z, w, t) with z ∈ Z ∪W1 and w ∈ U ∪W1 ∪W2 (z and w may be the

same).
(iii) [s, U ] ⊂ P ′

1.
(iv) |U | = 1 and |[s, U ]| = 1.
Proof. First note that (iv) is a consequence of (iii).
(i) If P1 uses an edge of [s, U ], say su with u ∈ U , as P1 ∩ F1 �= ∅, P1 would

be of the form (s, u, z, t), where z belongs to either Z or W3. But this implies that
P1 ∩ F2 �= ∅, which contradicts Claim 1.

(ii) Suppose that P1 contains an edge of [U,W3], say uw3. Note that a(uw3) > 0.
As, by (i), [s, U ] ∩ P1 = ∅, it follows that P1 = (s, w3, u, t). By removing uw3

and adding su and edges w3v, vt for some v ∈ V , we get a solution of T (G). As
the added edges all have zero weight, this implies that a(uw3) = 0, a contradiction.
Consequently, we have that P1∩[U,W3] = ∅. Then, by (i) and the fact that P1∩F1 �= ∅,
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it follows that P1 uses one of the edges of [s, Z ∪W1]. As, by Claim 1, P1 ∩ F2 = ∅,
we obtain that P1 = (s, z, w, t), where z ∈ Z ∪W1 and w ∈ U ∪W1 ∪W2.

(iii) Suppose that there is an edge of [s, U ], say su0, that does not belong to P ′
1.

We have that w �= u0. Otherwise, P1 would be (s, z, u0, t). As by (ii) z ∈ Z ∪W1 and
hence a(sz) > 0, it follows that the subpath of P1 between s and u0 has a positive
weight. But this implies by Lemma 4.4 that su0 ∈ P ′

1, a contradiction. We claim
that [u0, w] ⊆ P ′

1. In fact, if, for instance, u0w /∈ P ′
1, then consider the solution, say

S′
1, obtained from S1 by replacing sz and zw by su0 and u0w. Clearly, S′

1 ∈ T (G),
which implies that a(su0) + a(u0w) ≥ a(sz) + a(zw). As a(u0w) = a(su0) = 0, we
obtain that a(sz) = 0, a contradiction. Thus [u0, w] ⊆ P ′

1, and hence [u0, w] = {u0w}.
Suppose now that P ′

1 = (f, u0w, g), where f (resp., g) is an edge of [s, u0] (resp., [w, t])
different from that used by P1. By removing sz, zw, and g and adding the edges su0

and u0t, we get a solution of T (G). As by Lemma 4.11 a(u0t) = a(g), it follows that
a(sz) = 0, a contradiction. Consequently, P ′

1 = (s, w, u0, t). Now, by considering the
solution S̃1 = (S1\{sz, zw})∪{su0}, one can get a contradiction along the same lines.
This ends the proof of the claim.

Now, by Claim 2(iv), we may suppose that U = {u} and [s, u] = {su}. Let S2

be a solution of τa that does not contain su. W.l.o.g., we may suppose that S2 is
minimal. Then, by Lemma 4.9, it follows that S2 ∩ δ(u) = ∅. Let P = {s, u, t}.
Clearly, P ∩ S2 = ∅. Moreover, as P ′

1 goes through node u, |P ′
1 ∩ S2| ≤ 1. As a

consequence, there must exist a 3-st-path of S2, say P2, such that P2 ∩ P ′
1 = ∅. Now,

by Lemma 4.1, we obtain that a(P ) ≥ a(P1). By Claim 2(ii), together with Lemma
4.11, it follows that a(sz) ≤ 0. We then have a contradiction, and the lemma is
proved.

From Lemma 5.1, it follows that the facet defined by ax ≥ α is contained in the
face induced by the equation x(F1) − x(F2) = 0. As, by Lemma 3.6, this equation
cannot be a positive multiple of ax = α, we have a contradiction.

Case 2.2. W1 ∪W3 ∪ Z = ∅. Since, by Lemma 4.6, W �= ∅, we have necessarily
that W2 �= ∅. Thus {s}, U,W2, V, {t} is a partition of N . Let T be the set of edges of
the 3-path-cut induced by this partition (these edges are represented by solid lines in
Figure 4). Note that a(e) > 0 for all e ∈ T . Moreover, a(e) = 0 for all e ∈ E\T . This is
clear for the edges of E\(T∪E(W2)) from Lemma 4.5(ii) and the definition of U, V,W2.
If a(z1z2) > 0 for some z1, z2 ∈ W2, then there must exist a solution S̃ of τa and a
3-st-path P̃ of S̃ containing z1z2. W.l.o.g., we may suppose that P̃ = (s, z1, z2, t). Let
S̃′ = (S̃\{z1z2}) ∪ {su, uz2, z1v, vt} for some nodes u ∈ U and v ∈ V . As S̃′ ∈ T (G)
and all the added edges have zero weight, it follows that a(z1z2) = 0, a contradiction.

s

U

t

W2 V

Fig. 4.
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Now we claim that each solution of τa contains exactly two edges of T . First of
all, note that, as the constraint (1.3) associated with T is valid for P (G, 3), every
solution of τa must contain at least two edges of T . Assume that there is a solution
S of τa with more than two edges of T . So, there must exist in S a 3-st-path P
that contains at least two edges of T . We consider the case where P = (s, w2, w

′
2, t)

with w2, w
′
2 ∈ W2. The other possible cases for P can be treated similarly ((s, w2, t),

(s, w2, u, t) with u ∈ U , (s, v, w2, t) with v ∈ V , (s, v, u, t)). Let P ′ be the second
3-st-path of S. By replacing P ′ by the edges su, uw′

2, w2v, vt in S, we get a solution
of T (G). As all these edges have zero weight, a(P ′) = 0, contradicting Lemma 4.2.

Thus, every solution of τa uses exactly two edges of T . This implies that ax ≥ α is
nothing but the 3-path-cut inequality induced by T , which ends the proof of Theorem
3.1.

6. Facets of P (G, L). In this section, we give necessary and sufficient condi-
tions for inequalities (1.1)–(1.3) to be facet defining for P (G,L). This yields a minimal
description of this polytope when L ≤ 3. Throughout this section, G = (N,E) is a
complete graph with |N | ≥ 4, which may contain multiple edges. Hence, by Corollary
3.3, P (G,L) is full dimensional. The first two theorems, given without proof, describe
when the trivial and the st-cut inequalities define facets of P (G,L).

Theorem 6.1. (i) For L ≥ 2, inequality x(e) ≤ 1 defines a facet of P (G,L).
(ii) For L ≥ 2, inequality x(e) ≥ 0 defines a facet of P (G,L) if and only if

|N | ≥ 5, or |N | = 4 and e does not belong to either an st-cut or an L-path-cut, with
exactly three edges.

Theorem 6.2. (i) If L = 2, then the only st-cut inequalities that define facets of
P (G, 2) are those induced by {s} and N \ {t}.

(ii) For L ≥ 3, every st-cut inequality defines a facet of P (G,L).
We give now necessary and sufficient conditions for the L-path-cut inequalities to

be facet defining for P (G,L).
Theorem 6.3. For L ≥ 2, inequality (1.3) defines a facet of P (G,L) if and only

if |V0| = |VL+1| = 1.
Proof. Necessity. We will show that x(T ) ≥ 2 does not define a facet of P (G,L)

if |V0| ≥ 2. The case where |VL+1| ≥ 2 follows by symmetry.
Suppose that |V0| ≥ 2, and consider the partition given by

V 0 = {s},
V 1 = V1 ∪ (V0\{s}),
V i = Vi, i = 2, . . . , L + 1.

This partition induces the L-path-cut inequality x(T ) ≥ 2, where T = T\[V0\{s}, V2].
As G is complete, we have that T is strictly contained in T , and hence x(T ) ≥ 2
cannot be facet defining.

Sufficiency. Now, suppose that |V0| = |VL+1| = 1, that is, V0 = {s} and VL+1 =
{t}. Let us denote inequality (1.3) by ax ≥ α, and let bx ≥ β be a facet defining
inequality of P (G,L) such that

{x ∈ P (G,L) | ax = α} ⊆ {x ∈ P (G,L) | bx = β}.

We will show that a = ρb for some ρ > 0.
Let V0 = {s}, V1, . . . , VL, VL+1 = {t} be the partition inducing ax ≥ α. Let

E = E\T = (
⋃L

i=1 E(Vi)) ∪ (
⋃L

i=0[Vi, Vi+1]). Let f ∈ [s, t] and Tf = T\{f}. As the
graph G is complete, it is easy to see that the sets given by

Fe = E ∪ {f, e} for all e ∈ Tf
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induce solutions of the THPP whose incidence vectors satisfy ax ≥ α with equality.
Thus,

0 = bxFe − bxFe′ = b(e) − b(e′) for all e, e′ ∈ Tf .

Hence,

b(e) = b(e′) for all e, e′ ∈ Tf .(6.1)

Now let g ∈ [V0, VL], g′ ∈ [V1, VL+1], and F ∗ = E ∪ {g, g′}. It is obvious that
F ∗ induces a solution whose incidence vector satisfies ax ≥ α with equality. Thus
bxF∗ − bxFg = b(g′) − b(f) = 0. This together with (6.1) yields

b(e) = γ for all e ∈ T for some γ ∈ R.

Now, we shall show that b(e) = 0 for all e ∈ E. Suppose first that e ∈ [V0, V1].
Consider an edge h ∈ [s, w] with w ∈ V2 and the edge set Fh\{e}, where Fh is as
defined above. It is easy to see that Fh\{e} still induces a solution of the THPP
whose incidence vector satisfies ax ≥ α with equality. Thus,

0 = bxFh − bxFh\{e} = b(e).

Similarly, we obtain that b(e) = 0 for all e ∈
⋃L

i=0[Vi, Vi+1]. Consider now
an edge e ∈ E(Vi), i ∈ {1, . . . , L}. Let v ∈ VL and h′ ∈ [s, v]. Clearly, the set
Fh′\{e} induces a solution of the problem. As axFh′ = axFh′\{e} = α, we have that
bxFh′ = bxFh′\{e} = α, and hence b(e) = 0.

Consequently, we have that

b(e) = 0 for all e ∈ E,
b(e) = γ for all e ∈ T .

Since α > 0, we have that γ > 0, and by setting ρ = 1/γ, we obtain that
a = ρb.

Let E′ be the set of edges that belong neither to an st-cut nor to an L-path-cut,
consisting of exactly three edges. From the previous theorems, we have the following.

Corollary 6.4. For L = 2, if G = (N,E) is complete and |N | ≥ 4, then a
minimal complete linear description of P (G,L) is given by

x(δ(s)) ≥ 2,

x(δ(t)) ≥ 2,

x(T ) ≥ 2 for all 2-path-cut T induced by V0 = {s}, V1, V2, V3 = {t},
x(e) ≤ 1 for all e ∈ E,

x(e) ≥ 0 for all e ∈ E′.

Corollary 6.5. For L = 3, if G = (N,E) is complete and |N | ≥ 4, then a
minimal complete linear description of P (G,L) is given by

x(δ(W )) ≥ 2 for all st-cut δ(W ),

x(T ) ≥ 2 for all 3-path-cut T induced by V0 = {s}, V1, V2, V3, V4 = {t},
x(e) ≤ 1 for all e ∈ E,

x(e) ≥ 0 for all e ∈ E′.
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7. Dominant of P (G, L). In this section, we consider the dominant of the
polytope P (G,L). We give a complete description of that polyhedron for any graph
G and integer L ≥ 2 such that P (G,L) = Q(G,L).

Let Dom(P (G,L)) be the dominant of P (G,L), that is,

Dom(P (G,L)) = {y ∈ R
E | ∃x ∈ P (G,L), x ≤ y}.

Let D(G,L) be the polyhedron given by

y(δ(W )) ≥ 2 for all st-cut δ(W ),

y(δ(W )\{e}) ≥ 1 for all st-cut δ(W ), e ∈ δ(W ),(7.1)

y(T ) ≥ 2 for all L-path-cut T,

y(T\{e}) ≥ 1 for all L-path-cut T, e ∈ T,(7.2)

y(e) ≥ 0 for all e ∈ E.(7.3)

Theorem 7.1. For every L ≥ 2, if P (G,L) = Q(G,L), then Dom(P (G,L)) =
D(G,L).

Proof. We first prove that Dom(P (G,L)) ⊆ D(G,L). Let y ∈ Dom(P (G,L)).
Then there exists x̄ ∈ P (G,L) such that x̄ ≤ y. Hence, y satisfies (1.1), (1.3), and
(7.3). We show that y also satisfies constraints (7.1) and (7.2).

Consider a constraint y(δ(W )\{e}) ≥ 1 of type (7.1). As x̄(δ(W )) ≥ 2 and
x̄(e) ≤ 1, we have that

y(δ(W )\{e}) ≥ x̄(δ(W )\{e})
= x̄(δ(W )) − x̄(e)

≥ 2 − x̄(e)

≥ 1.

Now, in a similar way, we obtain that y(T\{e}) ≥ 1 for all L-path-cut T and
e ∈ T . Therefore Dom(P (G,L)) ⊆ D(G,L).

Next we prove that D(G,L) ⊆ Dom(P (G,L)). To this end, first let us note
that the dominant of D(G,L), Dom(D(G,L)), is D(G,L) itself. Thus, to prove
that D(G,L) ⊆ Dom(P (G,L)), it is sufficient to show that any extreme point ȳ of
D(G,L) belongs to P (G,L). Indeed, suppose that this is the case. Then any convex
combination of extreme points of D(G,L) is also in P (G,L). On the other hand,
since Dom(D(G,L)) = D(G,L), any solution y ∈ D(G,L) can be seen as ỹ + z,
where ỹ belongs to the convex hull of the extreme points of D(G,L) and z ≥ 0. As
ỹ ∈ P (G,L), we have therefore that y ∈ Dom(P (G,L)).

So let ȳ be an extreme point of D(G,L). As P (G,L) = Q(G,L) and all in-
equalities in Q(G,L) are in D(G,L) except x(e) ≤ 1, e ∈ E, in order to show that
ȳ ∈ P (G,L), it suffices to show that ȳ(e) ≤ 1 for all e ∈ E.

Suppose that ȳ(e0) > 1 for some e0 ∈ E. Since ȳ is an extreme point of D(G,L),
there exists at least one constraint among (1.1), (7.1), (1.3) (7.2) involving the variable
x(e0) and that is tight for ȳ.

If ȳ(δ(W )\{f}) = 1 with e0 ∈ δ(W )\{f}, then, clearly, ȳ(e0) ≤ ȳ(δ(W )\{f}) = 1,
a contradiction.

If ȳ(δ(W )) = 2 with e0 ∈ δ(W ), then ȳ(e0) + ȳ(δ(W )\{e0}) = 2, and hence
ȳ(e0) = 2 − ȳ(δ(W )\{e0}). As ȳ satisfies (7.1), it follows that ȳ(e0) ≤ 1, which is
impossible.
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We obtain a similar contradiction if one of the constraints (1.3), (7.2) is tight for
ȳ .

It would be interesting to investigate the dominant of the THPP polytope when
P (G,L) �= Q(G,L).

An immediate consequence of Theorems 3.1 and 7.1 is the following.
Corollary 7.2. If L = 2, 3, then Dom(P (G,L)) = D(G,L).

8. Concluding remarks. In this paper, we have considered the problem of
finding a minimum cost edge set containing at least two edge-disjoint paths between
two terminals s and t of length no more than L, where L ≥ 2 is a given integer. We
have given a formulation for this problem and extended this formulation to the case
where more than two paths are required between s and t. We have also investigated
its polyhedral structure when L = 2, 3. In particular, we have shown in that case that
the associated polytope P (G,L) is described by the trivial, st-cut, and L-path-cut
inequalities. Moreover, we have given necessary and sufficient conditions for these in-
equalities to be facet defining for any L ≥ 2. This yielded a minimal linear description
for P (G,L) when L = 2, 3. We have finally considered the dominant of P (G,L), for
which we have given a complete description for any L ≥ 2 when P (G,L) is given by
those inequalities.

Since the separation problems for inequalities (1.1) and (1.3) can be solved in
polynomial time when L ≤ 3, from Theorem 3.1 it follows that, for L ≤ 3, the THPP
can be solved in polynomial time using a cutting plane algorithm. To the best of our
knowledge, this is the first (nonenumerative) polynomial algorithm devised for this
problem.

Let Pk(G,L) be the polytope associated with the problem where the number of
edge-disjoint paths k is arbitrary. A natural question that may be posed is whether
the linear relaxation of this problem is integral. We have made some investigations
in this direction. These motivate us to give the following conjecture.

Conjecture 8.1. Pk(G,L) = Qk(G,L) if L = 2, 3, where Qk(G,L) is as defined
in section 2.

As already mentioned, if L ≥ 4, the formulation given in section 2 is no longer
valid for the THPP. Unfortunately, so far we do not know a formulation for the
problem in that case. However, for L ≤ 3, it is not hard to see that the formulation
given in section 2 for the THPP (and also for its generalization when the number k of
required edge-disjoint L-st-paths is more than two) can be easily extended to the case
where more than one pair of terminals is considered. Here the formulation is given
by the st-cut and L-path-cut inequalities for every pair {s, t} of terminals, together
with the trivial inequalities. However, these inequalities do not suffice to completely
describe the associated polytope for this general case even for L ≤ 3. In fact, consider
the graph shown in Figure 5 with two pairs of terminals {s, t} and {s′, t′}. Suppose
that L = 3. Here, a feasible solution must contain at least two edge-disjoint 3-st-paths
and at least two edge-disjoint 3-s′t′-paths. It is not hard to see that the fractional
point x̄ = (1, 1, 1, 1, 0, 0, 0, 1/2, 1/2, 1/2) satisfies all trivial, st-cut, and L-path-cut
inequalities (with respect to the two pairs of terminals). Moreover, x̄ is an extreme
point of the polyhedron given by these inequalities. Actually, one can easily see that
the inequality

x(e5) + x(e6) + x(e7) + x(e8) + x(e9) + x(e10) ≥ 2

is valid for the problem but violated by x̄. Furthermore, this inequality is facet
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defining for the associated polytope.
Finally, let us note that the results given in this paper can be exploited to devise

a branch-and-cut algorithm for that general problem when L = 2, 3. For this, we
should identify further families of facet defining inequalities. These should take into
account the interaction between the different pairs of terminals. Our results can also
be used to obtain upper bounds for that problem. If L ≤ 3, one can solve the THPP in
the underlying graph G for every pair of terminals using the cutting plane algorithm
developed in this paper. Then, by considering the union of the different solutions
obtained this way, one get a feasible solution for the problem. This approach can be
used to provide upper bounds even when L ≥ 4. On the other hand, it would be
interesting to investigate the extension of the results, related to the formulation of
the THPP when L ≤ 3 as well as the facial structure of its associated polytope, to the
more general case when k and L are both arbitrary. This is our aim for future work.
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Abstract. A longstanding conjecture by Niho on the maximally nonlinearity of certain power
functions was proved recently by Hollmann and Xiang using a result of Dobbertin on the almost
perfect nonlinearity of the Niho power functions. A key ingredient of the proof, a bound for certain
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1. Introduction. Let n = 2m + 1 be an odd integer. A function f : F2n → F2n

is called maximally nonlinear if∑
x∈F2n

(−1)TrF2n/F2
(af(x)+bx) = 0, ±2m+1

for all a, b ∈ F2n with a �= 0. If d is an integer with gcd(d, 2n−1) = 1, then f(x) = xd

is maximally nonlinear if and only if∑
x∈F2n

(−1)TrF2n/F2
(xd+bx) = 0, ±2m+1 for all b ∈ F2n .(1.1)

Let α be a primitive element of F2n . Equation (1.1) is equivalent to the claim that
the sequence TrF2n/F2

(αi) and its decimation by d, i.e., TrF2n/F2
(αdi), have exactly

three cross-correlation values −1, −1± 2m+1. For more details about sequences with
preferred cross-correlation values and their applications in communication, see [2], [7],
[8], [11], [12], [13].

The well-known Welch and Niho conjectures made in 1972 claim that xd is max-
imally nonlinear on F2n in the following two cases:

Welch’s conjecture (see [12]): n = 2m + 1, d = 2m + 3.
Niho’s conjecture (see [12]): n odd, d = 22r + 2r − 1, where 4r + 1 ≡ 0 (mod n).
Both conjectures have been proved recently: Welch’s conjecture was proved by

Canteaut, Charpin, and Dobbertin [3] and by Hollmann and Xiang [9]; Niho’s con-
jecture was proved by Hollmann and Xiang [9].

We briefly describe the idea in the proofs of [3] and [9]. A function f : F2n → F2n

is called almost perfect nonlinear (APN) if for each 0 �= a ∈ F2n and b ∈ F2n , the
equation

f(x + a) + f(x) = b

∗Received by the editors August 7, 2003; accepted for publication (in revised form) January
28, 2004; published electronically November 9, 2004. This research was supported by NSA grant
MDA 904-02-1-0080.

http://www.siam.org/journals/sidma/18-2/43281.html
†Department of Mathematics, University of South Florida, Tampa, FL 33620 (xhou@mail.cas.

usf.edu).

313



314 XIANG-DONG HOU

has exactly two solutions x ∈ F2n . Chabaud and Vaudenay [4] showed that maximally
nonlinear functions are necessarily APN. On the other hand, Canteaut, Charpin, and
Dobbertin [3] proved that an APN power function xd on F2n is maximally nonlinear
if and only if ∑

x∈F2n

(−1)TrF2n/F2
(xd+bx) ≡ 0 (mod 2m+1)(1.2)

for all b ∈ F2n . A major step in the proofs of the Welch and Niho conjectures is the
following result due to Dobbertin.

Theorem 1.1 (see [5], [6]). The Welch power functions and the Niho power
functions are APN.

Therefore, to prove the Welch and Niho conjectures, it suffices to prove (1.2) for
the Welch and Niho exponents d.

For each a ∈ Z with a �≡ 0 (mod 2n − 1), write

a ≡
n−1∑
i=0

ai2
i (mod 2n − 1), ai ∈ {0, 1},

and define

w(a) =

n−1∑
i=0

ai.

A theorem of McEliece [10] on the weights of cyclic codes shows that (1.2) holds for
all b ∈ F2n if and only if

w(da) − w(a) ≤ m(1.3)

for all 0 < a < 2n − 1. (For readers familiar with Ax’s work [1], the equivalence
between (1.2) and (1.3) can be seen more directly without involving cyclic codes.) So
the final step in the proofs of the Welch and Niho conjectures is the establishment of
the bound (1.3).

In [9], the bound (1.3) in the Niho case was obtained through a computer analysis
of a weighted digraph on 1296 vertices. The purpose of this note is to provide a
noncomputer proof of the bound (1.3) in the Niho case.

2. A noncomputer proof of w(da) − w(a) ≤ m in the Niho case. Let
n = 2m + 1 > 0 be an odd integer and d = 22r + 2r − 1, where 4r + 1 ≡ 0 (mod n).
The goal is to prove that for each integer 0 < a < 2n − 1,

w(da) − w(a) ≤ m.(2.1)

We shall follow the idea of [9]. A sequence {ui}i∈Z is called periodic with period
n if ui = uj whenever i ≡ j (mod n). All sequences in this section are periodic with
period n. Write

a =
n−1∑
i=0

ai2
i, ai ∈ {0, 1},

and extend a0, . . . , an−1 to a periodic sequence with period n. We have

da =
n−1∑
i=0

(−ai + ai−r + ai−2r)2
i ≡

n−1∑
i=0

bi2
i (mod 2n − 1),
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where

bi = 1 − ai + ai−r + ai−2r ∈ {0, 1, 2, 3}.

Write

n−1∑
i=0

bi2
i ≡

n−1∑
i=0

si2
i (mod 2n − 1)

with si ∈ {0, 1}. By Theorem 13 of [9], there exists a sequence {ci} such that

si = bi − 2ci + ci−1(2.2)

and ci ∈ {0, 1, 2}. ci is the carryover from the ith binary digit of
∑n−1

i=0 bi2
i to its

next binary digit. Note that

w(da) − w(a)

=

n−1∑
i=0

si −
n−1∑
i=0

ai

=

n−1∑
i=0

(1 − ai + ai−r + ai−2r − 2ci + ci−1) −
n−1∑
i=0

ai

= n−
n−1∑
i=0

ci.

Thus (2.1) is equivalent to

n−1∑
i=0

ci ≥ m + 1.(2.3)

Since gcd(r, n) = 1, the sequence c0, cr, c2r, . . . , c(n−1)r is a rearrangement of
c0, c1, . . . , cn−1. Therefore, it suffices to show that for each i ∈ Z, there exists an
integer k ≥ 0 such that

ci + ci+r + · · · + ci+kr ≥ k + 1

2
.

(In fact, we will see that k ≤ 3.) In the proof, we will frequently use the table and
facts listed below.

Fact 1. If ci ≥ 1 and bi−4r, bi−8r, . . . , bi−4kr are all ≥ 1, then ci−4kr ≥ 1.
Fact 2. If ci ≥ 2 and bi−4r, bi−8r, . . . , bi−4(k−1)r are all ≥ 2, then ci−4kr ≥ 1.
To see Fact 1, observe that bi−4r ≥ 1 and ci−4r−1 = ci ≥ 1 imply ci−4r ≥ 1.

Proceed inductively to arrive at ci−4kr ≥ 1. Fact 2 follows from the same observation.
Put

A =

[
a0 ar · · · a(n−1)r

b0 br · · · b(n−1)r

]
.

The proof in this section is based on the analysis of the matrix A.
Lemma 2.1. There does not exist a string

aiai+r · · · ai+kr = 1 1 0 ∗ · · · ∗ 0 0 1(2.4)
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Table 1

Values of ai−2r, ai−r, ai, bi and ci.

ai−2r ai−r ai bi ci
0 0 0 1 ≤ 1
1 0 0 2 ≥ 1
0 1 0 2 ≥ 1
0 0 1 0 ≤ 1
0 1 1 1 ≤ 1
1 0 1 1 ≤ 1
1 1 0 3 ≥ 1
1 1 1 2 ≥ 1

such that bi ≥ 1, ci = ci+r = 0, ci+2r = 1, and k ≡ 0 (mod 4).
Proof. Suppose to the contrary that such a string exists. Let the string in (2.4)

be of the shortest length. For convenience, assume i = 0. For Table 1, we have br ≥ 1
and b2r = 3. Thus

A =

[
1 1 0 a3r a4r a5r a6r · · ·

≥ 1 ≥ 1 3 b3r b4r b5r b6r · · ·

]
.

Since c0 = cr = 0 and b0 ≥ 1, br ≥ 1, by Fact 1 we have c4r = c5r = 0; hence b4r ≤ 1,
b5r ≤ 1. We claim that b6r ≤ 1. Otherwise, c6r ≥ 1, i.e., c2r−1 ≥ 1. Since b2r = 3, by
(2.2) we must have c2r ≥ 2, which is a contradiction. Thus we have

A =

[
1 1 0 a3r a4r a5r a6r · · ·

≥ 1 ≥ 1 3 ≤ 1 ≤ 1 ≤ 1 · · ·

]
.

Since b4r, b5r, b6r are all ≤ 1, a quick inspection of Table 1 reveals that a3r = 0 and
(a4r, a5r, a6r) = (0, 1, 1) or (0, 0, 1) or (0, 0, 0).

Case (i) (a4r, a5r, a6r) = (0, 1, 1). By Fact 1,

A =

[
1 1 0 0 0 1 1 a7r a8r · · ·

≥ 1 ≥ 1 3 2 1 0 1 ≤ 1

]
.

Since b8r ≤ 1, it is clear that (a7r, a8r) = (0, 1). Thus by Fact 1,

A =

[
1 1 0 0 0 1 1 0 1 a9r

≥ 1 ≥ 1 3 2 1 0 1 3 1
a10r · · ·
≤ 1

]
.

The same argument shows that a9ra10ra11ra12r · · · = 0 1 0 1 · · · , which contradicts
(2.4).

Case (ii) (a4r, a5r, a6r) = (0, 0, 1). By Fact 1,

A =

[
1 1 0 0 0 0 1 a7r a8r a9r

≥ 1 ≥ 1 3 2 1 1 0 ≤ 1 ≤ 1
a10r · · ·

]
.

Clearly, (a7r, a8r, a9r) = (0, 1, 1). By Table 1, b8r = 1 and c10r ≥ 1. We claim that
a10r = 1. In fact, since c0 = cr = 0, by Fact 1 we have c8r = c9r = 0. Since b2r = 3
and c2r = 1, by (2.2) we must have c6r = c2r−1 = 0. It follows from Fact 2 that
c10r ≤ 1. Thus c10r = 1. If, to the contrary, a10r = 0, then a8ra9r · · · akr is a shorter
string having the same properties as (2.4). Since string (2.4) is the shortest of its
kind, we have a contradiction. Thus we have proved that a10r = 1. By Fact 1,

A =

[
1 1 0 0 0 0 1 0 1 1

≥ 1 ≥ 1 3 2 1 1 0 2 1 1
1 a11r a12r a13r a14r · · ·
2 ≤ 1 ≤ 1

]
.
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The same argument shows that

a11r · · · a14r a15r · · · a18r · · · = 0 1 1 1 0 1 1 1 · · · ,

which contradicts (2.4).
Case (iii) (a4r, a5r, a6r) = (0, 0, 0). Let l > 1 be the smallest integer such that

(a4lr, a(4l+1)r, a(4l+2)r) �= (0, 0, 0). By Fact 1,

A =

[
1 1 0 0

≥ 1 ≥ 1 3 2
B

a4lr a(4l+1)r a(4l+2)r · · ·
≤ 1 ≤ 1 ≤ 1

]
,

where B is made of 2 × 4 blocks of the form[
0 0 0 ∗

≥ 1 ≥ 1 ≥ 1 ∗

]
.

Since b4lr, b(4l+1)r and b(4l+2)r are all ≤ 1, we must have (a4lr, a(4l+1)r, a(4l+2)r) =
(0, 1, 1) or (0, 0, 1). If (a4lr, a(4l+1)r, a(4l+2)r) = (0, 1, 1), the argument in Case (i) ap-
plies. If (a4lr, a(4l+1)r, a(4l+2)r) = (0, 0, 1), the argument in Case (ii) applies. There-
fore the proof of the lemma is complete.

Corollary 2.2. If there exists i ∈ Z such that aiai+rai+2r = 1 1 0, bi ≥ 1,
ci = ci+r = 0, and ci+2r = 1, then the sequence a0ara2r · · · does not contain a string
0 0.

Proof. Otherwise, there exists l > 0 such that ai+lrai+(l+1)rai+(l+2)r = 0 0 1. Let
t > 0 be an integer such that l + 2 + tn ≡ 0 (mod 4), and put k = l + 2 + tn. Then
aiai+r · · · ai+kr = 1 1 0 ∗ · · · ∗ 0 0 1, which is impossible by Lemma 2.1.

Now we are ready to prove the main result.
Theorem 2.3. For each i ∈ Z, there exists an integer 0 ≤ k ≤ 3 such that

ci + ci+r + · · · + ci+kr ≥ k + 1

2
.(2.5)

Proof. For convenience, let i = 0. Assume to the contrary that such a k does not
exist. We must have c0 = 0 since otherwise (2.5) is satisfied with k = 0. We have
from Table 1 that (a−2r, a−r, a0) = (0, 0, 0) or (0, 0, 1) or (1, 0, 1) or (0, 1, 1). The
possibility of (0, 1, 1) is immediately dismissed since otherwise br ≥ 2 and cr ≥ 1.

Case 1. (a−2r, a−r, a0) = (0, 0, 0). We can write

A =

[
0 · · · 0 1 alr a(l+1)r a(l+2)r · · · 0 0
1 · · · 1 0

]
for some l ≥ 2. We claim that at most one of blr, b(l+1)r, b(l+2)r is ≥ 2. (Otherwise,
by Fact 1, either one of c0, cr is ≥ 1 or two of c0, cr, c2r, c3r are ≥ 1.) An inspection
of Table 1 shows that (alr, a(l+1)r, a(l+2)r) = (1, 0, 1) or (0, 1, 1).

Case 1.1. (alr, a(l+1)r, a(l+2)r) = (1, 0, 1), i.e.,

A =

[
0 · · · 0 1 1 0 1 a(l+3)r · · · 0 0
1 · · · 1 0 1 3 1

]
.

We must have clr = c(l+2)r = 0. (Otherwise, two of clr, c(l+1)r, c(l+2)r are ≥ 1. By
Fact 1, either one of c0, cr is ≥ 1 or two of c0, cr, c2r, c3r are ≥ 1.) By the argument in
Case (i) of the proof of Lemma 2.1, a(l+3)ra(l+4)r · · · = 0 1 0 1 · · · , which is impossible.
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Case 1.2. (alr, a(l+1)r, a(l+2)r) = (0, 1, 1), i.e.,

A =

[
0 · · · 0 1 0 1 1 a(l+3)r · · · 0 0
1 · · · 1 0 2 1 1

]
.

We must have c(l+1)r = c(l+2)r = 0. (Otherwise, two of clr, c(l+1)r, c(l+2)r are ≥ 1,
which is impossible.) We must also have c(l+3)r ≤ 1. (Otherwise, by Fact 2, c(l−1)r ≥
1. It is impossible to have both c(l−1)r and clr ≥ 1.) By Corollary 2.2, a(l+3)r �= 0.
By Fact 1, we have

A =

[
0 · · · 0 1 0 1 1 1
1 · · · 1 0 2 1 1 2

a(l+4)r a(l+5)r a(l+6)r a(l+7)r · · · 0 0
≤ 1 ≤ 1

]
.

Since b(l+5)r ≤ 1 and b(l+6)r ≤ 1, we see that (a(l+4)r, a(l+5)r, a(l+6)r) = (0, 1, 1). By
Fact 2, c(l+7)r ≤ 1 and by Corollary 2.2, a(l+7)r = 1. Thus a(l+4)r · · · a(l+7)r = 0 1 1 1.
In the same way, we have

a(l+4)ra(l+5)r · · · = 0 1 1 1 0 1 1 1 · · · ,

which is impossible.
Case 2. (a−2r, a−r, a0) = (0, 0, 1) or (1, 0, 1). We have

A =

[
1 ar a2r a3r · · · 0

≤ 1

]
.

Since br ≤ 1, we have ar = 1. Since at most one of b2r, b3r is ≥ 2, we see that
(a2r, a3r) = (0, 1). Thus

A =

[
1 1 0 1 a4r · · · 0

1 3 1

]
.(2.6)

We claim that a4ra5r · · · a(n−1)r contains a string 0 0. (Otherwise, it is clear from
(2.6) that bi ≥ 1 for all i. Since c2r ≥ 1, Fact 1 implies that ci ≥ 1 for all i, which is
impossible.) Thus we can write

A =

[
1 1 0 1 ∗ · · · ∗ 1 0 0

1 3 1 ≥ 1 · · · ≥ 1 ≥ 1 ≥ 2 ≥ 2
atr · · ·

]
,

where ∗ · · · ∗ does not contain a string 0 0. Since both c(t−2)r and c(t−1)r are ≥ 1, by
Fact 1 at least one of cr and c3r is ≥ 1. Meanwhile, since b2r = 3, we have c2r ≥ 1.
We have a contradiction since (2.5) is satisfied with k = 3.
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Abstract. Given a hypergraph and a set of colors, we want to find a vertex coloring to minimize
the size of any monochromatic set in an edge. We give a deterministic polynomial time approximation
algorithm with performance close to the best bound guaranteed by an existential argument. This can
be applied to support divide and conquer approaches to various problems. We give two examples.
For deterministic DNF approximate counting, this helps us explore the importance of a previously
ignored parameter, the maximum number of appearances of any variable, and we construct algorithms
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1. Introduction. A hypergraph H(V,E) consists of a set V of vertices and a
set E of edges, where each edge is a subset of vertices. An undirected graph is just
a hypergraph where each edge contains exactly two vertices. There are four natural
parameters associated with a hypergraph:

• n = |V |, the number of vertices.
• m = |E|, the number of edges.
• t = maxe∈E |e|, the size of the largest edge. We will write E ⊆ V ≤t.
• d = maxv∈V deg(v), where deg(v) = |{e ∈ E : v ∈ e}|. We call d the degree

of H.
Given k colors, we want to color vertices so that no color appears more than c

times in any edge. Call such a coloring a (k, c)-coloring. The objective here is to
minimize c. Clearly, for a (k, c)-coloring, c ≥ µ ≡ t

k , and we want to have c as small
and close to µ as possible. This problem was studied before by Srinivasan [13], who
gave the following (nonconstructive) existential bound for c:

c =

{
O(µ) if µ = Ω(log d),

O
(

log d
log((log d)/µ)

)
otherwise.

In this paper, we give a simple deterministic polynomial time algorithm for finding a
coloring with

c =

{
O(µ) if µ = Ω(log(td)),

O
(

log(dt)
log((log(dt))/µ)

)
otherwise.

(1)

When t = dO(1) or µ = Ω(log(td)), our bound for c is within a constant factor
of the bound given by Srinivasan. For applications we consider here, our bound

∗Received by the editors February 13, 2000; accepted for publication (in revised form) February
9, 2004; published electronically November 9, 2004. A preliminary version of this paper appeared in
Proceedings of the 2nd International Workshop on Randomization and Approximation Techniques
in Computer Science, 1998, pp. 35–46.
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suffices. After the appearance of the conference version of our paper, Leighton, et
al. [7] succeeded in constructivizing Srinivasan’s bound for c but using a much more
involved method.

This hypergraph coloring problem is NP-complete, as the standard NP-complete
graph coloring problem can be reduced to it. Our algorithm can be seen as an ap-
proximation algorithm to this problem, which guarantees an approximation ratio O(1)
when µ = Ω(log(td)) and an approximation ratio O(log(td)) in general. We do not
know of any nonapproximability result for this problem. Ahuja and Srivastav [1] stud-
ied a similar hypergraph coloring problem, which differs from ours in that c is given
and the objective is to minimize k, the number of colors. For the case of c = Ω(log d),
they gave an approximation algorithm with an approximation ratio (1 + δ) for any
constant δ ∈ (0, 1). For c = O(1), they showed that no polynomial time algorithm

can achieve an approximation ratio m
1
2−δ, for any constant δ > 0, unless NP ⊆ ZPP.

Notice that we can use a k-coloring to partition the original hypergraph into k
subhypergraphs, one for each color, in a natural way. Then with a (k, c)-coloring, we
can guarantee that any edge in each subhypergraph has at most c vertices. This turns
out to be useful for supporting some divide and conquer approaches. We will give two
examples.

Our first application is to the deterministic DNF approximate counting problem.
Given a DNF formula F of n variables and m terms, we want to estimate its volume,
defined as

vol(F ) = Pr
x∈{0,1}n

[F (x) = 1],

within an additive error ε. Luby, Velicković, and Wigderson [9], following the work

of Nisan [10], and Nisan and Wigderson [11], gave a deterministic 2O(log4 nm
ε ) time

algorithm. Luby and Velicković [8] gave a deterministic 2(log m log n
ε )( 1

ε )(2
O(
√

log log m
ε

)
)

time algorithm, which is good when a large error ε is allowed. Note that a DNF
formula F can be naturally modelled by a hypergraph with vertices corresponding
to variables and edges corresponding to terms. Now the degree d of the hypergraph
indicates the maximum number of times a variable appears in F . This parameter has
not received attention before for this problem, and it is our focus here. We construct
two deterministic algorithms, one with running time

2O((log mn
ε )(log3 d log m

ε ))

and the other with running time

2
(log m log n

ε )(log 1
ε )

(
2
O(
√

log(d log m
ε

))
)
.

Note that d is at most m, so our first algorithm is never worse than that of Luby,
Velicković, and Wigderson [9] and is particularly good when d is small and ε is large.

Our second algorithm is better than that of Luby and Velicković [8] when d ≤ 2O(log2 1
ε )

and is better than our first algorithm when d ≤ 2O((log log m
ε )2).

Our second application is to constructivize some dimension bound of partially
ordered sets (posets). Let (P,<) be a poset. Its dimension, denoted as dim(P ), is
defined to be the minimum number of linear extensions L1, . . . , Ld such that P =
L1 ∩ · · · ∩ Ld (i.e., x < y if and only if x <Li y for all i). For x ∈ P , let U(x) = {y ∈
P : y ≥ x} be the set of upper bounds for x, and let C(x) = {y ∈ P : y ≥ x or y ≤ x}
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be the set of elements comparable to x. Füredi and Kahn [6] gave the following
existential bound: for some constants c1 and c2,

dim(P ) ≤ r ≡ min{c1t log2 t, c2u log |P |},

where t ≡ maxx∈P |C(x)| and u ≡ maxx∈P |U(x)|. One key ingredient in their proof is
the hypergraph coloring problem, where a poset (P,<) is modelled by a hypergraph
H(V,E) with V = P and E = {U(x) : x ∈ P}. Using our hypergraph coloring
algorithm, together with other ideas, we are able to constructivize their existential
bound. That is, we give a deterministic polynomial time algorithm for finding O(r)
linear extensions with intersection equal to the given poset.

We believe that there should be more applications of our hypergraph coloring
algorithm.

2. Hypergraph coloring. Consider a hypergraph H(V,E) with n = |V |, m =
|E|, E ⊆ V ≤t, and degree d. We want to color its vertices with k colors such that no
edge contains c vertices of the same color. When k ≥ (t − 1)d + 1, the task is easy
according to the following lemma, so we assume k < (t− 1)d + 1 from now on.

Lemma 2.1 (see [6]). Given a hypergraph H(V,E) with E ⊆ V ≤t and degree d,
there exists a coloring with (t−1)d+1 colors such that no edge has two vertices of the
same color. Furthermore, such a coloring can be found by a simple greedy algorithm
in deterministic polynomial time.

Given a coloring on H, call an edge bad if it contains c vertices of the same color,
and call a set of edges bad if all edges in it are bad. Our goal is to find a good
k-coloring γ such that no edge is bad. If we choose γ randomly, then for any edge e,

Pr
γ

[e is bad] ≤
(
t

c

)(
1

k

)c

k ≤
(

3t

ck

)c

k.

From the Lovász local lemma [4], there exists a good k-coloring, provided ( 3t
ck )ckdt ≤

1/4. However, a random k-coloring could be good with exponentially small proba-
bility, and it is not obvious how to find such a good coloring, even probabilistically.
Beck [3] had the first success in derandomizing the local lemma, and Alon [2] later
adapted Beck’s idea to derandomize more applications of the local lemma. We will
follow their approach closely.

Our main result in this section is a deterministic polynomial time algorithm to
find a good k-coloring satisfying(

9t

ck

)c (
k

3

)
(dt)4 ≤ 1

4
,

which leads to the bound for c given in (1). For this value of c, a random k
3 -coloring

turns an edge e bad with probability less than p ≡ ( 1
dt )

4. We first give a randomized
algorithm and then derandomize it.

2.1. A randomized algorithm. There will be at most three phases, each using
a distinct set of k

3 colors. The intuition is that a random k
3 -coloring is unlikely to have

a large “cluster” of bad edges and that each bad cluster can be recolored separately
for a proper definition of cluster. For a hypergraph H, its line graph LH is the graph
where nodes of LH correspond to edges of H and two nodes of LH are adjacent if
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and only if the two corresponding edges in H intersect.1 Let L
(a,b)
H be the graph

derived from LH , which has the same node set as LH , but now two nodes of L
(a,b)
H

are adjacent if and only if their distance is exactly a or b in LH . Call a set of edges

in H a (1, 2)-tree if the corresponding nodes in L
(1,2)
H are connected. Call a set of

edges in H a (2, 3)-tree if the corresponding nodes in L
(2,3)
H are connected but no two

corresponding nodes are adjacent in LH .
Our algorithm consists of phases. In the first phase, we find a k

3 -coloring such
that all bad (1, 2)-trees have size O(dt logm/ log(dt)). In the second phase, we use a
new set of k

3 colors and try to recolor each bad (1, 2)-tree separately. If m is small, the
recoloring can be done successfully. Otherwise, we need another phase, using another
set of k

3 colors.

Phase 1. In this phase, we will find a k
3 -coloring such that all bad (1, 2)-trees have

size O(dt logm/ log(dt)). First we need the following lemma.
Lemma 2.2. For some u = O(logm/ log(dt)), the probability that a random

k
3 -coloring has a bad (2, 3)-tree of size u is (1/m)Ω(1).

Proof. Any two edges of a (2, 3)-tree have no vertex in common, so the events

of each being bad are independent. Since there are at most m
((dt)3−1)u+1

(
(dt)3u

u

)
(2, 3)-trees of size u and each one is bad with probability at most pu, the probability
that a random k

3 -coloring has a bad (2, 3)-tree of size u is less than

m(3(dt)3p)u ≤ m

(
3

dt

)u

=

(
1

m

)Ω(1)

.

As a (1, 2)-tree of size dtu must contain a (2, 3)-tree of size u, a random k
3 -coloring

with high probability will have no bad (1, 2)-tree of size dtu = O(dt logm/ log(dt)). In
the next section, we will show how to find such a k

3 -coloring deterministically, using
the standard technique of conditional probability with a pessimistic estimator.

Phase 2. Suppose we have found a k
3 -coloring with no bad (1, 2)-tree of size dtu.

Next, we try to recolor each maximal bad (1,2)-tree. Let T = (VT , ET ) be a maximal
bad (1, 2)-tree. When we recolor vertices in T , those good edges intersecting T are also
affected, and we want to make sure that they will not turn bad after the recoloring. So
together with T , we also take into account those good edges but with vertices not in T
removed. That is, we consider the coloring problem for the hypergraph S = (VS , ES)
with VS = VT and ES = {e ∩ VS : e ∈ EH , e ∩ VS �= ∅}. It is easy to see that the
condition of the local lemma still holds and a good k

3 -coloring exists for S. We will

use a different set of k
3 colors in this phase. If we can find a good k

3 -coloring for
S, then after this recoloring, no edge of H intersecting T is bad. Now as each edge
of H intersects at most one maximal bad (1, 2)-tree (from the definition of maximal
(1, 2)-tree), we can repeat this recoloring process for each maximal bad (1, 2)-tree,
using the same new set of k

3 colors.

Note that |ES | ≤ (dt)2u. Suppose
√

logm/ log logm ≤ dt. Then the probability
that a random k

3 -coloring has a bad edge in S is at most

|ES |p < (dt)4
(

1

dt

)4

= 1.

1Note that, to avoid confusion, we use the term node instead of vertex for graphs and call two
nodes of a graph adjacent instead of using the term edge. The terms vertex and edge are reserved
for hypergraphs.
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In this case, we can find a good k
3 -coloring in deterministic polynomial time, using

again the technique of conditional probability.
Otherwise, we have dt <

√
logm/ log logm. As in Phase 1, we now can find a

k
3 -coloring such that all bad (1, 2)-trees have size at most

O(dt log((dt)2 logm)/ log(dt)) = O
(√

logm log logm/ log(dt)
)
.

Then we enter Phase 3.
Phase 3. Now as t ≤

√
logm/ log logm, each bad (1, 2)-tree contains

t ·O
(√

logm log logm/ log(dt)
)

= O(logm/ log(dt))

vertices of the hypergraph H. So we can use an exhaustive search to find a good
k
3 -coloring in deterministic time (k3 )O(logm/ log(dt)), which is mO(1), as we can assume
k = O(dt) due to Lemma 2.1.

2.2. Derandomization of Phase 1. Let R denote the set of all (2, 3)-trees of
size u = O( logm

log(dt) ), and let B denote the event that some tree in R is bad. From

Lemma 2.2, we know that the bad event B is unlikely to happen under a random
k
3 -coloring. But how do we find a good coloring deterministically? The idea is to
use the standard technique of conditional probability with a pessimistic estimator,
introduced by Raghavan [12]. We want to color vertices one by one. The color of
each vertex is chosen to minimize the probability of having the bad event B if we
randomly k

3 -color the remaining vertices. The hope is that the final coloring is a good
one because the final conditional probability, which is either 0 or 1, is at most the
original unconditional one, which is less than 1. However, it is not easy to compute
the exact conditional probability at each step here. So we use a pessimistic estimator
instead.

Suppose that we have already assigned colors γ1, . . . , γi to vertices v1, . . . , vi. We
will overestimate the conditional probability

Pi(γ1, . . . , γi) ≡ Pr
γi+1,...,γn

[B | γ1, . . . , γi]

by the following pessimistic estimator:

Ai(γ1, . . . , γi) =
∑
T∈R

∏
e∈T

∑
I⊆e,|I|=c

Pr
γi+1,...,γn

[I is monochromatic | γ1, . . . , γi].

Clearly, Pi(γ1, . . . , γi) ≤ Ai(γ1, . . . , γi) for all i and all γ1, . . . , γi, and A0 = (1/m)Ω(1)

from Lemma 2.2. Now,

Ai(γ1, . . . , γi) =
∑
T∈R

∏
e∈T

E
γi+1

∑
I⊆e,|I|=c

Pr
γi+2,...,γn

[I is monochromatic | γ1, . . . , γi+1]

=
∑
T∈R

E
γi+1

∏
e∈T

∑
I⊆e,|I|=c

Pr
γi+2,...,γn

[I is monochromatic | γ1, . . . , γi+1]

= E
γi+1

Ai(γ1, . . . , γi+1),

where the second equality is because each edge e in T intersects no other edges in T .
We pick γi+1 to minimize Ai(γ1, . . . , γi, γi+1). Then we have

1 > A0 ≥ A1(γ1) ≥ A2(γ1, γ2) ≥ · · · ≥ An(γ1, . . . , γn) ≥ Pn(γ1, . . . , γn).(2)
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Pn(γ1, . . . , γn) is either 1 or 0 depending on whether the coloring γ1, . . . , γn results in a
bad (2, 3)-tree of size u. As Pn(γ1, . . . , γn) < 1 from (2), we know Pn(γ1, . . . , γn) = 0,
so there is no bad (2, 3)-tree of size u, and we have found a good k

3 -coloring.
It remains to show that for any i and any γ1, . . . , γi, Ai(γ1, . . . , γi) can be com-

puted efficiently. There are mO(1) (2, 3)-trees of size u in R. It can be shown that
enumerating all of them takes deterministic polynomial time (see, for example, [7]).
For each (2, 3)-tree T and any edge e in T , the value∑

I⊆e,|I|=c

Pr
γi+1,...,γn

[I is monochromatic | γ1, . . . , γi]

can also be easily computed. So Ai(γ1, . . . , γi) can be computed in deterministic
polynomial time.

3. DNF approximate counting. Each finite set is associated with a natural
distribution, the uniform distribution over its elements, and we will not make the
distinction between a set and its natural distribution when it is clear from the context.
Given a DNF formula F on n variables, we would like to know its volume, vol(F ) =
Prx∈{0,1}n [F (x) = 1]. Valiant [14] has shown that it is #P-complete to compute the
exact value, so we settle for an approximation. The standard approach is to find a
pseudorandom distribution using many fewer random bits that can still fool F .

Definition 3.1. A function g : {0, 1}r → {0, 1}n is called an ε-generator for a
Boolean function F : {0, 1}n → {0, 1} if∣∣∣∣ Pr

x∈{0,1}n
[F (x) = 1] − Pr

y∈{0,1}r
[F (g(y)) = 1]

∣∣∣∣ ≤ ε.

A function g is called an ε-generator for a class of Boolean functions if it is an ε-
generator for each function in this class.

So an algorithm for approximating vol(F ) is to find an ε-generator g for F and
then compute 1

2r

∑
y∈{0,1}r F (g(y)), the expected value of F over the pseudorandom

distribution generated by g. The running time is proportional to 2r, and the goal
is to reduce r. Notice that we can have a different generator g for a different input
function F .

Clearly there are three important parameters in this problem: the number n of
variables, the number m of terms, and the error ε allowed. We discover the importance
of another parameter d, the maximum number of terms in which a variable can appear.
Let DNFd denote the set of DNF formulas with each variable appearing in at most d
terms. Such formulas are usually called read-d-times DNF formulas. In the following,
we will also assume that each term in a formula F contains at most t = log m

ε literals.
This is because we can always remove those terms containing more than t literals to
get another formula F ′ such that |Prx[F (x) = 1] − Prx[F ′(x) = 1]| ≤ ε and then
consider the formula F ′ instead. Let tDNFd denote the set of DNFd formulas with
no term containing more than t literals. This is the class of formulas we consider in
this section. For convenience, we also assume that n = mΘ(1).

A tDNFd formula F of n variables and m terms can be modelled by a hypergraph
H(V,E) with |V | = n, |E| = m, E ⊆ V ≤t, and degree d. We can use the algorithm
in the previous section to find a (k, c)-coloring for some k and c to be chosen later.
Let Vi, 1 ≤ i ≤ k, be the set of variables with color i. If we fix values for all variables
not in Vi, we get a cDNFd formula on Vi. So a tDNFd formula gives rise to k classes
of cDNFd formulas, and we show next that it suffices to be able to fool each class
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separately. Suppose that for 1 ≤ i ≤ k, gi : {0, 1}ri → {0, 1}|Vi| is an ε-generator
for all cDNFd formulas on the variable set Vi. Define g : {0, 1}r → {0, 1}n, with
r = r1 + · · · + rk and n = |V1| + · · · + |Vk|, such that those bits corresponding to Vi

are generated by gi. The following is a standard result.

Lemma 3.2. The function g defined above is a kε-generator for F .

Proof. For 1 ≤ i ≤ k, let Ui denote the uniform distribution over {0, 1}|Vi| for the
variables in Vi, and let Si be the corresponding pseudorandom distribution generated
by gi. Let Di denote the distribution S1 × · · · × Si × Ui+1 × · · · × Uk, and let D′

i

denote the distribution S1 × · · · × Si−1 × Ui+1 × · · · × Uk. For y ∈ D′
i, let Fy denote

the resulting formula from F by assigning the value y to the corresponding variables,
and note that Fy is a cDNFd formula on variable set Vi. Then∣∣∣∣vol(F ) − Pr

x∈Dk

[F (x) = 1]

∣∣∣∣ =

∣∣∣∣ Pr
x∈D0

[F (x) = 1] − Pr
x∈Dk

[F (x) = 1]

∣∣∣∣
≤

k−1∑
i=0

∣∣∣∣ Pr
x∈Di

[F (x) = 1] − Pr
x∈Di+1

[F (x) = 1]

∣∣∣∣
≤

k∑
i=1

E
y∈D′

i

∣∣∣∣ Pr
z∈Si

[Fy(z) = 1] − Pr
z∈Ui

[Fy(z) = 1]

∣∣∣∣
≤ kε.

Dk is the pseudorandom distribution generated by g. So g is a kε-generator for
F .

So we have reduced the problem of finding a generator for a tDNFd formula to the
problem of finding a generator fooling all cDNFd formulas. For small c, it becomes an
easier task. This is one example where our hypergraph coloring algorithm supports
some kind of divide and conquer approach. It remains to find such ε-generators for
cDNFd. We will give two constructions according to two different values of k and c.
Before proceeding to that, let us summarize what our algorithm does with a DNF
formula F as input:

1. Remove those terms with more than t = log m
ε variables.

2. Determine the parameters d, k, c.
3. Run the hypergraph coloring algorithm to find a (k, c)-coloring for F .
4. Construct generators g1, . . . , gk and the generator g.
5. Compute the average of F under the pseudorandom distribution generated

by g.

3.1. Construction I: c = O(log dt
ε
) and k = O( t

c
). A given formula might

contain constants in some terms, which would allow it to be simplified further. When
we talk about the number of terms in a formula later, we mean the number of terms
left after this simplification. The following lemma says that when both c and d are
small, it suffices to be able to fool cDNFd formulas with very few terms.

Lemma 3.3. Let l = 2c ln 1
ε = (dtε )O(1) and m′ = d(l − 1)c = (dtε )O(1). If h is an

ε-generator for all cDNFd formulas with at most m′ terms, then h is a 2ε-generator
for all cDNFd formulas.

Proof. Consider a cDNFd formula G. If G has at most m′ terms, h is certainly
an ε-generator for G. If G has more than m′ terms, it has l disjoint terms because
otherwise some variable would appear more than m′/((l − 1)c) = d times. Let T
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denote the OR of those l disjoint terms. Then

1 ≥ vol(G) ≥ vol(T ) > 1 − (1 − 2−c)l ≥ 1 − e−2−c2c ln 1/ε = 1 − ε.

As h is an ε-generator for T , we have

1 ≥ Pr
y

[G(h(y)) = 1] ≥ Pr
y

[T (h(y)) = 1] ≥ vol(T ) − ε ≥ 1 − 2ε.

Then |vol(G) − Pry[G(h(y)) = 1]| ≤ 2ε.
It remains to show how to find such an ε-generator for all cDNFd formulas of at

most m′ terms. Any cDNFd formula of at most m′ terms contains at most n′ = cm′

variables, out of the n variables, and is much easier to fool. The generator of Luby,
Velicković, and Wigderson [9] can be slightly modified to suit this purpose. The
keys in their result are the construction of a set system and its use in the generator
construction of Nisan and Wigderson [11]. The formulas we consider here are more
restricted, so set systems with better parameters can be constructed.

Let us first fix the following parameters: b = log 4n′m′

ε , s = b2, and r = 24cb3.
Consider a cDNFd formula T and a family S of n subsets S1, . . . , Sn, where Si ⊆
{1, . . . , r} for each i. Call S good for T if the following two conditions hold:

• For any variable xi of T , |Si| ≤ s.
• For any variable xi of T and any term of T with variables {xj : j ∈ B},
|Si ∩ (∪j∈B\{i}Sj)| < b.

With a good set S, one can construct a good generator for T , as stated in the following.
Lemma 3.4 (see [9]). If S is good for T , then the function hS : {0, 1}r → {0, 1}n,

defined by

hS(y) ≡

⎛⎝⊕
j∈S1

yj , . . . ,
⊕
j∈Sn

yj

⎞⎠ ,

is an ε-generator for T .
As we want to construct one generator for all cDNFd formulas, it may not be

possible to find one set system that is good for all such formulas. The strategy is
to generate the set system randomly and prove that for any cDNFd formula T , the
generated set system is good for T with high probability. Following [9], we will show
that S can be generated using an approximate 2b-wise independent space.

Definition 3.5. An (n, k, p, δ) space consists of n binary random variables,
X1, . . . , Xn, such that, for any k indices i1, . . . , ik and any k bits x1, . . . , xk,∣∣∣P [Xi1 = x1 ∧ · · · ∧Xik = xk] − p|{i : xi=1}|(1 − p)|{i : xi=0}|

∣∣∣ ≤ δ.

Let δ = ε
4m′n′(3cr)2b . Let Xij , for 1 ≤ i ≤ n and 1 ≤ j ≤ r, be sampled from

an (nr, 2b, 2s
r , δ) space. Each sample point in this space can be efficiently indexed

by a string of v = O(log log n + b log r
s + log 1

δ ) = O(log2 dt
ε ) bits [5]. Let S(w) =

{S1(w), . . . , Sn(w)}, where Si(w) = {j : Xij(w) = 1}. Then using Lemma 1 of [9] in
our setting, we have the following.

Lemma 3.6. For any T ∈ cDNFd, Prw[S(w) not good for T ] ≤ ε.
Proof.

Pr
w

[S(w) not good for T ] ≤ n′
(

1

sb
+ r2bδ

)
+ m′n′

(
r

b

)
cb

((
2s

r

)2b

+ δ

)
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≤ n′

sb
+ m′n′

(
12cs2

rb

)b

+ n′r2bδ + m′n′
(

3cr

b

)b

δ

≤ ε

4
+

ε

4
+

ε

4
+

ε

4
≤ ε.

Consider the generator h : {0, 1}v+r → {0, 1}n, defined as

h(w, y) ≡ hS(w)(y) =

⎛⎝ ⊕
j∈S1(w)

yj , . . . ,
⊕

j∈Sn(w)

yj

⎞⎠ .

Combining Lemmas 3.4 and 3.6, we know that h is a 2ε-generator for all cDNFd

formulas with at most m′ terms. From Lemma 3.3, h is a 4ε-generator for all cDNFd

formulas. From Lemma 3.2, given F ∈ DNFd, we can get a 4kε-generator for F . The
number of random bits used is

k(r + v) = O

(
t

c
log4 dt

ε

)
= O

(
log

m

ε
log3 d logm

ε

)
.

Finally, with ε replaced by ε
4k , we have the following theorem.

Theorem 3.7. Given a DNF formula, we can approximate its volume within an

additive error ε in deterministic 2O(log m
ε log3 d log m

ε ) time.

3.2. Construction II: c = O(
√

log(dt)) and k = t2O(c). Our second con-
struction follows the framework of Luby and Velicković [8]. Let us recall their ap-
proach. First, they construct a small sample set of “almost” (k0, c0)-coloring2 with
c0 = O(log t) and k0 = O(t2c0+1/ε). Next, they show that an (n, l0, 1/2, δ0) space
gives rise to a good generator for c0DNF for some l0 and δ0. The algorithm of [8]
then does the following. Each almost (k0, c0)-coloring in the sample set is used for
the purpose of divide and conquer to divide the given DNF formula F into k0 classes
of c0DNF formulas, and then k0 independent copies of (n, l0, 1/2, δ0) spaces are used
to construct a generator for F with which an estimate of vol(F ) is computed. Each
almost (k0, c0)-coloring gives an estimate of vol(F ), and the algorithm of [8] outputs
the largest among these estimates as the final answer.

Here, we use our (k, c)-coloring algorithm to replace the almost (k0, c0)-coloring
of [8] with c = O(

√
log(dt)) and k = t2O(c). That is, we use our hypergraph coloring

algorithm to produce one (k, c)-coloring, instead of a set of colorings. As a result,
we need to calculate only one estimate, which is used as the final answer. The (k, c)-
coloring divides the tDNFd formula into k classes of cDNF formulas.

Let l = log 8k
ε �c2c and δ = ε

8k2l . Let ĥ : {0, 1}s → {0, 1}n be the mapping that

generates the (n, l, 1/2, δ) space. From [8], we know that ĥ is a good generator for
cDNF.

Lemma 3.8 (see [8]). ĥ is an ε
k -generator for cDNF.

Using k independent copies of ĥ, each with an independent random seed, we get
an ε-generator for the tDNFd formula F , according to Lemma 3.2. The total number
of random bits used by the generator is

ks = O(k(log log n + l + log 1/δ)) = O(kl) = O

(
log

m

ε
log

1

ε
2O(

√
log(d log m

ε ))
)
.

2More precisely, for any term, only a small fraction of k0-coloring in this set can result in more
than c0 variables in that term having the same color.
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So we have the following theorem.
Theorem 3.9. Given a DNF formula, we can approximate its volume within an

additive error ε in deterministic 2log m
ε log 1

ε 2
O(
√

log(d log m
ε

))

time.

4. Dimensions of posets. In this section, we will constructivize the existential
bounds, given by Füredi and Kahn [6], on the dimensions of posets.

Definition 4.1 (see [6]). Let (P,<) be a poset. Its dimension, denoted as
dim(P ), is defined to be the minimum number of linear extensions L1, . . . , Ld such
that P = L1 ∩ · · · ∩ Ld, i.e.,

∀x, y ∈ P, x < y ⇔ x <Li y ∀i.(3)

Definition 4.2 (see [6]). For x ∈ P , define U(x) ≡ {y ∈ P : y ≥ x},
L(x) ≡ {y ∈ P : y ≤ x}, and C(x) ≡ U(x) ∪ L(x). Define u ≡ maxx∈P |U(x)|,
� ≡ maxx∈P |L(x)|, and t ≡ maxx∈P |C(x)|.

For x ∈ P , S ⊆ P , and π a permutation over P , we will write x <π S for the
condition for all y ∈ S, x <π y.

Lemma 4.3 (see [6]). The dimension of (P,<) is equal to the minimum number
of permutations, π1, . . . , πd, such that

∀x, y ∈ P, y �≤ x ⇒ ∃i, x <πi U(y).(4)

In addition, there is a deterministic polynomial time algorithm for converting a set of
d permutations satisfying condition (4) to a set of d permutations satisfying condition
(3).

This lemma provides an alternative way to compute the dimension of a poset. It
is especially useful for obtaining the upper bound of the dimension: just find a set Π
of permutations such that any pair (x, y) in the set

KP = {(x, y) ∈ P 2 : y �≤ x}

is killed by some permutation π ∈ Π in the sense that x <π U(y). Based on this,
Füredi and Kahn [6] gave a simple upper bound: dim(P ) = O(u log |P |). Their
argument can be turned into a deterministic algorithm.

Theorem 4.4. Given any poset (P,<), we can find a set of O(u log |P |) permu-
tations satisfying condition (3) in deterministic polynomial time.

Proof. We want to find d = O(u log |P |) permutations π1, . . . , πd, one by one,
to kill every pair in KP . Note that for any (x, y) ∈ KP , x /∈ U(y), so a random
permutation kills (x, y) with probability at least 1

u+1 . Then for any K ⊆ KP , the

expected fraction of K killed by a random permutation is at least 1
u+1 . Thus, given

π1, . . . , πi−1, there exists some πi that can kill at least 1
u+1 fraction of those remaining

pairs in KP not killed by π1, . . . , πi−1. We can find such a πi by fixing its components
one by one in |P | steps, again using the technique of conditional probability. After
choosing π1, . . . , πd in this way, the number of pairs not yet killed is less than |P |2(1−

1
u+1 )d < 22 log2 |P |−d/(u+1) ≤ 1 for some d = O(u log |P |). These d permutations
satisfy condition (4) and can be converted to d permutations satisfying condition (3)
by Lemma 4.3. It is easy to see that the whole process can be done in deterministic
polynomial time.

Füredi and Kahn [6] gave another upper bound: dim(P ) = O(t log2 t). Again,
their argument can be turned into a deterministic algorithm. Assume without loss of
generality that tlog t ≤ |P | (otherwise, we can just use the previous theorem).
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Theorem 4.5. Given any poset (P,<), we can find a set of O(u log2 t) =
O(t log2 t) permutations satisfying condition (3) in deterministic polynomial time.

Proof. Consider the hypergraph H(V,E) with V = P and E = {U(y) : y ∈ P}.
The goal is to find a set of permutations over Vi such that for any x ∈ V and
any e ∈ E, some permutation puts x before every element in e. Note that H has
degree � and E ⊆ V ≤u. Using our hypergraph coloring algorithm, we can find a
(k, c)-coloring with c = Θ(log t) and k = O(u/c). H can now be partitioned into k
hypergraphs H1(V1, E1), . . . , Hk(Vk, Ek), where Vi is the set of vertices with color i
and Ei = {e ∩ Vi : e ∈ E} = {U(y) ∩ Vi : y ∈ V }.

We will have k groups, G1, . . . , Gk, of permutations with Gi designed to kill those
pairs (x, y) ∈ KP with x ∈ Vi. Permutations in Gi place Vi ahead of V̄i ≡ V \ Vi and
use an arbitrary permutation Ti for V̄i. This guarantees that for any (x, y) ∈ KP with
x ∈ Vi, we have x <τ U(y) ∩ V̄i for any permutation τ ∈ Gi. It remains to guarantee
that for any (x, y) ∈ KP with x ∈ Vi, there exists a permutation π ∈ Gi such that
x <π U(y)∩Vi. Notice that each U(y)∩Vi corresponds to an edge in Ei, so it suffices
to find a set of permutations over Vi such that for any x ∈ Vi and any e ∈ Ei, some
permutation puts x before every element in e for 1 ≤ i ≤ k. That is, we have reduced
the original problem to k smaller subproblems.

For Hi(Vi, Ei), use Lemma 2.1 to color vertices in Vi with r = O(c�) = O(� log t)
colors such that all vertices in any edge of Ei have different colors. Let Vi,j , 1 ≤ j ≤ r,
denote those vertices in Vi having color j. For the order among Vi,j , we use an
arbitrary permutation Ri,j together with its converse R′

i,j (reversing the order in
Ri,j). This guarantees that for any (x, y) ∈ KP with x ∈ Vi,j , either Ri,j or R′

i,j puts
x before U(y) ∩ Vi,j (which has at most one element) for 1 ≤ j ≤ r. It remains to
guarantee that for any (x, y) ∈ KP with x ∈ Vi,j , some permutation puts x before
U(y)∩Vi \Vi,j (which has at most c−1 elements) for 1 ≤ j ≤ r. That is, it suffices to
find a set of permutations on r colors such that, for any color j and any set J of c− 1
colors not containing j, some permutation puts j ahead of J . A random collection of
q = O(c2 log r) permutations will fail with probability at most

r

(
r − 1

c− 1

)(
1 − 1

c

)q

< 1.

Using an idea similar to that in Theorem 4.4, a good set of permutations γ1, . . . , γq
can be found one by one, each in deterministic rO(c) = |P |O(1) time. This makes
sure that for any (x, y) ∈ KP with x ∈ Vi,j , there exists some s ∈ [q] such that the
permutation (over Vi) (

Ri,γs(1), Ri,γs(2), . . . , Ri,γs(r)

)
puts x before U(y) ∩ Vi \ Vi,j for 1 ≤ j ≤ r.

In summary, for each i and s with 1 ≤ i ≤ k and 1 ≤ s ≤ q, we have two
permutations:

• πi,s =
(
Ri,γs(1), Ri,γs(2), . . . , Ri,γs(r), Ti

)
.

• π′
i,s = (R′

i,γs(1)
, R′

i,γs(2)
, . . . , R′

i,γs(r)
, Ti).

The total number of permutations is thus

2kq = O((u/c)(c2 log r)) = O(u log2 t) = O(t log2 t),

and they can be found in deterministic polynomial time. As a result, we have the
theorem.



DETERMINISTIC HYPERGRAPH COLORING AND APPLICATIONS 331

Acknowledgment. We would like to thank David A. Mix Barrington for some
helpful comments on an earlier version of this paper.

REFERENCES

[1] N. Ahuja and A. Srivastav, On constrained hypergraph coloring and schedule, in Proceed-
ings of the 5th International Workshop on Approximation Algorithms for Combinatorial
Optimization, Rome, Italy, 2002, pp. 14–25.

[2] N. Alon, A parallel algorithmic version of the local lemma, Random Structures Algorithms, 2
(1991), pp. 367–378.

[3] J. Beck, An algorithmic approach to the Lovász local lemma, Random Structures Algorithms,
2 (1991), pp. 343–365.

[4] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets, A. Hajnal, L. Lovasz, and V. T. Sos, eds., North–
Holland, Amsterdam, 1975, pp. 609–628.

[5] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velicković, Approximations of general
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Abstract. We consider radio networks modeled as directed graphs. In ad hoc radio networks,
every node knows only its own label and a linear bound on the size of the network but is unaware
of the topology of the network or even of its own neighborhood. The fastest currently known
deterministic broadcasting algorithm working for arbitrary n-node ad hoc radio networks has running
time O(n log2 n). Our main result is a broadcasting algorithm working in time O(n logn logD) for
arbitrary n-node ad hoc radio networks of radius D. The best currently known lower bound on
broadcasting time in ad hoc radio networks is Ω(n logD); hence our algorithm is the first to shrink
the gap between bounds on broadcasting time in radio networks of arbitrary radius to a logarithmic
factor. We also show a broadcasting algorithm working in time O(n logD) for complete layered
n-node ad hoc radio networks of radius D. The latter complexity is optimal.
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1. Introduction.

1.1. The model. A radio network is a collection of transmitter-receiver stations.
It is modeled as a directed graph on the set of these stations, referred to as nodes.
A directed edge e = (u, v) means that the transmitter of u can reach v. Nodes send
messages in synchronous steps (time slots). In every step, every node acts either as
a transmitter or as a receiver. A node acting as a transmitter sends a message which
can potentially reach all of its out-neighbors. A node acting as a receiver in a given
step gets a message if and only if exactly one of its in-neighbors transmits in this
step. The message received in this case is the one that was transmitted. If at least
two in-neighbors v and v′ of u transmit simultaneously in a given step, none of the
messages is received by u in this step. In this case we say that a collision occurred
at u. It is assumed that the effect at node u of more than one of its in-neighbors
transmitting is the same as that of no in-neighbor transmitting; i.e., a node cannot
distinguish a collision from silence.

The goal of broadcasting is to transmit a message from one node of the network,
called the source, to all other nodes. Remote nodes get the source message via inter-
mediate nodes along paths in the network. In order to make broadcasting feasible, we
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assume that there is a directed path from the source to any node of the network. We
study one of the most important and widely investigated performance parameters of
a broadcasting algorithm, which is the total time, i.e., the number of steps it uses to
inform all the nodes of the network.

We consider deterministic distributed broadcasting in ad hoc radio networks. In
such networks, a node does not have any a priori knowledge of the topology of the
network, its maximum degree, its radius, nor even of its immediate neighborhood:
the only a priori knowledge of a node is its own label and a linear upper bound r
on the number of nodes. Labels of all nodes are distinct integers from the interval
[0, . . . , r]. Broadcasting in ad hoc radio networks was investigated, e.g., in [3, 5, 6,
7, 9, 10, 12, 13, 15]. We use the same definition of running time of a broadcasting
algorithm working for ad hoc radio networks as, e.g., in [12]. We say that the algorithm
works in time t for networks of a given class if t is the smallest integer such that the
algorithm informs all nodes of any network of this class in at most t steps. We do
not suppose the possibility of spontaneous transmissions; i.e., only nodes which have
already gotten the source message are allowed to send messages. Of course, since we
are only concerned with upper bounds on broadcasting time, all our results remain
valid if spontaneous transmissions are allowed. The format of all messages is the same:
a node transmits the source message and the current step number.

We denote by n the number of nodes in the network, by r an upper bound on label
values, by D the radius of the network (the maximum length of a shortest directed
path from the source to any other node), and by ∆ the maximum in-degree of a node
in the network. We assume that r is linear in n (r = cn for some constant c). Among
these parameters, only r is known to nodes of the network.

1.2. Related work. In many papers on broadcasting in radio networks (e.g.,
[1, 2, 16, 19, 17]), the network is modeled as an undirected graph, which is equivalent to
the assumption that the directed graph, which models the network in our scenario, is
symmetric. A lot of effort has been devoted to finding good upper and lower bounds
on deterministic broadcast time in such radio networks under the assumption that
nodes have full knowledge of the network. In [1] the authors proved the existence of a
family of n-node networks of radius 2 for which any broadcast requires time Ω(log2 n),
while in [16] it was proved that broadcasting can be done in time O(D + log5 n) for
any n-node network of diameter D. (Note that for symmetric networks, diameter is
of the order of the radius.)

As for broadcasting in ad hoc symmetric radio networks, an O(n) algorithm
assuming spontaneous transmissions was constructed in [9]. If spontaneous transmis-
sions are precluded, the best currently known results on broadcasting in such networks
are those from [18]: an algorithm with running time O(n log n) and a lower bound
Ω(n logn

log(n/D) ).

Deterministic broadcasting in arbitrary directed radio networks was studied, e.g.,
in [6, 7, 8, 9, 10, 12, 13, 15]. In [8], a O(D log2 n)-time broadcasting algorithm was
given for all n-node networks of radius D, assuming that nodes know the topol-
ogy of the network. (The later algorithm from [16], giving upper bound O(D +
log5 n) on broadcasting time, works only for undirected radio networks.) Other
above-cited papers studied broadcasting time in ad hoc directed radio networks.
The best known lower bound on this time is Ω(n logD), proved in [13]. As for
the upper bounds, a series of papers presented increasingly faster algorithms, start-
ing with time O(n11/6), in [9], then O(n5/3 log1/3 n) in [15], then O(n3/2) in [10],
and finally O(n log2 n) in [12], which corresponds to the fastest algorithm, working
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for ad hoc networks of arbitrary maximum degree, known before the present pa-
per. In another approach, broadcasting time is studied for ad hoc radio networks
of maximum degree ∆. This work was initiated in [6], where the authors con-

structed a broadcasting scheme working in time O(D ∆2

log2 ∆
log2 n) for arbitrary n-

node networks with radius D and maximum degree ∆. (While the result was stated
only for undirected graphs, it is clear that it holds for arbitrary directed graphs,
not just symmetric ones.) This result was further investigated, both theoretically
and using simulations, in [7, 4]. On the other hand, a protocol working in time
O(D∆ loglog ∆ n) was constructed in [3]. Finally, an O(D∆ log n log(n/∆)) proto-
col was described in [13] (for the case when nodes know n but not ∆). If n is
also unknown, the algorithm from [13] works in time O(D∆ loga n log(n/∆)) for any
a > 1.

Finally, randomized broadcasting in ad hoc radio networks was studied, e.g., in
[2, 19, 18, 14]. In [2], the authors give a simple randomized protocol running in ex-
pected time O(D log n+log2 n). We later improved this upper bound to O(D log(n/D)
+ log2 n) in [18] (see also [14]). In [19] it was shown that, for any randomized broad-
cast protocol and parameters D and n, there exists an n-node network of radius D,
requiring expected time Ω(D log(n/D)) to execute this protocol.

1.3. Our results. Our main result is a deterministic broadcasting algorithm
working in time O(n log n logD) for arbitrary n-node ad hoc radio networks of ra-
dius D. This improves the best currently known broadcasting time O(n log2 n) from
[12], e.g., for networks of radius polylogarithmic in size. Also, for D∆ ∈ ω(n), this
improves the upper bound O(D∆ log n log(n/∆)) from [13]. The best currently known
lower bound on broadcasting time in ad hoc radio networks is Ω(n logD) [13]; hence
our algorithm is the first to shrink the gap between bounds on deterministic broadcast-
ing time for radio networks of arbitrary radius to a logarithmic factor. Our algorithm
is nonconstructive in the same sense as the one from [12]. Using the probabilistic
method, we prove the existence of a combinatorial object, which all nodes use in the
execution of the deterministic broadcasting algorithm. (Since we do not count local
computations in our time measure, such an object—the same for all nodes—could be
found by an exhaustive search performed locally by all nodes without changing our
result.)

We also show a broadcasting algorithm working in time O(n logD) for complete
layered n-node ad hoc radio networks of radius D. The latter complexity is optimal,
due to the matching lower bound Ω(n logD), which was proved in [13] for this class
of networks, even assuming that nodes know parameters n and D. The best previous
upper bound on broadcasting time in complete layered n-node ad hoc radio networks
of radius D was O(n log n) [12]. Hence we obtain a gain for the same range of values
of D as before.

If nodes do not know any upper bound on the size of the network, the upper
bound O(n log2 n) from [12] remains valid, using a simple doubling technique, which
probes possible values of n. In our case, the doubling technique cannot be used
directly, since we deal with two unknown parameters, n and D. However, we can
modify our algorithm in this case, obtaining running time O(n log n log log n logD),
which still beats the time from [12], e.g., for networks of radius polylogarithmic in
size. For D∆ ∈ Ω(n), this also improves the upper bound O(D∆ loga n log(n/∆)), for
any a > 1, proved in [13] for the case of unknown n and ∆.

Note added in proof. Recently, our upper bound O(n log n logD) on deter-
ministic broadcasting time in arbitrary n-node ad hoc radio networks of radius D
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has been improved in [14] to O(n log2 D). As in our case, the algorithm in [14] is
nonconstructive.

2. The broadcasting algorithm. In this section we show a deterministic
broadcasting algorithm working in time O(n log n logD) for arbitrary n-node ad hoc
radio networks of radius D. Recall that r is a linear upper bound on the number of
nodes and that labels of all nodes are distinct integers from the interval [0, . . . , r].
Taking 2�log r� instead of r, we can assume that log r is a positive integer. The pa-
rameter r is known to all nodes. We first show our upper bound under the additional
assumption that D is known to all nodes. At the end of this section, we show how
this assumption can be removed without changing the result.

We will use the Procedure Fast-Broadcasting, formally defined below, which in-
tuitively works as follows. Communication is divided into stages of length 1 + log r.
Current time is appended to all messages. Upon receiving a message, a node up-
dates time and waits until the end of the current stage. This is the only adaptive
part of the procedure. Then a sequence of transmissions is performed by any node
v, based on a predefined vector T (v) of length O(r log r logD). This sequence of
steps is interleaved with round-robin transmissions according to global time com-
puted by every node which already got a message. (The role of round-robin trans-
missions is purely technical: the procedure could be modified by incorporating them
in the description of vectors T (v), but separating these substeps improves clarity of
analysis for bounded D and does not change asymptotic complexity of the proce-
dure.)

Given a 0-1 matrix T = [Ti(v)]i≤t;v≤r, where t = 3600 · (1 + log r) · r logD, we
formally define the above-described procedure in the following way.

Procedure Fast-Broadcasting(T ).

After receiving the source message and the current step number a(1 + log r) + b
for some parameters a, b such that 0 ≤ b ≤ log r and 0 < a(1 + log r) + b ≤ t,
node v waits until step tv = (a + 1)(1 + log r) − 1.

for i = tv + 1, . . . , t do
Substep A. if Ti(v) = 1 then v transmits in step i.
Substep B. if i ≡ v mod r then v transmits in step i.

We now define the following random 0-1 matrix T̂ = [T̂i(v)]i≤t;v≤r. For all
parameters a, b such that 0 ≤ b ≤ log r and 0 < a(1 + log r) + b ≤ t, we have
Pr [Ta(1+log r)+b(v) = 1] = 1/2b, and all events T̂i(v) = 1 are independent. The period
consisting of steps a(1 + log r), . . . , (a + 1)(1 + log r) − 1 is called stage a.

Algorithm Fast-Broadcasting consists of executing Procedure Fast-Broadcast-
ing(T̂ ) for the above-defined random matrix T̂ .

Path-graphs and simple-path-graphs. In what follows, v0 denotes the source.
In order to analyze Algorithm Fast-Broadcasting, we define the following classes of
directed graphs. A path-graph consists of a directed path v0, . . . , vk, where k ≤ D,
possibly with some additional edges (vl, vl′), for l > l′, and with some additional
nodes v, whose only out-neighbors are among v1, . . . , vk. The path v0, . . . , vk is
called the main path. A simple-path-graph consists of a directed path v0, . . . , vk,
where k ≤ D, with some additional nodes v, each of which has exactly one out-
neighbor, and this out-neighbor is among v1, . . . , vk. For any path-graph G = (V,E),
the graph Ḡ is the subgraph of G on the same set of nodes containing the main
path and satisfying the condition that for every node v outside the main path, v has
exactly one neighbor vl in Ḡ, where l = max{l′ : (v, vl′) ∈ E}. By definition, for every
path-graph G, the graph Ḡ is a simple-path-graph. See Figure 1.
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Intuitively, a path-graph corresponds to a directed path in a graph, together with
all neighboring nodes that can influence transmissions from the source to the target.
There can be as many as Θ(2nD) such graphs. A simple-path-graph can be obtained
from a path-graph by deleting all “backward edges” leading to the main path. Since
every node in such a graph has only one out-neighbor, the number of simple-path-
graphs is much smaller, at most Θ(Dn). We show that deleting all “backward edges”
does not influence the speed of transmission from the source to the target.

v v v v v0 k= v

v v v v v0 k= vl l+1 l+2

l l+1 l+2

G

G

Fig. 1. Path-graph G and corresponding simple-path-graph Ḡ.

Adversarial models. In general, path-graphs do not satisfy our assumption that
there is a directed path from the source v0 to any other node. Hence, for path-graphs,
we modify our model of broadcasting as follows and call it the adversarial wake-up
model. In this model the goal is not to wake up all processors, since the network may
not be strongly connected, but to wake up the last node on the main path. We assume
that nodes outside the main path also get the source message but are woken up by an
adaptive adversary in various time steps not exceeding t. More precisely, the adversary
can wake up any node v in the main path in any step tv ≤ t, providing v with the
source message and step number tv. The adversary acts according to some wake-up
pattern Wm from the family {Wm}m≤M of all possible wake-up patterns. A wake-up
pattern is a function assigning to every vertex v a step number tv ≤ t. The analysis of
the progress of the algorithm working on path-graphs is relatively easy to extend to
arbitrary graphs (see the proof of Theorem 5). This is not the case with simple-path-
graphs, which may be too “trimmed” compared to an arbitrary graph. To overcome
this obstacle we introduce a slightly stronger notion of the adversarial model, called
the simple-adversarial model, which is the adversarial model with the following rule:

If node vl in the main path is not the rightmost node in the main
path having woken-up in-neighbors, then vl may be woken up only
according to the adversarial wake-up pattern (not by some of its
transmitting neighbors!).
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Broadcasting under the simple-adversarial model in the simple-path-graph introduces
similar “effects” to the presence of “backward edges” (we prove it in Lemma 4). For
other applications of adversarial models and path-graphs, see also [11].

For every wake-up pattern Wm and stage a of Procedure Fast-Broadcasting(T ),
we define an integer fa(m) as follows (independently of the presence of an adversary or
simple adversary). If node vk has the source message after stage a, we fix fa(m) = k.
Otherwise, fa(m) = l, where vl+1 is the last node on the main path which does
not have the source message after stage a but has an in-neighbor having the source
message after stage a, assuming that the pattern Wm is used. See Figure 2.

v v v v v0 k= v

-    nodes having the source message

-    nodes not having the source message

l l+1 l+2

Fig. 2. Definition of fa(m). Illustration for fa(m) = l.

We now describe a high-level outline of the proof of our upper bound. First, using
the probabilistic method, we show the existence of a matrix T such that Procedure
Fast-Broadcasting(T ), applied to any simple-path-graph and to any wake-up pattern
under the simple-adversarial model, delivers the source message to the last node of
the main path in time O(n log n logD). Next, we show that the same is true for
any path-graph under the adversarial model. Finally, we show that Procedure Fast-
Broadcasting(T ) completes broadcasting in all graphs in time O(n log n logD).

Fix an integer a and consider the simple-adversarial model. Suppose that T̂i(v)
are fixed for all i < (a+1)(1+log r). Our first goal is to show that, for a fixed simple-
path-graph G under the simple-adversarial model, the set {m : fa(m) < fa+1(m) ≤ k}
contains a constant fraction of values {m : fa(m) < k}, for any stage a, with high
probability. More precisely, we call stage a+1 successful if either {m : fa(m) < k} = ∅
or |{m : fa(m) < fa+1(m) ≤ k}| ≥ 1

36 · |{m : fa(m) < k}| in the execution of
Algorithm Fast-Broadcasting.

Lemma 1. With probability at least 0.1, stage a + 1 is successful.
Proof. We consider only substeps of type A. Let X = {m : fa(m) < k}. Let

Xl = {m : fa(m) = l} for l = 1, . . . , k − 1. Observe that {Xl}k−1
l=1 is a partition
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of X. Consider the set Xl for a fixed l < k. For each m ∈ Xl, let Hm be the set
of all in-neighbors of vl having the source message at the end of stage a. By the
definition of fa(m), which is equal to l, we have Hm �= ∅ for all m ∈ Xl. Let Xj

l ,
for j = 0, . . . , log r, be the set of all m ∈ Xl such that 2j−1 < |Hm| ≤ 2j . Consider
step (a + 1)(1 + log r) + j in stage a + 1. In this step, every in-neighbor v ∈ Hm

of vl transmits with probability 1/2j . If j = 0, then |Hm| = 1 for all X0
l . Hence,

with probability 1, node vl receives the source message in step (a+ 1)(1 + log r), and
consequently fa+1(m) ≥ l > fa(m). If j > 0, then the probability that exactly one
node in Hm transmits in step (a + 1)(1 + log r) + j, for a fixed m ∈ Xj

l , is at least

|Hm| · 1

2j
·
(

1 − 1

2j

)|Hm|−1

>
1

2

(
1 − 1

2j

)2j

≥ 1

2
· 1

4
=

1

8
.

Using the Markov inequality applied to the number of sets Hm (for m ∈ Xj
l ) for

which exactly one node transmits in step (a + 1)(1 + log r) + j, we obtain that, with
probability at least 0.1, |Xj

l ∩ {m : fa(m) < fa+1(m) ≤ k}| ≥ 1
36 |X

j
l |.

Indeed, for any m ∈ Xj
l , define the random binary variable χm as follows: χm = 0

if and only if vl receives the source message by step (a + 1)(1 + log r) + j. Define
χ =

∑
m∈Xj

l
χm. Since Pr (χm = 1) < 7/8, the expected value of χ is smaller than

7
8 |X

j
l |, and consequently

Pr

(
χ ≥ 35

36
|Xj

l |
)

= Pr

(
χ ≥ 10

9
· 7

8
|Xj

l |
)

≤ Pr

(
χ ≥ 10

9
· E(χ)

)
≤ 0.9 .

Hence Pr (χ < 35
36 |X

j
l |) ≥ 0.1.

Observe that, for different values j, the inequalities |Xj
l ∩{m : fa(m) < fa+1(m) ≤

k}| ≥ 1
36 |X

j
l | can be proved using disjoint steps and therefore disjoint sets of random

independent trials. Consequently, |Xl ∩ {m : fa(m) < fa+1(m) ≤ k}| ≥ 1
36 |Xl|

with probability at least 0.1, and, for the same reason, we have |X ∩ {m : fa(m) <
fa+1(m) ≤ k}| ≥ 1

36 |X| with probability at least 0.1, which completes the proof.

Note that in Lemma 1 we used the rule of radio broadcasting only to trans-
mit to node vl+1, which is the rightmost node in the main path having some active
in-neighbor, so the assumptions of the simple-adversarial wake-up model are satis-
fied. The next lemma implies that in Algorithm Fast-Broadcasting under the simple-
adversarial model the last node of the main path of a simple-path-graph gets the
source message by step O(n log n logD) with probability at least 1 − (0.45)n logD.

Lemma 2. Fix a simple-path-graph G and consider all wake-up patterns under the
simple-adversarial wake-up model. By stage 3600 · n logD, the number of successful
stages is at least 72D log n with probability at least 1 − (0.45)n logD. This number of
successful stages is sufficient to deliver the source message to node vk.

Proof. We consider only substeps of type A. Consider 3600 · n logD consecutive
stages since the beginning of Algorithm Fast-Broadcasting. By Lemma 1, stage a
is successful with probability at least 0.1; moreover, this probability is at least 0.1
independently of successes in other stages. Note, however, that such events are not
independent; only conditional probabilities of success are at least 0.1. Hence the
commonly used probabilistic inequalities, such as Chernoff-type bounds, cannot be
used in our case. We present short and simple calculations to avoid using more
advanced probabilistic bounds for conditional probabilities.
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The probability that among 3600n logD consecutive stages at most 72D log n are
successful is at most

72D logn∑
k=0

(
3600n logD

k

)
·
(

9

10

)3600n logD−k

≤
(

3600n logD

0

)
·
(

9

10

)3600n logD

+

(
3600n logD

1

)
·
(

9

10

)3600n logD−1

+

72D logn∑
k=2

(3600n logD)3600n logD+1

kk(3600n logD − k)3600n logD−k
·
(

9

10

)3600n logD−k

≤ 4001n logD ·
(

9

10

)3600n logD

+

72D logn∑
k=2

3600n logD ·
(

3600n logD

k

)k [
9

10
·
(

1 +
k

3600n logD − k

)]3600n logD−k

≤ 4001n logD ·
(

9

10

)3600n logD

+ 72D log n · 3600n logD ·
(

3600n logD

72n logD

)72n logD [
9

10
· 50

49

]49·72n logD

≤ 4001n logD ·
(

9

10

)3600n logD

+ 72D log n · 3600n logD ·
(
5072 · (0.92)49·72

)n logD
,

which is at most (0.45)n logD, for sufficiently large n. We used the inequalities bb

eb
≤

b! ≤ bb+1

eb
for b ≥ 2 and the fact that function

(
C
x

)x
is increasing for 0 < x ≤ C

e for

positive constant C. We also used the inequality D
logD ≤ n

log n .

In order to complete the proof, we show that if there are at least 72D log n suc-
cessful stages by stage a, then {m : fa(m) < k} = ∅. Let ax, for x = 1, . . . , log n,
be the first stage after 72D · x successful stages. It is enough to prove, by induction
on x, that |{m : fax

(m) < k}| < n/2x. For x = 1 this is straightforward. As-
sume that this inequality is true for x. We show it for x + 1. Suppose the contrary:
|{m : fax+1

(m) < k}| ≥ n/2x+1. It follows that during each successful stage b, where

ax ≤ b < ax+1, at least n/2x+1

36 values fb(m) are smaller than fb+1(m). Since in
stage ax there were fewer than n/2x such values and each of them may increase at
most D times, we obtain that in stage ax+1 the set {m : fax+1(m) < k} would have
fewer than

n
2x ·D
n

36·2x+1 · 72D
= 1

elements, which contradicts the assumption that |{m : fax+1
(m) < k}| >

n/2x+1.
Lemma 3. There exists a matrix T of format r×3600r(1+log r) logD such that,

for any n-node simple-path-graph G of radius at most D and any wake-up pattern,
Procedure Fast-Broadcasting(T ) delivers the source message to the last node of the
main path of G in 3600n logD stages for sufficiently large n.

Proof. Since r is linear in n, we have r = cn for some constant c. Knowledge of c
is not necessary in the analysis, but, since we do not know this constant, the proof
has to be split into two cases.
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First, consider D such that logD > 20(1 + c). In this case we consider only
substeps of type A. There are at most

D∑
k=1

(
r

n

)
·
(
n

k

)
· k! · kn−k ≤ Dαn

different simple-path-graphs G with n nodes and radius at most D for some positive
constant α < 1.1. This is because(

r

n

)
·
(
n

k

)
· k! · kn−k ≤ 2r · 2n · kn = 2n(1+c)+n log k ≤ 2n(1+c)+n logD < D1.05·n

for any k ≤ D, and consequently

D∑
k=1

(
r

n

)
·
(
n

k

)
· k! · kn−k ≤ D ·D1.05·n < D1.1·n

for sufficiently large n (n > 20).
Let T̂ be the random matrix defined previously. By Lemma 2, the probability

that Algorithm Fast-Broadcasting working on T̂ delivers the source message to the
last node of the main path of G by stage 3600n logD, for all simple-path-graphs G
and all wake-up patterns Wm, is at least

1 −
∑
G

(0.45)n logD ≥ 1 −Dαn · (0.45)n logD > 1 −D1.1n · (0.45)n logD > 0 ,

where the sum is taken over all simple-path-graphs G with n nodes chosen from r
labels, and of radius at most D. Using the probabilistic method we obtain that there
is a matrix T satisfying the lemma.

Next, consider D such that logD ≤ 20(1 + c). In this case we consider only
substeps of type B. Since D is constant by step D · r ∈ O(n), every node of the main
path will receive the source message by the round-robin argument. This concludes
the proof.

For every wake-up pattern Wm and every step i of Procedure Fast-Broadcast-
ing(T ), we define an integer f ′

i(m) as follows by analogy to fa(m). If node vk has
the source message after step i, we fix f ′

i(m) = k. Otherwise, f ′
i(m) = l, where vl+1

is the last node on the main path which does not have the source message after step
i but has a neighbor having the source message after step i, assuming that pattern
Wm is used. Obviously fa(m) = f ′

(a+1)(1+log r)−1(m). Note that the above definition,

similar to the definition of fi, may be applied to the case without adversary or under
simple adversary or normal adversary.

Lemma 4. Fix a path-graph G and a matrix T . For any wake-up pattern Wm and
any step i, values f ′

i(m) are the same for network G under the adversarial model and
for network Ḡ under the simple-adversarial model. Consequently, for any stage a, val-
ues fa(m) are the same for network G under the adversarial model and for network Ḡ
under the simple-adversarial model.

Proof. We consider two executions of Procedure Fast-Broadcasting(T ): the first
on graph G under the adversarial model and the second on graph Ḡ under the simple-
adversarial model. The idea of the proof is to overcome two major differences between
the two executions: additional (“backward”) edges in graph G and the additional
communication rule in the second execution under the simple adversary. We have to
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show that these two differences do not influence the “front” (rightmost active layer)
of computation in these two executions. For H equal to G or to Ḡ, we adopt the
following notation:

• Nl[H] is the set of in-neighbors of vl in H;
• Mj [H] is the set of nodes in H which have the source message after step j;
• f ′

i(m)[H] has the meaning defined before for Procedure Fast-Broadcasting(T )
working on H.

In order to prove the lemma, it is enough to prove the following invariant after
step i of Procedure Fast-Broadcasting(T ):

Ai: f ′
i(m)[G] = f ′

i(m)[Ḡ] = l,
Bi: Nl[G] ∩Mi[G] = Nl[Ḡ] ∩Mi[Ḡ].

We prove the invariant by induction on i. For i = 1 it is straightforward. Assume
Ai and Bi hold. We prove Ai+1 and Bi+1.

Proof of Ai+1. Let f ′
i(m)[G] = l. By assumption Ai, we get also f ′

i(m)[Ḡ] = l.
In view of the adversarial and simple-adversarial models of the algorithm description
and of assumption Bi, node vl gets the source message after step i in G under the
adversarial model if and only if it gets the source message after step i in Ḡ under the
simple-adversarial model. Since, for all l′ > l, vl′ does not have an in-neighbor which
holds the source message after step i, for both executions, in view of Ai, we conclude
that vl′ does not have the source message after step i + 1 in either G or in Ḡ.

Suppose that f ′
i+1(m)[G] > f ′

i+1(m)[Ḡ]. Hence there exists a node v outside the
main path, which is woken up after step i + 1, that is an in-neighbor of vf ′

i+1(m)[G]

in G but is not an in-neighbor of vf ′
i+1(m)[G] in Ḡ. This is a contradiction because,

by definition of Ḡ, v has an out-neighbor vl′ in Ḡ for some l′ > f ′
i+1(m)[G]; hence

f ′
i+1(m)[Ḡ] ≥ l′ > f ′

i+1(m)[G].
Suppose that f ′

i+1(m)[G] < f ′
i+1(m)[Ḡ]. Hence there exists a node v outside the

main path, which is woken up after step i+ 1, that is an in-neighbor of vf ′
i+1(m)[Ḡ] in

Ḡ but is not an in-neighbor of vf ′
i+1(m)[Ḡ] in G. This contradicts the fact that Ḡ is a

subgraph of G.
Proof of Bi+1. We have proved that f ′

i+1(m)[G] = f ′
i+1(m)[Ḡ] = l′ for some

l′ ≥ l. We show that Nl′ [G] ∩Mi+1[G] = Nl′ [Ḡ] ∩Mi+1[Ḡ]. Notice that for l′′ > l′,
vl′′ /∈ Mi+1[G] and vl′′ /∈ Mi+1[Ḡ] by definitions of f ′

i+1(m)[G] and f ′
i+1(m)[Ḡ].

If vl′−1 ∈ Nl′ [G]∩Mi+1[G], then from the proof of invariant Ai+1 we get l′−1 = l
but also vl′−1 = vl ∈ Nl′ [Ḡ] ∩Mi+1[Ḡ] because this node got the source message in
step i + 1 (in view of the adversarial and simple-adversarial models of the algorithm
description and of assumption Bi).

If v is outside the main path and v ∈ Nl′ [G] ∩ Mi+1[G], then v ∈ Mi+1[Ḡ]
because the same wake-up pattern is used. Also v ∈ Nl′ [Ḡ] because otherwise there
would exist an index l′′ > l′ such that v ∈ Nl′′ [Ḡ], which contradicts the inequality
f ′
i+1(m)[Ḡ] = l′ < l′′.

If vl′−1 ∈ Nl′ [Ḡ]∩Mi+1[Ḡ], then from the proof of invariant Ai+1 we get l′−1 = l
and vl′−1 = vl ∈ Nl′ [G] ∩Mi+1[G], similar to the above argument for the dual case
(where G is interchanged with Ḡ).

If v is outside the main path and v ∈ Nl′ [Ḡ] ∩ Mi+1[Ḡ], then, since Ḡ is a
subgraph of G, we have v ∈ Nl′ [G]. Since the same wake-up pattern is used in G, we
have v ∈ Mi+1[G].

Theorem 5. There is a matrix T of format r × 3600r(1 + log r) logD such
that, for every n-node graph G of radius D, Procedure Fast-Broadcasting(T ) performs
broadcasting on G in time O(n log n logD).
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Proof. Take the matrix T from Lemma 3. Suppose the contrary: after step
3600n(1 + log r) logD, there is a node v without the source message. Consider the
subgraph H of G, which contains a shortest directed path v0, . . . , vk = v from the
source to node v, with all induced edges between nodes of this path, and all those in-
neighbors v′ of nodes v1, . . . , vk which received the source message by step 3600n(1+
log r) logD, together with the corresponding arcs (v′, vl). By definition, H is a path-
graph, and hence H̄ is a simple-path-graph. By Lemma 3 we obtain that v received
the source message in H̄ by step 3600n(1+ log r) logD. (We need to apply Lemma 3,
under the simple-adversarial model, to the wake-up pattern “generated” by Procedure
Fast-Broadcasting(T ) working on G: every node in H̄ is woken up, under the simple-
adversarial wake-up model, in the time step in which it gets the source message for the
first time when Procedure Fast-Broadcasting(T ) is executed on G.) From Lemma 4,
we obtain that the same is true in H under the adversarial model. Since the considered
wake-up pattern is generated by Procedure Fast-Broadcasting(T ) working on G, we
conclude that v received the source message by step 3600n(1 + log r) logD when
Procedure Fast-Broadcasting(T ) is executed on G. This is a contradiction, which
concludes the proof.

We conclude this section by observing that the assumption that radius D is
known to all nodes can be removed without changing our result. It is enough to

apply Algorithm Fast-Broadcasting for parameter r and for eccentricities 22i

for
i = 1, . . . , �log log r	. Broadcasting will be completed after the execution of Al-
gorithm Fast-Broadcasting for i = �log logD	. The total time will be at most
four times larger than the running time of Algorithm Fast-Broadcasting when D
is known.

Observe that using only substeps of type B in Procedure Fast-Broadcasting(T ) we
can trivially get the estimate O(nD) on broadcasting time. Hence the upper bound
from Theorem 5 can be refined to O(n · min{log n logD,D}).

3. Broadcasting with unknown bound on network size. In this section
we show how our estimate of broadcasting time changes if the nodes do not know
any parameters of the network: neither its radius D nor any upper bound r on the
number of nodes. Denote by AFB(x, y) the execution of Algorithm Fast-Broadcasting
for the upper bound x on the size of the network and for radius y, running in time
3600x(1 + log x) log y (it exists by Theorem 5). We construct the following.

Algorithm Modified-Fast-Broadcasting.

i := 1
repeat forever
i := i + 1, l := 1

while 22l

< 2i−l do
AFB(2i−l, 22l

) (1)
l := l + 1

AFB(2i−l, 2i−l) (2)
The above algorithm uses a doubling technique to estimate unknown parame-

ters D and r. Since the running time of AFB(x, y) depends superlinearly on the
upper bound x on the size of the network and logarithmically on radius y, we in-
crease the estimate of the size exponentially and the estimate of the radius doubly
exponentially. Of course, since we know neither r nor D, the loop repeat is executed
without termination. As defined in the introduction, time of broadcasting for a given
network is the smallest integer t such that all nodes of the network are informed after
step t.
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The following observations hold.
1. For every n-node graph G with parameters r and D, broadcasting on G

is completed by the time when algorithm AFB(2�log r�,min{2�log r�, 22�log log D�}) is
executed. This happens for i = �log r	+ �log logD	 and l = �log logD	, either in (1)
if �log r	 > 2�log logD� or in (2) otherwise.

2. ABF (2i−l, 22l

) performs broadcasting in 3600 · 2i−l · (i − l + 1) · 2l steps.
ABF (2i−l, 2i−l) performs broadcasting in 3600 · 2i−l · (i− l + 1) · (i− l) steps.

3. Fix i. Let l0 be the largest index l for which AFB(2i−l, 22l

) is executed in (1).
The execution of loop “while” lasts at most

l0∑
l=1

3600 · 2i−l · (i− l + 1) · 2l ≤
�log i�∑
l=1

3600 · 2i−l · (i− l + 1) · 2l ≤ 3600 · �log i	 · 2i · i

steps. The execution of (2) lasts

3600 · 2i−l0−1 · (i− l0 − 1 + 1) · (i− l0 − 1) ≤ 3600 · 2i−l0−1 · (i− l0 + 1) · 2l0+1

steps. The latter inequality follows from the condition 22l0 ≥ 2i−l0−1. We further
have

3600 · 2i−l0−1 · (i− l0 + 1) · 2l0+1 = 3600 · 2i−l0(i− l0 + 1) · 2l0 ≤ 3600�log i	 · 2j · i .

4. The total number of steps until the execution of “repeat” for i = i0 is at most

i0∑
i=2

2 · 3600 · �log i	 · 2i · i ≤ 7200 · 2i0+1 · i0 · �log i0	 ,

since (2) lasts at most the same time as the last preceding execution of (1).
5. For any r and D, the total running time of Algorithm Modified-Fast-Broadcast-

ing is at most

7200 · 2�log r�+�log logD�+1 · (�log r	 + �log logD	) · �log(�log r	 + �log logD	)	 ,

which is of order O(r log r log log r logD) = O(n log n log log n logD). This proves the
following theorem.

Theorem 6. Algorithm Modified-Fast-Broadcasting completes broadcasting on
any n-node network of radius D in time O(n log n log log n logD), even when nodes
do not know any parameters of the network or any bound on its size.

Similar to section 2, the above upper bound on broadcasting time can be refined
to O(n · min{log n log log n logD,D}).

4. Optimal broadcasting in complete layered networks. In [13] the au-
thors prove a lower bound Ω(n logD) on deterministic broadcasting time on any
n-node network of radius D. This is done using complete layered networks. All nodes
of such networks can be partitioned into layers L0, L1, . . . , LD where L0 consists of the
source and the set of directed edges is {(v, w) : v ∈ Li, w ∈ Li+1, i = 0, 1, . . . , D− 1}.
More precisely, it is shown in [13] that for every deterministic broadcasting algorithm
there is a complete layered n-node network of radius D, such that this algorithm re-
quires time Ω(n logD) to perform broadcast on this network. This result holds even
when n and D are known to all nodes.
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In this section we present a deterministic broadcasting algorithm which works on
every complete layered n-node network of radius D in time O(n logD), and thus it is
optimal. Hence, any lower bound sharper than Ω(n logD), on broadcasting time in
arbitrary radio networks, would have to be established for graphs more complicated
than complete layered networks. Our result is also an improvement of the upper
bound O(n log n), proved in [12] for n-node complete layered networks.

We use the following definition of an (r, k)-selective family. A family F of subsets
of R is called (r, k)-selective, for k ≤ r, if, for every subset Z of {1, . . . , r}, such that
|Z| ≤ k, there is a set F ∈ F and element z ∈ Z such that Z ∩ F = {z}.

Lemma 7 (see [13]). For every r ≥ 2 and k ≤ r, there exists an (r, k)-selective
family F of size O(k log((r + 1)/k)).

Let Fi denote an (r, 2i)-selective family for i = 1, . . . , log r. By Lemma 7, we
can assume that φi = |Fi| ≤ α2i log((r + 1)/2i) for some constant α > 0 and for all
i = 1, . . . , log r. Let Fi = {Fi(1), . . . , Fi(φi)}.

Algorithm Complete-Layered.

for i = 1, . . . , log r do
for j = 1, . . . , φi do

if v ∈ Fi(j) and v got the source message then v transmits
for j = 1, . . . , r do

if v = j and v got the source message then v transmits.

Theorem 8. Algorithm Complete-Layered completes broadcasting in O(n logD)
time for any n-node complete layered network of radius D.

Proof. For D = 1 the proof is obvious. Assume D ≥ 2. Fix an n-node complete
layered network G of radius D. Let Ll denote the lth layer of G, and let dl = |Ll|,
for l = 0, . . . , D. Let tl denote the step in which all nodes in Ll received the source
message for the first time.

Claim. tl+1 − tl ≤ 4αdl log
(
2(r + 1)/dl

)
for every l = 0, . . . , D − 1.

In step tl + 1 all nodes in Ll start transmitting. After at most

�log dl�∑
i=1

fi ≤ α

�log dl�∑
i=1

2i log((r + 1)/2i)

≤ α

⎡⎣�log dl�∑
i=1

2i log(r + 1) −
�log dl�∑
i=1

i · 2i
⎤⎦

≤ α
[
2�log dl�+1 log(r + 1) − (2�log dl�+1�log dl	 − 2�log dl�+1 + 1)

]
≤ α2�log dl�+1 log

2(r + 1)

dl

≤ 4αdl log
2(r + 1)

dl

steps, all nodes in Ll complete transmissions according to the selective family F�log dl�.

By definition of F�log dl�, there is a step among tl + 1, . . . , tl + 
4αdl log 2(r+1)
dl

� such
that exactly one node in Ll transmits in this step. Consequently all nodes in Ll+1

get the source message by step tl + 
4αdl log 2(r+1)
dl

�. This completes the proof of the
claim.
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Since
∑D

l=0 dl = n and t0 = 0, we have

tD =

D−1∑
l=0

(tl+1 − tl) ≤ 4α

D−1∑
l=0

dl log
2(r + 1)

dl

= 4α

D−1∑
l=0

(
log

(r + 1)dl

ddl

l

+ dl

)
≤ 4α log

(r + 1)n−dD

ΠD−1
l=0 ddl

l

+ 4αn

≤ 4α(n− dD) log
r + 1

(n− dD)/D
+ 4αn .

We used the fact that

D−1∏
l=0

ddl

l ≥
(

n− dD∑D−1
l=0 dl · 1

dl

)n−dD

=

(
n− dD

D

)n−dD

,

which follows from the inequality between geometric and harmonic averages.

Since, for D ≥ 2, the function x · log D(r+1)
x is increasing for x ≤ r + 1, we have

4α(n− dD) log
r + 1

(n− dD)/D
+ 4αn ≤ 4αn log

r + 1

n/D
+ 4αn ∈ O(n logD) .

5. Conclusion. We presented a deterministic broadcasting algorithm working
in time O(n log n logD) for arbitrary n-node ad hoc radio networks of radius D,
thus shrinking the gap between the upper bound and the best currently known lower
bound Ω(n logD) [13] on broadcasting time in ad hoc radio networks to a logarithmic
factor. While our upper bound has been recently improved to O(n log2 D) in [14], a
logarithmic gap between the bounds still remains. Closing this gap is a challenging
open problem.
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Abstract. We prove an exact lower bound of 2− 1
m

on the competitive ratio of any deterministic
algorithm for load balancing of temporary tasks on m identical machines. We also show a lower bound
of 2− 2

m+1
for randomized algorithms. For small values of m we give an improved randomized lower

bound of 2 − 1
m
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1. Introduction. We consider the problem of nonpreemptive on-line load bal-
ancing of temporary tasks on m identical machines. Tasks (jobs) arrive at arbitrary
times. Each task has a weight and a duration. A task has to be assigned upon its
arrival to exactly one of the machines, thereby increasing the load on this machine
by the weight of the task. The increase of the load is only for a time period equal
to the duration of the task. The duration of each task becomes known only upon its
termination. This model is called temporary tasks of unknown duration. Once a task
has been assigned to a machine it cannot be reassigned to another machine. We define
the cost of an algorithm to be the maximum load over machines and time. The goal
is to minimize the cost. We say that the competitive ratio of a deterministic on-line
algorithm is r if for all sequences the cost of the on-line algorithm is at most r times
the cost of an optimal off-line algorithm which knows all events in advance. Note that
this definition corresponds to the ratio of the maximum load over machines and time
of the on-line algorithm to the maximum load over machines and time of the optimal
off-line algorithm. One may also consider a momentary competitive ratio, that is, the
maximum over time of the ratio between the maximum load over the machines of the
on-line algorithm and the maximum load over the machines of the optimal off-line
algorithm. This is a much stronger definition, and it is folklore that a reasonable (i.e.,
constant) competitive ratio cannot be achieved for this definition.

The problem of scheduling tasks on identical machines was first introduced by
Graham [12, 13]. He gave a greedy algorithm, “List Scheduling,” which is 2 − 1

m
competitive, where m is the number of machines. The upper bound was proved
for permanent tasks, i.e., tasks that start at arbitrary times but continue forever.
Nevertheless, his 2− 1

m analysis of the upper bound holds for temporary tasks as well.

In this paper we show that the algorithm of Graham is optimal by proving a
matching lower bound. We show a lower bound of 2 − 1

m on the competitive ratio
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of any deterministic on-line algorithm for load balancing of temporary tasks on iden-
tical machines. One could hope that with randomized algorithms, an upper bound
strictly less than 2 can be achieved. The regular definition of the competitive ratio for
randomized algorithms corresponds to an oblivious adversary (see [7]). Specifically,
the competitive ratio of a randomized on-line algorithm is r if for all sequences, the
expected cost of the on-line algorithm over its coin flips is at most r times the cost of
the optimal off-line algorithm. Note that this definition corresponds to an adversary
that knows the specification of the on-line algorithm but does not know the coin flips
and the assignments. Moreover, a lower bound for an oblivious adversary is also a
lower bound for an adaptive one (see [7] for the definition of adaptive adversaries).

We also show a lower bound of 2− 2
m+1 on the competitive ratio of any randomized

on-line algorithm for the problem. In fact, for m = 2, 3, 4, we can improve the lower
bound to 2 − 1

m , which implies that “List Scheduling” is also optimal in these cases.
The randomized lower bound for general m requires a sequence of tasks of super-
polynomial length in m. If we restrict the sequence to have a polynomial length, we
prove a lower bound of 2 − O( log logm

logm ) on the competitive ratio for any randomized
algorithm.

Recall that Graham [12, 13] considered only permanent tasks. He showed that
the greedy algorithm “List Scheduling” has a competitive ratio of exactly 2 − 1

m for
m machines. In other words, he showed a family of instances for which the algorithm
“List Scheduling” delivers a schedule where the maximum load is 2− 1

m the maximum
load in an optimal schedule. For m = 2, 3, the algorithm is optimal [10]. However,
the algorithm of Graham is not optimal (for all m ≥ 4) [11, 9]. Bartal et al. [5] were
the first to show an algorithm whose competitive ratio is strictly below c < 2 (for
all m). More precisely, their algorithm achieves a competitive ratio of 2 − 1

70 . Later,
the algorithm was generalized by Karger, Phillips, and Torng [14] to yield an upper
bound of 1.945. Very recently, Albers [1] designed a 1.923 competitive algorithm and
improved the lower bound to 1.852 (the previous lower bound for permanent tasks
was 1.8370 [6]). The best lower bound known for randomized algorithms is 1.582 (for
large m) [8, 15]. For m = 2, the randomized competitive ratio is precisely 4/3 [5]. We
show that in contrast to permanent tasks, the simple algorithm of Graham turns out
to be optimal for temporary tasks. Moreover, even randomization cannot reduce the
competitive ratio below 2 − o(1). Note that for m = 2, our tight randomized lower
bound is 3/2. We also prove the same lower bound for the known duration case. This
is in contrast to the competitive ratio for permanent jobs that is 4/3.

To prove our randomized lower bound we introduce a new technique that con-
verts a lower bound for deterministic algorithms to a lower bound for randomized
algorithms. More precisely, we show that a lower bound for deterministic algorithms
that maintains a fixed value for the cost of the optimal assignment is a lower bound
for randomized algorithms.

The problem of on-line load balancing of temporary tasks was introduced by
Azar, Broder, and Karlin [2]. They studied the restricted assignment case, i.e., each
task can be assigned only to a machine in a subset which may depend on the task.
They showed an Ω(

√
m) lower bound in contrast to the Θ(logm) competitive ratio

for permanent tasks [4]. A matching upper bound was given in [3]. Load balancing of
temporary tasks was also studied for the related machines model. In this model the
increase of the load on a machine is the ratio of the weight of the task and the speed
of that machine. An algorithm which is 20 competitive and a general lower bound of
3 − o(1) were given by [3].
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2. Notation. We denote the input sequence by σ = σ1, . . . , σr. Each event σi

is an arrival or a departure of a job (task). We view σ as a sequence of times; the
time σi is the moment after the ith event happens. We denote the weight of job j by
wj , its arrival time by aj , and its departure time (which is unknown until it departs)
by dj . An on-line algorithm has to assign a job upon its arrival without knowing the
future jobs and the durations of jobs that have not departed yet. We compare the
performance of on-line algorithms and the optimal off-line algorithm that knows the
sequence of jobs and their durations in advance.

Let Ji = {j|aj ≤ σi < dj} be the active jobs at time σi. For a given algorithm A
(on-line or off-line) let Aj be the machine to which job j is assigned. Let

lAk (i) =
∑

{j|Aj=k,j∈Ji}
wj

be the load on machine k at time σi, which is the sum of weights of all jobs assigned to
k that are active at this time. The cost of an algorithm A is the maximum load ever
achieved by any of the machines, i.e., CA = maxi,k lAk (i). The competitive ratio of A
is r if for any sequence E(CA) ≤ r ·Copt, where the expectation is taken over the coin
flips of the on-line algorithm and Copt is the cost of the optimal off-line algorithm.

3. A lower bound for deterministic algorithms. In this section we prove
the deterministic lower bound.

Theorem 3.1. Any deterministic on-line algorithm for load balancing of tempo-
rary tasks has the competitive ratio of at least 2 − 1

m .
Proof. We consider the following sequence. First m(m − 1) unit jobs arrive

(wj = 1). Since there are m machines, there is at least one machine (call it x) with
load at least m − 1. Then all jobs depart, except m − 1 jobs on this machine. Next
m− 1 jobs of load m− 1 arrive. There are two possible cases:

1. The on-line algorithm keeps at least one machine empty (with no jobs assigned
to it). In this case, the load of the on-line algorithm on some machine is at
least 2(m − 1) since at least two jobs of load m − 1 were assigned to one
machine, or a job of load m− 1 was assigned to machine x.
In the first phase, the off-line algorithm assigns the m − 1 unit jobs which
will not depart to one machine and distributes the (m − 1)2 unit jobs that
will depart evenly on the other m − 1 machines. Then it assigns one job of
weight m − 1 to each of the other machines to have the maximum load of
m− 1. In this case, the ratio between the costs of the on-line and the off-line
algorithms is at least 2(m− 1)/(m− 1) = 2.

2. The on-line algorithm does not keep an empty machine; i.e., there is now one
job of weight m− 1 on each machine except x, on which there are m− 1 unit
jobs. Next one additional (and final) job of weight m arrives. The on-line
algorithm must assign it to one of the machines, which results in a load of
2m− 1.
We show that the off-line algorithm can assign the jobs, having a maximum
load of m. In the first phase, the unit jobs that do not depart are each
assigned to a different machine. The other jobs are distributed so that the
load on each machine is exactly m− 1. In the second phase, only m− 1 unit
jobs, each scheduled on a different machine, are left. The jobs of load m− 1
are added to those machines, yielding a load of m and keeping one machine
empty. Finally, the job of load m is assigned to the empty machine. In this
case, the competitive ratio is at least (2m− 1)/m = 2 − 1/m.
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In both possible cases, the competitive ratio is at least 2− 1
m , and thus any on-line

algorithm has at least this competitive ratio.

4. Lower bounds for randomized algorithms. In this section we prove lower
bounds for randomized on-line algorithms. We first introduce a general theorem that
converts lower bounds for deterministic algorithms to lower bounds for randomized
algorithms. In order to make this conversion possible, the value of the optimal off-
line cost should be fixed and known in advance. We represent a lower bound for a
deterministic algorithm by a tree. Each path in the tree is one possible lower bound
sequence. Each node in the tree is a subsequence, and a child node of a node is one
possible way to continue the sequence. The size |T | of a tree T is defined to be the
number of leaves in T (the number of possible sequences). We consider both the
unknown duration case and the known duration case. In the first case the duration
of a job is known only when it departs, whereas in the second case the duration of a
job is known upon its arrival.

Theorem 4.1. Let r1 (r2, respectively) be a deterministic lower bound on the
competitive ratio for load balancing of temporary tasks with unknown (known, respec-
tively) duration, where the optimal value of the load is known in advance. Then,
r1 (r2, respectively) is also a lower bound for randomized algorithms for the same
problem, i.e., load balancing of temporary tasks with unknown (known, respectively)
duration.

Proof. Consider a lower bound tree T ′ for deterministic algorithms with a fixed
value of optimal load which is known in advance. We show how to convert it into
a lower bound for randomized algorithms. A lower bound for temporary tasks with
unknown duration is converted into a lower bound for randomized unknown duration,
and a lower bound for known duration is converted into a lower bound for randomized
known duration. We first slightly modify the lower bound tree as follows: each possible
sequence σ ∈ T ′ is followed by the departures of all existing jobs. This can be done
for unknown duration and also for known duration. Note that the new tree T satisfies
|T | = |T ′|. Next we recall the adaptation of Yao’s theorem for on-line algorithms.
It states that a lower bound for the competitive ratio of deterministic algorithms on
any distribution on the input is also a lower bound for randomized algorithms and is
given by E(Con/Copt). The main idea of the proof is to construct sequences in which,
on one hand, the new value C ′

opt is the same as the known optimal value Copt in the
lower bound of the original tree T and, on the other hand, with high probability the
new value of C ′

on is also the same as the value Con of T . To construct the lower bound
we choose (uniformly at random) a leaf of the tree T that corresponds to a sequence.
Define this short sequence as a segment. Repeat the choice of segments |T |k times
and concatenate the sequences into one long sequence. This defines a distribution
on the set of possible long sequences. Since the optimal off-line costs of all possible
segments are the same, the optimal off-line cost of every resulting sequence is Copt as
well. For any deterministic algorithm, there exists a leaf in T that has a cost Con for
the on-line algorithm. With probability at least 1

|T | , the cost of the on-line algorithm

on a specific segment (and thus for the whole sequence) is Con. The probability that
the cost Con would not be achieved in one segment is at most (1− 1

|T | )
|T |k ≤ e−k, and

thus with probability at least 1 − e−k the competitive ratio is Con/Copt; otherwise it

is at least 1. We calculate E(
C′

on

C′
opt

), where C ′
opt, and C ′

on are, respectively, the off-line

and on-line costs of the long sequence

E

(
C ′

on

C ′
opt

)
≥ (1 − e−k)

Con

Copt
+ e−k .
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Since this is true for every k,

E

(
C ′

on

C ′
opt

)
≥ Con

Copt
,

which is exactly the competitive ratio of the lower bound of the tree T .
Now, we would like to apply Theorem 4.1 to Theorem 3.1. However, in Theorem

3.1 the optimal value of the load is not fixed and hence cannot be known in advance.
Therefore, we prove a slightly smaller deterministic lower bound with a fixed known
optimal value.

Theorem 4.2. Any deterministic on-line algorithm for load balancing of tem-
porary tasks has a competitive ratio of at least 2 − 2

m+1 even if the optimal value is
known in advance.

Proof. We consider the following sequence. First m2 unit jobs (wj = 1) arrive.
Since there are m machines, there is at least one machine (call it x) with a load of
at least m. Now all jobs depart, except m jobs on this machine. Now m jobs of
weight m arrive. Since machine x has load m, the on-line algorithm must assign two
jobs of weight m to one machine, or assign one job of weight m to the machine x.
In both cases, the maximum load of the on-line algorithm is at least 2m. The off-
line algorithm distributes the m large jobs and the m unit jobs that remained from
the first phase evenly on the m machines, and thus has a load of m + 1. The other
m(m− 1) unit jobs of the first phase are also distributed evenly on the m machines.
The ratio between the costs of the two algorithms is at least 2m

m+1 = 2 − 2
m+1 .

Corollary 4.3. Any randomized on-line algorithm for load balancing of tempo-
rary tasks has a competitive ratio of at least 2 − 2

m+1 .
Proof. The proof follows from Theorems 4.2 and 4.1. In this case, there are

(m2)
m

= m2m different possibilities for the m2 unit jobs to be placed, and there are
m2m leaves in the lower bound tree.

It is possible to improve the lower bound for small numbers of machines. The
following remark can be proved using similar techniques to the lower bound for general
m, where case analysis is applied (for complete details see the preliminary version of
this paper).

Remark 1. Any randomized on-line algorithm for load balancing of temporary
tasks on m ≤ 4 machines has a competitive ratio of at least 2 − 1

m . Moreover, for
m = 2 the competitive ratio is at least 3

2 even in the known duration model.
The general randomized lower bound is proved using sequences of exponential

length. We can achieve a lower bound of 2 − o(1) using sequences of polynomial
length as well.

Remark 2. Any randomized on-line algorithm for load balancing of temporary
tasks has a competitive ratio of at least 2−O( log logm

logm ) even when the input sequence
is of polynomial length in m.

To prove this remark we use the following sequence repeated a polynomial number
of times. Take an integer h such that 2hh ≤ m. The sequence starts with the arrival
of mh unit jobs. Then mh−m of them are chosen uniformly at random and depart.
Next m jobs of weight h arrive and afterward all jobs depart. The calculations are
omitted (for complete details see the preliminary version of this paper).

5. Concluding remarks. We proved lower bounds of 2−o(1) on the competitive
ratio of the load balancing problem of temporary tasks. Note that there is a small gap
between the randomized lower bound and the optimal deterministic one. One would
like to know the exact bound for randomized algorithms or at least if randomization
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helps at all to reduce the competitive ratio in these problems. It follows from our
results that randomization may help slightly only for m ≥ 5. Knowing whether the
durations of the tasks can help in reducing the competitive ratio strictly below 2 for
both deterministic and randomized algorithms remains an open question.

6. Acknowledgment. We would like to thank Allan Borodin for many helpful
discussions.
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Abstract. Given a graph G, the normalized Laplacian associated with the graph G, denoted
L(G), was introduced by F. R. K. Chung and has been intensively studied in the last 10 years. For a
k-regular graph G, the normalized Laplacian L(G) and the standard Laplacian matrix L(G) satisfy
L(G) = kL(G), and hence they have the same eigenvectors and their eigenvalues are directly related.
However, for an irregular graph G, L(G) and L(G) behave quite differently, and the normalized
Laplacian seems to be more natural. In this paper, Cauchy interlacing-type properties of the nor-
malized Laplacian are investigated, and the following result is established. Let G be a graph, and let
H = G− e, where e is an edge of G. Let λ1 ≥ λ2 ≥ · · · ≥ λn = 0 be the eigenvalues of L(G), and let
θ1 ≥ θ2 ≥ · · · ≥ θn be the eigenvalues of L(H). Then, λk−1 ≥ θk ≥ λk+1 for each k = 1, 2, 3, . . . , n,
where λ0 = 2 and λn+1 = 0. Applications are given for eigenvalues of graphs obtained from special
graphs by adding or deleting a few edges. A short proof is given of the result that G is a graph with
each component a nontrivial bipartite graph if and only if 2 − λ is an eigenvalue of L(G) for each
eigenvalue λ of L(G).
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1. Introduction. All graphs in this paper are simple graphs, namely, finite
graphs without loops or parallel edges. Let G be a graph, and let V (G) and E(G)
denote the vertex set and the edge set of G, respectively. Two vertices are adjacent
if they are two end vertices of an edge, and two edges are adjacent if they share a
common end vertex. A vertex and an edge are incident if the vertex is one end vertex
of the edge. For any vertex v ∈ V (G), let dv denote the degree of v.

Suppose that V (G) = {v1, v2, . . . , vn}. An n× n (0,1)-matrix A := A(G) = (aij)
is called the adjacency matrix of G if

aij =

{
1 if vivj ∈ E(G),
0 otherwise.

The eigenvalues of A(G) have been studied extensively. We refer the reader to Biggs
[1] and Schwenk and Wilson [11] for literature in this area.

The standard Laplacian L := L(G) = (Lij) of a graph G of order n is the n × n
matrix L defined as follows:

Lij =

⎧⎨⎩
dvi if vi = vj ,
−1 if vivj ∈ E(G),
0 otherwise.

Let T denote the diagonal matrix with the (i, i)th entry having value dvi . The
normalized Laplacian of G is the n× n matrix L := L(G) = (Lij) given by
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Lij =

⎧⎪⎪⎨⎪⎪⎩
1 if vi = vj and d(vi) �= 0,

− 1√
dvi

dvj

if vivj ∈ E(G),

0 otherwise.

We can write L = T−1/2LT−1/2 with the convention that T−1(i, i) = 0 if dvi =
0. For convenience, we simply call L the (normalized) Laplacian. The study of
Laplacians began with a book by Cvetković, Doob, and Sachs [7]. Laplacians have
been intensively studied by Chung and her collaborators in a series of papers [3, 4, 5, 6]
and by Chung in [2]. Clearly, for k-regular graphs, we have L = kI−A and L = 1

kL =
I − 1

kA, so we have an easy one-to-one correspondence between the eigenvalues of L,
L, and A. For nonregular graphs, there is different behavior among these three, and
the standard Laplacian would seem to be the most natural one. However, as pointed
out in [2, p. 2], the eigenvalues of normalized Laplacians are in a “normalized” form,
and the spectra of normalized Laplacians relate well to other graph invariants for
general graphs in a way that the other two definitions fail to do. The advantages of
this definition are perhaps due to the fact that it is consistent with the eigenvalues in
spectral geometry and in stochastic processes. Many results known for the Laplacians
of regular graphs can be generalized to all graphs.

Chung [2] notes that for any graph G, its Laplacian can be written as

L = SST ,

where S is the matrix whose rows are indexed by the vertices and whose columns are
indexed by the edges of G such that each column corresponding to an edge e = vivj
has an entry 1/

√
dvi in the row corresponding to vi, has an entry −1/

√
dvj in the row

corresponding to vj , and has zero entries elsewhere. Hence, all eigenvalues of L are
real and nonnegative. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of L. The following
results can be found in [2].

Theorem 1.1. For a graph G on n vertices, we have the following.
1. λn = 0.
2.

∑
i λi ≤ n with equality holding if and only if G has no isolated vertices.

3. For n ≥ 2, λn−1 ≤ n
n−1 with equality holding if and only if G is a complete

graph on n vertices. Also, for a graph G without isolated vertices, we have
λ1 ≥ n

n−1 .
4. For a graph which is not a complete graph, we have λn−1 ≤ 1.
5. If G is connected, then λn−1 > 0. If λn−i+1 = 0 and λn−i �= 0, then G has

exactly i connected components.
6. For all i ≤ n, we have λi ≤ 2 with λ1 = 2 if and only if a connected component

of G is a nontrivial bipartite graph.
7. The spectrum of a graph is the union of the spectra of its connected compo-

nents.
Theorem 1.2. The eigenvalues of the Laplacians of some special graphs are

given below.
1. For the complete graph Kn on n vertices, the eigenvalues are 0 and n/(n−1)

(with multiplicity n− 1).
2. For the complete bipartite graph Km,n on m+ n vertices, the eigenvalues are

0, 1 (with multiplicity m + n− 2), and 2.
3. For the star Sn on n vertices, the eigenvalues are 0, 1 (with multiplicity n−2),

and 2.
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Theorem 1.3. A connected graph is a nontrivial bipartite graph if and only if,
for each eigenvalue λi of the Laplacian, 2−λi is also an eigenvalue of the Laplacian.

Chung [2] develops many of her results through the use of harmonic eigenfunc-
tions. An alternative approach is more purely matrix theoretic. We now give another
proof of Theorem 1.3. The reader is referred to [10] for terminology.

Proof. Suppose that 2− λi is an eigenvalue of L(G) for each eigenvalue λi. Since
0 is an eigenvalue of L(G), 2 is also an eigenvalue. Thus, G is a nontrivial bipartite
graph by point 6 of Theorem 1.1.

Conversely, suppose that G is a connected nontrivial bipartite graph. By point 6
of Theorem 1.1, both 0 and 2 are eigenvalues of L. We first observe that I − L is a
nonnegative matrix. Since G is connected, I −L is irreducible. Since the eigenvalues
of L are in the closed interval [0, 2], the eigenvalues of I −L are in the closed interval
[−1, 1]. In particular, 1 and −1 are eigenvalues of I − L. By the Perron–Frobenius
theorem [10, p. 508], the eigenvalue 1 of I − L (and hence the eigenvalue 0 of L) has
multiplicity 1 (this gives another proof of point 5 of Theorem 1.1).

We now use the “equal spacing” property [10, p. 511] of the nonzero eigenvalues
of the nonnegative irreducible matrix I − L. This implies that −1 has multiplicity
1 (so there are k = 2 eigenvalues of maximum modulus); so does eigenvalue 2 of L.
Further, from the “equal spacing” property, all the nonzero eigenvalues of I−L occur
in pairs centered at the origin. Hence, the eigenvalues of L not equal to 1 occur in
pairs centered at 1. Thus, λi is an eigenvalue of L if and only if 2−λi is an eigenvalue
of L.

2. Interlacing eigenvalues. Eigenvalue interlacing provides a useful tool for
obtaining inequalities and regularity results concerning the structure of graphs in
terms of eigenvalues of adjacency matrices and Laplacians. Much research has been
done in this area. For a survey of literature, we refer the reader to Haemers [8]. The
following result is known as Cauchy’s interlacing theorem.

Theorem 2.1. Let A be a real n×n symmetric matrix and B be an (n−1)×(n−1)
principal submatrix of A. If

λ1 ≥ λ2 ≥ · · · ≥ λn and θ1 ≥ θ2 ≥ · · · ≥ θn−1

are the eigenvalues of A and B, respectively, then

λ1 ≥ θ1 ≥ λ2 ≥ θ2 ≥ · · · ≥ θn−1 ≥ λn.

Let G be a graph of order n, and let H = G − v, where v is a vertex of G.
Theorem 2.1 gives an interlacing property of the eigenvalues of G and the eigenvalues
of H, which we refer to as the vertex version of the interlacing property. Theorem 2.1
does not directly apply to the standard Laplacian (or the Laplacian) of G and H since
the principal submatrices of a standard Laplacian (or Laplacian) may no longer be
the standard Laplacian (or Laplacian) of a subgraph. However, the following result
due to van den Heuvel [9] reflects an edge version of the interlacing property.

Theorem 2.2. Let G be a graph, and let H = G− e, where e is an edge of G. If

λ1 ≥ λ2 ≥ · · · ≥ λn = 0 and θ1 ≥ θ2 ≥ · · · ≥ θn = 0

are the eigenvalues of L(G) and L(H), respectively, then

λ1 ≥ θ1 ≥ λ2 ≥ · · · ≥ θn−1 ≥ λn.
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Since the trace of L is n, when there are no isolated vertices, it is impossible
to have an exactly parallel result to Theorem 2.2. The purpose of this article is to
establish the following interlacing result on normalized Laplacians.

Theorem 2.3. Let G be a graph, and let H = G− e, where e is an edge of G. If

λ1 ≥ λ2 ≥ · · · ≥ λn and θ1 ≥ θ2 ≥ · · · ≥ θn

are the eigenvalues of L(G) and L(H), respectively, then

λi−1 ≥ θi ≥ λi+1 for each i = 1, 2, 3, 4, . . . , n,

where λ0 = 2 and λn+1 = 0.
The following are direct consequences of Theorem 2.3.
Corollary 2.4. Let G be a graph, and let H be a spanning subgraph of G such

that |E(G−H)| ≤ t for some positive integer t. If

λ1 ≥ λ2 ≥ · · · ≥ λn and θ1 ≥ θ2 ≥ · · · ≥ θn

are the eigenvalues of L(G) and L(H), respectively, then

λi−t ≥ θi ≥ λi+t for each i = 1, 2, . . . , n

with the convention of

λ−t+1 = λ−t+2 = · · · = λ0 = 2,

λn+1 = λn+2 = · · · = λn+t = 0.

Corollary 2.5. If G is a graph on n vertices and only t edges away from
complete, then n/(n−1) is an eigenvalue of L(G) with multiplicity at least n−2t−1.

Corollary 2.6. If G is a graph on m+n vertices and the edge set E(G) can be
obtained from Km,n by deleting at most t edges, then 1 is an eigenvalue of L(G) with
multiplicity at least m + n− 2(t + 1).

Let G be a graph, and let x ∈ V (G). The neighborhood of x is

N(x) = {y : xy ∈ E(G)}.

For any two vertices u and v of G, we use G/{u, v} to denote the graph obtained from
G by contracting u and v to one vertex; i.e., G/{u, v} is the graph obtained from G by
deleting the vertices u and v and adding a new vertex (uv) such that the neighborhood
of (uv) is the union of the neighborhoods of u and v. When u and v are adjacent,
G/{u, v} is the graph obtained from G by contracting the edge uv. Contraction of
edges and vertices has many applications in graph theory. By contracting two special
vertices of a graph, we obtain the following interlacing result.

Theorem 2.7. Let G be a graph, and let u and v be two vertices of G. Let

λ1 ≥ λ2 ≥ · · · ≥ λn and θ1 ≥ θ2 ≥ · · · ≥ θn−1

be the eigenvalues of L(G) and L(G/{u, v}), respectively. If N(u)∩ (N(v)∪{v}) = ∅,
then

λi−1 ≥ θi ≥ λi+1 for each i = 1, 2, 3, 4, . . . , n,

where λ0 = 2 and λn+1 = 0.
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The proof of Theorem 2.3 will heavily depend on the Courant–Fischer theorem.
Here and subsequently, the notation g ⊥ g(k+1), . . . , g(n) means that g is orthogonal
to span(g(k+1), . . . , g(n)).

Theorem 2.8 (Courant–Fischer). For a real, symmetric n × n matrix A with
eigenvalues

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn,

we have

λk = max
g(k+1),g(k+2),...,g(n)∈Rn

min
g⊥g(k+1),g(k+2),...,g(n)

g �=0

gTAg

gT g

and

λk = min
g(1),g(2),...,g(k−1)∈Rn

max
g⊥g(1),g(2),...,g(k−1)

g �=0

gTAg

gT g
.

The following two lemmas will also be useful in what follows.
Lemma 2.9. Suppose that for real a, b, and γ,

a2 − 2γ2 ≥ 0, b2 − γ2 > 0, and
a2

b2
≤ 2.

Then

a2 − 2γ2

b2 − γ2
≤ a2

b2
.

Proof. The result follows from

a2 − 2γ2

b2 − γ2
=

a2

b2
1 − 2γ2/a2

1 − γ2/b2
≤ a2

b2
.

The final inequality is clearly true when

γ2

b2
≤ 2γ2

a2
,

which is equivalent to a2/b2 ≤ 2.
Lemma 2.10. Let G be a graph on n vertices, let L = L(G) be the standard

Laplacian of G, and let f = (f1, . . . , fn)T be a column vector in R
n. Then,

fTLf =
∑
i∼j

(fi − fj)
2,

where
∑

i∼j runs over all unordered pairs {i, j} for which vi and vj are adjacent.
Proof. Lemma 2.10 directly follows from the definition of L.
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3. Proof of Theorem 2.3. We adapt the Courant–Fischer theorem to the
Laplacian using harmonic eigenfunctions. Recall that

L = T−1/2LT−1/2.

We assume that T 1/2 is invertible; that is, there are no vertices of degree zero.
For vectors g and g(j), define the vectors

f = T−1/2g and f (j) = T 1/2g(j).

Note that

g ⊥ g(k+1), g(k+2), . . . , g(n)

if and only if

f ⊥ f (k+1), f (k+2), . . . , f (n).

Applying the Courant–Fischer theorem to get the eigenvalues λk of L gives

λk = max
g(k+1),g(k+2),...,g(n)∈Rn

min
g⊥g(k+1),g(k+2),...,g(n)

g �=0

gTT−1/2LT−1/2g

gT g

= max
g(k+1),g(k+2),...,g(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n)

f �=0

fTLf

fTTf

= max
f(k+1),f(k+2),...,f(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n)

f �=0

fTLf

fTTf

= max
f(k+1),f(k+2),...,f(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n)

f �=0

∑
i∼j(fi − fj)

2∑
j f

2
j dj

,

where fj is the jth component of f , dj = d(vj) is the degree of vj , and
∑

i∼j runs over
all unordered pairs {i, j} for which vi and vj are adjacent. The third line depends on
the invertibility of T so that maximizing over vectors f (k) is equivalent to maximizing
over vectors g(k). The final line depends on Lemma 2.10. The vector f can be viewed
as a function f(v) on the set of vertices that maps vj to fj . The function f(v) is a
harmonic eigenfunction.

The other half of the Courant–Fischer theorem gives

λk = min
f(1),f(2),...,f(k−1)∈Rn

max
f⊥f(1),f(2),...,f(k−1)

f �=0

∑
i∼j(fi − fj)

2∑
j f

2
j dj

.

Without loss of generality, we assume that an edge between the particular vertices
v1 and v2 is removed, and we consider the eigenvalues θk of the Laplacian of the
modified graph. Two changes occur in the Courant–Fischer theorem when an edge is
removed. The degrees of v1 and v2 are decreased from d(v1) and d(v2) to d(v1) − 1
and d(v2) − 1 so that ∑

j

f2
j dj →

∑
j

f2
j dj − f2

1 − f2
2 .
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Also, since v1 and v2 are no longer adjacent, the sum no longer includes the pair {1, 2}
so that ∑

i∼j

(fi − fj)
2 →

∑
i∼j

(fi − fj)
2 − (f1 − f2)

2.

Note that the sum
∑

i∼j still runs over vertices that are adjacent in the original graph;

in applying the theorem to the modified graph we explicitly subtract out (f1 − f2)
2

instead of modifying the index set of the sum.
Thus,

θk = max
f(k+1),f(k+2),...,f(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n)

f �=0

∑
i∼j(fi − fj)

2 − (f1 − f2)
2∑

j f
2
j dj − f2

1 − f2
2

≤ max
f(k+1),f(k+2),...,f(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n)

f �=0
f1=−f2

∑
i∼j(fi − fj)

2 − (f1 − f2)
2∑

j f
2
j dj − f2

1 − f2
2

= max
f(k+1),f(k+2),...,f(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n),e1+e2

f �=0

∑
i∼j(fi − fj)

2 − 4f2
1∑

j f
2
j dj − 2f2

1

≤ max
f(k+1),f(k+2),...,f(n)∈Rn

min
f⊥f(k+1),f(k+2),...,f(n),e1+e2

f �=0

∑
i∼j(fi − fj)

2∑
j f

2
j dj

≤ max
f(k),f(k+1),...,f(n)∈Rn

min
f⊥f(k),f(k+1),...,f(n)

f �=0

∑
i∼j(fi − fj)

2∑
j f

2
j dj

= λk−1.

The vectors e1 and e2 are the standard basis vectors. In line four we have used Lemma
2.9, which is applicable with γ2 = 2f2

1 because of the inequality∑
i∼j(fi − fj)

2∑
j f

2
j dj

≤
∑

i∼j 2(f2
i + f2

j )∑
j f

2
j dj

= 2.

In a similar manner the second half of the Courant–Fischer theorem gives a lower
bound on θk:

θk = min
f(1),f(2),...,f(k−1)∈Rn

max
f⊥f(1),f(2),...,f(k−1)

f �=0

∑
i∼j(fi − fj)

2 − (f1 − f2)
2∑

j f
2
j dj − f2

1 − f2
2

≥ min
f(1),f(2),...,f(k−1)∈Rn

max
f⊥f(1),f(2),...,f(k−1)

f �=0
f1=f2

∑
i∼j(fi − fj)

2∑
j f

2
j dj − 2f2

1

≥ min
f(1),f(2),...,f(k−1)∈Rn

max
f⊥f(1),f(2),...,f(k−1),(e1−e2)

f �=0

∑
i∼j(fi − fj)

2∑
j f

2
j dj

≥ min
f(1),f(2),...,f(k)∈Rn

max
f⊥f(1),f(2),...,f(k)

f �=0

∑
i∼j(fi − fj)

2∑
j f

2
j dj

= λk+1.
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Thus,

λk−1 ≥ θk ≥ λk+1

with the convention λ0 = 2 and λn+1 = 0. The proof of the upper bound does
not apply to θ1, and the proof of the lower does not apply to θn. The values of λ0

and λn+1 have been chosen to make the upper and lower bounds true for θ1 and θn.
This follows immediately from bounds that hold for all eigenvalues of a normalized
Laplacian: 0 ≤ θk ≤ 2.

We have assumed throughout that T is invertible (i.e., there is no vertex of degree
zero). However, this is not restrictive; the inequality holds in general. If d(v) = 0 for
m vertices, then the normalized Laplacian can be permuted so that

PLPT =

(
L1 0
0 0m×m

)
for some permutation matrix P . Thus, for L,

λn−m = λn−m+1 = · · · = λn = 0.

The removal of an edge then affects only L1 so that the theorem can be applied to
the submatrix. The additional zero eigenvalues, θn−m+1 = θn−m+2 = · · · = θn = 0,
satisfy

θk ≥ λk+1 = 0 and θk ≤ λk−1 = 0

for k = n−m + 1, . . . , n. Also θn−m ≥ λn−m+1 = 0. Interlacing bounds for all other
θk follow from the interlacing theorem applied to L1.

4. Concluding remarks. Finally, we give a few remarks on the proof of The-
orem 2.7. We assume that the vertices vi are indexed by integers with v1 = u and
v2 = v, where u and v are as in the statement of the theorem. Let J be an index set
such that j ∈ J if and only if vj ∈ N(v1). Since N(v1) ∩ (N(v2) ∪ {v2}) = ∅, we can
view the contraction as the removal of all edges v1vj and the simultaneous addition of
all edges v2vj for j ∈ J . Thus, the Courant–Fischer theorem applied to L(G/{v1, v2})
is

θk= max
f(k+1),...,f(n)∈Rn

min
f⊥f(k+1),...,f(n)

f �=0

∑
i∼j(fi − fj)

2 +
∑

j∈J(f2 − fj)
2 − (f1 − fj)

2∑
j f

2
j dj − d1f2

1 + d1f2
2

.

If we impose the constraint f1 = f2, then these modifications disappear, and a nearly
identical argument to that used to prove Theorem 2.3 gives the upper bound on θi.
The lower bound follows similarly from the min max part of the Courant–Fischer
theorem. Strictly speaking, the above expression for θk applies not to the graph
G/{v1, v2} but to G/{v1, v2} together with the newly isolated vertex v1. However, as
before, the addition of an extra zero eigenvalue does not affect the interlacing.
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Abstract. We study three-dimensional periodicity in finite arrays and introduce four categories
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1. Introduction. Let A be a d-dimensional array. A vector v is called a period
of A if A[w] = A[w+ v] for every pair of points w and w+ v in A. If v is not a period
of A, then there exists at least one pair of points w,w+ v such that A[w] �= A[w+ v].
Such a pair of points (w,w + v) is called a witness of A against v.

Periodicity in an infinite array A is easily characterized by the number of in-
dependent periods of A. That is, an infinite d-dimensional array can have at most
d independent periods. However, periodicity in a finite array is more complicated
[AB, GP], and it has been an important subject of research, especially in connection
with pattern matching [KMP, ABF, KR].

Periodicity in a finite one-dimensional array A is not much different from that
in an infinite array because when p is the smallest period of A, A can be produced
by many copies of the prefix of A of length p. This concept can be generalized to
two and higher dimensions, where a finite d-dimensional array can be produced by
many copies of a d-dimensional polyhedron. In two and higher dimensions, however,
there are other kinds of periodicities due to finiteness of arrays. Amir and Benson [AB]
were the first to study two-dimensional periodicity in finite arrays. They defined three
categories of two-dimensional periodicity: line-periodic, radiant-periodic, and lattice-
periodic. This study on two-dimensional periodicity has led to significant progress in
two-dimensional pattern matching [ABF, GP, CCG, CPP].

In this paper we study three-dimensional periodicity in finite arrays and introduce
the following four categories of three-dimensional periodicity: edge-periodic, side-
aperiodic, side-periodic, and completely periodic. Karpinski and Rytter [KR] gave a
classification based on two-dimensional periodicity of the faces of a three-dimensional
array. We analyze three-dimensional periodicity thoroughly, and we characterize peri-
ods of a finite three-dimensional array by a small number of vectors. This periodicity
analysis has an application to three-dimensional pattern matching.
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Three-dimensional pattern matching is defined as follows: Given a pattern P of
size m1×m2×m3 and a text T of size n1×n2×n3, find all occurrences of the pattern
in the text. For a simple description of time complexities, we assume m = m1 = m2 =
m3 and n = n1 = n2 = n3. Let Σ be the alphabet from which the symbols of P and
T are drawn. In contrast to one and two dimensions, there are only a few results on
three-dimensional pattern matching. The two-dimensional matching algorithm due to
Baker [Ba] and Bird [Bi] also solves three-dimensional pattern matching in O((n3 +
m3) logm) time. Breslauer [Br] obtained an O(n3 + m3 logm)-time algorithm using
preprocessing, which needs a large space or randomization. Karpinski and Rytter
[KR] gave a parallel algorithm whose text search takes optimal O(logm) time on the
CREW PRAM and whose preprocessing takes O(logm) time using m3 processors
on the arbitrary CRCW PRAM. See [Ja] for various models of PRAM. A sequential
version of Karpinski and Rytter’s algorithm runs in O(n3 + m3 logm) time.

Our periodicity analysis has led to a parallel algorithm for three-dimensional
pattern matching whose text search is alphabet-independent (i.e., with no assumptions
on the alphabet Σ [ABF]) and which runs in optimal constant time on the common
CRCW PRAM. Its time and processor complexities for preprocessing are the same
as those of Karpinski and Rytter’s algorithm. This algorithm was described in the
preliminary version of this paper [GPP]. To avoid PRAM details, here we present
a sequential version of the algorithm whose text search is alphabet-independent and
runs in O(n3) time. Its preprocessing computes a witness table for the pattern, and it
runs in O(m3) time if Σ is a constant-size alphabet or an integer alphabet in the range
[0,mc] for some constant c [Fa], and in O(m3 logm) time if Σ is an unbounded alphabet
and only symbol comparisons are allowed on Σ. Hence, the sequential algorithm takes
O(n3 + m3) time in most cases of the alphabet Σ.

Basic definitions are given in the next section. In section 3 we revisit two-
dimensional periodicity and find some of its properties. In section 4 we study three-
dimensional periodicity in finite arrays. In section 5 we describe our text search
algorithm based on three-dimensional periodicity. In section 6 we describe the com-
putation of a witness table. Finally, we conclude in section 7.

2. Preliminaries. Let A be a three-dimensional array of size m1 × m2 × m3.
The positions of array A start from 0. The point (0, 0, 0) is called the origin of array
A. For any vector v, let Av be the subarray of A consisting of all points w ∈ A such
that w− v ∈ A; see Figure 1. Note that a vector is defined by its start point and end
point, and thus its start point does not need to be the origin as in −v in Figure 1.

A period of A is a vector such that two copies of A, one shifted by the vector over
the other, overlap without a mismatch. Formally, a vector v is a period of A (or we
say that A is periodic with v) if A[w] = A[w + v] for every pair of points w,w + v in
A (i.e., A−v = Av). If v is not a period of A, then there exists at least one pair of
points w,w + v such that A[w] �= A[w + v]. Such a pair of points (w,w + v) is called
a witness of A against v.

For a vector v = (a, b, c), let �x(v), �y(v), and �z(v) denote the absolute values
of a, b, and c, respectively. The length of a vector v is the maximum of the absolute
values of its coordinates, i.e., |v| = max(�x(v), �y(v), �z(v)). We say that v is a valid

vector of array A if max
( �x(v)

m1
,
�y(v)
m2

, �z(v)
m3

)
< 1

8 .
We define precedence relations on points as follows. If an array A has a period

v in one direction, then −v is also a period in the opposite direction. Hence we need
consider only one of two opposite directions. Let u = (a, b, c) and v = (i, j, k).

1. If a ≤ i, b ≤ j, and c ≤ k, then u ≺+++ v.
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Fig. 1. Av and A−v.

2. If a ≤ i, b ≤ j, and c ≥ k, then u ≺++− v.
3. If a ≤ i, b ≥ j, and c ≤ k, then u ≺+−+ v.
4. If a ≥ i, b ≤ j, and c ≤ k, then u ≺−++ v.

We will also use 0 in place of + or − to mean equality; e.g., if a ≤ i, b ≤ j, and
c = k, then u ≺++0 v. A sequence of points u1, . . . , ut is called a monotone line if
u1 ≺i · · · ≺i ut for a fixed precedence relation ≺i such as ≺++0.

Example 1. Four points (5, 5, 0), (7, 8, 0), (9, 8, 0), and (9, 9, 0) form a monotone
line because (5, 5, 0) ≺++0 (7, 8, 0) ≺++0 (9, 8, 0) ≺++0 (9, 9, 0).

Let p, q, and r be three independent vectors. Two points (or vectors) u and v
are congruent modulo p, q, r if u− v = ap + bq + cr for some integers a, b, c. A point
congruent to (0, 0, 0) modulo p, q, r is called a lattice point on p, q, r. Similarly we can
define congruence and lattice points in two dimensions.

We now define edge vectors, side vectors, and general vectors in three dimensions.
Definition 1. A vector (a, b, c) is an edge vector if exactly two coordinates

of a, b, c are 0; a side vector if exactly one coordinate is 0; and a general vec-
tor if no coordinates are 0. There are three directions (+, 0, 0), (0,+, 0), (0, 0,+)
for edge vectors (called edge directions); six directions (+,+, 0), (+,−, 0), (+, 0,+),
(+, 0,−), (0,+,+), (0,+,−) for side vectors (called side directions); and four di-
rections (+,+,+), (+,+,−), (+,−,+), (−,+,+) for general vectors (called general
directions). Side directions can be divided into three types (x, y, 0), (x, 0, z), (0, y, z),
each of which has two directions.

Definition 2. A side direction is adjacent to a general direction if the two
nonzero coordinates of the side direction have the same signs as the general direction.
For example, (−,+, 0), (−, 0,+), and (0,+,+) are adjacent to (−,+,+).

First we need a lemma that holds for any dimensions.
Lemma 1. Let p and v be vectors of the same direction or adjacent directions.

Suppose that p is a period of an array A. Then v is a period of Ap if and only if p+ v
is a period of A.

Proof. Assume that v is a period of Ap. Since p and v are periods of A and Ap,
respectively, we have Ap+v = (Ap)v = (Ap)−v = (A−p)−v = A−p−v, and thus p+ v is
a period of A. We can prove the if case similarly.

3. Two-dimensional periodicity revisited. Before we go on to three-dimen-
sional periodicity, we need to study two-dimensional periodicity, because a three-
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Fig. 2. A 32×32 array A whose elements are either x or blank. The points marked with slashes
in the lower-left corner (except the origin) are valid periods of A, which are (2, 2) and (3, 3).

dimensional array A of size m1×m2×m3 can be regarded as a two-dimensional array
in the xy-plane, where each symbol is a string of length m3 parallel to the z-axis.

Definition 3. A two-dimensional vector (a, b) is of quad-I direction if it is of
direction (+,+) or (+, 0), and of quad-II direction if (−,+) or (0,+).

According to [AB, GP], there are the following three categories of two-dimensional
periodicity:

1. line-periodic: One of the quad-I and quad-II directions has no valid periods,
and the other has valid periods that are on a line going through (0, 0). See Figure 2.

2. radiant-periodic: One of the quad-I and quad-II directions has no valid periods,
and the other has at least two independent valid periods. See Figure 3.

3. lattice-periodic: Both quad-I and quad-II directions have valid periods. The
shortest quad-I period and the shortest quad-II period are called the basis vectors.

It was shown in [AB, GP] that all valid periods in the lattice-periodic case are
represented by the basis vectors. Here we will show that all valid periods in the line-
periodic and radiant-periodic cases can be represented in special forms by a small
number of vectors. This result will be extended to three dimensions in the next
section.

3.1. Line-periodicity. Suppose that a two-dimensional array A is line-periodic.
Let p1, p2, . . . , ps be all valid periods of A from shortest to longest. Let ui = pi−pi−1

for 1 ≤ i ≤ s, where p0 = (0, 0). Let V be the subset of {u1, . . . , us} such that u1 is
in V and ui, i ≥ 2, belongs to V if and only if ui �= ui−1. We rename the vectors in
V as v1, v2, . . . , vt and they will be called step vectors.

Example 2. If the valid periods pi from shortest to longest are (11, 22), (22, 44),
(27, 54), (30, 60), (31, 62), (32, 64), and (33, 66), then the ui’s and vi’s are as follows:

i 1 2 3 4 5 6 7

pi (11, 22) (22, 44) (27, 54) (30, 60) (31, 62) (32, 64) (33, 66)

ui (11, 22) (11, 22) (5, 10) (3, 6) (1, 2) (1, 2) (1, 2)
v1 v2 v3 v4
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Fig. 3. The four corner 24 × 24 subarrays of a 192 × 192 array A are shown. All the other
elements of A are blank. The points marked with slashes (except the origin) are valid periods of A,
where the shortest and the second shortest periods are (10, 12) and (15, 16).

Lemma 2. Let h = min(�x(p1), �y(p1)). The size of V = {v1, . . . , vt} is O(h),
and all valid periods of A are uniquely represented by the form ci + kvi, 0 ≤ k < di,
for some vectors ci and some integers di, 1 ≤ i ≤ t.

Proof. For each 1 ≤ i < t, let vi and vi+1 be the renamings of uj and ul (j < l),
respectively. Since uj = pj − pj−1 and ul = pl − pl−1, periods pj , pj+1, . . . , pl−1 are

pj , pj + vi, pj + 2vi, . . . , by definition of the vi’s. If we let ci = pj and di =
|pl−pj |
|vi| ,

then periods from pj to pl−1 are represented by the form ci + kvi, 0 ≤ k < di.
We now show that |vi+1| < |vi|. Since pj−1 and pj are periods of A, vi (= pj−pj−1)

is a period of Apj−1 (and thus a period of Apl−1
) by Lemma 1. Since pl−1 and

vi are periods of A and Apl−1
, respectively, pl−1 + vi is a period of A by Lemma

1. Since pl is the period of A just after pl−1 in length, we have |pl| ≤ |pl−1 + vi|.
Since vi+1 = pl − pl−1, |vi+1| ≤ |vi|. By definition of the vi’s, vi+1 �= vi, and thus
|vi+1| < |vi|. Therefore, the size of V is O(h).

Finally, let vt be the renaming of u� (= p� − p�−1). If we let ct = p� and

dt = |ps−p�|
|vt| + 1, then periods from p� to ps are represented by the form ct + kvt,

0 ≤ k < dt.
Example 3. For the periods in Example 2, c1 = (11, 22), c2 = (27, 54), c3 =

(30, 60), c4 = (31, 62) and d1 = 2, d2 = 1, d3 = 1, d4 = 3. Hence, p7 = (33, 66) is
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Fig. 4. Proof of Lemma 3.

represented by c4 + 2v4.

3.2. Radiant-periodicity. Suppose that A is radiant-periodic. It was shown
in [GP] that there exists a vector w such that Aw and A−w are lattice-periodic with
basis vectors b1, b2, and that a valid vector v in Aw is a period of A if and only if v
is a lattice point on b1, b2 (Theorem 3 in [GP]). The vectors w, b1, b2 are called the
characteristic vectors of A. Furthermore, if there are more periods outside Aw, these
periods are lattice points on b1, b2 and form a monotone line [GP].

Example 4. In Figure 3 the characteristic vectors are w = (18, 19), b1 = (1, 0),
and b2 = (0, 1). The valid periods outside Aw are (10, 12), (15, 16), and (17, 18).

Here we will show that the periods outside Aw are divided into two parts, an
initial line of periods parallel to the shortest period of A and the rest, and they are
represented by a small number of vectors. Assume without loss of generality that the
periods of A are of direction (+,+).

Lemma 3. Let p and q be the shortest and the second shortest periods of A outside
Aw, respectively. If q is independent of p, then 3p is in Aw.

Proof. We first define defects. If u ∈ A and v ∈ Aw are lattice-congruent modulo
b1, b2 and A[u] �= A[v], then u is called a defect . Since Aw and A−w are lattice-
periodic with b1, b2, they contain no defects. Assume that q is independent of p. (See
Figure 4.)

Suppose that 3p is not in Aw. Since 3p is not in Aw, there exists at least one
defect u such that u + 3p or u− 3p is in A. Assume without loss of generality that u
is in the lower-right quadrant of A as in Figure 4.

We will show that defects would be spread all over A starting from u by periods
p and q. Assume that q is counterclockwise with respect to p (i.e., q becomes parallel
to p when q is rotated clockwise by less than 90◦). (The other case is similar.) Let
Gi, i ≥ 0, be the line passing through u + iq and parallel to p. Let k be the largest
number such that Gk contains a defect, and let u′ be the first defect (from the left)
on Gk. Since u′ − p is not in A, u′ + 2p is in A because Gk ∩ A is long enough to
contain two points whose distance is 2p. Since u′ + 2p is in A and |q| ≤ |2p| (because
q is second shortest), u′ + q is in A. Hence, u′ + q is a defect by period q. Since
u′ + q ∈ Gk+1, we have a contradiction to the maximality of k.

Lemma 4. Let p and q, p ≺++ q, be periods of A outside Aw. Then �x(p) < �x(q)
and �y(p) < �y(q).

Proof. Suppose that �x(p) = �x(q) and �y(p) < �y(q) (or �x(p) < �x(q) and
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Fig. 5. Class 1 is black dots inside Aw. Classes 2 and 3 are black and white dots, respectively,
outside of Aw.

�y(p) = �y(q)). As in the proof of Lemma 3, defects would be spread all over A by
periods p and q.

Lemma 4 means that the lengths of the periods of A outside Aw are simply
increasing, and Lemma 3 means that there are not many periods of A outside Aw

that are independent of the shortest period.
Definition 4. When a two-dimensional array A is radiant-periodic with char-

acteristic vectors w, b1, b2, we divide the valid periods of A into the following three
classes, where each class may be empty (see Figure 5):

1. Class 1 is the periods in Aw. They are lattice points on b1, b2, by Theorem 3
in [GP].

2. If there are periods outside Aw, let p be the shortest period of A, and q the
shortest period independent of p. Let h = min(�x(p), �y(p)). Class 2 is the periods v
such that v is parallel to p and v ≺++ q. (Class 2 will be called the initial line of
periods.) These periods are represented by O(h) step vectors vi’s and corresponding
ci’s and di’s, by Lemma 2.

3. Class 3 is the rest of the periods outside Aw. (These periods will be called
broken periods.)

Lemma 5. In class 3 there are O(h) broken periods.
Proof. Let pi and pi+1 be the two consecutive periods just before q (i.e., pi,

pi+1, and q are three consecutive periods of A outside Aw). Note that if q is the
second shortest period of A, then pi is 0 and pi+1 is the shortest period p. By
applying Lemmas 3 and 4 to Api , the number of broken periods is O(min(�x(pi+1 −
pi), �y(pi+1 − pi))), which is O(h).

Example 5. In Figure 3, period (10, 12) belongs to class 2, and the broken periods
of class 3 are (15, 16) and (17, 18). Class 1 consists of 30 periods in Aw.

Since the line-periodic case is a special case of the radiant-periodic case, we will
consider only the radiant-periodic case in what follows.

4. Three-dimensional periodicity. We classify three-dimensional arrays A of
size m1 ×m2 ×m3 into the following four cases by the existence of valid periods:

1. edge-periodic: A has at least one valid edge period. (In the following cases, A
has no valid edge periods.)

2. side-aperiodic: A has no valid side periods in at least one type. If A is edge-
periodic, then A has a simple repetitive structure, i.e., the whole array A is produced
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Fig. 6. The missing general direction r: The periods produced by p and q are on the plane
marked with dotted lines.

by many copies of a rectilinear subarray. The side-aperiodic case is also simple for
pattern matching purposes as we will see later. The interesting case is when A has
valid side periods in all three types. Even with these side periods in all three types,
there may exist one general direction (and its adjacent side directions) where A has
no periods. These directions will be called the missing directions of the side periods.
We have two more cases by the existence of periods in the missing directions.

3. side-periodic: A has valid side periods in all three types. However, A has no
valid periods in the missing directions of the side periods.

4. completely periodic: In addition to valid side periods in all three types, A has
at least one valid period in the missing directions of the side periods.

Example 6. If a three-dimensional array A has valid side periods p, q, and v in
Figure 6, but not r, then it is side-periodic. If A has period r in addition to p, q, and
v, then it is completely periodic.

Now we will characterize the periods of three-dimensional array A in the side-
periodic and completely periodic cases. To introduce missing directions and their
implications, we will describe the completely periodic case first.

4.1. Complete periodicity. We will first define missing directions, and then
show that two side periods and a period in the missing directions determine complete
periodicity.

Example 7. Let p and q be side vectors in two different types. Consider what
kinds of vectors can be produced by a linear combination of p and q. For example, if
p = (1, 1, 0) and q = (1, 0, 1), then p− q = (0, 1,−1) is a side vector of the third type.
Notice that p and q produce general vectors in three directions: (+,+,+), (+,+,−),
and (+,−,+), i.e., p+ q = (2, 1, 1), 2p− q = (1, 2,−1), and 2q− p = (1,−1, 2). How-
ever, p and q cannot produce vectors in direction (−,+,+). The complete periodicity
of three dimensions has to do with this direction.

Lemma 6. Let p and q be side vectors in two different types. Then p and q
produce general vectors in three directions, but no general vectors in the remaining
one direction, which is denoted by α. Furthermore, they produce no side vectors in
the three directions adjacent to α, but produce side vectors in the remaining three
directions.

Proof. Let p = (i, j, 0) and q = (k, 0, l), where i, j, k, l > 0. (The other cases
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are similar.) Then p + q is a vector in direction (+,+,+). For a, b > 0 such that
ai− bk �= 0, ap− bq = (ai− bk, aj,−bl) is a vector in (+,+,−) or (−,+,−). Hence p
and q produce general vectors in three directions (+,+,+), (+,+,−), and (+,−,+).

The vector p itself is a side vector in (+,+, 0), and q in (+, 0,+). Also for a, b
such that ai− bk = 0, ap− bq is a side vector in (0,+,−). That is, p and q produce
side vectors in three directions (+,+, 0), (+, 0,+), and (0,+,−).

Finally, ap + bq = (ai + bk, aj, bl) cannot be a vector in the general direction
(−,+,+) or its adjacent side directions for any a, b because

1. if aj > 0 and bl > 0, then ai + bk > 0;
2. if ai + bk < 0 and aj > 0, then bl < 0;
3. if ai + bk < 0 and bl > 0, then aj < 0.
Definition 5. In Lemma 6 the directions (one general direction and three side

directions adjacent to it) in which p and q cannot produce vectors will be called the
missing directions of p, q. See Figure 6. (Let v be a side period in the third type as in
Figure 6. Notice that the missing directions remain the same even if any two of p, q,
and v are chosen in Lemma 6.)

We now show that two side periods and a period in the missing directions (e.g.,
p, q, r in Figure 6) determine complete periodicity.

Lemma 7. Let p be a valid side vector of A, and r be a valid vector that has the
same sign as p in one and a different sign (or 0) in the other of the two coordinates
where p has nonzero values (e.g., p in (+,+, 0) and r in (−,+,+)). If w and w′ =
w + ap + br + u are in A, where a, b ≥ 1 are integers and u is a vector that has the
same signs as r (or 0) in the coordinate where p has 0 and in the coordinate where p
has the same sign as r (e.g., u in (+,+,+)), then at least one of w + p and w + r is
in A.

Proof. Assume that p is of direction (+,+, 0), r of (−,+,+), and u of (+,+,+).
(The other cases are similar.) The y-coordinate (z-coordinate) of w+p is between the
y-coordinates (z-coordinates) of w and w′ because the y-coordinates (z-coordinates)
of p, r, and u are ≥ 0. The same holds for w + r. If the x-coordinate of w is < m1

2 ,
then w + p is in A because p is a valid vector; if it is ≥ m1

2 , then w + r is in A.
Lemma 8. Let p and q be valid side vectors of A in two different types, and

let r be a valid vector in the missing directions of p, q. If w and w′ are two points
in A that are congruent modulo p, q, r, then there exists a sequence of points w =
w0, w1, . . . , wk = w′ such that every wi, 0 ≤ i ≤ k, is in A, and every wi − wi−1,
1 ≤ i ≤ k, is one of p, q, and r.

Proof. Assume without loss of generality that p, q, and r are of direction (+,+, 0),
(+, 0,+), and (−,+,+), respectively. Let w′ = w + ap + bq + cr. We will prove the
lemma for the case a, b, c ≥ 0. (The other cases are similar.) First we show that at
least one of w + p, w + q, and w + r (which will be w1) is in A by the following cases:

1. All of a, b, and c are positive: One of w + p and w + r is in A by Lemma 7.
2. One of a, b, and c is 0: If b = 0 (resp., a = 0, c = 0), one of w + p and w + r

(resp., one of w + q and w + r, one of w + p and w + q) is in A by Lemma 7.
3. Two of a, b, and c are 0: If a > 0 (resp., b > 0, c > 0), w + p (resp., w + q,

w + r) is in A.
By repeating the same procedure, one can show that the lemma holds.

Theorem 1. Suppose that A has valid side periods in all three types, two of
which are p and q in two different types. If additionally A has a valid period r in the
missing directions of p, q, then every lattice point on p, q, r is a period of A.

Proof. Consider a vector ap + bq + cr. Let w and w′ be two points in A such
that w′ = w + ap + bq + cr. By Lemma 8 there exists a sequence of points w =
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Fig. 7. The side-periodic case: Black and white dots represent periods in the initial line and
broken periods, respectively.

w0, w1, . . . , wk = w′ such that every wi is in A and every wi−wi−1 is one of p, q, and
r. Since p, q, and r are periods of A, we have A[w] = A[w1] = · · · = A[w′]. Hence
ap + bq + cr is a period of A.

4.2. Side-periodicity. Array A has valid side periods in all three types, but it
has no valid periods in the missing directions. That is, A has no side periods in the
three directions adjacent to the missing general direction. These three side directions
consist of one direction in each type. Hence, for each type of side direction, there are
periods in one direction but no periods in the other direction.

Example 8. If the array A in Figure 6 has valid side periods p, q, and v, but
not r, then it is side-periodic. Since period p is in direction (+,+, 0) of type (x, y, 0),
there are no periods in (+,−, 0) because (+,−, 0) is a missing direction of p, q.

Array A may have another period u that is not a linear combination of p and q, but
such a period u must not be in one of the missing directions by definition of this case.
In each type of side direction, therefore, A may be line-periodic or radiant-periodic,
but not lattice-periodic.

We now show that the periods of A can be represented by a small number of
vectors. Suppose that A is side-periodic with side periods in (+,+, 0), (+, 0,+), and
(0,+,−), as in Figure 6. Consider the periods of A with z-coordinate j for some fixed
j > 0. These periods can be of direction (+,+,+), (−,−,+), and (+,−,+) since
the fourth direction (−,+,+) is the missing general direction. We will characterize
the periods of direction (+,+,+). The periods of direction (−,−,+) are similar.
Direction (+,−,+) will be dealt with separately.

Let U be the set of all valid periods of A of direction (+,+,+) with z-coordinate
j. Let p be a shortest period of A in direction (+,+, 0), and let h = min(�x(p), �y(p));
see Figure 7. A period q in U is called an anchor period if q ≺++0 v for all periods
v ∈ U . There are two cases depending on whether there exists an anchor period in U
or not.

Consider first the case that there exists an anchor period in U . If there exists an
anchor period q in U , we can work with Aq (rather than A) by Lemma 1. Let U ′

be the set of vectors v such that v �= (0, 0, 0) and q + v ∈ U . Assume without loss
of generality that Aq is radiant-periodic in the xy-plane with characteristic vectors
w, b1, b2.
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Lemma 9. If a shortest period of Aq in direction (+,+, 0) is not parallel to p,
there are O(h) periods in U ′ outside Aw.

Proof. Let r be a shortest period of Aq in direction (+,+, 0). If r is independent
of p, then |r| ≤ |p| because p is also a period of Aq. If q + p is inside Aw, there are
O(h) periods in U ′ outside Aw because these periods form a monotone line. If q + p
is outside Aw, let k be the largest integer such that kr ≺++0 p. By applying Lemmas
3 and 4 to Akr, the number of periods in Akr − Aw is O(h). The number of periods
outside Akr is also O(h) because of kr ≺++0 p. Therefore, there are O(h) periods in
U ′ outside Aw.

Definition 6. If there exists an anchor period q in U , assume that Aq is radiant-
periodic in the xy-plane with characteristic vectors w, b1, b2. We divide all periods of
U ′ into the following three classes, where each class may be empty (see Figure 7):

1. Class 1 is the periods in Aw. They are lattice points on b1, b2.
2. If there are periods outside Aw, let r be the shortest one. If r is parallel to p,

class 2 is the initial line of periods that is parallel to p. Since |r| ≤ |p|, these periods
are represented by O(h) step vectors vi and corresponding ci’s and di’s. (Here we
assume that vi’s and ci’s are vectors of Aq, not vectors of A.)

3. Class 3 is the rest of the periods outside Aw (called broken periods). By
Lemmas 5 and 9, there are O(h) broken periods.

Note that Definition 6 is essentially the same as Definition 4 except that we require
in Definition 6 that the initial line of periods in class 2 be parallel to p.

Example 9. Consider the array A in Figure 7. Suppose that p is (10, 12, 0) and
that the xy-plane of Aq is the two-dimensional array in Figure 3. Then, class 2 has
one period (10, 12, 0), and class 3 has (15, 16, 0) and (17, 18, 0). The 30 periods in Aw

of Figure 3 (with z-coordinates 0) belong to class 1.
Lemma 10. If there is no anchor period in U , then there exists a vector w with

z-coordinate j such that Aw is lattice-periodic in the xy-plane and Aw contains all
periods in U .

Proof. Let q ∈ U be a shortest period in the x- and y-coordinates (i.e.,
max(�x(q), �y(q)) is smallest). Let r ∈ U be a shortest period in the x- and y-
coordinates such that q ≺−+0 r. (Since there is no anchor period in U , there exists
such a period r.)

We first show that q−r is a period of Aq of direction (+,−, 0). Let u be a point in
(Aq)−(q−r) (i.e., u+q−r is in Aq). Then u−r is in A because u+q−r is in Aq. Since
A[u] = A[u− r] = A[u + q − r] by periods q and r, q − r is a period of Aq. Similarly,
q − r is a period of Ar. Since p is a period of Aq and Ar of direction (+,+, 0), both
Aq and Ar have quad-I and quad-II periods in the xy-plane, and thus they are lattice-
periodic in the xy-plane. Hence there exists a vector w with z-coordinate j such that
Aw is lattice-periodic in the xy-plane and Aw includes both Aq and Ar (Lemma 7 in
[GP]). (This vector w is one of the characteristic vectors of a radiant-periodic array.)
Since q and r are shortest in the x- and y-coordinates among the periods in U , Aw

contains all periods in U .
In the case that there is no anchor period in U , all periods in U can be regarded

as class 1, and classes 2 and 3 are empty by Lemma 10. Hence the case that there
exists an anchor period is more general.

To deal with directions (+,−,+) and (−,+,+) in the pattern matching algorithm,
we need a couple of lemmas.

Lemma 11. Let p and q be valid periods of direction (+,+, 0) and (+,−,+),
respectively. Then q + p and q − p are periods of A.
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Fig. 8. Proof of Lemma 12.

Proof. We prove the lemma for p + q. Let w be a point in A−(p+q). Since
w + p + q is in A, at least one of w + p and w + q (say, w + p) is in A by Lemma 7.
Since A[w] = A[w+p] = A[w+p+ q] by periods p and q, p+ q is a period of A.

Lemma 12. Let a and b be two points such that b−a is a valid side period of A of
direction (+,+, 0), and let c be a point such that both a− c and b− c are valid vectors
of direction (+,−,+) (or (−,+,+)). If there exists a witness of A against a− c, then
there also exists a witness of A against b− c, and vice versa.

Proof. We prove the lemma for the case that a−c, b−c are of direction (+,−,+)
and there exists a witness (w,w + a − c) of A against a − c. (The other cases are
similar.) See Figure 8. Let p = −(b − a) and q = b − c. Consider the parallelogram
whose four corners are w, w + b − c (= w + q), w − b + a (= w + p), and w + a − c
(= w + p + q). Since (w,w + p + q) is a witness, both w and w + p + q are in A and
A[w] �= A[w+p+q]. Since p is of direction (−,−, 0) and q is of (+,−,+), at least one
of w + p and w + q is in A by Lemma 7. If w + q is in A, (w,w + q) is a witness of A
against q because A[w+ q] = A[w+ p+ q] �= A[w]. If w+ p is in A, (w+ p, w+ p+ q)
is a witness against q because A[w + p] = A[w] �= A[w + p + q].

5. Three-dimensional pattern matching. Consider three-dimensional pat-
tern matching for a pattern P of size m1 ×m2 ×m3 and a text T of size n1 ×n2 ×n3.
For a point u in the text, the m1 ×m2 ×m3 text block whose origin is placed on u is
called the area of u. If the area of u is a possible occurrence of the pattern, u is called
a candidate. Candidates are consistent if, for every pair u and v of the candidates,
the vector u− v is a period of the pattern.

We will use various techniques in our three-dimensional pattern matching algo-
rithm. First we introduce a new technique based on the following two notions.

Definition 7. When the pattern P has a set R of periods, a generator of the
pattern with respect to R is a subpattern P ′ ⊆ P such that every point w in P has a
sequence of points w = w0, w1, . . . , wk such that every wi is in P , every wi −wi−1 is
a period in R, and wk ∈ P ′.

Definition 8. When the pattern has a period v, a pair of text points (w,w + v)
such that T [w] �= T [w + v] is called a periodic mismatch.

When the pattern P has a generator P ′ with respect to a set R of periods, the
technique of generators and periodic mismatches finds pattern occurrences in two
stages.

1. For each period v ∈ R, find periodic mismatches for every point w of the
text. A periodic mismatch (w,w + v) implies that w and w + v cannot be inside an
occurrence of the pattern; i.e., it eliminates all candidates whose areas contain w and
w + v.
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2. If a candidate u survives the periodic mismatches for all periods in R, the
area of u is periodic with every period in R. In addition, if the area of u contains
an occurrence of generator P ′, then it is an occurrence of the pattern by definition of
generators.

Other techniques that we use are as follows.
• Duels [Vi]: Consider two candidates u and v such that u and v are inconsistent.

If we have a witness against u − v, at least one of u and v can be eliminated (or
killed) by a constant number of symbol comparisons, which is called a duel . A table
that contains witnesses against nonperiods among all valid vectors is called a witness
table.

• Duels on a line of candidates [ABF]: Suppose we have m′ candidates which are
on one line. By applying duels from one end of the line to the other end, we can
obtain consistent candidates from the given m′ candidates in O(m′) time.

• The wave method [ABF]: Given a set of consistent candidates, the wave method
finds the occurrences of the pattern in linear time.

As in most pattern matching algorithms, our three-dimensional matching algo-
rithm consists of two parts:

1. preprocessing: Find periods of the pattern P and witnesses against nonperiods
among all valid vectors.

2. text search: Initially every point of the text is a candidate. We divide all
candidates into disjoint blocks of size m1

8 × m2

8 × m3

8 (each block is called a candidate
block). We process each candidate block as follows.

The text search is based on the three-dimensional periodicity of the pattern P .
We will describe below our text search algorithm in each of the four cases of three-
dimensional periodicity.

5.1. Edge-periodicity. The pattern has at least one valid edge period. Since
the pattern is generated by a rectilinear subpattern, the text search problem in this
case is reduced to one with a smaller pattern.

Let P ′ be the rectilinear subpattern such that its length in a coordinate with valid
edge periods is 2|p|, where p is the shortest edge period in that coordinate, and the
length in a coordinate with no valid edge periods is the same as that of P . Let R be
the set of the shortest valid edge period in each coordinate. Then P ′ is a generator
of P with respect to R.

Example 10. If the pattern P has the shortest valid edge periods p = (a, 0, 0) and
q = (0, b, 0) for a, b > 0 in the x- and y-coordinates, respectively, and no valid edge
periods in the z-coordinate, then P ′ = P [0..2a−1, 0..2b−1, 0..m3−1] and R = {p, q}.

Since P ′ has no edge periods shorter than those of P by the periodicity lemma
of one-dimensional strings [KMP], P ′ has no valid edge periods. We find occurrences
of P ′ in text T using the other cases, since P ′ is not edge-periodic. Then we can
find occurrences of the whole pattern P by the technique of generators and periodic
mismatches. Since the size of R is O(1), checking periodic mismatches takes O(1)
time for each point in the area of a candidate, and thus it takes linear O(m1m2m3)
time for a candidate block.

5.2. Side-aperiodicity. The pattern has a plane (say, the xy-plane) where there
are no valid side periods. By using duels, we will make the number of candidates small
enough to apply the wave method. There are two cases by the shape of the pattern.

Assume first that m1m2 ≥ m3. Assume without loss of generality that m1 ≥ m2.
Divide a candidate block into lines parallel to the x-axis, and apply duels on the
candidates in each line. Since the pattern P has no valid edge periods, we obtain at
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Fig. 9. Polyhedron H and rectilinear array P̂ that encompasses H.

most one surviving candidate per line.
We now divide the candidate block into planes parallel to the xy-plane. Since

there is at most one candidate in each line parallel to the x-axis, there are O(m2)
candidates in each plane. Perform O(m2

2) duels for all pairs of O(m2) candidates in
each plane. Since there are no side periods of type (x, y, 0), there will be at most
one survivor in each plane, i.e., O(m3) survivors in total. Check consistency of the
survivors by doing O(m2

3) duels, since m2
3 ≤ m1m2m3. We end up with a set of

consistent candidates.
Assume next that m1m2 < m3. In this case we divide the candidate block into

lines parallel to the z-axis. By applying duels in each line, we obtain at most one sur-
vivor per line, i.e., O(m1m2) survivors in total. In consistency checking, O((m1m2)

2)
duels can be done in linear time since (m1m2)

2 ≤ m1m2m3.
Given a set of consistent candidates, we can find the occurrences of the pattern

by the wave method in linear O(m1m2m3) time.

5.3. Complete periodicity. The pattern has valid side periods in all three
types and at least one valid period in the missing directions. We will find a rectilinear
generator of the pattern that is neither edge-periodic nor completely periodic. Then
the text search problem is reduced to one with a smaller pattern.

Let p be a shortest side period of the pattern, and q a shortest side period among
those whose type is different from p. Let r be a shortest period in the missing direc-
tions of p, q. Assume without loss of generality that p = (ax, ay, 0), q = (bx, 0, bz),
and r = (−cx, cy, cz), where ax, ay, bx, bz, cx, cy, cz > 0.

The rectilinear generator of the pattern is P ′ = P [0..2(ax + bx + cx)− 1, 0..2(ay +

cy)−1, 0..2(bz+cz)−1]. Notice that P̂ = P [0..ax+bx+cx−1, 0..ay+cy−1, 0..bz+cz−1]
is a rectilinear array that encompasses a polyhedron (denoted by H) whose edges are
vectors p, q, r; see Figure 9. We now show that P ′ is a generator of P , and P ′ is
neither edge-periodic nor completely periodic.

Lemma 13. P ′ is a generator of pattern P with respect to R = {p, q, r}.
Proof. For every point w ∈ P , there is a point w′ ∈ H ⊆ P ′ which is congruent to

w modulo p, q, r. By Lemma 8 there exists a sequence of points w = w0, w1, . . . , wk =
w′ such that every wi is in P and every wi − wi−1 is one of p, q, r. Hence P ′ is a
generator of P with respect to p, q, r.

Lemma 14. P ′ has no valid periods that are not periods of P .
Proof. Suppose that we divide the three-dimensional space into polyhedra that

have the same shape as H in Figure 9 by planes parallel to p and q, planes parallel to
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q and r, and planes parallel to p and r such that one of the polyhedra is H. We say
that two polyhedra A and B are adjacent if A and B overlap completely when one of
them is shifted by a vector ap + bq + cr, where each of a, b, and c is 0, 1, or −1.

We show that if P ′ has a valid period u, then u is also a period of P . Consider any
pair of points w,w + u ∈ P . Let H ′ be the polyhedron (by the division above) which
contains w. Since u is a valid vector of P ′, w + u is either in H ′ or in a polyhedron
H ′′ adjacent to H ′. Since P ′ is large enough to contain two adjacent polyhedra, there
exist w′, w′ +u ∈ P ′ ⊆ P which are congruent to w,w+u modulo p, q, r, respectively.
Hence we have P [w] = P ′[w′] = P ′[w′ + u] = P [w + u], and therefore u is a period
of P .

Corollary 1. P ′ is not edge-periodic.
Lemma 15. P ′ is not completely periodic.
Proof. By the way p and q were chosen, we have |p| ≤ |q|. There are two cases. If

|r| ≥ |q|, then r is not a valid vector of P ′ because a largest coordinate of r is larger
than one eighth of that coordinate of P ′. Since r is shortest in the missing directions
of p, q, P ′ has no valid periods in the missing directions of p, q, by Lemma 14. Hence
P ′ is not completely periodic.

If |r| < |q|, then q is not a valid vector of P ′. By the way q was chosen, any
side period v of P in types except (x, y, 0) (the type of p) satisfies |v| ≥ |q|, i.e., v is
not a valid vector of P ′. Since P ′ has no valid side periods in two types, P ′ is not
completely periodic.

When the pattern is completely periodic, we find all occurrences of P ′. Since P ′

is neither edge-periodic nor completely periodic, it is finished by the side-aperiodic or
side-periodic case. Since P ′ is a generator of the pattern, we can find the occurrences
of the pattern by the technique of generators and periodic mismatches. Again the
technique takes linear time because the size of R is 3.

5.4. Side-periodicity. The pattern has valid side periods in all three types, but
it has no valid periods in the missing directions. In each type of side directions the
pattern is line-periodic or radiant-periodic, but not lattice-periodic. We will divide a
candidate block into planes and perform duels in each plane to get a set of consistent
candidates. Between different planes we will perform duels using a small number of
processors by the characterization of periods in section 4.2.

Assume without loss of generality that P has side periods in (+,+, 0), (+, 0,+),
(0,+,−) (i.e., (−,+,+) is the missing general direction) and that m1 ≥ m2 ≥ m3.
Since the radiant-periodic case is more general than the line-periodic case, we consider
the radiant-periodic case only in the xy-plane. Let p be a shortest period of P in
direction (+,+, 0), and let h = min(�x(p), �y(p)). Let p̂ be the shortest integer-valued
vector such that p = gp̂ for integer g. Note that 1 ≤ g ≤ h.

Example 11. Suppose that p = (11, 22, 0) is a shortest period of the pattern P .
Then h = 11, and p̂ = (1, 2, 0) since p = 11 · p̂. Note that p̂ is the shortest (possible)
step vector for the periods parallel to p, as shown in Example 2.

Divide a candidate block into lines parallel to the x-axis, and get at most one
survivor per line by applying duels in each line. Divide the candidate block into planes
parallel to the xy-plane, and perform duels in each plane to get consistent survivors
per plane, which will be one group of survivors. The consistent survivors in a group
form a monotone line, and any two neighboring survivors are at least p apart from
each other. Hence we have O(m3) groups, each of which contains O(m2

h ) consistent
survivors. A difficulty in the side-periodic case is that performing all possible duels
of O(m2m3

h ) candidates requires more than linear time. We will reduce the number of
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Fig. 10. Nearest candidates.

duels by the characterization of periods in section 4.2.
In the following, we will perform duels between different groups and eliminate

some candidates by duels so that all the remaining candidates are consistent. Consider
a pair of candidates a, b with �z(a) < �z(b). Then the relation between a and b is one
of a ≺+++ b, a ≺+−+ b, a ≺−−+ b, and a ≺−++ b, among which (−,+,+) is the
missing direction. The relations ≺+++ and ≺−−+ are harder to deal with than ≺+−+

and ≺−++.
We first consider relations ≺+++ and ≺−−+. We will eliminate candidates so

that every pair of candidates a, b with a ≺+++ b are consistent. The relation ≺−−+

can be handled similarly. Recall that there are O(m3) groups, each of which contains
O(m2

h ) consistent candidates. First we need some precomputations on each group of
candidates in which we will find nearest candidates in various forms. Let u1, u2, . . .
be the candidates in a group C.

Definitions of nearest candidates:
1. Nearest candidate from a candidate: For every candidate ui ∈ C and every

1 ≤ f ≤ g, let NCf (ui) denote the candidate u′ ∈ C nearest to ui such that u′ ≺++0 ui

and ui − u′ is a multiple of fp̂.
2. Nearest candidate from a point: Consider the plane D (parallel to the xy-plane)

of a candidate block that contains ui’s. A line on D parallel to p which contains at
least one candidate in C will be called a check line. Since there are O(m2

h ) candidates
in C, there are O(m2

h ) check lines on D. For every point u in check lines and every
1 ≤ f ≤ g, let NPf (u) denote the candidate u′ ∈ C nearest to u such that u ≺++0 u′

and u′ − u is a multiple of fp̂. That is, NPf (u) is the nearest candidate to u whose
distance to u is a multiple of (possible) step vector fp̂.

3. Nearest candidate from a coordinate: For each x-coordinate i, let NIx+(i)
denote the candidate in C whose x-coordinate is the smallest integer ≥ i, and NIx−(i)
the candidate in C whose x-coordinate is the largest integer ≤ i. Since the candidates
in group C are monotone and no two candidates have the same x-coordinates (because
P is not edge-periodic), NIx+ and NIx− are well defined. For each y-coordinate j,
NIy+(j) and NIy−(j) are similarly defined.

Example 12. Let C = {u1, . . . , u6} as in Figure 10. Then NCf (u4) = u2 because
u2 ≺++0 u4 and u4 − u2 = 2fp̂. NPf (u) = u3 because u ≺++0 u3 and u3 − u = fp̂.
Finally, NIx+(i) = u6 and NIx−(i) = u5.

We can compute the nearest candidates defined above in linear O(m1m2m3) time
as follows. Again let u1, u2, . . . be the candidates in a group C.
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Computation of nearest candidates:

1. NCf (ui): Since there are O(m2

h ) candidates in C and g = O(h), we need O(
m2

2

h )

time to compute NC for a group C. For all groups, it takes O(
m2

2m3

h ) time. NCf is used
to compute NPf .

2. NPf (u): Let D be the plane of a candidate block that contains ui’s, and let
u be a point in a check line of D. We compute NP for plane D as follows. Initialize
NPf (u) = nil for all u and f . For each pair of ui ∈ C and f , we set NPf (u) = ui

for all points u in the check line containing ui such that NCf (ui) ≺++0 u ≺++0 ui

(u ≺++0 ui if NCf (ui) is undefined) and ui −u is a multiple of fp̂. Since the length of
a check line is O(m1), we need O(m1) time for each pair of ui ∈ C and f . Since there
are O(m2

h ) candidates in C and g = O(h), O(m1m2) time is needed for each plane D;
overall it takes O(m1m2m3) time.

3. NI: Since there are O(m1) values of i and O(m2

h ) candidates in a group C, we
can compute NIx+(i) and NIx−(i) for C in O(m1m2

h ) time. For all groups, O(m1m2m3

h )
time is needed.

Consider every pair of a group C and a candidate v in another group. We will
find consistent candidates from v and C as follows. Let C ′ = {u ∈ C | v ≺+++ u},
and let u1, u2, . . . be the candidates in C ′ such that u1 ≺++0 u2 ≺++0 · · · , where C ′

can be found using NIx+ and NIy+ with v. Let j be the difference between the z-
coordinates of v and the ui’s. Let U be the set of all periods of the pattern of direction
(+,+,+) whose z-coordinates are j. We assume the most general case for U , i.e., that
U consists of the periods in Pw (which are lattice points on b1, b2), an initial line of
periods (which are represented by q, O(h) step vectors vi, and corresponding ci, di),
and O(h) broken periods, by Definition 6. The main task in performing duels between
different groups is to find the candidate in C ′ that is consistent with v and nearest to
v. We do the task in O(h) time as follows. Since there are O(m3) groups for C and
O(m2m3

h ) candidates for v, this task can be done in O(m2m
2
3) time.

Finding the nearest consistent candidate:
1. Any two candidates ui and uk in C ′ are congruent modulo b1, b2 because uk−ui

is a period of P , which is in turn a period of Pq. Hence, if v + q is not congruent
to u1 ∈ C ′ modulo b1, b2, none of C ′ are consistent with v. If it is congruent, v + q
is congruent to all candidates in C ′ modulo b1, b2, and in this case we find nearest
consistent candidates to v in each class of Definition 6 as follows.

2. For periods in Pw (class 1), find the candidate û ∈ C ′ nearest to v such that
v + w ≺++0 û using NIx+ and NIy+. Since û is congruent to v + q modulo b1, b2,
candidate û is consistent with v.

3. For each step vector vi (class 2), find the candidate u ∈ C ′ nearest to v
such that u − (v + q) is a period of Pq uniquely represented by the form ci + kvi
for 1 ≤ k ≤ di (i.e., u is consistent with v) as follows. Since the initial line of Pq is
parallel to p by Definition 6, step vector vi is parallel to p. Let f be the integer such
that vi = fp̂. The nearest candidate u is NPf (v + q + ci) if NPf (v + q + ci) is defined
and |NPf (v + q + ci) − (v + q + ci)|/|vi| < di; otherwise, it does not exist.

4. For each broken period pi (class 3), check whether v + pi is a candidate in C ′

or not.
5. Among the O(h) candidates found in steps 2–4, find the candidate nearest to

v, which we denote by ul.
Since the ui’s in C ′ are consistent, v is consistent with all ui, i ≥ l. Perform a

duel between v and ul−1 (the farthest inconsistent candidate). If v is killed by the
duel, the candidates in C ′ remain and they are consistent. If ul−1 is killed, then all
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ui, i ≤ l − 1, are killed by their consistency. Since the killed candidates in C ′ are
consecutive ones in the monotone line of candidates, we mark the first and the last of
the killed candidates.

We now consider the relation ≺+−+. Given a group C and a candidate v �∈ C,
find C ′ = {u ∈ C | v ≺+−+ u} using NIx+ and NIy−. If C ′ is empty, we are done.
Otherwise, perform a duel between v and an arbitrary candidate u in C ′. When v
and u are consistent, v is consistent with all candidates in C ′, by Lemma 11. When
v and u are inconsistent, at least one of them is killed by the duel. If v is killed, we
are done. If u is killed, then all candidates in C ′ are killed, by Lemma 12. We again
mark the first and the last of the killed candidates.

Finally, consider the relation ≺−++. Given a group C and a candidate v �∈ C,
find C ′ = {u ∈ C | v ≺−++ u} using NIx− and NIy+. The rest of this case is the
same as the case of ≺+−+ except that v and u ∈ C ′ are always inconsistent because
(−,+,+) is the missing direction.

Now we remove all killed candidates (the ones between marked candidates) in lin-
ear time. Then all the remaining candidates are consistent. Find pattern occurrences
by the wave method in linear time. In summary, we have the following theorem.

Theorem 2. Given a witness table of the pattern, three-dimensional pattern
matching can be done in linear O(n1n2n3) time.

6. Witness computation. In this section we assume for simplicity that the
pattern P is of size m3. We will compute a witness table for three-dimensional pat-
tern P by combining the suffix tree construction in [Fa] and two-dimensional witness
computation [GP]. The suffix tree construction is the bottleneck in our algorithm,
and it takes O(m3) time for a constant-size alphabet or an integer alphabet since the
time complexity of suffix tree construction has been shown to be equivalent to that of
sorting [Fa, FFM]. It takes O(m3 logm) time only in the case that Σ is an unbounded
alphabet and only symbol comparisons are allowed on Σ.

We first construct a suffix tree with the pattern P and do the following prepro-
cessings on the suffix tree, which were also used in the two-dimensional case [ABF]:

1. Divide the pattern into lines parallel to the z-axis and construct a suffix tree ST
for the concatenation of all the lines by Farach’s algorithm [Fa]. Its time complexity
is equivalent to that of sorting.

2. Process suffix tree ST for LCA (lowest common ancestor) queries [HT, ScV]
in O(m3) time such that the LCA of two nodes can be found in O(1) time.

3. Process suffix tree ST in O(m3) time such that each node v has the length of
the substring labeled from the root to v [LV].

With these preprocessings, a query for the length of the longest common prefix
of two substrings (parallel to the z-axis) of P can be answered in O(1) time.

We will find periods of the pattern P and witnesses against nonperiods among all
valid vectors of P as follows. For a fixed i, consider the vectors of the form (x, y, i).
Let u = (0, 0, i). Then Pu is an array of size m×m× (m− i) (bottom m− i planes
of P ), but it can be considered as a two-dimensional array of size m×m, where each
symbol is a line segment parallel to the z-axis. Let Ai be the two-dimensional array of
size 2m× 2m whose lower-left and lower-right quadrants are P−u and upper-left and
upper-right quadrants are Pu. Then a vector v = (a, b, i) is a period of the pattern
if and only if (m,m) + (a, b) is a period of Ai; see Figure 11. Hence all periods of
the pattern can be found by solving O(m) copies of the two-dimensional problem.
To solve the two-dimensional problems, we use the alphabet-independent linear-time
algorithm in [GP]. A comparison of two symbols α, β in Ai can be done in O(1) time
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Fig. 11. Pu and Pv.

by a query on ST , which tells us whether α and β are the same or not. And if α and β
are not the same, it gives the position of a mismatch, which can be used as a witness.
Therefore, given the suffix tree ST preprocessed as above, computing a witness table
takes O(m3) time.

7. Conclusion. We studied three-dimensional periodicity and presented a three-
dimensional pattern matching algorithm based on it. The parallel algorithm in [GPP]
has essentially the same structure as the one in section 5, except that it uses some
parallel techniques such as deterministic samples [Vis, CPR] and the parallel version
of the wave method [CMR]. As in two dimensions, three-dimensional periodicity plays
an important role in developing pattern matching algorithms in three dimensions.

The witness computation algorithm in section 6, though it takes linear time, is
not alphabet-independent. An open problem in three dimensions is to develop an
alphabet-independent linear-time algorithm that computes a witness table.

Acknowledgments. We are grateful to the referees for their valuable comments,
which helped greatly improve the presentation of this paper.
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Abstract. A tiling of F
n
2 is a pair (V,A) of subsets of F

n
2 such that every x∈F

n
2 can be written

in exactly one way as x = v + a with v ∈V and a∈A. A tiling (V,A) of F
n
2 is said to be full-rank

if rank(V ) = rank(A) = n and 0∈ (V ∩ A). It is known that every tiling (V,A) decomposes into
smaller tilings that are either trivial or full rank. It is furthermore known that full-rank tilings of F

n
2

exist for all n � 10 and do not exist for n � 8. The last case n = 9 is resolved in this paper, thereby
proving that full-rank tilings of F

n
2 exist if and only if n � 10. To establish this result, we use two

different methods. The first method employs group characters to show that the sets V and A in
a full-rank tiling (V,A) of F

9
2 must have a certain structure. The second method is based on the

classification of [14, 5, 3] binary linear codes and uses a fast algorithm for the exact cover problem.
Both methods rely on a carefully designed exhaustive computer search to complete the proof.
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1. Introduction. Let F
n
2 be a vector space of dimension n over GF(2). A tiling

of F
n
2 is a pair (V,A) of subsets of F

n
2 such that every x∈F

n
2 can be written in exactly

one way as x = v+a with v ∈V and a∈A. A tiling (V,A) of F
n
2 is trivial if one of the

sets V,A is F
n
2 while the other is {0}, where 0 denotes the all-zero vector in F

n
2 . It is

full-rank if rank(V ) = rank(A) = n and 0∈ (V ∩A). It is shown in [1] that any tiling
of F

n
2 decomposes into smaller tilings that are either trivial or full-rank. This reduces

the classification of tilings of binary Hamming spaces to the study of full-rank tilings.
It was established in [1, 2] that full-rank tilings of F

n
2 exist for n = 14 and n � 112,

and do not exist for n � 7. Subsequently, it was shown in [3, Theorem 16] that if F
n0
2

admits a full-rank tiling, then so does F
n
2 for all n � n0. Then Le Van and Phelps [5]

found, by computer search, a full-rank perfect binary code of length 15 with a kernel of
dimension 5. By Construction D of [1, 3], this implies the existence of a full-rank tiling
of F

10
2 . Thus it was known since 1997 that full-rank tilings of F

n
2 exist for all n � 10

and do not exist for n � 7, leaving the cases n = 8 and n = 9 unresolved. The
following problem was posed in [3, p. 220]; we quote:

Construct full-rank tilings of F
n
2 for n = 8 and n = 9, or prove

that such tilings do not exist. This problem appears to be quite
challenging, despite the small size of the sets involved.

The case n = 8 was recently settled in [8], where it is proved that F
8
2 does not admit

a full-rank tiling. However, the structural approach to an exhaustive search for full-
rank tilings developed in [8] falls short for n = 9. In this paper, we extend the methods
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of [8] to show that a full-rank tiling of F
9
2 does not exist. This is the last piece of the

puzzle needed to complete the proof of the following theorem.
Theorem 1. A full-rank tiling of F

n
2 exists if and only if n � 10.

In sections 3 and 4, we present two different proofs of Theorem 1, which were
devised independently by the second and the first author, respectively. In section 3,
we use the group characters of [6, pp. 132–141] to show that if (V,A) is a full-rank
tiling of F

9
2 , then one can assume without loss of generality (w.l.o.g.) that the set A

is “evenly distributed” on the first three positions. This reduces the search for such
a tiling to a problem concerning certain configurations of (6, 4, 3) binary codes. On
the other hand, in section 4 we use the classification of [14, 5, 3] binary linear codes,
obtained in [7], to show that it suffices to consider only 2164 cases for the set V in
a full-rank tiling (V,A) of F

9
2 . Each such case produces an instance of the exact cover

problem, which can be solved efficiently using a recent algorithm of Knuth [4]. First,
however, we need to review certain aspects of the theory developed in [8].

2. Preliminaries. Let (V,A) be a full-rank tiling of F
9
2 . Since every x∈F

9
2 is rep-

resented uniquely as x = v+a with v ∈V and a∈A, we have |V ||A| = 29. Thus |V | and
|A| are powers of 2. Since rank(V ) = rank(A) = 9, both sets contain at least 24 vec-
tors. Thus we can assume w.l.o.g. that |V | = 24 and |A| = 25.

Lemma 2. Let (V,A) be a full-rank tiling of F
n
2 , let M be an invertible n×n binary

matrix, and let ϕM (x) = xM . Then (ϕM (V ), ϕM (A)) is a full-rank tiling of F
n
2 .

Lemma 2 was proved in [8]. It will be used as the starting point for both of our
proofs in sections 3 and 4. Both proofs also assume that |V | = 16 and |A| = 32.

3. Search for a full-rank tiling of F
9
2 using group characters. Let S9

def
=

{0, e1, e2, . . . , e9} be the Hamming sphere of radius 1 about 0 in F
9
2 . Using Lemma 2,

we can transform a full-rank tiling (V,A) of F
9
2 into a full-rank tiling (ϕM (V ), ϕM (A))

with the property that S9 ⊂ ϕM (V ). Thus, as in [8], we will assume later in this
section that S9 ⊂ V , and write V = S9 ∪ V ′ with |V ′| = 6. As we show next, this
assumption implies that the other set A in the full-rank tiling (V,A) also has a lot of
structure.

Let d(·, ·) denote the Hamming distance. Given C ⊂ F
n
2 such that d(x1, x2) � d

for all distinct x1, x2 ∈C, we write d(C) � d and say that C is an (n, |C|, d) code.
Lemma 3. Let (V,A) be a tiling of F

9
2 with S9 ⊂ V. Then d(A) � 3.

As shown in [8], Lemma 3 follows immediately from the definition of a tiling.
However, while the analysis of [8] stops at this point, we move on, using characters.

As in [6, Chapter 5], we represent a vector x = (x1, x2, . . . , xn)∈F
n
2 by its image

zx = zx1
1 zx2

2 · · · zxn
n in the group algebra QG, where G is the addition group of F

n
2 .

Then for any u, x∈F
n
2 and C ⊆ F

n
2 , the group characters χu(·) are defined by

χu(zx)
def
= (−1)〈u,x〉 and χu(C)

def
=

∑
x∈C

χu(zx),

where 〈·, ·〉 stands for the inner product (modulo 2) in F
n
2 . It is trivial that χu(Fn

2 ) = 0
for all nonzero u∈F

n
2 . This leads to the following proposition.

Proposition 4. Let (V,A) be a tiling of F
n
2 . Then for all nonzero u∈F

n
2 , either

χu(V ) = 0 or χu(A) = 0, or both χu(V ) = χu(A) = 0.
Proof. Since V +A = F

n
2 , in the group algebra QG we have χu(V )χu(A) = χu(Fn

2 ).
Thus if u �= 0, at least one of χu(V ) or χu(A) must be zero.

From now through the end of this section, we assume that (V,A) is a full-rank
tiling of F

9
2 with |A| = 32 and V = S9 ∪ V ′. Proposition 4 leads to a number of
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conclusions regarding A, which can be conveniently stated in terms of the following
notation: given C ⊆ F

n
2 , we let [C] denote the |C| × n matrix having the codewords

of C as its rows.
Corollary 5. Every column of [A] has exactly 16 ones and 16 zeros.
Proof. The claim of the corollary is equivalent to the statement that χei(A) = 0 for

all i, where e1, e2, . . . , e9 are the vectors of weight 1 in F
9
2 . Note that χei(S9) = 8

for all i, and therefore χei(V ) � 2. The claim thus follows from Proposition 4.
Corollary 6. In addition to 0, the set A has exactly 15 vectors of even weight.
Proof. This is equivalent to χ1(A) = 0, where 1 denotes the all-one vector in F

9
2 .

Since χ1(S9) = −8, the claim follows from Proposition 4.

Let I be a subset of [n]
def
= {1, 2, . . . , n} with |I| = t. We say that a code C ⊆ F

n
2 is

evenly distributed on the t positions in I if the corresponding t columns of [C] contain
every binary t-tuple exactly |C|/2t times.

Lemma 7. Let C ⊆ F
n
2 . Let I � [n] with |I| = t. Then C is evenly distributed on

the t positions in I if and only if χu(C) = 0 for all nonzero u∈F
n
2 with supp(u) ⊆ I.

Proof. As in Corollary 5, the fact that χu(C) = 0 for all vectors u of weight 1 with
supp(u) ⊆ I implies that each of the corresponding columns of [C] has |C|/2 ones and
|C|/2 zeros. Then χu(C) = 0 for all u of weight 2 with supp(u) ⊆ I implies that each
pair of relevant columns of [C] contains |C|/4 occurrences of each of 00, 01, 10, 11. In
other words, C is evenly distributed on every pair of positions in I. Clearly, one can
continue in this way up to vector(s) u of weight t, to show that C is evenly distributed
on all the t positions in I. The converse claim, namely, that χu(C) = 0 for all nonzero
u with supp(u) ⊆ I provided C is evenly distributed on I, should be obvious.

Since χu(S9) = 6 for any u∈F
9
2 with wt(u) = 2, it follows from Proposition 4 and

Lemma 7 that A is evenly distributed on any pair of positions {i, j}, unless the ith
and jth columns of [V ′] are complements of each other. In fact, a stronger property
holds.

Lemma 8. There is a set I = {i, j, k} such that A is evenly distributed on I.
Proof. In view of Proposition 4 and Lemma 7, it would suffice to prove that there

exists a set {i, j, k} such that χu(V ) �= 0 for all seven nonzero vectors u∈F
9
2 whose

support is confined to {i, j, k}. Equivalently, it would suffice to find three columns
in [V ′] such that no two are complements of each other and the even-weight 3-tuples
000, 011, 101, 110 occur at least twice among the six rows. It is not difficult to show
that any 6×9 binary matrix with distinct rows contains some three columns with the
desired property. We leave the details of this as an exercise for the reader.

By Lemma 8, we can assume w.l.o.g. that A is evenly distributed on the first three
positions. This means that A has the following structure:

000
000
000
000

C000

100
100
100
100

C100

010
010
010
010

C010

001
001
001
001

C001

110
110
110
110

C110

101
101
101
101

C101

011
011
011
011

C011

111
111
111
111

C111

,(1)

where C000,C001, . . . ,C111 are (6, 4, 3) codes by Lemma 3. Note that C000 contains the
vector 0, by definition. It is easy to verify that there are 14 nonisomorphic (up to co-
ordinate permutations) choices for C000. Moreover, for any distinct u, v ∈F

3
2 , we have

d(Cu,Cv) � 3− d(u, v) by Lemma 3. This implies that the codes C100, C010, C001 are
disjoint and are at distance � 2 from C000. The following table lists, for each of the 14
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nonisomorphic choices for C000, the number of (6, 4, 3) codes at distance � 2 from it:

0, 000111, 111000, 111111 : 2709 codes
0, 100110, 111000, 111111 : 2363 codes
0, 001101, 110001, 111110 : 2363 codes
0, 001111, 110001, 111110 : 2709 codes
0, 101101, 110001, 111110 : 2363 codes
0, 100111, 111001, 111110 : 2363 codes
0, 011010, 100011, 111100 : 2363 codes

0, 011011, 100011, 111100 : 2363 codes
0, 001111, 110011, 111100 : 2093 codes
0, 101010, 110011, 111100 : 2013 codes
0, 001110, 110010, 111100 : 2093 codes
0, 001101, 110010, 111100 : 2363 codes
0, 101001, 110010, 111100 : 2013 codes
0, 010101, 100110, 111000 : 2013 codes

Once the codes C000,C100,C010,C001 are fixed, all the possible choices (there are not
too many) for the remaining vectors in A can be easily computed using (1), the fact
that d(Cu,Cv) � 3 − d(u, v), and Corollaries 5 and 6. Finally, given A, it is straight-
forward to check whether rank(A) = 9 and, if so, whether the remaining six vectors
in V can be completed in such a way that (V,A) is a tiling.

A computer search based on this approach did not produce a full-rank tiling of F
9
2 ,

thereby proving Theorem 1. The source code of our program is available by anonymous
ftp to montblanc.ucsd.edu/pub. The search took 10 days on a 1.6 GHz PC.

4. Search for a full-rank tiling of F
9
2 using classification of [14, 5, 3] codes.

The key idea of this proof is to make much better use of Lemma 2 than in section 3
and [8]. Let (V,A) be a full-rank tiling of F

9
2 with |V | = 16. Assuming S9 ⊂ V as in

section 3 still leaves about 4 ·1010 possible choices for V (even after taking Lemma 10,
below, into account). We show next that, in fact, this number can be reduced to only
2164.

A code C ⊆ F
n
2 is linear if it is a subspace of F

n
2 . An [n, k, d ] code is a linear code

C ⊆ F
n
2 such that dim C = k and d(C) � d. An [n, k, d ] code can be defined in terms of

an (n−k)×n full-rank parity-check matrix H such that C = {x∈F
n
2 : Hxt = 0}. Two

[n, k, d ] codes C1, C2 are equivalent if there is a permutation π of [n] with π(C1) = C2.
Suppose there are exactly N inequivalent [15, 6, 3] codes, say, C1,C2, . . . ,CN , and let
H1, H2, . . . , HN be some parity-check matrices for C1,C2, . . . ,CN .

Lemma 9. Let (V,A) be a full-rank tiling of F
9
2 , and let V �{0} denote the set of the

nonzero vectors of V . Then there is an arrangement of rows of [V �{0}] and a 9×9 invert-
ible binary matrix M such that M [V �{0}]

t = Hi for some i∈{1, 2, . . . , N}.
Proof. Since [V �{0}]

t is a full-rank 9×15 matrix, it is a parity-check matrix for some
[15, 6, d] code C. Moreover d(C) � 3, as all the columns of [V �{0}]

t are nonzero and dis-
tinct. Thus C is a [15, 6, 3] code, and must be equivalent to one of C1,C2, . . . ,CN .

By Lemmas 2 and 9, in order to enumerate all possible full-rank tilings of F
9
2 , it

would suffice to choose from an exhaustive set of parity-check matrices for inequivalent
[15, 6, 3] codes. Binary [n, k, d ] codes with d � 3 have been classified in [7] for all k
up to length n = 14. One may continue this classification one step further to find all
the inequivalent [15, 6, 3] codes. However, we will use the next lemma instead.

An (n, |C|, 3) code C is perfect if the Hamming spheres of radius 1 about the code-
words of C cover F

n
2 . A code C ⊆ F

n
2 is full-rank if 0∈C and rank(C) = n. The

kernel of C is the set of all x∈F
n
2 such that x + C = C. The next lemma is similar

to Lemma 4 of [8], but requires a slightly different proof that, in fact, relies on the
main result of [8].

Lemma 10. If (V,A) is a full-rank tiling of F
9
2 , the sum of the vectors in V �{0} is 0.

Proof. Consider the code C = {x∈F
15
2 : [V �{0}]

txt ∈A}. It follows from Theorem 5.3
and Propositions 5.4 and 5.5 of [3] that C is a full-rank perfect code with a kernel
of dimension 6 + dim(kerA). Let v∗ denote the sum of the vectors in V �{0}. It is
shown in [1, Proposition 8.3] that v∗ ∈ kerA. Thus either v∗ = 0 and we are done, or
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dim(kerA) � 1. But in the latter case, dim(kerC) � 7. By Proposition 5.6 of [3], this
would imply that there is a full-rank tiling of F

8
2 . By the main result of [8], such a

tiling does not exist.
Lemma 10 implies that the [15, 6, 3] code C defined by the parity-check matrix

[V �{0}]
t is self-complementary, meaning that 1∈C. It is known [7] that there are pre-

cisely 17934 inequivalent [14, 5, 3] codes. Let H1, H2, . . . , H17934 be a set of parity-
check matrices for these codes; this set can be obtained from the first author or at
http://www.hut.fi/˜pat/matrices.html. Then a set of parity-check matrices for all the
inequivalent self-complementary [15, 6, 3] codes can be constructed as follows. For each
i = 1, 2, . . . , 17934, we append the sum of the 14 columns of Hi as its 15th column;
we then remove any isomorphs created thereby and discard codes with minimum dis-
tance � 2. It turns out that there are precisely 2164 inequivalent self-complementary
[15, 6, 3] codes. To each of the corresponding parity-check matrices, we append the
vector 0 to obtain the set V . It remains to compute, for each such V , the set of all A
such that (V,A) is a tiling of F

9
2 .

The computational task above can be regarded as a special case of the exact cover
problem. In general, the exact cover problem can be formulated as follows: given a set S
and a prescribed collection of subsets of S, compute all partitions of S by these subsets.
In our case, we can take S = F

9
2 \ V and for each a∈F

9
2 \ (V +V ) define a subset of S

consisting of a+V . To solve the exact cover problem, we used a fast algorithm devel-
oped by Knuth [4]. Solving the 2164 instances of exact cover in this manner produced
29823112 solutions, but none of full-rank, thereby proving Theorem 1. The search took
only 18 minutes on a 1.0 GHz PC. Of course, if the classification of [14, 5, 3] codes were
not readily available, there would be a slight increase in the computation times.

5. The smallest full-rank tilings. It follows from Theorem 1 that a full-rank
tiling of F

10
2 is the smallest possible. As mentioned in section 1, the existence of such

a tiling follows, using the results of [3], from the discovery by Le Van and Phelps [5] of
a full-rank perfect code of length 15 with a kernel of dimension 5. Apparently, however,
this tiling has never appeared in print, so we present it here. The set V consists of
the Hamming sphere of radius 1 about 0, along with the five vectors 0111110001,
1100010111, 1011001011, 0101101111, and 1010111101. The set A is given by

000
000
000
000
000
000
000
000

0000000
1100110
0011001
1111111
0101101
1101000
0010110
1011010

100
100
100
100
100
100
100
100

0000011
1010000
0101010
0010101
1100101
0111100
1110011
1001111

010
010
010
010
010
010
010
010

1001100
1100001
1010101
0110011
0111000
1001011
0101110
0011111

001
001
001
001
001
001
001
001

1000101
0001010
0011100
0110001
1110100
1010011
0100111
1101011

110
110
110
110
110
110
110
110

0000100
0010010
1100010
0101001
0100111
1110100
1011001
1011110

101
101
101
101
101
101
101
101

0000110
0001001
1100000
1001100
0110010
0011111
1111001
1111110

011
011
011
011
011
011
011
011

0100000
1010000
0000011
0001101
1000110
0110110
1111010
1111101

111
111
111
111
111
111
111
111

1000001
0011000
1001010
0101100
0110101
1010111
0111011
1101111

.(2)

It is easy to see from the results of section 3 that any full-rank tiling (V,A) of F
10
2

with |V | = 16 must have the general structure of (2). The tiling in (2) is not unique,
however. Here is another full-rank tiling of F

10
2 that we have found. The set V

again consists of the Hamming sphere of radius 1 about 0, along with the five vectors
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1100000000, 0011100000, 0000011100, 1011011010, and 1011011001. The set A is
given by

000
000
000
000
000
000
000
000

0000000
0000111
0101001
0111110
1011000
1011111
1101100
1110011

100
100
100
100
100
100
100
100

0010101
0011010
0100011
0100100
1000010
1001101
1110110
1111001

010
010
010
010
010
010
010
010

0010110
0011001
0101111
0110000
1000001
1001110
1110101
1111010

001
001
001
001
001
001
001
001

0001010
0011101
0100101
0110010
1000110
1010001
1101011
1110100

110
110
110
110
110
110
110
110

0001100
0010011
0101010
0111101
1001011
1010100
1100000
1100111

101
101
101
101
101
101
101
101

0001111
0010000
0111011
0111100
1001000
1010111
1100001
1101110

011
011
011
011
011
011
011
011

0000011
0000100
0101000
0110111
1011011
1011100
1100010
1101101

111
111
111
111
111
111
111
111

0001001
0011110
0100110
0110001
1000101
1010010
1111000
1111111

.(3)

In fact, a preliminary study indicates that the sets V for (2) and (3) are, up to
equivalence, the only two sets of size 16 that lead to full-rank tilings of F

10
2 .
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Abstract. The exact values of the function ex(n;TKp) are known for � 2n+5
3

� ≤ p < n
(see [Cera, Diánez, and Márquez, SIAM J. Discrete Math., 13 (2000), pp. 295–301]), where ex(n;TKp)
is the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to
the complete graph of order p. In this paper, for � 2n+6

3
� ≤ p < n− 3, we characterize the family of

extremal graphs EX(n;TKp), i.e., the family of graphs with n vertices and ex(n;TKp) edges not
containing a subgraph homeomorphic to the complete graph of order p.

Key words. extremal graph theory, topological complete subgraphs

AMS subject classifications. 05C35, 05C70

DOI. 10.1137/S0895480100378677

1. Introduction. The study of the function ex(n;TKp)—i.e., the maximum
number of edges of a graph of order n not containing a subgraph homeomorphic
to Kp, where Kp is the complete graph with p vertices—is one of the most general
extremal problems, as pointed out by Bollobas in [1]. Exact values for this function
are known only in some cases, as can be seen in Table 1.1.

Table 1.1

Exact values of the function ex(n;TKp).

p ex(n;TKp) Reference

3 n− 1
4 2n− 3 [3]
5 3n− 6 [4], [8], [9]

...
...

...

⌈
2n+5

3

⌉
≤ p <

⌈
3n+2

4

⌉ (
n
2

)
− (5n− 6p + 3) [2]

⌈
3n+2

4

⌉
≤ p < n

(
n
2

)
− (2n− 2p + 1) [2]

The aim of this work is to characterize a family of extremal graphs EX(n;TKp)
for appropriate values of n and p, i.e., the set of graphs of order n, with ex(n;TKp)
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edges and not containing any subgraph homeomorphic to Kp. Actually, we character-
ize the family EX(n;TKp) for � 2n+6

3 � ≤ p < n− 3:

EX(n;TKp) =

⎧⎨⎩
(3n− 4p + 2)K3 + (6p− 4n− 3)K2 for

⌈
2n+6

3

⌉
≤ p <

⌈
3n+2

4

⌉
,

K4p−3n−2 + (2n− 2p + 1)K2 for
⌈

3n+2
4

⌉
≤ p < n− 3.

2. Definitions and notation. Given a graph H and a set {v1, . . . , vq} of ver-
tices of H, we denote by H0 = H and by Hk for k = 1, . . . , q the induced subgraph
in H by the set of vertices V (H) − {v1, . . . , vk}. We denote by ∆(H) the maximum
degree of the graph H and by δH(v) the degree of the vertex v in the graph H. The
complement graph of H will be denoted by H.

Let q and s be a pair of nonnegative integers; Cs
q denotes the set of graphs H such

that there exists a set {v1, . . . , vq} of vertices of H verifying the following:

(1) δHj−1(vj) ≥ δHj (vj+1) for j = 1, . . . , q − 1.
(2) For each positive integer h, if there exists k ∈ {1, . . . , q} and v ∈ Hk such

that δHk
(v) ≥ h, then δHj

(vj+1) ≥ h for all j = 1, . . . , k.
(3) Hq has at most s edges (i.e., |E(Hq)| ≤ s).

The next results show different conditions to guarantee that a graph belongs to
the family described above (see [2]).

Lemma 2.1 (see [2]). Let H be a graph with n vertices. Then, for any q ≤ n,
there exists s such that H is in Cs

q .

When s = q, we know sufficient conditions for the edges of a graph to belong to
the class Cq

q .

Lemma 2.2 (see [2]). Let n and q be two positive integers, with q < n. If H is a
graph with n vertices and 2q edges, then

1. H ∈ Cq
q ,

2. δHq (v) ≤ 1 for v ∈ V (Hq).

Lemma 2.3 (see [2]). Let q and k be two positive integers with k ≤ q − 2. Let H
be a graph with 4q − k + 1 vertices and 2q + k + 1 edges. Then H ∈ Cq

q .

Notation and terminology not given here can be found in [1] and [2].

3. The family of extremal graphs. In this section, we will characterize the
family EX(n;TKp) for � 2n+6

3 � ≤ p < n − 3. This problem is equivalent to charac-
terizing EX(n;TKn−q) for n ≥ 4q + 2 with q ≥ 4 (case � 3n+2

4 � ≤ p < n − 3) and
n = 4q − k + 1 with q ≥ 5, 0 ≤ k ≤ q − 5 (the case � 2n+6

3 � ≤ p < � 3n+2
4 �).

In order to avoid excessive repetition, we define the graphs H(n;TKn−q):

H(n;TKn−q) =

⎧⎨⎩
Kn−(4q+2) + (2q + 1)K2 for n ≥ 4q + 2,

(k + 1)K3 + (2(q − k) − 1)K2 for n = 4q − k + 1, 0 ≤ k ≤ q − 5.

For n ≥ 4q + 2, a graph G belongs to the family {H(n;TKn−q)} if G has n vertices
and G is formed by 2q + 1 nonadjacent edges (see Figure 3.1).

For n = 4q− k+1 with q ≥ 5 and 0 ≤ k ≤ q− 5, a graph G belongs to the family
{H(n;TKn−q)} if it has 4q − k + 1 vertices and G is formed by k + 1 nonadjacent
triangles and 2(q − k) − 1 nonadjacent edges, as Figure 3.2 shows.

In the next two sections, we will prove the following theorem.

Theorem 3.1. EX(n;TKp) = {H(n;TKp)} for � 2n+6
3 � ≤ p < n− 3.
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�� �

2q + 1 nonadjacent edges
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n− (4q + 2)

isolated vertices

Fig. 3.1. Structure of G for n ≥ 4q + 2.
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� �
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� �

� �

k + 1 triangles 2(q − k) − 1 nonadjacent edges

Fig. 3.2. Structure of G for n = 4q − k + 1.

4. Case �3n+2
4

� ≤ p < n− 3. The aim of this section is to prove Theorem 3.1

when n and p are related by the expression � 3n+2
4 � ≤ p < n− 3.

Proposition 4.1. Let n and p be two positive integers such that � 3n+2
4 � ≤ p <

n− 3. It is verified that

EX(n;TKp) = {H(n;TKp)}.

In order to provide this proposition, we need some previous results. First, we
recall the following results about the function ex(n;TKn−q) (see [2]).

Theorem 4.2 (see [2]). Let n and q be two positive integers. If n ≥ 4q + 2, then

ex(n;TKn−q) =

(
n
2

)
− (2q + 1).

Also, we recall that, given a graph H and v ∈ H, the set of vertices adjacent to
v in H is denoted by Γ(v) (see [1]). Given a bipartite graph B whose classes are X
and Y with |X| ≤ |Y |, we say that B has a complete matching if there exists a set
of nonadjacent edges in B with cardinality |X|. If we need to show the existence of a
complete matching in a bipartite graph, then we can use Hall’s condition.

Theorem 4.3 (see [5]). Given a bipartite graph with classes X and Y , if |Γ(A)| ≥
|A| for all A ⊆ X, where Γ(A) =

⋃
v∈A Γ(v), then there exists a complete matching.

The next result asserts that for any graph G ∈ EX(n;TKn−q) its complement
graph G is extremal for Cq+1

q in the sense that G ∈ Cq+1
q and G �∈ Cq

q .
Lemma 4.4. Let n and q be two nonnegative integers with q ≥ 4 and n ≥ 4q + 2.

For every graph G from the family of graphs EX(n;TKn−q), we have

G ∈ Cq+1
q − Cq

q .

Proof. Let G be a graph such that G ∈ EX(n;TKn−q). The graph G does not
contain a subgraph homeomorphic to Kn−q, so by Theorem 4.2, we know that

|E(G)| =

(
n
2

)
− (2q + 1).
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Hence, |E(H)| = 2q + 1, where H = G.
By Lemma 2.1, there exists an integer s such that H ∈ Cs

q . This means that
there exists a subset {v1, . . . , vq} of vertices of G verifying |E(Hq)| ≤ s, where Hq =
H − {v1, . . . , vq}. If s ≤ q + 1, then H ∈ Cq+1

q . Otherwise (s > q + 1), let H∗ be the
graph obtained from H by removing one of the edges of the subgraph Hq. The graph
H∗ has n ≥ 4q+2 vertices and 2q edges, and applying Lemma 2.2 results in H∗ ∈ Cq

q .
Furthermore, by the construction of the graph H∗, the set of vertices chosen to prove
that H∗ belongs to the class of graphs Cq

q is the same as the one we chose previously
in H; thus |E(Hq)| ≤ q + 1 and H ∈ Cq+1

q .
Now we will prove that the number of edges of Hq may not be equal to or less

than q, i.e., H �∈ Cq
q . Suppose that H ∈ Cq

q . This means there exists a set of vertices
{v1, . . . , vq} guaranteeing this assertion. Let e1 = (a1, b1), . . . , es = (as, bs) be the
edges of Hq with 1 ≤ s ≤ q.

We consider the bipartite graph B whose classes are X = {e1, . . . , es} and
Y = {v1, . . . , vq} such that ei is adjacent to vj in B if the path aivjbi exists in
G. We note that if there exists a complete matching in B, then we have that G con-
tains a subgraph homeomorphic to Kn−q. Now Hall’s condition implies the existence
of a complete matching. Thus, we will prove that |Γ(A)| ≥ |A| for each A ⊆ X.

Let A = {ei} be a subset of X with |A| = 1 for i ∈ {1, . . . , s}. If |Γ(A)| = 0,
then ei is nonadjacent to any vertex of the set {vq−2, vq−1, vq} in B. Hence, no vertex
v ∈ {vq−2, vq−1, vq} is adjacent to both ai and bi in G. Consequently, δHq−1

(ai) ≥ 2 or
δHq−1

(bi) ≥ 2 and, furthermore, δHq−3
(ai) ≥ 3 or δHq−3

(bi) ≥ 3. Thus, using property
(2) of the definition of Cq

q , we obtain that δHj−1(vj) ≥ 3 for j = 1, . . . , q − 2 and
δHj−1

(vj) ≥ 2 for j = q − 1, q. Therefore, since s ≥ 1 we have that

|E(H)| ≥ 3(q − 2) + 2 · 2 + s ≥ 2q + 2

for q ≥ 3. But this is not possible since |E(H)| = 2q + 1.
We consider A = {ei, ej} ⊆ X for i, j ∈ {1, . . . , s} with i �= j, and we suppose

|Γ(A)| ≤ 1. This means that at least three vertices of the set {vq−3, vq−2, vq−1, vq} are
nonadjacent to ei and to ej in B. Taking into account property (2) of the definition of
Cq
q , we have that δHj−1

(vj) ≥ 3 for j = 1, . . . , q − 3, δHj−1(vj) ≥ 2 for j = q − 2, q − 1
and δHq−1

(vq) ≥ 1 (see Figure 4.1). Hence,

|E(H)| ≥ 3(q − 3) + 2 · 2 + 1 + s ≥ 2q + 2

for q ≥ 4, and this is a contradiction, as in the previous case.
Let m be an integer with 3 ≤ m ≤ s. Let A be the set of vertices

{ei1 , . . . , eim} ⊆ {e1, . . . , es} with i1 < i2 < · · · < im. If |Γ(A)| ≤ m − 1, then there
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Fig. 4.1. Possible structure of H for the most unfavorable case for A = {ei, ej}.
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Fig. 4.2. Possible structure of H for the most unfavorable case for 3 ≤ m ≤ s.

exists i ∈ {q − (m− 1), . . . , q} in such a way that vi is not adjacent to any vertex of
the set A in the graph B. By applying condition (2) of the definition of Cq

q , we obtain
that δHq−m(vq−(m−1)) ≥ m and, therefore, δHj−1(vj) ≥ m for 1 ≤ j ≤ q− (m−1) (see
Figure 4.2). Furthermore, δHj−1(vj) ≥ 1 for q−(m−2) ≤ j ≤ q and |E(Hq)| = s ≥ m.
Consequently,

|E(H)| ≥ m(q − (m− 1)) + m− 1 + s
≥ mq −m2 + 3m− 1.

Since E(H) = 2q + 1, we have that 2q + 1 ≥ mq − m2 + 3m − 1 and, therefore,

q ≤ m2−3m+2
m−2 ≤ m − 1 < m ≤ s, but this is not possible. Therefore, |Γ(A)| ≥ |A|

for each A ⊆ X. Thus, by Hall’s condition, there exists a complete matching in B
and, thereby, the graph G contains a subgraph homeomorphic to Kn−q. This is not
possible, and the result follows.

Now we can prove Proposition 4.1.
Proof of Proposition 4.1. It is equivalent to prove that

EX(n;TKn−q) = {H(n;TKn−q)}

for q ≥ 4 and n ≥ 4q + 2.
Let G be a graph belonging to {H(n;TKn−q)} with n ≥ 4q + 2. It is easy to

check that G does not contain a subgraph homeomorphic to Kn−q. Furthermore, by
denoting |E(G)| as the number of edges of G, we have that

|E(G)| = ex(n;TKn−q) =

(
n
2

)
− (2q + 1).

Thus, by Theorem 4.2, G is maximal on edges and

{H(n;TKn−q)} ⊆ EX(n;TKn−q).

In order to prove that EX(n;TKn−q) ⊆ {H(n;TKn−q)}, let G be a graph
belonging to EX(n;TKn−q), and we set H = G. By Theorem 4.2 we have that
|E(H)| = 2q + 1. By Lemma 2.1, we know there exists s such that H ∈ Cs

q . Let
{v1, . . . , vq} be a set of q vertices guaranteeing this property. We know that there ex-
ists a vertex v ∈ Hq such that δHq (v) ≥ 1, because otherwise Hq is empty and H ∈ Cq

q .
But this is not possible because, by Lemma 4.4, we know that H �∈ Cq

q . If δ(v1) ≥ 2,
then |E(Hq)| ≤ 2q + 1 − (2 + q − 1) = q and therefore H ∈ Cq

q , a contradiction.
Therefore, δ(v1) ≤ 1.

Thus, as v1 is the vertex of maximum degree in H, we have that δ(v) ≤ 1 for all
v ∈ H, and then the graph H is formed by 2q + 1 nonadjacent edges. Therefore, the
result follows.
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5. Case �2n+6
3

� ≤ p < �3n+2
4

�. In this section, we will characterize the family
of extremal graphs EX(n;TKn−q) for n = 4q − k + 1 with 0 ≤ k ≤ q − 5 in such a
way that we will show that EX(n;TKn−q) = {H(n;TKn−q)}, applying techniques
based on the same ideas as in the previous section.

Theorem 5.1. Let n and p be two positive integers with � 2n+6
3 � ≤ p < � 3n+2

4 �.
Then

EX(n;TKp) = {H(n;TKp)}.

In order to prove this result, we also need to recall some results about the function
ex(n;TKn−q) (see [2]).

Lemma 5.2 (see [2]). Let k be a nonnegative integer and H be a graph with
maximum degree 2 and at least 3k + 1 vertices of maximum degree. Then there exist
at least k + 1 nonadjacent vertices with degree 2.

Theorem 5.3 (see [2]). Let n, k, and q be three nonnegative integers with 0 ≤
k ≤ q − 4 and n = 4q − k + 1. It is verified that

ex(n;TKn−q) =

(
n
2

)
− (2q + k + 2).

Now we will show, as in Lemma 4.4, that if G ∈ EX(n;TKn−q) with n = 4q−k+1,
then G ∈ Cq+1

q but G �∈ Cq
q .

Lemma 5.4. Let k, n, and q be three nonnegative integers such that q ≥ 5,
0 ≤ k ≤ q − 5, and n = 4q − k + 1. If G ∈ EX(n;TKn−q), then

G ∈ Cq+1
q − Cq

q .

Proof. Let G be a graph belonging to EX(n;TKn−q). This graph does not contain
a graph homeomorphic to Kn−q, and by Theorem 5.3 we know that

|E(G)| =

(
n
2

)
− (2q + k + 2).

Thus, H = G has 2q + k + 2 edges.
Let H∗ be the graph obtained from H by removing one edge, similar to what

we have done in Lemma 4.4. Since H∗ is a graph formed by 4q − k + 1 vertices and
2q + k + 1 edges, then applying Lemma 2.3 yields H∗ ∈ Cq

q , and then

H ∈ Cq+1
q .

Now we will show that H �∈ Cq
q . To the contrary, suppose H ∈ Cq

q and let
{v1, . . . , vq} be a set of vertices of H guaranteeing that H ∈ Cq

q . Let e1 = (a1, b1), . . . ,
es = (as, bs) be the edges of Hq with s ≤ q. We consider the bipartite graph B
constructed as in Lemma 4.4, i.e., the graph whose classes are X = {e1, . . . , es} and
Y = {v1, . . . , vq} in such a way that ei is adjacent to vj if the path aivjbi exists in the
graph G. In this case, if we show the existence of a complete matching in B, then we
would have that G contains a subgraph homeomorphic to Kn−q. Therefore, we will
show that |Γ(A)| ≥ |A| for each A ⊆ X.

If |A| = m = 1, by reasoning as in the proof of Lemma 4.4, we have that

|E(H)| ≥ 3(q − 2) + 4 + s = 3q + s− 2 ≥ 3q − 1.
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Since k ≤ q− 4, it is verified that 3q− 1 ≥ 2q + k + 4− 1 > 2q + k + 2, but this is not
possible.

For m = 2, by considering as done previously, we have that

|E(H)| ≥ 3(q − 3) + 4 + 1 + s = 3q − 4 + s ≥ 3q − 2.

Taking into account that k ≤ q − 5, it is verified that |E(H)| > 2q + k + 2, and this
is a contradiction.

We consider m = 3. Let A = {ei1 , ei2 , ei3} be a subset of vertices of X with
1 ≤ i1 < i2 < i3 ≤ s. If |Γ(A)| ≤ 2, then there exists i ∈ {q − 2, . . . , q} in such a way
that vi is not adjacent to any vertex of the set A in the graph B. Hence, by applying
property (2) of the definition of Cq

q , we have that δHq−3
(vq−2) ≥ 3. Thus,

|E(H)| ≥ 3(q − 2) + 2 + s ≥ 3q − 1 > 2q + k + 2

since k ≤ q − 4.
In general, if 4 ≤ m ≤ s, then we consider A as the set of vertices

{ei1 , . . . , eim} ⊆ {e1, . . . , es} with i1 < i2 < · · · < im. If |Γ(A)| ≤ m − 1, then
there exists i ∈ {q − (m − 1), . . . , q} in such a way that vi is not adjacent to any
vertex of the set A in the graph B. Hence, as in the proof of Lemma 4.4, we have that
δHq−m

(vq−(m−1)) ≥ m and, therefore,

|E(H)| ≥ m(q − (m− 1)) + m− 1 + s ≥ mq −m2 + 3m− 1.

But |E(H)| = 2q + k + 2 ≤ 3q − 3 for k ≤ q − 5. Thus, 3q − 3 ≥ mq −m2 + 3m − 1
and, thereby, q ≤ m− 2

m−3 < m, but this is not possible.
Thus, using Hall’s condition, there exists a complete matching in B, and con-

sequently, G contains a subgraph homeomorphic to Kn−q, but this is not possible.
Hence, H �∈ Cq

q and the result follows.
The next result is devoted to proving the existence of nonadjacent triangles in

graphs with maximum degree 2 and the prescribed number of vertices of maximum
degree.

Lemma 5.5. Let r be a nonnegative integer, and let H be a graph with maximum
degree 2. If H has 3r + 3 vertices of degree 2 and r + 1 of them form an independent
set, then H contains r + 1 nonadjacent triangles.

Proof. We apply induction on r. For r = 0 the result is obvious, because the
triangle is the unique graph formed by 3 vertices of degree 2 and all of them are
adjacent among themselves.

Now suppose that r + 1 ≥ 2 and the result holds for r. Let H be a graph with
3(r+1)+3 = 3(r+2) vertices of degree 2, and let w1, . . . , wr+2 be r+2 nonadjacent
vertices of H.

If there exist i, j ∈ {1, . . . , r + 2} with i �= j such that Γ(wi) ∩ Γ(wj) �= ∅, then

|
⋃r+2

k=1{Γ(wk)∪wk}| < 3(r + 2). Thus, there exists w ∈ H with degree 2 nonadjacent
to wi for all i. Hence, {w,w1, . . . , wr+2} is a set of r+3 nonadjacent vertices of degree
2, but this is a contradiction. Therefore, Γ(wi)∩Γ(wj) = ∅ for all i �= j. Furthermore,
if w ∈ H is adjacent to any wi for i ∈ {1, . . . , r + 2}, then w has degree 2; otherwise,
since the number of vertices of degree 2 is 3(r + 2), there exists v ∈ H with degree 2
nonadjacent to wi for all i, and we have seen above that this is not possible.

Now, let a and b be the vertices adjacent to wr+2. If the edge (a, b) does not
belong to H, we have that {w1, . . . , wr+1, a, b} is a set of r + 3 nonadjacent vertices
of degree 2. Thus, the vertices w1, a, and b form a triangle.
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Denote by H∗ the graph obtained from H, removing the previous triangle. There-
fore, H∗ is a graph with 3r+3 vertices of degree 2, and r+1 of them are nonadjacent;
by induction hypothesis, H∗ contains r + 1 nonadjacent triangles. Thus, H contains
r + 2 nonadjacent triangles.

To finish this section, we give the proof of Theorem 5.1, using the previous results.
Proof of Theorem 5.1. It is equivalent to show that

EX(n;TKn−q) = {H(n;TKn−q)}

for n = 4q − k + 1 with q ≥ 5, 0 ≤ k ≤ q − 5.
Let G be a graph belonging to the set {H(n;TKn−q)}. By checking the structure

of this graph G, it is easy to prove that G does not contain a subgraph homeomor-
phic to Kn−q. Since |E(G)| = ex(n;TKn−q) = (n2 ) − (2q + k + 2), we have that
G ∈ EX(n;TKn−q).

In order to show that EX(n;TKn−q) ⊆ {H(n;TKn−q)}, let G be a graph belong-
ing to EX(n;TKn−q). We denote by H = G. By Theorem 5.3, |E(H)| = 2q + k + 2.
First, we will prove that ∆(H) ≤ 2. Suppose the contrary, that ∆(H) ≥ 3.

By applying Lemma 5.4, we have H ∈ Cq+1
q − Cq

q . Hence, there exists a subset of
vertices {v1, . . . , vq} of H guaranteeing this property. Furthermore, |E(Hq)| = q + 1.
We claim there exists j ∈ {1, . . . , q} such that ∆(Hj−1) ≥ 3 and ∆(Hj) ≤ 2, because
otherwise we have δHi−1(vi) ≥ 3 for each 1 ≤ i ≤ q, and

|E(H)| ≥ 3q + (q + 1) > 2q + k + 2,

but this is not possible. Now we distinguish the cases j ≥ k + 1 and j ≤ k.
For j ≥ k+1, we consider the fact that ∆(Hj−1) ≥ 3 and ∆(Hj) ≤ 2. Taking into

account property (2) of the definition of Cq+1
q and |E(Hq)| > 0, we have δHi−1(vi) ≥ 3

for 1 ≤ i ≤ j and δHi−1(vi) ≥ 1 for j + 1 ≤ i ≤ q. Hence,

|E(Hq)| ≤ 2q + k + 2 − (3j + (q − j)) ≤ q − j + 1 ≤ q.

But this is not possible since |E(Hq)| = q + 1.
For j ≤ k, we have that δHi−1(vi) ≥ 3 for 1 ≤ i ≤ j. If ∆(Hk) ≤ 1, then

2|E(Hk)| ≤ |V (Hk)| and

4q − 2k + 1 = |V (Hk)| ≥ 2|E(Hk)| ≥ 2(q − k + q + 1) = 4q − 2k + 2,

and this is a contradiction. Thus, ∆(Hk) = 2 and δHi−1
(vi) ≥ 2 for j + 1 ≤ i ≤ k.

Hence,

|E(Hq)| ≤ 2q + k + 2 − (3j + 2(k − j + 1) + (q − k + 1)) = q − j + 1 ≤ q,

and this not possible. Thus, ∆(H) ≤ 2.
Since 2|E(H)| > |V (H)|, we have ∆(H) ≥ 2 and, consequently, ∆(H) = 2.
Next we are going to study the structure of H. On the one hand, if H has at

least 3(k+ 1) + 1 vertices of degree 2, then by Lemma 5.2 we have that k+ 2 of those
vertices {w1, . . . , wk+2} are nonadjacent. Let wk+3, . . . , wq be q − (k + 2) vertices of
H such that the set {w1, . . . , wk+2, wk+3, . . . , wq} verifies properties (1) and (2) of the
definition of Cs

q . For this set of vertices, we have that

|E(Hq)| ≤ 2q + k + 2 − (2(k + 2) + q − (k + 2)) = q,
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and therefore, H ∈ Cq
q , a contradiction. Thus, H has at most 3k+3 vertices of degree

2. On the other hand, if we denote by ni the number of vertices of degree i in H, we
have that

2n2 + n1 = 2(2q + k + 2)
n2 + n1 + n0 = 4q − k + 1

}
.

Thus, n2 = 3k + 3 + n0 ≥ 3k + 3 and the number of vertices of degree 2 in H is
n2 = 3k + 3.

Furthermore, as we have shown previously, H may not have k + 2 nonadjacent
vertices of degree 2. Since H has 3k+3 ≥ 3k+1 vertices of degree 2, by Lemma 5.2 we
have that H has at least k + 1 nonadjacent vertices. Hence, H has maximum degree
2 and 3k + 3 vertices of degree 2, and k + 1 of them are nonadjacent. Therefore, by
applying Lemma 5.5, H contains k + 1 nonadjacent triangles. Additionally, n0 = 0,
n1 = 4q − 4k − 2, and the result follows.
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and suggestions.
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Abstract. The poset of noncrossing partitions can be naturally defined for any finite Coxeter
group W . It is a self-dual, graded lattice which reduces to the classical lattice of noncrossing partitions
of {1, 2, . . . , n} defined by Kreweras in 1972 when W is the symmetric group Sn, and to its type
B analogue defined by the second author in 1997 when W is the hyperoctahedral group. We give
a combinatorial description of this lattice in terms of noncrossing planar graphs in the case of the
Coxeter group of type Dn, thus answering a question of Bessis. Using this description, we compute
a number of fundamental enumerative invariants of this lattice, such as the rank sizes, number of
maximal chains, and Möbius function.

We also extend to the type D case the statement that noncrossing partitions are equidistributed to
nonnesting partitions by block sizes, previously known for types A, B, and C. This leads to a (case-
by-case) proof of a theorem valid for all root systems: the noncrossing and nonnesting subspaces
within the intersection lattice of the Coxeter hyperplane arrangement have the same distribution
according to W -orbits.

Key words. noncrossing partition, nonnesting partition, reflection group, root poset, antichain,
Catalan number, Narayana numbers, type D, Garside structure
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1. Introduction and results. The lattice NCA(n) of noncrossing partitions
is a well-behaved and well-studied subposet inside the lattice Π(n) of partitions of
the set [n] := {1, 2, . . . , n}. It consists of all set partitions π of [n] such that if
a < b < c < d and a, c are contained in a block B of π while b, d are contained in a
block B′ of π, then B = B′. The lattice of noncrossing partitions arises naturally in
such diverse areas of mathematics as combinatorics, discrete geometry, representation
theory, group theory, probability, combinatorial topology, and mathematical biology;
see the survey [21] by Simion. This paper concerns analogues of this lattice for Coxeter
groups and, specifically, for the Coxeter group of type Dn.

Such analogues were suggested for the Coxeter groups of types Bn and Dn in
[20] and were shown to have enumerative and order theoretic properties similar to
those of NCA(n). Reiner [20, section 6] asked for a natural definition of the lattice of
noncrossing partitions for any finite Coxeter group W . Although the main idea may
be described as folklore (cf. [7]), only fairly recently, and in particular after the work
of Bessis [4] and Brady and Watt [12], it has become apparent that such a definition
is both available and useful. More precisely, for u,w ∈ W , let u ≤ w if there is a
shortest factorization of u as a product of reflections in W which is a prefix of such
a shortest factorization of w. This partial order turns W into a graded poset TW

having the identity 1 as its unique minimal element, where the rank of w is the length
of the shortest factorization of w into reflections. Let γ be a Coxeter element of W .
Since all Coxeter elements in W are conjugate to each other, the interval [1, γ] in TW
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is independent, up to isomorphism, of the choice of γ. We denote this interval by
NCW or by NCXn , where Xn is the Cartan–Killing type of W . The poset NCW

plays a crucial role in the construction of new monoid structures and K(π, 1) spaces
for Artin groups associated with finite Coxeter groups [4, 11, 12] and shares many of
the fundamental properties of NCA(n). For instance, it is self-dual [4, section 2.3]
and graded and has been verified case-by-case to be a lattice [4, Fact 2.3.1]; see also
[12, section 4].

In the case of the symmetric group it is known that the poset NCAn−1 is iso-
morphic to the lattice NCA(n) of noncrossing partitions; see, for instance, [6, 7, 11].
Similarly, in the case of the hyperoctahedral group, the poset NCBn is isomorphic to
the type B analogue NCB(n) of NCA(n) proposed in [20]; see [4, 9, 12]. However, it
was observed in [12, section 4] that NCDn is not isomorphic to the type D analogue
of NCA(n) suggested in [20]. Bessis [4, section 4.2] asked for an explicit description
of the elements of NCDn as noncrossing planar graphs, similar to those which appear
in the definition of NCB(n). We give such a description in section 3. Using a con-
struction similar to that of NCB(n), we define a poset NCD(n) which we suggest as
the type D analogue of NCA(n) and prove the following theorem.

Theorem 1.1. The poset NCDn is isomorphic to NCD(n).
In particular, this gives a different proof that the poset NCDn is indeed a lattice

[12, Theorem 4.14]; see Proposition 3.1. We should mention that, independently,
Bessis and Corran [5] have generalized this construction to a class of complex reflection
groups that contains Dn.

In our next main result we compute some basic enumerative invariants of NCDn .
Throughout, we use the convention that

(
n
k

)
= 0 unless k ∈ {0, 1, 2, . . . , n}.

Theorem 1.2. (i) The number of elements of NCDn of rank k is equal to the
type D Narayana number

Nar(Dn, k) =

(
n

k

)2

− n

n− 1

(
n− 1

k

)(
n− 1

k − 1

)

=

(
n

k

)((
n− 1

k

)
+

(
n− 2

k − 2

))
.

In particular, the total number of elements of NCDn is equal to the type D Catalan
number

Cat (Dn) =

(
2n

n

)
−

(
2n− 2

n− 1

)
.

(ii) More generally, for any composition s = (s1, s2, . . . , sm) of the number n,
the number of chains from the minimum to the maximum element in NCDn with
successive rank jumps s1, s2, . . . , sm is equal to

2

(
n− 1

s1

)
· · ·

(
n− 1

sm

)
+

m∑
i=1

(
n− 1

s1

)
· · ·

(
n− 2

si − 2

)
· · ·

(
n− 1

sm

)
.

(iii) The zeta polynomial of NCDn is given by

Z(NCDn ,m) = 2

(
m(n− 1)

n

)
+

(
m(n− 1)

n− 1

)
.
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(iv) In particular, NCDn has 2(n−1)n maximal chains, and has Möbius function
between the minimum and maximum element equal to

(−1)n
(

2

(
2n− 2

n

)
−
(

2n− 3

n− 1

))
.

The Narayana and Catalan numbers which appear in part (i) of Theorem 1.2
can be defined for any finite Coxeter group; see [2, 3] for a number of interesting
combinatorial and algebraic-geometric interpretations. It is known [16, 20] that the
number of elements of a given rank in NCW and the total number of elements are
equal to the corresponding Narayana and Catalan numbers, respectively, in the cases
of types A and B. Thus part (i) of the theorem extends this fact to the case of type
D. The statement on the cardinality of NCDn is also claimed to have been checked
by Picantin [19]. We note that the type D analogue of NCA(n) suggested in [20]
has the same cardinality and rank sizes as NCDn [20, Corollary 10] but different zeta
polynomial, number of maximal chains, and Möbius function.

Our definition of the poset NCD(n) leads naturally to a notion of “block sizes”
for noncrossing partitions of type D (see section 2). Such a notion was already sug-
gested in [1] for nonnesting partitions for the classical root systems, which are other
families of combinatorial objects counted by the corresponding Catalan numbers; see
[1], [20, Remark 2], [25, Exercise 6.19 (uu)], and section 2. Our next result refines
Theorem 1.2(i) and extends to the case of type D the main result of [1], stating that
noncrossing and nonnesting partitions are equidistributed by block sizes for each of
the classical root systems of types A, B, and C.

Theorem 1.3. Let λ be a partition of n−m with k parts, where m ≥ 0, and let
mλ = r1! · r2! · · · , where ri is the number of parts of λ equal to i. The numbers of
noncrossing or nonnesting partitions of type Dn with block sizes λ are equal to each
other and are given by the formula⎧⎪⎪⎨⎪⎪⎩

(n− 1)!

mλ (n− k − 1)!
if m ≥ 2,

(r1 + 2(n− k))
(n− 1)!

mλ (n− k)!
if m = 0.

Note that the type D analogue of NCA(n) proposed in [20] fails to preserve this
similarity between noncrossing and nonnesting partitions [1, section 6].

Finally, we show that this equidistribution of noncrossing and nonnesting parti-
tions for the classical types A,B,C,D leads to a case-by-case proof of a result (Theo-
rem 6.3) valid for all (finite, crystallographic) root systems: there are embeddings of
the sets of noncrossing and nonnesting partitions into the intersection lattice ΠW of
the Coxeter hyperplane arrangement, and the two distributions according to W -orbits
coincide.

This paper is organized as follows. Section 2 collects the necessary background
and definitions related to the Coxeter group of type Dn, noncrossing partitions, and
nonnesting partitions. In particular, the poset NCDn is explicitly described. We also
include a few enumerative results from [1] which are used in the following sections.
Theorem 1.1 is proved in section 3 after the poset NCD(n) is defined. Theorem 1.2 is
proved in section 4 using Theorem 1.1 and bijective methods similar to those employed
in [13, 20] in the case of NCA(n) and NCB(n). Theorem 1.3 is proved in section 5.
Section 6 describes the embeddings of the sets of noncrossing and nonnesting partitions
into the intersection lattice ΠW and proves Theorem 6.3 on the equidistribution of
their W -orbits. Section 7 concludes with a few remarks.
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2. Background and definitions. This section includes notation, definitions,
and some basic background related to Coxeter groups as well as noncrossing and
nonnesting partitions of types B and D.

We will mostly follow notation introduced in [1, 12, 20]. We refer the reader to
the texts by Humphreys [15] and Stanley [24] for any undefined terminology related
to Coxeter groups and partially ordered sets, respectively. Throughout the paper we
let

[n] := {1, 2, . . . , n},
[n]± := {−1,−2, . . . ,−n, 1, 2, . . . , n}

for any positive integer n.
The Coxeter group Dn. Let S2n denote the symmetric group on the set [n]±.

For any cycle c = (i1, i2, . . . , ik) in S2n, we let c̄ = (−i1,−i2, . . . ,−ik). If c is the
transposition (i, j) and i �= −j, we denote by ((i, j)) the product cc̄ = (i, j)(−i,−j)
and call ((i, j)) a Dn-reflection, or simply a reflection. The Coxeter group WDn is
the subgroup of S2n generated by the reflections ((i, j)). Any element of WDn can be
expressed uniquely (up to reordering) as a product of disjoint cycles

c1c̄1 · · · ck c̄k d1 · · · dr,(2.1)

each having at least two elements, where d̄j = dj for j = 1, 2, . . . , r and r is even; see,
for instance, [12, Proposition 3.1]. Following [12], for a cycle c = (i1, i2, . . . , ik) in S2n

we write

((i1, i2, . . . , ik)) = cc̄ = (i1, i2, . . . , ik)(−i1,−i2, . . . ,−ik)

and call cc̄ a paired cycle if c is disjoint from c̄. We also write

c = [i1, i2, . . . , ik]

if c = c̄ = (i1, . . . , ik,−i1, . . . ,−ik) and call c a balanced cycle. Note that [i] denotes
both the balanced cycle (i,−i) and the set {1, 2, . . . , i}. We will leave it to the reader
to decide which notation is meant each time, hoping that no confusion will arise.

For w ∈ WDn we denote by l(w) the minimum number r for which w can be
written as a product of r reflections and call it the length of w. (Note: this is not
the usual Coxeter group length function, which is defined with respect to the simple
reflections as generating set.) The cycle ((i1, i2, . . . , ik)) has length k − 1. The length
of any element of WDn in the form (2.1) can be written as a sum over its paired and
balanced cycles, where the contribution of ((i1, i2, . . . , ik)) and [i1, i2, . . . , ik] to this
sum is k − 1 and k, respectively [12, section 3]. We denote by TDn the partial order
on the set WDn defined by letting u ≤ w if l(w) = l(u) + l(u−1w). The poset TDn

is graded by length and has the identity element 1 as its unique minimal element.
For a choice γ of a Coxeter element of WDn , which we fix as γ = [1, 2, . . . , n − 1][n]
for convenience, we denote by NCDn the interval [1, γ] in the poset TDn . The poset
NCDn is a self-dual, graded lattice of rank n [4, section 2], [12, section 4], where the
rank function is the restriction of the rank function from TDn .

Noncrossing partitions. A Bn-partition is a partition π of the set [n]± into blocks
such that (i) if B is a block of π, then its negative −B is also a block of π, and
(ii) there is at most one block, called the zero block if present, which contains both i
and −i for some i. The type of π is the integer partition λ which has a part equal to the
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(a)
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  (b)
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5

Fig. 1. Two elements of NCB(n) for n = 6 with blocks (a) {3, 4, 5}, {−3,−4,−5}, {1, 2, 6,
−1,−2,−6} and (b) {3, 4,−5}, {−3,−4, 5}, {2,−6}, {−2, 6}, {1}, {−1}.

cardinality of B for each pair {B,−B} of nonzero blocks of π. Thus λ is a partition of
n−m, where m is half the size of the zero block of π, if present, and m = 0 otherwise.
We refer to the parts of λ as the block sizes of π. A Dn-partition is a Bn-partition π
with the additional property that the zero block of π, if present, does not consist of a
single pair {i,−i}. The set of all Bn-partitions, ordered by refinement, is denoted by
ΠB(n). Its subposet consisting of all Dn-partitions is denoted by ΠD(n). The posets
ΠB(n) and ΠD(n) are geometric lattices which are isomorphic to the intersection
lattices of the Bn and Dn Coxeter hyperplane arrangements, respectively, and hence
they can be considered as type B and D analogues of the partition lattice Π(n). In
particular they are graded of rank n, and the corank of an element π in either poset
is the number of pairs {B,−B} of nonzero blocks of π.

Let us label the vertices of a convex 2n-gon as 1, 2, . . . , n,−1,−2, . . . ,−n clock-
wise, in this order. Given a Bn-partition π and a block B of π, let ρ(B) denote the
convex hull of the set of vertices labeled with the elements of B. We call π noncross-
ing if ρ(B) and ρ(B′) have void intersection for any two distinct blocks B and B′

of π. Two noncrossing partitions are depicted in Figure 1 for n = 6. The subposet
of ΠB(n) consisting of the noncrossing Bn-partitions is a self-dual, graded lattice of
rank n which is denoted by NCB(n) [20, section 2].

Nonnesting partitions. Let e1, e2, . . . , en be the unit coordinate vectors in R
n and

let Φ be a root system of one of the types Bn, Cn, or Dn. In what follows, we identify
Φ with its type Xn and fix the choices

Φ+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ei ± ej : 1 ≤ i < j ≤ n} if Φ = Dn,

D+
n

⋃
{ei : 1 ≤ i ≤ n} if Φ = Bn,

D+
n

⋃
{2ei : 1 ≤ i ≤ n} if Φ = Cn

of positive roots for Φ. The root poset of Φ is the set Φ+ of positive roots partially
ordered by letting α ≤ β if β −α is a nonnegative linear combination of the elements
of Φ+. An antichain in Φ+ is a subset of Φ+ consisting of pairwise incomparable
elements.
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1 2 3 4 5 6 0 -6 -5 -4 -3 -2 -1

Fig. 2. A picture of the B6-nonnesting partition with blocks {1, 3}, {−1,−3}, {2, 5,−6},
{−2,−5, 6}, and {4,−4}.

1 2 3 4 5 -5 -4 -3 -2 -1

Fig. 3. A picture of the D5-nonnesting partition with blocks {2, 4}, {−2,−4}, and {1, 3, 5,
−1,−3,−5}.

Given an antichain A in Φ+, we define an equivalence relation on the set [n]±∪{0}
if Φ = Bn or Cn, and on the set [n]± if Φ = Dn, as follows. For 1 ≤ i < j ≤ n, let

i ∼ j and − i ∼ −j if ei − ej ∈ A,

i ∼ −j and − i ∼ j if ei + ej ∈ A.

Moreover, in the cases Φ = Bn or Cn, let

i ∼ 0 ∼ −i if ei ∈ A or 2ei ∈ A, respectively.

Let π0(A) be the set of equivalence classes of the transitive closure of ∼. Let π(A) be
the partition of [n]± obtained from π0(A) by removing 0 from its class if Φ = Bn or
Cn, and let π(A) = π0(A) if Φ = Dn. Observe that π(A) is a Bn-partition. Moreover,
in the case Φ = Dn, π(A) has a zero block if and only if A contains both ei − en
and ei + en for some i < n and hence, in this event, the zero block contains {n,−n}
and at least one more pair {i,−i}. Thus in general π(A) is a Φ-partition, where a
Cn-partition is defined to be the same as a Bn-partition. A Φ-nonnesting partition is
a Φ-partition of the form π(A) for some antichain A in Φ+. We denote by NNΦ the
set of Φ-nonnesting partitions and refer the reader to [1, section 2] and Figures 2 and 3
for the motivation behind the terminology “nonnesting,” suggested by Postnikov [1],
[20, Remark 2]. By definition, NNΦ is in bijection with the set of antichains in the
root poset Φ+.

Block size enumeration. For an integer partition λ, we denote by NCB
λ (n) the

set of elements of NCB(n) of type λ. Similarly, for Φ = Bn, Cn, or Dn we denote by
NNΦ

λ the set of Φ-nonnesting partitions of type λ. The following theorem is the main
result of [1].

Theorem 2.1 (see [1]). Let λ be a partition of n−m with k parts, where m ≥ 0,
and let mλ = r1! · r2! · · · , where ri is the number of parts of λ equal to i.

(i)

#NCB
λ (n) =

n!

mλ (n− k)!
.

(ii) The same formula holds for Φ-nonnesting partitions if Φ = Bn or Cn:

#NNBn

λ = #NNCn

λ =
n!

mλ (n− k)!
.
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3

4
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6
−1−2
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6
−1−2

−6

−3

−4

−5

−3

−4

−5

−7  7, −7

7

5

4

1 21 2

(b)(a)

Fig. 4. Two elements of NCD(n) for n = 7 with blocks (a) {3, 4, 5, 6}, {−3,−4,−5,−6},
{1, 2, 7,−1,−2,−7} and (b) {1, 4, 7}, {−1,−4,−7}, {2, 3}, {−2,−3}, {5, 6}, {−5,−6}.

(iii) For m ≥ 2,

#NNDn

λ =
(n− 1)!

mλ (n− k − 1)!
.

3. Noncrossing partitions of type D. In this section we define our type D
analogue of the noncrossing partition lattice NCA(n) and prove Theorem 1.1. Let
us label the vertices of a regular (2n− 2)-gon as 1, 2, . . . , n− 1,−1,−2, . . . ,−(n− 1)
clockwise, in this order, and label its centroid with both n and −n. Given a Dn-
partition π and a block B of π, let ρ(B) denote the convex hull of the set of points
labeled with the elements of B. Two distinct blocks B and B′ of π are said to cross
if ρ(B) and ρ(B′) do not coincide and one of them contains a point of the other in
its relative interior. Observe that the case ρ(B) = ρ(B′), which we have allowed, can
occur only when B and B′ are the singletons {n} and {−n}, and that if π has a zero
block B, then B and the block containing n cross unless {n,−n} ⊆ B.

The poset NCD(n) is defined as the subposet of ΠD(n) consisting of those Dn-
partitions π with the property that no two blocks of π cross. Figure 4 shows two
elements of NCD(n) for n = 7, one with a zero block and one with no zero block.
Figure 5 shows the Hasse diagram of NCD(n) for n = 3.

Proposition 3.1. The poset NCD(n) is a graded lattice of rank n in which the
corank of π is equal to the number of pairs {B,−B} of nonzero blocks of π.

Proof. Since NCD(n) is finite with a maximum and minimum element, to prove
that it is a lattice, it suffices to show that meets in NCD(n) exist. Indeed, given
elements x, y of NCD(n), one can check that the meet z of x and y in ΠD(n) is an
element of NCD(n) and hence z is also the meet of x and y in NCD(n).

As was the case for NCB(n) [20, Proposition 2], the rest of the proposition follows
from the observation that given any two elements π1 ≤ π2 of NCD(n), there exists a
maximal chain in the interval [π1, π2] of ΠD(n) which passes only through elements
of NCD(n), so that the grading of NCD(n) is inherited from that of ΠD(n).

To prove Theorem 1.1 we need to describe the covering relations in the posets TDn

and NCD(n). In the case of TDn , the result of multiplying any element of Dn with a
reflection ((i, j)) is described explicitly in [12, Example 3.6]. From the computations
given there we can conclude that y covers x in TDn if and only if x can be obtained
from y by replacing one or two balanced cycles of y or one paired cycle of y with one
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Fig. 5. The lattice NCD(n) for n = 3.

or more cycles as follows:

[i1, i2, . . . , ik] −→ [i1, . . . , ij ] ((ij+1, . . . , ik)),
((i1, i2, . . . , ik)) −→ ((i1, . . . , ij)) ((ij+1, . . . , ik)),
[i1, . . . , ij ] [ij+1, . . . , ik] −→ ((i1, i2 . . . , ik)).

(3.1)

In the case of NCD(n), it follows directly from the definition that y covers x in
NCD(n) if and only if x can be obtained from y by one of the following:

(i) splitting the zero block of y into the zero block of x and a pair {B,−B} of
nonzero blocks,

(ii) splitting a pair of nonzero blocks {B,−B} of y into two such pairs of x, or
(iii) splitting the zero block of y into one pair {B,−B} of nonzero blocks of x (so

that one of B,−B contains n and the other contains −n).
Proof of Theorem 1.1. For x ∈ NCDn , let f(x) denote the partition of [n]±

whose nonzero blocks are formed by the paired cycles of x, and whose zero block is
the union of the elements of all balanced cycles of x if such exist. We first observe that
f(x) ∈ NCD(n). Indeed, this is clear if x is the top element γ = [1, 2, . . . , n − 1] [n]
of NCDn . If not, then x is covered by some element y of NCDn and we may assume,
by induction on the corank of x, that y has either zero or two balanced cycles, one
of which must be [n] in the latter case, and that f(y) ∈ NCD(n). Since x can be
obtained from y by one of the moves in the list (3.1), it follows with a case-by-case
check that x has zero or two balanced cycles as well, one of which must be [n] in the
latter case, and that f(x) ∈ NCD(n). The map

f : NCDn → NCD(n)
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is thus well-defined and order-preserving, since f(x) ≤ f(y) in NCD(n) follows from
(3.1) when x is covered by y in NCDn .

To define the inverse map, for x ∈ NCD(n), let g(x) be the element of NCDn

• whose paired cycles are formed by the nonzero blocks of x, each ordered with
respect to the cyclic order

−1,−2, . . . ,−n, 1, 2, . . . , n,−1,

and
• whose balanced cycles are [n] and the cycle formed by the entries of the zero

block of x other than n and −n, ordered in the same way, if the zero block is
present in x.

We claim that g(x) ∈ NCDn . This is clear if x is the top element of NCD(n). If not,
let y be any element of NCD(n) which covers x. We may assume, by induction on the
corank of x, that g(y) ∈ NCDn , in other words, that g(y) ≤ γ holds in TDn . It follows
from the possible types of covering relations in the posets NCD(n) and TDn that g(y)
covers g(x) in TDn . This implies that g(x) ≤ γ holds in TDn or, equivalently, that
g(x) ∈ NCDn . Thus the map

g : NCD(n) → NCDn

is well-defined and order-preserving, since g(x) ≤ g(y) in NCDn follows from (3.1)
when x is covered by y in NCD(n). Since f and g are clearly inverses of each other,
they are poset isomorphisms.

4. The zeta polynomial and chain enumeration. In this section we use
bijective methods similar to those employed in [13, 20] for NCA(n) and NCB(n) to
prove Theorem 1.2. We first recall a few constructions from [20, section 3]. After
setting

PB
n := {(L,R) : L,R ⊆ [n],#L = #R} ,

a map τB : PB
n → NCB(n) is constructed in [20, section 3] as follows. Given x =

(L,R) ∈ PB
n , place a left parenthesis before each occurrence of i and −i in the infinite

cyclic sequence

. . . ,−1,−2, . . . ,−n, 1, 2, . . . , n,−1,−2, . . .(4.1)

for i ∈ L and a right parenthesis after each occurrence of i and −i for i ∈ R. Let the
strings of integers inside the lowest level matching pairs of parentheses form blocks of
τB(x). Remove these lowest level parentheses from (4.1) and the integers they enclose
and continue similarly with the remaining parenthesization until all parentheses have
been removed. The remaining integers, if any, form the zero block of τB(x). We have
the following proposition.

Proposition 4.1 (see [20, Proposition 6]). The map τB is a bijection from the
set PB

n to NCB(n). Moreover, for any pair x = (L,R) ∈ PB
n , the number of pairs

{B,−B} of nonzero blocks of τB(x) is equal to #R.
To extend the previous proposition to the type D case, let

PD
n = PB

n−1

⋃
{(L,R, ε) : L,R ⊆ [n− 1],#R = #L + 1, ε = ±1} .

For x ∈ PD
n , we define a partition π = τD(x) ∈ ΠD(n) as follows. If x ∈ PB

n−1, then π
is the partition obtained from τB(x) by adding n and −n to the zero block of τB(x),
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if such a block exists, and by adding the singletons {n} and {−n} to τB(x) otherwise.
Suppose that x is not in PB

n−1, say, x = (L,R, ε). We parenthesize the infinite cyclic
sequence

. . . ,−1,−2, . . . ,−(n− 1), 1, 2, . . . , n− 1,−1,−2, . . .(4.2)

as in the type B case and form blocks of π with the same procedure, until a right
parenthesis remains after each occurrence of i and −i for a unique i ∈ [n− 1]. Then
let B and −B be blocks of π, where B consists of the integers in

{−i− 1, . . . ,−n + 1, 1, 2, . . . , i}

which have not been removed from the infinite sequence together with n or −n, if
ε = 1 or ε = −1, respectively. For instance, if n = 9, L = {2, 5, 6}, R = {1, 3, 7, 8},
and ε = −1, then π has blocks {2, 3}, {5, 8}, {6, 7}, {1,−4,−9}, and their negatives.

It is clear from the previous construction that π ∈ NCD(n); thus we have a
well-defined map τD : PD

n → NCD(n).
Proposition 4.2. The map τD is a bijection from the set PD

n to NCD(n).
Moreover, for any x ∈ PD

n , the number of pairs {B,−B} of nonzero blocks of τD(x)
is equal to ⎧⎪⎨⎪⎩

#R if x ∈ PB
n−1 and τB(x) has a zero block,

#R + 1 if x ∈ PB
n−1 and τB(x) has no zero block,

#R if x /∈ PB
n−1.

Proof. The inverse of τD can be defined as in the proof of [20, Proposition 6]
for the map τB . More precisely, given π ∈ NCD(n), find a nonzero block B of π
such that the elements of B\{n,−n} form a nonempty, consecutive string of integers
in the sequence (4.2). If B does not contain n or −n, then place the absolute values
of the first and last element of B, with respect to (4.2), in L and R, respectively. If it
does, then place the absolute value i of the last element of B\{n,−n}, with respect to
(4.2), in R and let ε = 1 or ε = −1 if n or −n is in the same block as i, respectively.
Remove the elements of B and −B from π and (4.2) and continue similarly until the
zero block, or the singletons {n} and {−n}, or no block of π remains. We leave it to
the reader to check that this map is indeed the inverse of τD. The second statement
is obvious.

It is shown in [20, Proposition 7] that the bijection τB of Proposition 4.1 extends
to a bijection from the set

PB
n,m =

⎧⎨⎩(L,R1, . . . , Rm−1) : L,Rj ⊆ [n],

m−1∑
j=1

#Rj = #L

⎫⎬⎭
to the set of multichains π1 ≤ π2 ≤ · · · ≤ πm−1 in NCB(n). This bijection is
defined as follows. Given (L,R1, . . . , Rm−1) ∈ PB

n,m, place a left parenthesis before
each occurrence of i and −i in the infinite cyclic sequence (4.1) for i ∈ L and a
right parenthesis labeled )j after each occurrence of i and −i for i ∈ Rj . Observe
that more than one right parenthesis with different labels may have been placed after
some integers in (4.1). In this case order these right parentheses as

)j1 )j2 · · · )jt ,
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where j1 < j2 < · · · < jt. Read this parenthesization as in the case of the map τB to
obtain π1 ∈ NCB(n). Next, remove from the parenthesization all right parentheses
labeled )1 and their corresponding left parentheses to obtain π2 ∈ NCB(n), and
continue the process until all parentheses have been removed to obtain the multichain
π1 ≤ π2 ≤ · · · ≤ πm−1.

The type D analogue of this construction is given in the following proposition. To
state it we introduce the following notation. Think of a multichain π1 ≤ π2 ≤ · · · ≤
πm−1 in ΠB(n) as a multichain from 0̂ to 1̂ which has m steps; in other words, set
π0 := 0̂ and πm := 1̂. The rank jump vector for such a multichain c is the composition
s = (s1, . . . , sm) of the number n (denoted s |= n) defined by si := r(πi) − r(πi−1).
There is a unique step i at which a zero block is first created, meaning that πi−1 has
no zero block but πi does. Define ind(c) to be this index i.

Proposition 4.3. The bijection τD extends to a bijection from the union PD
n,m

of PB
n−1,m with the set{

(L,R1, . . . , Rm−1, ε) : L,Rj ⊆ [n− 1],

m−1∑
j=1

#Rj = #L + 1, ε = ±1

}

to the set of multichains π1 ≤ π2 ≤ · · · ≤ πm−1 in NCD(n). Moreover, for x ∈ PD
n,m,

one has that
• if x �∈ PB

n−1,m and x = (L,R1, . . . , Rm−1, ε), then the multichain in NCD(n)
corresponding to x has rank jump vector

s = (n− 1 − #L,#R1, . . . ,#Rm−1),

• if x ∈ PB
n−1,m and the multichain c in NCB(n− 1) corresponding to x under

the generalized map τB has rank jump vector s = (s1, . . . , sm) and ind(c) = i,
then the multichain in NCD(n) corresponding to x has rank jump vector

(s1, . . . , si−1, si + 1, si+1, . . . , sm).

Proof. Given x ∈ PD
n,m, we construct a multichain π1 ≤ π2 ≤ · · · ≤ πm−1 in

NCD(n) as follows. If x ∈ PB
n−1,m, let π′

1 ≤ π′
2 ≤ · · · ≤ π′

m−1 be the multichain

in NCB(n − 1) corresponding to x under the bijection of [20, Proposition 7]. Let
πi be the partition obtained from π′

i by adding n and −n to the zero block of π′
i if

such a block exists, and by adding the singletons {n} and {−n} to π′
i otherwise. It

is then clear that πi ∈ NCD(n) and that π1 ≤ π2 ≤ · · · ≤ πm−1 is a multichain in
NCD(n). Suppose now that x is not in PB

n−1,m, say, x = (L,R1, . . . , Rm−1, ε). Place
a left parenthesis before each occurrence of i and −i in the infinite cyclic sequence
(4.2) for i ∈ L and a right parenthesis labeled )j after each occurrence of i and −i
for i ∈ Rj , using the same rules as in the type B case described earlier for placing
multiple right parentheses. Read this parenthesization as in the case of the map τD

to obtain π1 ∈ NCD(n). Observe that the singletons {n} and {−n} may be blocks
of π1 if m − 1 ≥ 2. Next, remove from the parenthesization all right parentheses
labeled )1 and their corresponding left parentheses, if any, to obtain π2 ∈ NCD(n),
and continue the process until all parentheses have been removed. This results in a
multichain π1 ≤ π2 ≤ · · · ≤ πm−1 in NCD(n) in which n belongs to a nonsingleton,
nonzero block of πj for at least one index j.

To define the inverse of this map, let π1 ≤ π2 ≤ · · · ≤ πm−1 be a multichain in
NCD(n). Parenthesize the sequence (4.2) by applying the inverse of τD to πm−1 and
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label all right parentheses by )m−1. Repeat the process with πm−2 and label all right
parentheses by )m−2, but include neither the new pairs of parentheses that would
produce more than one left parenthesis before the occurrence of a single integer in
(4.2), nor a new unmatched right parenthesis, if one exists already. Continue similarly
with the remaining elements of the multichain to get an element of PD

n,m. We leave
it again to the reader to check that this map is well-defined and that the two maps
are indeed inverses of each other. The “moreover” statement is obvious from the
construction.

In [20, Proposition 7], the bijection from PB
n,m to multichains in NCB(n) was

used to deduce that there are
(
n
s1

)
· · ·

(
n
sm

)
chains in NCB(n) with rank jump vector

s = (s1, . . . , sm). In order to perform the analogous chain enumeration for NCD(n),
we will need the following refinement of this type B result, keeping track of the extra
statistic ind(c).

Lemma 4.4. Let s = (s1, . . . , sm) |= n. Then among the
(
n
s1

)
· · ·

(
n
sm

)
chains c in

NCB(n) having rank jump vector s, the fraction of those having ind(c) = i is equal
to si

n .
Unlike our other enumerative results, our proof of Lemma 4.4 is not bijective. For

this reason, we have relegated it to the appendix.
Proof of Theorem 1.2. In view of Theorem 1.1, it suffices to prove the theorem

for the poset NCD(n) instead.
(i) Clearly, the set PD

n has(
2n− 2

n− 1

)
+ 2

(
2n− 2

n

)
=

(
2n

n

)
−

(
2n− 2

n− 1

)
elements. Hence the statement on the total number of elements of NCD(n) follows
from the first statement in Proposition 4.2. By an easy computation, the statement
on the number of elements of rank k is equivalent to the case m = 2 in (ii).

(ii) This follows from Proposition 4.3 and Lemma 4.4. The summand
2
(
n−1
s1

)
· · ·

(
n−1
sm

)
counts the chains coming from x ∈ PD

n,m − PB
n−1,m. Within the

summation, the ith term(
n− 1

s1

)
· · ·

(
n− 2

si − 2

)
· · ·

(
n− 1

sm

)
=

si − 1

n− 1

(
n− 1

s1

)
· · ·

(
n− 1

si − 1

)
· · ·

(
n− 1

sm

)
counts the chains coming from x ∈ PB

n−1,m that correspond to chains c in NCB(n−1)
with rank jump vector (s1, . . . , si−1, si − 1, si+1, . . . , sm) and ind(c) = i.

(iii) Observe (as for PB
n,m in the proof of [20, Proposition 7]) that the set PD

n,m

has

2

(
m(n− 1)

n

)
+

(
m(n− 1)

n− 1

)
elements, and recall that the value Z(P,m) of the zeta polynomial for a poset P is
defined to be the number of multichains in P of cardinality m − 1. The formula in
(iii) for the zeta polynomial of NCD(n) then follows from Proposition 4.3.

(iv) Both assertions follow from the zeta polynomial calculated in (iii), via [24,
Proposition 3.11.1].
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Finally, we briefly discuss how Theorem 1.2(ii) leads to a nice expression for
FNCD(n), where FP denotes Ehrenborg’s quasi-symmetric function associated with a
ranked poset P ; we refer the reader to [14, 26] for the definitions.

As mentioned in section 1, the posets NCA(n), NCB(n), and NCD(n) are self-
dual by virtue of a result of Bessis [4, section 2.3], stating that the poset NCW is
always self-dual. A case-free proof of a stronger statement, namely, that all intervals
of NCW are self-dual, was outlined by McCammond [17, section 3]. Alternatively, it
is easy to check from the explicit descriptions of NCA(n), NCB(n), and NCD(n) that
any interval in one of these posets is isomorphic to a Cartesian product of posets lying
in the union of these three families; see also [18], [20, Remark 1], and the appendix.
Hence their intervals are also self-dual, which implies that the posets themselves are
locally rank-symmetric and their quasi-symmetric functions are actually symmetric
functions.

In [27], Stanley used the known explicit expressions for the numbers of chains
in NCA(n) and NCB(n) with given rank jump vector to compute nice formulas for
FNCA(n) and FNCB(n) (and to connect them with symmetric group actions on parking
functions of types A and B; see also Biane [8]). He proved that

FNCA(n) =
1

n

[
tn−1

]
E(t)n

and

FNCB(n) = [tn]E(t)n,

where E(t) :=
∏

i≥1(1 + xit) and [tn]ψ(t) denotes the coefficient of tn in a formal
power series ψ(t) in the variable t. An equally easy computation (which we omit)
shows that Theorem 1.2(ii) is equivalent to the following proposition.

Proposition 4.5. We have

FNCD(n) = [tn]E(t)n−1

(
2 +

∑
i≥1

x2
i t

2

1 + xit

)
.

5. Enumeration by block sizes. For an integer partition λ, let NCD
λ (n) de-

note the set of elements of NCD(n) with block sizes λ. To enumerate the elements of
NCD(n) by block sizes we define a map

τ : NCD(n) → NCB(n− 1)

as follows. Let π ∈ NCD(n). If π has a zero block B, then simply remove n and
−n from B to obtain τ(π). Otherwise n and −n are in distinct blocks B and −B
of π. Then either remove B and −B from π if they are singletons, or if not, replace
them with the zero block B ∪ (−B) \ {n,−n} to obtain τ(π). It should be clear that
τ(π) ∈ NCB(n− 1).

Lemma 5.1. The map τ : NCD(n) → NCB(n− 1) has the following property: if
x ∈ NCB

λ (n−1), with λ 	 n−m−1, then the set τ−1(x) consists of 2m+1 elements.
Moreover, 2m of these have type λ 
 {m + 1}, and the remaining element has type{

λ 
 {1} if m = 0,

λ if m ≥ 1.
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Proof. If x ∈ NCB
λ (n − 1) has no zero block, then τ−1(x) consists of a single

element π, obtained from x by adding the singletons {n} and {−n}. Suppose that
x has a zero block B of size 2m. A partition in τ−1(x) is obtained either by adding
n,−n to the zero block B, or by splitting B into two parts C and −C and replacing
B with the pair of blocks C ∪ {n} and −C ∪ {−n}. There are 2m ways to do the
latter so that the resulting partition is in NCD(n).

Corollary 5.2. If λ is a partition of n −m, where m ≥ 0, then #NCD
λ (n) is

given by the formula in Theorem 1.3.
Proof. Lemma 5.1 implies that

#NCD
λ (n) =

{
#NCB

λ (n− 1) if m ≥ 2,

#NCB
λ\1(n− 1) +

∑
p≥2 (2p− 2) #NCB

λ\p(n− 1) if m = 0,

and the result follows from Theorem 2.1(i). Note that, in the above formula, we
interpret NCB

λ\p(n− 1) as empty for any integer p ≥ 1 that does not appear as a part
of λ.

In the remainder of this section we show that nonnesting partitions of type D
have the same distribution by block sizes as noncrossing partitions of the same type.

Assume that λ 	 n, so that NNBn

λ ⊆ NNDn

λ , and observe that the inclusion is
strict for n ≥ 3 since {ei + en, ej − en} is an antichain in D+

n for i < j < n but not in

B+
n . Let π ∈ NNDn

λ . Since π does not have a zero block, n and −n belong to distinct
blocks B and −B of π, respectively. Let π′ denote the partition obtained from π by
exchanging n and −n in the blocks B and −B, and let

σ : NNDn

λ → NNBn

λ

be defined by

σ(π) =

{
π if π ∈ NNBn ,

π′ otherwise.

One can check directly from the definitions that σ is well-defined. Let Tλ(n) be the
set of partitions π ∈ NNBn

λ such that if B is the block of π containing n, then B \{n}
contains both positive and negative elements, and let T+

λ (n), T−
λ (n) be the sets of

those π ∈ NNBn

λ for which B \ {n}, if nonempty, contains only positive elements and
only negative elements, respectively.

Lemma 5.3. Let λ 	 n.
(i) The map σ : NNDn

λ → NNBn

λ induces a bijection between NNDn

λ \ NNBn

λ

and Tλ(n).
(ii) We have

#T+
λ (n) = #T−

λ (n) =
∑
p≥1

#NN
Bn−1

λ\p

and

#(T+
λ (n)

⋂
T−
λ (n)) = #NN

Bn−1

λ\1 .

Proof.
(i) If π ∈ NNDn

λ \NNBn

λ , then there exist integers i < j < n such that j and n
are in a block B of π, while i and −n are in a different block, which must be −B. Thus
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{i,−j,−n} is contained in a block of π and hence {i,−j, n} is contained in a block of
σ(π). This implies that σ(π) ∈ Tλ(n), so that the map σ : NNDn

λ \NNBn

λ → Tλ(n)
is well-defined. The inverse map again switches n and −n in a partition in Tλ(n) and
is checked to be well-defined by reversing the previous argument.

(ii) The first two equalities follow from the fact that either T+
λ (n) or T−

λ (n) is
in bijection with the set of Bn−1-nonnesting partitions whose type is obtained from
λ by removing one of its parts, where the bijection removes the blocks B and −B
containing n and −n of an element in T+

λ (n) or T−
λ (n) if these blocks are singletons,

or replaces them with the zero block B ∪ (−B)\{n,−n} if they are not. The last
equality is obvious.

Corollary 5.4. If λ is as in Corollary 5.2, then #NNDn

λ = #NCDn

λ ; that is,

#NNDn

λ is given by the formula of Theorem 1.3.
Proof. For m ≥ 2 the statement is the content of Theorem 2.1(iii). Suppose that

m = 0, i.e., λ 	 n. Lemma 5.3(i) implies that

#NNDn

λ = #NNBn

λ + #Tλ(n).

Since Tλ(n) = NNBn

λ \ (T+
λ (n) ∪ T−

λ (n)), part (ii) of the same lemma gives

#Tλ(n) = #NNBn

λ − #NN
Bn−1

λ\1 − 2
∑
p≥2

#NN
Bn−1

λ\p ,

and the result follows from Theorem 2.1(ii).
The next corollary also follows from the main result of [3] and the computations

in the type D case carried out there in section 5.
Corollary 5.5 (see [3, section 5]). The number of elements of NNDn with k

pairs {B,−B} of nonzero blocks is equal to(
n

k

)2

− n

n− 1

(
n− 1

k

)(
n− 1

k − 1

)
.

Proof. This follows from Corollary 5.4 and Theorem 1.2(i).

6. Block sizes and root systems. The goal of this section is to generalize the
results of [1] and Theorem 1.3 on the classical root systems to an arbitrary (finite,
crystallographic) root system (Theorem 6.3). To this end we begin by recalling some
facts about noncrossing and nonnesting partitions for arbitrary finite Coxeter groups
and root systems.

For a finite Coxeter group (W,S), acting with its natural reflection representation
on a Euclidean space V , we denote by ΠW the poset of all subspaces of V which are
intersections of reflecting hyperplanes of W , ordered by reverse inclusion. Thus ΠW

is a graded (geometric) lattice of rank #S which is isomorphic to the lattice Π(n),
ΠB(n), or ΠD(n), defined in the first two sections, when W has type An−1, Bn, or
Dn, respectively.

There is a natural embedding of the lattice of noncrossing partitions NCW into
ΠW . Recall from section 1 that NCW is defined to be the interval [1, γ] in a certain
partial order TW on the group W , where γ is any Coxeter element of W . It follows
from results of Brady and Watt (see [4, Proposition 1.6.4]) that the map

NCW → ΠW ,

w �→ V w := {v ∈ V : w(v) = v}
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is a rank- and order-preserving embedding.
Now assume that W is the finite Weyl group associated to a crystallographic root

system Φ. Let Φ+ be a choice of positive roots, equipped with the standard root
order, and let Π be the corresponding set of simple roots. Let AΦ be the collection
of all antichains in Φ+, meaning subsets of pairwise incomparable elements. It turns
out that, like NCW , the set AΦ has a natural embedding into ΠW , endowing it with
a poset structure. The crucial fact needed is a recent result of Sommers [23].

Theorem 6.1 (see [23, page 1]). Given an antichain A of positive roots, there
exists w ∈ W such that w(A) ⊆ Π.

Corollary 6.2. If Φ is a crystallographic root system with Weyl group W, then
the map

AΦ → ΠW ,

A �→
⋂
α∈A

α⊥

is an injection, sending A to an element of rank #A.
Proof. The image of A has rank #A because Theorem 6.1 implies that any

antichain in AΦ is linearly independent (since Π is also). That the map is injective will
follow from a stronger assertion about the interaction between the linear independence
and convexity structure of Φ+. Given B ⊆ Φ+, let B denote the matroid closure of B,
meaning the subset of vectors in Φ+ lying in the linear span of B. Let ext(B) denote
the set of extreme vectors within the convex cone spanned by B. We then claim that
for an antichain A in Φ+,

A = ext(A).

This will show that the map is injective, since one has the alternate characterization
of A as

A =

{
β ∈ Φ+ :

⋂
α∈A

α⊥ ⊆ β⊥
}
.

To prove the claim note that, since A is linearly independent, ext(A) has at least as
many elements as A. Consequently it suffices to show the inclusion ext(A) ⊆ A. To
this end, given β ∈ ext(A), express β (uniquely) as

β =
∑
α∈A

cαα.(6.1)

Since β and all elements of A are positive roots, at least one of the coefficients cα must
be positive. Using Theorem 6.1 again, one can find w ∈ W so that w(A) ⊂ Π. As
w(β) lies in Φ, it has a unique expression in terms of simple roots with all coefficients
of the same sign. Hence the expression

w(β) =
∑
α∈A

cαw(α),

obtained by applying w to (6.1), forces all of the other coefficients cα to be nonneg-
ative. Therefore (6.1) shows that β lies in the convex cone spanned by A. Since β is
an extreme vector of the larger cone spanned by A, it is extreme in this smaller cone,
so it must lie in A.
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We require a notion that generalizes the “block sizes” of a type A,B, or D parti-
tion to an arbitrary intersection subspace in ΠW . This is supplied by the orbit map,
sending a subspace to its W -orbit:

ΠW → ΠW /W,

U �→ W · U := {w(U) : w ∈ W}.

We can now state the main result of this section.
Theorem 6.3. Let W be the Weyl group of a crystallographic root system Φ and

consider the two composite maps

f : NCW ↪→ΠW → ΠW /W,

g : AΦ ↪→ΠW → ΠW /W.

Then for each W -orbit x ∈ ΠW /W , we have

# f−1(x) = # g−1(x).

Proof. The general statement follows from the corresponding statement for irre-
ducible root systems, so one may proceed case-by-case via the classification.

For types A,B, and C, the statement follows from the results of [1] and the
fact that the W -orbits of ΠW are precisely the sets of intersection subspaces whose
corresponding type A or B partition has given block sizes. In the type D case, a slight
complication arises due to the fact that the W -orbit of an intersection subspace is not
always determined by the nonzero block sizes λ of its associated Dn-partition. In
fact this occurs exactly when λ is a partition of n having only even parts (so that, in
particular, n must be even). In this case the set of intersection subspaces in ΠW whose
corresponding Dn-partitions have block sizes λ decomposes further into exactly two
W -orbits, determined by one extra (parity) piece of data: pick arbitrarily one block
B out of each pair {B,−B} of blocks in the partition and compute the parity (even or
odd) of the total number of negative elements in the union of these blocks. We claim,
however, that the preimages under either f or g of two such parity orbits have the
same number of elements, so that the result follows from Corollaries 5.2 and 5.4. To
check the claim, simply observe that, for a partition λ of n with even parts, the swap
of n and −n gives rise to fixed-point free involutions on both NCD

λ (n) and NNDn

λ ,
which switch parity. This is obvious in the case of NCD

λ (n) and should be clear from

the discussion preceding Lemma 5.3 in the case of NNDn

λ .
The exceptional types E6, E7, E8, F4, G2 have been checked one by one with

computer calculations, using software in Mathematica available from the second
author.

7. Remarks.
1. It would be interesting to find a conceptual, case-free proof of Theorem 6.3.
2. The set of maximal chains in the poset NCW is in bijection with the set of

factorizations of shortest possible length, henceforth called minimal factorizations, of
a Coxeter element of W into reflections. Hence Theorem 1.2(iv) implies the following
statement.

Corollary 7.1. The number of minimal factorizations of a Coxeter element of
the group WDn into reflections is equal to 2(n− 1)n.

A direct proof of this fact, analogous to the proofs of the corresponding state-
ments by Biane [8] for the symmetric and hyperoctahedral group, is possible. More



414 CHRISTOS A. ATHANASIADIS AND VICTOR REINER

precisely, let γ = [1, 2, . . . , n − 1] [n] be as in section 2 and let Mn be the set of
tuples (t1, t2, . . . , tn) of reflections in WDn such that γ = t1t2 · · · tn. Let us label the
reflections in WDn as follows:

�(t) =

⎧⎪⎨⎪⎩
i if t = ((i,±n)) and 1 ≤ i ≤ n− 1,

i if t = ((i, j)) and 1 ≤ i < j ≤ n− 1,

j if t = ((i,−j)) and 1 ≤ i < j ≤ n− 1.

It has been shown by the first author that the map which assigns to any element
(t1, t2, . . . , tn) of Mn the sequence of labels (�(t1), �(t2), . . . , �(tn)) is a two-to-one map
from the set Mn to [n− 1]n.

3. It is natural to conjecture that the poset NCD(n) is shellable. However, the
EL-labellings given by Edelman and Björner [10] in the case of NCA(n) and Reiner
[20] in the case of NCB(n) do not seem to extend to that of NCD(n).

4. It has been shown by Eleni Tzanaki (private communication) that the poset
NCD(n) has a symmetric chain decomposition analogous to those of NCA(n) [22,
Theorem 2] and NCB(n) [20, Theorem 13].

Appendix. Proof of Lemma 4.4. We recall the statement of the lemma.
Lemma 4.4. Let s = (s1, . . . , sm) |= n. Then among the

(
n
s1

)
· · ·

(
n
sm

)
chains c in

NCB(n) having rank jump vector s, the fraction of those having ind(c) = i is equal
to si

n .
The proof will utilize the type B generalization [20, Theorem 16] of a result of

Nica and Speicher [18] on incidence algebras, which we recall here.
Let R be any ring with unit and let P be a poset. The (R-valued) incidence

algebra for P consists of R-valued functions f on the set of intervals [a, b] of P , with
pointwise addition and multiplication by convolution:

(f ∗ g)[a, c] :=
∑

b∈P : a≤b≤c

f [a, b] g[b, c].

In [20, Remark 1] a certain multiplicative subgroup I0
mult(NCB ;R) of the union of

all R-valued incidence algebras of type A and B noncrossing partition lattices was
defined. As observed in [18, 20], every interval [a, b] in NCA(n) or NCB(n) has a
canonical isomorphism to a Cartesian product

NCB(n0) ×NCA(n1) ×NCA(n2) × · · · ×NCA(nr)

for some integers n0, n1, . . . , nr, where the factor NCB(n0) need not be present. The
multiplicative subgroup I0

mult(NCB ;R) consists of those elements f in the incidence
algebra which take the value 1 on NCA(1) and which are multiplicative, in the sense
that

f [a, b] = f(NCB(n0))

r∏
i=1

f(NCA(ni)).

Define a map

I0
mult(NCB ;R)

F→ R[[t, u]]/(u2) (∼= R[u]/(u2)[[t]]),

f �→ F(f) :=
φ
〈−1〉
f

t
,
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where

φf :=
∑
n≥1

f(NCA(n))tn + f(NCB(n))tnu(7.1)

and φ
〈−1〉
f denotes the compositional inverse of φf with respect to the variable t.

This map gives an isomorphism of I0
mult(NCB ;R) onto the multiplicative subgroup

of power series in R[[t, u]]/(u2) whose coefficient of t0 equals 1 [20, Theorem 16].

Proof of Lemma 4.4. We will perform generating function calculations in these
rings, choosing

R = Z[[x1, x2, . . . , y1, y2, . . . ]].

Define f ∈ I0
mult(NCB ;R) by

f(NCA(n)) :=
∑

s|=n−1

∑
chains in NCA(n)

with rank jump vector s

xs,

f(NCB(n)) :=
∑
s|=n

∑
chains c in NCB(n)

with rank jump vector s

xs yind(c)

xind(c)
,

(7.2)

where xs := xs1
1 · · ·xsm

m . A little thought shows that f coincides with the convolution
f = f1 ∗ f2 ∗ · · · , where

fi(NCA(n)) := xn−1
i ,

fi(NCB(n)) := xn−1
i yi.

From this, one calculates that

φfi =
∑
n≥1

xn−1
i tn + xn−1

i yit
nu =

t(1 + yiu)

1 − txi
,

and hence, by computing the compositional inverse,

φ
〈−1〉
fi

=
t

1 + txi + uyi
,

F(fi) =
φ
〈−1〉
fi

t
=

1

1 + txi + uyi
.

Therefore

F(f) =
∏

i≥1 F(fi) =
∏

i≥1
1

1+txi+uyi
,

φ
〈−1〉
f = tF(f) = t∏

i≥1
(1+txi+uyi)

.

One can apply the Lagrange inversion formula [25, Theorem 5.4.2] to this last expres-
sion. Letting [tk]ψ(t) denote the coefficient of tk in any formal power series ψ(t) in a
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variable t, one has that

[tn]φf =
1

n
[Tn−1]

∏
i≥1

(1 + xiT + yiu)n

=
1

n
[Tn−1]

∏
i≥1

n∑
k=0

(
n

k

)
(xiT + yiu)k

=
1

n
[Tn−1]

∏
i≥1

n∑
k=0

(
n

k

)
(xk

i T
k + k · xk−1

i yiT
k−1u)

=
∑

s|=n−1

1

n

(
n

s1

)
· · ·

(
n

sm

)
xs + u

∑
s|=n

(
n

s1

)
· · ·

(
n

sm

) m∑
i=1

si
n
xs yi

xi
.

Comparing (7.1), (7.2) with this last expression gives the result.

The proof of the lemma gives an alternative derivation for [13, Theorem 3.2] and,
by setting yi = xi for all i, also one for [20, Proposition 7].
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Abstract. In this paper we study the following question posed by H. S. Wilf: what is, asymp-
totically as n → ∞, the probability that a randomly chosen part size in a random composition of
an integer n has multiplicity m? More specifically, given positive integers n and m, suppose that a
composition λ of n is selected uniformly at random and then, out of the set of part sizes in λ, a part

size j is chosen uniformly at random. Let P(A
(m)
n ) be the probability that j has multiplicity m. We

show that for fixed m, P(A
(m)
n ) goes to 0 at the rate 1/ lnn. A more careful analysis uncovers an

unexpected result: (lnn)P(A
(m)
n ) does not have a limit but instead oscillates around the value 1/m

as n → ∞.
This work is a counterpart of a recent paper of Corteel, Pittel, Savage, and Wilf, who studied

the same problem in the case of partitions rather than compositions.

Key words. compositions of an integer, random compositions, geometric random variables
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1. Introduction. In this paper we consider the multiplicity of a randomly cho-
sen part size in a random composition of an integer n. Let us recall that a multiset
λ = {λ1, . . . , λk} is a partition of an integer n if the λj are positive integers, called
parts, such that

∑
λj = n. Compositions are merely partitions in which the order of

parts is significant. Thus, for example, the integer 3 admits three partitions, {1, 1, 1},
{2, 1}, and {3}, and four compositions, namely (1, 1, 1), (1, 2), (2, 1), and (3).

Integer partitions (as deterministic objects) have been studied for quite some
time, but Erdös and Lehner [6] were apparently the first to study integer partitions
from the probabilistic perspective; namely, they considered the set of all partitions,
P (n), of an integer n, as a probability space equipped with the uniform probability
measure. Quantities of interest are treated as random variables, and one can study
their probabilistic properties, most typically the limiting properties as n → ∞. Erdös
and Lehner, for example, considered the limiting distribution of the total number of
parts in a partition. Their paper opened a new line of investigation.

Goh and Schmutz [11] obtained the central limit theorem for the number of dif-
ferent part sizes in a random partition; that is, they proved that the number of differ-
ent part sizes, appropriately normalized, has, approximately, the standard Gaussian
distribution. (Several years earlier, Wilf [18] found an asymptotic formula for the
expected number of distinct part sizes.) This approach culminated in an important
paper by Fristedt [10], who proved that the joint distribution of the multiplicities of
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part sizes is that of independent geometric random variables (Yk), with parameters
(1 − pk), conditioned on the event {

∑
kYk = n}.

Fristedt’s work, in turn, opened new possibilities and resulted in further progress
in our understanding of the structure of random partitions. A good example is a
paper of Pittel [17] substantiating two well-known conjectures concerning integer par-
titions. Utilizing Fristedt’s result, Corteel, Pittel, Savage, and Wilf [4] quite recently
provided an answer to the following question. Consider the following two-step sam-
pling procedure: first choose uniformly at random a partition λ of n. Then, out of
all different part sizes in λ pick one uniformly at random. What is the asymptotic
unconditional probability that this part size has a certain specified multiplicity, say,
m? For example, partition λ = {3, 2, 2, 1, 1, 1} of the number 10 has three different
part sizes 1, 2, and 3, and only one of them has multiplicity three, namely 1. Thus,
for this particular partition, the probability of choosing a part that has multiplicity
three is 1/3. In order to find the unconditional probability of randomly choosing a
part of multiplicity three in a randomly chosen partition of 10, one would have to
average similar probabilities over all partitions of 10. Corteel, Pittel, Savage, and
Wilf showed that in general the probability in question approaches 1/(m(m+ 1)) (in
particular, the probability that the randomly chosen part size in a random partition
is unrepeated approaches 1/2 as n → ∞).

Wilf then asked the same question for random compositions: what is the asymp-
totic value of the probability that a randomly chosen part size in a random compo-
sition of an integer n has multiplicity m? Our aim here is to provide an answer as
complete as we can. On the “first level” of precision the answer is simple: for every
fixed m this probability approaches zero. One would then like to know the rate of this

convergence. We will show that the rate is 1/ lnn. Specifically, if A
(m)
n is the event

that a randomly chosen part size in a random composition of n has multiplicity m,

then there exist constants c1(m) ≤ c2(m) such that c1(m) ≤ (lnn)P(A
(m)
n ) ≤ c2(m)

for n ≥ 2.
The next natural step is to find possibly tight bounds on c1(m) and c2(m), or to

show that the limit (lnn)P(A
(m)
n ) exists as n → ∞. This is the place where things

become a bit tricky. In order to describe the difficulties let us briefly discuss the

argument. Letting U
(m)
n and Dn denote the number of parts of multiplicity m and

the number of distinct part sizes, respectively, we have P(A
(m)
n ) = E(U

(m)
n /Dn). In

the case of partitions, Corteel, Pittel, Savage, and Wilf used Fristedt’s result to argue

that Dn is heavily concentrated around its expectation, and therefore, P(A
(m)
n ) is

asymptotic to the ratio of expectations EU
(m)
n /EDn and one needs to find asymptotic

values of these two expectations. In the case of compositions, much of the story is the

same, with one crucial exception: the expected value of U
(m)
n does not have a limit,

but exhibits oscillations around 1/(m ln 2). (This phenomenon is not new and was
observed in the context of head runs in coin tossing; see, e.g., [3], [12], or [13].) Since,

as we will show, the behavior of (lnn)P(A
(m)
n ) is governed by the behavior of EU

(m)
n ,

it will follow that (lnn)P(A
(m)
n ) oscillates around the value 1/m as n → ∞.

The rest of the paper is organized as follows: in the next section we will introduce
notation and state our result precisely. In section 3 we will describe the probabilistic
set-up. In section 4 we estimate the number of distinct part sizes and show that Dn

is heavily concentrated about its expectation. In section 5, we give an estimate for
the expected number of parts of given multiplicity. In section 6, we compute bounds
on the oscillation.
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2. Notation and statement of the result. A composition κ of an integer
n is an ordered tuple (γ1, . . . , γk), where γ1, . . . , γk are positive integers such that∑k

i=1 γi = n. The numbers γ1, . . . , γk are called parts, k is the total number of
parts, and the elements of the set {γ1, . . . , γk} are the part sizes of κ. For example,
(2, 1, 2, 3, 1, 1) is a composition of the number 10 into six parts with part sizes 1, 2,
and 3, where part size 1 has multiplicity 3, 2 has multiplicity 2, and 3 has multiplicity
1. We denote the set of all compositions of n by C(n) and note that |C(n)| = 2n−1.
For a composition κ = (γ1, . . . , γk) we let Dn(κ) denote the number of distinct part

sizes and, for fixed integer m, U
(m)
n (κ) will denote the number of part sizes of κ that

have multiplicity m. More formally,

Dn(κ) = 1 +

k∑
i=2

I{γi �=γj , j=1,...,i−1},

where IA, the indicator of event A, is 1 if A takes place and 0, otherwise. Similarly,

U (m)
n (κ) =

k∑
i=1

IBi ,

where

Bi = {γi �= γj , j < i and card{� > i : γ� = γi} = m− 1}.

We equip C(n) with the uniform probability measure P (i.e., P(κ) = |C(n)|−1 = 2−n+1

for every κ ∈ C(n)), and we will denote the expectation with respect to that measure
by E.

Throughout the paper the letter c is reserved for an absolute constant whose value
is of no relevance and may change from line to line.

We consider the following experiment. First, a composition is chosen at random.
Then, out of all distinct part sizes one is selected uniformly at random. We would like
to know what the unconditional probability is that this part size has multiplicity m.

We will denote this event by A
(m)
n . Since for a given composition κ the probability

that a randomly chosen part size has multiplicity m is given by the ratio

U
(m)
n (κ)

Dn(κ)
,

the unconditional probability that a randomly chosen part size in a random compo-
sition has this multiplicity is just the expected value of that ratio. That is,

P(A(m)
n ) = E

U
(m)
n

Dn
.

Thus, our goal is to approximate this expectation. Our result is as follows.
Theorem 1. Under the above notation we have the following: for a fixed integer

m

(lnn)P(A(m)
n ) = Θ(1),

i.e., there exist two positive constants c1(m) and c2(m) such that for all n ≥ 2,

c1(m) ≤ (lnn)P(A(m)
n ) ≤ c2(m).
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0, 1, 1, 0, 1, 0, 0, 1,

2, 1, 2, 3,(

(

1 2 4 5 6 7 8 93 10

11,

1, 1 )

)0,1-sequence of length 10:

Composition of 10 :

index of sequence:

Fig. 1. Correspondence between compositions of n and 0, 1-sequences of length n which end
with 1.

More precisely, as n → ∞,

(lnn)P(A(m)
n ) =

1

m
+ H(m)(c lnn) + o(1),

where H(m) is a mean-zero function of period 1 whose Fourier coefficients are given
by

φ� =
1

m!
Γ

(
m− 2�πi

ln 2

)
, � �= 0.

3. Probabilistic set-up. Much of our proof relies on an appropriate interpre-
tation of a composition, found, e.g., in Andrews [2]. This interpretation allows us to
connect the study of random compositions to another much investigated topic, namely
the study of runs of successes in independent Bernoulli trials (see, for example, Erdös
and Rényi [7] or Erdös and Révész [8]). In order to describe this connection we in-
terpret compositions as follows: consider a composition κ = (γ1, . . . , γk) of n into
parts γ1, γ2, . . . , γk (for example, (2, 1, 2, 3, 1, 1) is a composition of the number 10
into six parts 2, 1, 2, 3, 1, 1.) Such a composition is associated with a {0, 1}-valued
sequence (x1, . . . , xn) in which xi = 1 for i ∈ {γ1, γ1 + γ2, . . . , γ1 + · · · + γk} and
otherwise xi = 0. (Note that this forces xn = 1.) For example, the composition
(2, 1, 2, 3, 1, 1) is associated with the sequence (0, 1, 1, 0, 1, 0, 0, 1, 1, 1), as illustrated
in Figure 1. Clearly there is a one-to-one correspondence between compositions of n
and {0, 1}-sequences (x1, . . . , xn) with xn = 1.

To say that a composition is chosen at random is to say that the 0’s and 1’s
occur with probability 1/2 at each of the first n− 1 positions, and the occurrences at
different positions are independent of each other. In other words, the number of 1’s in
the first n−1 positions is a binomial random variable, Bin(n−1, 1/2), with parameters
n− 1 and 1/2. With this interpretation the total number of parts is just the number
of 1’s (including the one in the nth position) and thus it is equidistributed with
1+Bin(n−1, 1/2). (This contrasts with the case of “unordered” partitions where the
exact distribution of the number of parts is unknown and it took a considerable effort
to find a limiting distribution of the total number of parts; see Erdös and Lehner [6].)
Furthermore, the numbers γ1, . . . , γk can be viewed as “waiting times” for the first,
second, . . . , and kth appearance of 1 in the associated {0, 1}-sequence (x1, . . . , xn).
(In our example, 1 appears in the second, third, fifth, eighth, ninth, and, of course,
tenth positions.) It is well known and easy to check that in an infinite sequence
of independent Bernoulli trials with the probability of success p, waiting times for
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successes are independent and identically distributed (i.i.d.) random variables whose
common distribution is that of a geometric random variable with parameter p. Since
we are considering only n− 1 trials, this is no longer true. But we have the following
fact.

Proposition 2. Let Γ1,Γ2 . . . be i.i.d. geometric random variables with param-
eter 1/2 (that is, P(Γ1 = j) = 2−j, j = 1, 2 . . . ) and define

τ = inf{k ≥ 1 : Γ1 + Γ2 + · · · + Γk ≥ n}.

Then we have the following: if the set C(n) of all compositions of an integer n is
equipped with the uniform probability measure, then the distribution of a randomly
chosen composition is given by⎛⎝Γ1,Γ2, . . . ,Γτ−1, n−

τ−1∑
j=1

Γj

⎞⎠ .

4. The number of distinct parts. In this section we will study certain aspects

of the behavior of Dn. For the purpose of approximating P(A
(m)
n ) we will work with

the ratio U
(m)
n /Dn, but it will be clear from our argument, for example, that

EDn

log2 n
→ 1 as n → ∞.

We will proceed in the following fashion: we will establish the existence of two se-
quences of natural numbers (�n) and (kn) which increase to infinity and are asymp-
totically the same, i.e.,

lim
n→∞

�n
kn

= 1,

and such that both probabilities

P(Dn ≤ �n), P(Dn ≥ kn)

tend to zero as n → ∞ at a rate faster than 1/ log2 n. This will allow us to replace the
Dn in the denominator by either of the sequences (�n) or (kn), and then in the next

section, we will approximate the expected value of U
(m)
n . We begin with establishing

the existence of (�n). For a composition κ = (γ1, . . . , γk), let Sn(κ) denote the number
of consecutive part sizes (starting with size 1) in κ. That is,

Sn(κ) = max{� : ∀j ≤ � ∃i ≤ k : γi = j}.

Consider for a moment an arbitrary integer �n. Since Sn(κ) ≤ Dn(κ) we have

P(Dn ≤ �n) ≤ P(Sn ≤ �n) ≤ P(∃j ≤ �n, ∀i < τ, : Γi �= j),(1)

where we purposely ignored the last part n −
∑τ−1

j=1 Γi by writing “i < τ .” In order
to bound the last probability we first notice that, since τ is equidistributed with the
random variable 1 + Bin(n− 1, 1/2), we have

Eτ = 1 + (n− 1)/2 = (n + 1)/2.
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Moreover, τ is well concentrated around its mean. Namely (see, for example, [1,
section A.1]), for every t > 0 we have

P(|τ − Eτ | ≥ t) ≤ 2 exp

{
− 2t2

n− 1

}
.

In particular, letting tn =
√
α(n− 1) lnn, we get

P(|τ − Eτ | ≥ tn) ≤ 2 exp{−2α lnn} =
2

n2α
.(2)

(The value of α plays a minimal role in the argument, so we will set it to be 1 for the
rest of this section; we just want to mention that by increasing this value as necessary
we can get arbitrary polynomial rate of convergence to zero of this probability. This
will be useful in the next section.) Let q−n = Eτ − tn = (n + 1)/2 −

√
(n− 1) lnn.

Then we can bound (1) by

P(∃j ≤�n, ∀i < τ, : Γi �= j) ≤ P(|τ − Eτ | > tn)(3)

+ P({∃j ≤ �n, ∀i < τ, : Γi �= j} ∩ {|τ − Eτ | ≤ tn}).

From (2), the first probability in the right-hand side (rhs) of (3) goes to 0 at a
polynomial rate, so we concentrate on the second. Since |τ − Eτ | ≤ tn implies that
τ ≥ q−n = (n + 1)/2 − o(n), we bound the second term in the rhs of (3) by

P({∃j ≤�n, ∀i < τ, : Γi �= j} ∩ {|τ − Eτ | ≤ tn})

≤ P

⎛⎝ �n⋃
j=1

τ−1⋂
i=1

{Γi �= j} ∩ {τ > q−n }

⎞⎠ ≤ P

⎛⎝ �n⋃
j=1

q−n⋂
i=1

{Γi �= j}

⎞⎠
≤

�n∑
j=1

P

⎛⎝ q−n⋂
i=1

{Γi �= j}

⎞⎠ =

�n∑
j=1

(P(Γ1 �= j))
q−n =

�n∑
j=1

(
1 − 1

2j

)q−n

≤
�n∑
j=1

exp

{
−q−n

2j

}
=

�n∑
j=1

exp

{
− q−n

2�n
2�n−j

}

≤
∞∑
k=0

exp

{
− q−n

2�n
2k
}

≤
∞∑
k=1

exp

{
− q−n

2�n
k

}
≤ 2 exp

{
− q−n

2�n

}

as long as q−n /2
�n ≥ 1. Furthermore, the upper bound will go to 0 as n → ∞ if

q−n /2
�n → ∞. For that it is enough to let �n ∼ log2(q

−
n /φ(q−n )), where q−n /φ(q−n ) → ∞

as n → ∞. For our purpose, the choice φ(q−n ) = log2(q
−
n ) will be convenient. With

this choice, we conclude that

P(Dn ≤ �n) ≤ 2 exp

{
− q−n
q−n / ln(q−n )

}
≤ 2

q−n
= O

(
1

n

)
.

Using the fact that 0 ≤ U
(m)
n /Dn ≤ 1, we infer that

E
U

(m)
n

Dn
= E

U
(m)
n

Dn
IDn≤�n + E

U
(m)
n

Dn
IDn>�n ≤ P(Dn ≤ �n) +

EU
(m)
n

�n
.
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As we will see in the next section, EU
(m)
n = Θ(1), so that the second term in the last

sum is dominating.
As for the lower bound, consider a sequence (kn) which will be specified later.

We then have

E
U

(m)
n

Dn
≥ E

U
(m)
n

Dn
IDn≤kn

≥ 1

kn
EU (m)

n IDn≤kn
=

1

kn
(EU (m)

n − EU (m)
n IDn>kn).

We will choose (kn) so that the term EU
(m)
n IDn>kn will be of lower order than EU

(m)
n .

Since the latter term will be shown to be bounded away from zero, this means that
it suffices to choose (kn) so that

EU (m)
n IDn>kn

→ 0 as n → ∞.

Since the number of distinct part sizes is no larger than the largest part size, letting
Γ∗
n and Γ∗

τ denote max{Γ1, . . . ,Γn} and max{Γ1, . . . ,Γτ}, respectively, we have

U (m)
n ≤ Dn ≤ Γ∗

τ ≤ Γ∗
n.

(The second inequality is valid since the size of the last part is no more than Γτ .) It
follows that

{Dn > kn} ⊂ {Γ∗
n ≥ kn},

and thus

EU (m)
n IDn>kn

≤ EΓ∗
nIΓ∗

n≥kn
.

To find a choice of (kn) that would make this latter expectation go to 0 we write

EΓ∗
nIΓ∗

n≥kn =

∞∑
t=kn

tP(Γ∗
n = t) ≤ n

∞∑
t=kn

tP(Γ1 = t) = n

∞∑
t=kn

t

2t
=

n(2 + 2kn)

2kn
.

Choosing kn ∼ log2(nψ(n)), we get

EΓ∗
nIΓ∗

n≥kn
≤ 2n + 2n log2(nψ(n))

nψ(n)
,

which goes to 0 for ψ(n) = log2
2 n, for example. Thus one can set kn ∼ log2(n log2

2 n).
With these choices of (�n) and (kn) we obtain that

P(A(m)
n ) = E

U
(m)
n

Dn
= E

U
(m)
n

Dn
I�n≤Dn≤kn

+ E
U

(m)
n

Dn
I{�n≤Dn≤kn}c

= E
U

(m)
n

log2 n± o(log n)
+ E

U
(m)
n

Dn
IDn<�n + E

U
(m)
n

Dn
IDn>kn .

By the choice of (�n) and (kn) the last two expectations are bounded above by

P(Dn < �n) + P(Dn > kn) ≤ 2 · 2−q−n /2�n
+ P(Γ∗

n > kn)

≤ 2 · 2−φ(q−n ) + nP(Γ1 > kn) ≤ O

(
1

n

)
+

n

2kn
≤ O

(
1

log2
2 n

)
,



MULTIPLICITY OF PARTS IN A RANDOM COMPOSITION 425

and we see that

(lnn)P(A(m)
n ) =

EU
(m)
n

log2 e + o(1)
+ o(1),(4)

provided that EU
(m)
n = Θ(1). Thus, the asymptotic behavior of (lnn)P(A

(m)
n ) is

determined completely by the behavior of EU
(m)
n , and to complete the proof we need

to estimate EU
(m)
n .

5. Parts of multiplicity m. In this section we will approximate EU
(m)
n . Let

U (m) = U (m)(κ) denote the set of part sizes in κ that have multiplicity m, and let us
write j ∈ U (m) to indicate that size “j” has multiplicity m. We have

EU (m)
n = E

∑
j≤n/m

Ij∈U(m) =
∑

j≤n/m

P(j ∈ U (m)).

Therefore, we need to estimate the sum of P(j ∈ U (m)). The degree of difficulty of this
approximation increases with the accuracy that one desires to achieve. Furthermore,

since, as we will see, EU
(m)
n is an oscillatory function, explicit bounds on EU

(m)
n ,

no matter how tight, cannot be used to show that (lnn)P(A
(m)
n ) converges. Thus,

one may consider devoting too much attention to an accurate approximation to be a
questionable investment. We will present the detailed argument for the fairly precise

bound on EU
(m)
n , but the reader interested in just the fact that this expectation is

Θ(1) (which is all that is needed to establish (4)) will notice that the argument may
be simplified. To make this point more transparent, let Γ̃i(κ), i = 1, . . . , τ(κ), denote
the parts of a composition κ, i.e.,

Γ̃i(κ) = Γi(κ) for i < τ(κ) and Γ̃τ(κ)(κ) = n−
τ(κ)−1∑
i=1

Γi(κ).

It is much more convenient to work with Γ’s rather than with Γ̃’s, because the last
part, Γ̃τ , complicates the dependence structure. As a result, a nonnegligible part of
our argument is to show that “tildes” can be neglected. This is, of course, not an issue
if one is interested merely in a Θ(1) result; tildes may be dropped since the single part

Γ̃τ can be ignored without affecting U
(m)
n by more than 1. To estimate P(j ∈ U (m))

write

P(j ∈ U (m)) =P

(
τ∑

i=1

IΓ̃i=j = m

)
= P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m− 1

})

+ P

(
{Γ̃τ �= j} ∩

{
τ−1∑
i=1

IΓi=j = m

})

= P

(
τ−1∑
i=1

IΓi=j = m

)
+ P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m− 1

})
(5)

− P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m

})
.

We begin by estimating the first probability in (5), and then we will show that the
sums over j of the last two probabilities are negligible. Let q±n = (n+1)/2± tn. As in
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the previous section, let tn =
√
α(n− 1) lnn, but we now choose α = 2 so that from

(2) we get nP(|τ − Eτ | ≥ tn) ≤ 2/n3. To get an upper bound on the first term in (5)
write

P

(
τ−1∑
i=1

IΓi=j = m

)
≤ P

(
{|τ − Eτ | ≤ tn} ∩

{
τ−1∑
i=1

IΓi=j = m

})
+ P(|τ − Eτ | > tn).(6)

The second probability in the rhs of (6) is O(1/n4) and for the first one we have

P

({
τ−1∑
i=1

IΓi=j = m

}
∩ {|τ − Eτ | ≤ tn}

)

= P

( ⋃
1≤i1<···<im≤τ

(
m⋂
�=1

{Γi� = j} ∩
τ−1⋂
i=1

i �=i1,...,im

{Γi �= j}
)

∩ {|τ − Eτ | ≤ tn}
)

≤ P

( ⋃
1≤i1<···<im≤q+

n

(
m⋂
�=1

{Γi� = j} ∩
q−n −1⋂
i=1

i �=i1,...,im

{Γi �= j}
)

∩ {|τ − Eτ | ≤ tn}
)

≤ P

( ⋃
1≤i1<···<im≤q+

n

(
m⋂
�=1

{Γi� = j} ∩
q−n −1⋂
i=1

i �=i1,...,im

{Γi �= j}
))

≤
(
q+
n

m

)
1

2jm

(
1 − 1

2j

)q−n −1−m

.

Similarly, to get a lower bound for the first term of (5) we have

P

(
τ−1∑
i=1

IΓi=j = m

)
≥ P

({
τ−1∑
i=1

IΓi=j = m

}
∩ {|τ − Eτ | ≤ tn}

)

≥ P

( ⋃
1≤i1<···<im≤q−n

(
m⋂
�=1

{Γi� = j} ∩
q+
n⋂

i=1
i �=i1,...,im

{Γi �= j}
)

∩ {|τ − Eτ | ≤ tn}
)

≥ P

( ⋃
1≤i1<···<im≤q−n

(
m⋂
�=1

{Γi� = j} ∩
q+
n⋂

i=1
i �=i1,...,im

{Γi �= j}
))

− P(|τ − Eτ | > tn)

≥
(
q−n
m

)
1

2jm

(
1 − 1

2j

)q+
n−m

−O

(
1

n4

)
.

It remains to bound the sum over j of the terms

P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m

})
(7)
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and

P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m− 1

})
(8)

in (5) and to show that they are negligible compared to the sum over j of the first
term in (5). Since

{Γ̃τ = j} ⊂ {Γ̃τ ≥ j} ⊂ {Γτ ≥ j},

for the probability in (7) we have

P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m

})
≤ P

(
{Γτ ≥ j} ∩

{
τ−1∑
i=1

IΓi=j = m

})

≤ P

(
{|τ − Eτ | ≤ tn} ∩ {Γτ ≥ j} ∩

{
τ−1∑
i=1

IΓi=j = m

})
+ O

(
1

n4

)

≤
q+
n∑

k=q−n

P

(
{τ = k} ∩ {Γk ≥ j} ∩

{
k−1∑
i=1

IΓi=j = m

})
+ O

(
1

n4

)

≤
q+
n∑

k=q−n

P

(
{Γk ≥ j} ∩

{
k−1∑
i=1

IΓi=j = m

})
+ O

(
1

n4

)

≤
q+
n∑

k=q−n

1

2j−1

(
k − 1

m

)
1

2jm

(
1 − 1

2j

)k−1−m

+ O

(
1

n4

)

≤ c
√
n lnn

(
q+
n

m

)
1

2j(m+1)

(
1 − 1

2j

)q−n −m

+ O

(
1

n4

)

by the definition of q+
n and q−n . Thus, summing up over j, we get

c
√
n lnn

(
q+
n

m

) n∑
j=1

1

2j(m+1)

(
1 − 1

2j

)q−n −m

+ O

(
1

n3

)

≤ c
√
n lnn

(
q+
n

m

)∫ ∞

1

1

2(m+1)x

(
1 − 1

2x

)q−n −m

dx + O

(
1

n3

)
≤ c

√
n lnn

(
q+
n

m

)∫ 1

0

um(1 − u)q
−
n −mdu + O

(
1

n3

)
= c

√
n lnn

(
q+
n

m

)
Γ(m + 1)Γ(q−n −m + 1)

Γ(q−n + 2)
+ O

(
1

n3

)
= Θ

(√
lnn

n

)
.
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For the second probability (8) the argument is essentially the same:

P

(
{Γ̃τ = j} ∩

{
τ−1∑
i=1

IΓi=j = m− 1

})
≤ P

(
{Γτ ≥ j} ∩

{
τ−1∑
i=1

IΓi=j = m− 1

})

≤
q+
n∑

k=q−n

P

(
{τ = k} ∩ {Γk ≥ j} ∩

{
k−1∑
i=1

IΓi=j = m− 1

})
+ O

(
1

n4

)

≤
q+
n∑

k=q−n

1

2j−1

(
k − 1

m− 1

)
1

2j(m−1)

(
1 − 1

2j

)k−1−m+1

+ O

(
1

n4

)

≤ c
√
n lnn

(
q+
n

m− 1

)
1

2jm

(
1 − 1

2j

)q−n −m

+ O

(
1

n4

)
,

and in the same fashion as before we see that the sum over j of these terms does not
exceed Θ(

√
(lnn)/n).

We now observe that for q = qn ∼ n/2 the sum(
q

m

) ∞∑
j=1

2−jm(1 − 2−j)q−m

is easily seen to be Θ(1) (it suffices to compare it to the integral
∫∞
1

2−mx(1 −
2−x)q−mdx). Therefore, since q+

n and q−n are asymptotically the same, m is fixed,
and ∑

j>n

2−jm(1 − 2−j)q
±
n −m ≤

∑
j>n

2−j =
1

2n
,

we conclude that

EU (m)
n ∼

(
q

m

) ∞∑
j=1

2−jm(1 − 2−j)q−m.(9)

A more detailed analysis reveals a quite interesting and unexpected phenomenon. The
rhs in (9) does not have a limit, but exhibits oscillations about 1/(m ln 2). To see this,
one approach is as follows (for convenience we will replace q −m with q in (9)—this
does not affect asymptotics): expanding (1 − 2−j)q using the binomial formula, and
summing over j, gives

∞∑
j=1

2−jm(1 − 2−j)q =

q∑
k=0

(−1)k
(
q

k

)
1

2k+m − 1
.

Alternating sums of this type appear surprisingly often in the analysis of certain
algorithms and can be approximated using methods of complex analysis. Since the
standard method, attributed to Rice, has been described recently in several papers,
we will not reproduce the details here. Rather, we refer to [16, section 5.2.2], [9], [14],
or [15] for some examples of applications and illustration of the method. In particular,
these last two papers explicitly treat the asymptotics of the sum

q∑
k=0

(−1)k
(
q

k

)
1

2k+m − 1
.
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We would like to indicate an alternative approach to approximating (9) shown to the
first author by Bennett Eisenberg and Gilbert Stengle [5]. Although it seems less
general than the Rice method, in the case of our sum it gives a more elementary
and direct proof of the asymptotics. Consider a sequence (qs) such that for some
1 ≤ β < 2, qs/2

s → β = 2x, 0 ≤ x < 1. Then, for s large, replacing qs with 2x+s and
j with s + r we get(

qs
m

) ∞∑
j=1

1

2jm

(
1 − 1

2j

)qs

∼ 2m(x+s)

m!

∞∑
r=−s+1

2−sm2−rm

(
1 − 1

2s2r

)2x2s

∼ 1

m!

∞∑
r=−∞

2m(x−r)e−2x−r

,

where the “legality” of passing to the limits is easily checked (see [5]). The latter
expression defines a 1-periodic function, and its Fourier coefficients are easily found:

φ� =
1

m!

∫ 1

0

∞∑
r=−∞

2m(x−r)e−2x−r

e−2πi�xdx

=
1

m!

∫ ∞

−∞
2mxe−2x

e−2πi�xdx,

which, upon substitution u = 2x, becomes

φ� =
1

m! ln 2

∫ ∞

0

um−1−2πi�/ ln 2e−udu =
1

m! ln 2
Γ

(
m− 2πi�

ln 2

)
.

Note that φ0 = 1/(m ln 2), so if we let

H(m)(x) =
ln 2

m!

∞∑
r=−∞

2m(x−r)e−2x−r − 1

m
,

then H(m) satisfies the conditions of Theorem 1. Combining this with (4) completes
the proof of the theorem.

6. Bounding the oscillation. The sum below is used in section 5 of the paper

to approximate EU
(m)
n : (

q

m

) ∞∑
j=1

2−jm(1 − 2−j)q−m,(10)

where q = (n/2)�. The data displayed in Figures 2, 3, and 4 indicate that 1/(m ln 2)

is a reasonable approximation to the actual value EU
(m)
n for small m and that the

sum (10) is a good approximation to EU
(m)
n as n gets large.

As noted in the previous section, the sum (10) oscillates about 1/(m ln 2). We
would like to note that the oscillation is not an artifact of our approximation. The

data show that the actual value of EU
(m)
n does itself oscillate about 1/(m ln 2). This

is illustrated in Figures 5, 6, and 7 for m = 1, 5, 10, respectively. These plots use

successively coarser scales and show how the amplitude of the oscillation of EU
(m)
n

about 1/(m lnn) increases as m increases.
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Fig. 2. Comparison of EU
(1)
n (dotted) the approximating sum (10) and 1/(ln 2) (bold).
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Fig. 3. Comparison of EU
(5)
n (dotted), the approximating sum (10), and 1/(5 ln 2) (bold).
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Fig. 4. Comparison of EU
(10)
n (dotted) the approximating sum (10) and 1/(10 ln 2) (bold).
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Fig. 5. The oscillation of EU
(1)
n about 1/(ln 2).
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Fig. 6. The oscillation of EU
(5)
n about 1/(5 ln 2).
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Fig. 7. The oscillation of EU
(10)
n about 1/(10 ln 2).
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In order to bound the amplitude of the oscillation, note that the coefficients

of Fourier expansion of the function H(m)/ ln 2 (which is asymptotic to EU
(m)
n −

1/(m ln 2)) satisfy ∑
� �=0

|φ�| =
1

m! ln 2

∑
� �=0

∣∣∣∣Γ(m− 2πi�

ln 2

)∣∣∣∣,
and therefore,

lim sup
n

∣∣∣∣EU (m)
n − 1

m ln 2

∣∣∣∣ ≤ ∣∣∣∣H(m)(c lnn)

ln 2

∣∣∣∣ ≤ 1

m! ln 2

∑
� �=0

∣∣∣∣Γ(m− 2πi�

ln 2

)∣∣∣∣.
Using the properties of gamma function,

|Γ(it)| =

√
π

t sinh(πt)
and Γ(z + 1) = zΓ(z),

and letting ρ = 2π/ ln 2, we get a bound on the oscillation:

1

m! ln 2

∑
� �=0

∣∣∣Γ(m− ρ�i)
∣∣∣ ≤ 2

m! ln 2

∞∑
�=1

(
m−1∏
k=0

|k − ρ�i|
)√

π

ρ� sinh(πρ�)

=

√
2

m!
√

ln 2

∞∑
�=1

(
m−1∏
k=0

√
k2 + ρ2�2

)
1√

� sinh(πρ�)
.(11)

For small m, this bound is very good, but as illustrated in Table 1, as m increases
it becomes increasingly weaker. In fact, for m exceeding the value 52, it becomes
useless, as this bound on the amplitude exceeds the mean value, 1/(m ln 2). (Thus,
from this bound on the oscillation, one could not even conclude that the quantity (10)
is positive.) A more detailed analysis of the nature of these fluctuations is perhaps an
interesting question but we do not pursue it much further in this paper. One thing

worth pointing out is that oscillations of EU
(m)
n are highly nonsymmetric around

1/(m ln 2). On one hand, considering q of the form m2p and replacing the sum over
j by its largest term (corresponding to j = p) we find that

lim sup
n

EU (m)
n ≥

(
q

m

)(
m

q

)m (
1 − m

q

)q−m

∼ mm

m!
e−m ≥ e−1/(12m)

√
2πm

by Stirling’s formula. On the other hand, we have

lim inf
n

EU (m)
n ≥ e−2m

m ln 2
.

To see this, let

f(x) =

(
q

m

)
2−mx(1 − 2−x)q−m,

so that

EU (m)
n ∼

∞∑
j=1

f(j).
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Table 1

Comparison of the bound (11) with the mean value as m increases.

m The bound (11) on oscillation 1/(m ln 2)

1 .00001426024765 1.442695041
2 .00006502473820 .7213475205
3 .0002012028112 .4808983470
4 .0004802854938 .3606737603
5 .0009517428766 .2885390082
6 .001642131452 .2404491735
7 .002550173579 .2060992916
8 .003650969724 .1803368801
9 .004904708738 .1602994490
10 .006265585898 .1442695041

...
...

...
50 .02756514237 .02885390082
51 .02757480454 .02828813806
52 .02757887758 .02774413540
53 .02757781675 .02722066115
54 .02757203860 .02671657484
55 .02756192443 .02623081892
56 .02754782372 .02576241145
57 .02753005703 .02531043932
58 .02750891844 .02487405243
59 .02748467827 .02445245832
60 .02745758499 .02404491735

...
...

...
100 .02546701322 .01442695041
150 .02295420798 .009617966940
200 .02098570878 .007213475205
250 .01942401432 .005770780164
300 .01813918847 .004808983470
350 .01704834346 .004121985831
400 .01610016200 .003606737603

Since

f ′(x) =

(
q

m

)
ln 2

2mx

(
1 − 1

2x

)q−m−1 ( q

2x
−m

)
,

f is increasing for x < x0 and decreasing for x > x0, where x0 = log2(q/m). Therefore,
letting k0 = [log2(q/m)] be the integer part of x0, we see that

∞∑
j=1

f(j) =

k0∑
j=1

f(j) +

∞∑
j=k0+1

f(j) ≥
∫ k0

0

f(x)dx +

∫ ∞

k0+1

f(x)dx

=

∫ ∞

0

f(x)dx−
∫ k0+1

k0

f(x)dx.

The first integral upon substitution u = 2−x is easily seen to be equal to 1/(m ln 2),
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while for the second one, letting δ = x0 − k0 and then x = x0 + t, we get∫ k0+1

k0

f(x)dx =

∫ x0+1−δ

x0−δ

f(x)dx =

∫ 1−δ

−δ

f(x0 + t)dt

=

(
q

m

)∫ 1−δ

−δ

1

2mx0

1

2mt

(
1 − 1

2x0+t

)q−m

dt

=

(
q

m

)(
m

q

)m ∫ 1−δ

−δ

1

2mt

(
1 − m

2tq

)q−m

dt,

which upon substitution u = 2−t becomes(
q

m

)(
m

q

)m
1

ln 2

∫ 2δ

2δ−1

um−1

(
1 − mu

q

)q−m

du.

Using
(
q
m

)
≤ qm/m! and letting q → ∞ we see that the latter expression is bounded

above by

mm

m! ln 2

∫ 2δ

2δ−1

um−1e−mudu ≤ 1

m! ln 2

∫ m2δ

0

um−1e−udu,

and by a successive partial integration, and because 0 ≤ δ ≤ 1, we see that the last
integral is no more than

1

m! ln 2
(m− 1)!(1 − e−m2δ

) ≤ 1

m ln 2
(1 − e−2m).

Thus, ∫ k0+1

k0

f(x)dx ≤ 1

m ln 2
(1 − e−2m),

that is,

EU (m)
n ≥ e−2m

m ln 2
,

and the argument is completed.
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Abstract. A “partial broadcast channel” enables one processor to send the same message—
simultaneously and privately—to a fixed subset of processors. Suppose that a collection of processors
are connected by an arbitrary network of partial broadcast channels (a hypergraph). We initiate the
study of necessary and sufficient conditions, complexity bounds, and protocols for individual proces-
sors to exchange private messages across this network. Private message exchange, in turn, enables
the realization of general secure computation primitives. The model (motivated by various environ-
ments such as multicast network architectures and group communication in distributed systems) is
an intermediate setting between the private channels model and the full information model, both
of which have been investigated extensively in the last few years. We assume a computationally
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1. Introduction. This paper examines private communication derived from a
seemingly “unprivate” environment. A collection of processors can communicate
among themselves only via “partial broadcasts,” i.e., by sending the same message
simultaneously from one processor to a subset of processors. The processors can coop-
erate to execute protocols, but some of them may be dishonest. We initiate the study
of secure computation in such an environment, focusing on the enabling primitive
of secure message transmission. Given a partial broadcast network, can individual
processors exchange messages privately?

The answers that we find depend on several factors: (a) the particular partial
broadcast channels in the network; (b) the number and nature of dishonest processors;
and (c) the efficiency of communication. We restrict our attention to passive attacks
on privacy: No information about message contents is revealed to any (sufficiently
small) coalition of t (gossiping, honest-but-curious) processors, assuming all processors
execute protocols correctly. The protocols that we present are all extremely simple,
have zero probability of error, and guarantee privacy in an information theoretic sense
(even when the adversary is computationally unlimited). We model partial broadcast
networks as hypergraphs, and rely on combinatorial techniques for our results.

An example of a partial broadcast channel is a local area network (LAN) like
an ethernet bus or a token ring. More modern network architectures implement
multicast channels, enabling “one to many” (“point-to-multipoint”) communication.
In these architectures (e.g., [18]), a processor may belong to various such channels.
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When a processor member of a multicast channel sends a message, it is heard by all
other processors on that channel. In our examples we assume architectures where the
message is heard exclusively by its designated group. Since LANs are often somewhat
structured, they may not be ideal for realizing complex networks of partial broadcast
channels. Virtual private networks (VPNs), where the substructures are arbitrary,
may be more appropriate.

Another example of a partial broadcast channel is a shared cryptographic key.
By publishing an encrypted message, a processor initiates a partial broadcast to the
subset of processors that are able to decrypt it. A partial broadcast network (against
a polynomial adversary) arises from a collection of shared keys, e.g., from a key
distribution scheme for conferences [6], where each processor has a subset of the
set of keys (thus, this processor belongs to a subset of designated conferences, each
conference corresponding to a key). An efficient system that uses cryptography to
provide for “broadcast encryption” to a subset of users was suggested by Fiat and
Naor [13].

Many distributed operation systems are being constructed currently to support
partial broadcast, which is called “group communication primitive” [9]; this consti-
tutes yet another example of a partial broadcast environment (see survey [7]). In
particular, Dolev and Malki [11] solve basic distributed tasks in an environment sup-
porting broadcast communication.

Radio networks are a fourth example of multicast channels. We remark that
the “radio network model” studied by Alon et al. [2] is similar to one of the partial
broadcast networks that we consider (our “neighbor network”). However, a main
difference of their model is that a processor receives no messages (i.e., “hears only
noise”) if it is a recipient of two or more partial broadcasts simultaneously. Their work
addresses issues of coordination and scheduling that arise in packet radio networks
and does not consider privacy.1

The use of private channels as a primitive for general secure computation is shown
by Ben-Or, Goldwasser, and Wigderson [3] and Chaum, Crépeau, and Damg̊ard [8],
and is further explored by many others (see survey [16]). Dolev et al. [10] consider
distributed protocols for private communication over an incomplete network of private
channels in a variety of fault scenarios. At the other extreme, the full information
model of Ben-Or and Linial [4] assumes an environment with only full broadcast (from
any processor to all other processors). Originally considered for the problem of flip-
ping a global coin with bounded bias, it was extended to the question of general secure
computation by Goldreich, Goldwasser, and Linial [17]. Though the full broadcast
model cannot support unbiased secure computations, minimizing the influence of a
coalition of misbehaving parties is the goal there. The partial broadcast model of this
work addresses the area in between the private channels model and the full informa-
tion model. Our problem can also be viewed as the inverse of the construction of a
broadcast channel from private channels, namely, the Byzantine agreement problem
[19], which has been a fundamental question in distributed computing theory. Note
that much of this related work considers an active (Byzantine) adversary, unlike the
passive (honest-but-curious) adversary that we consider in this paper.2

1See [12] for a general overview of the related notion of sensor networks, i.e., self-organizing
networks of computers that are small, cheap, and low-power and communicate by radio-link.

2Subsequently, the partial broadcast model with an active adversary has been studied for secure
communication [15] and for Byzantine agreement [14].
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1.1. Simple motivating example. Consider a ring of four processors, labeled
A,B,C,D, such that each processor can broadcast to its two neighbors. The partial
broadcast network consists of only these four partial broadcast channels: A → {B,D};
B → {A,C}; C → {B,D}; D → {A,C}. Since every partial broadcast has either B
or D as a participant, it is impossible, via any conceivable protocol, for A to send a
message to C while keeping complete privacy from the coalition {B,D} (unless the
sender and receiver share secret information before the start of the protocol, or the
coalition of listeners is computationally bounded, or senders can be anonymous [1];
our model excludes all of these possibilities). Using the terminology introduced in the
next section, we say that 2-private communication from A to C is impossible on this
partial broadcast network, because any attempt to send a message from A to C leaks
information to a coalition of size two.

The following protocol enables A to send to C the bit string m 1-privately. Pro-
cessor B generates a random bit string rB (of the same length as m, from the uniform
distribution) and partially broadcasts it to {A,C}; processor D does the same with
rD. Now A computes m′ = m ⊕ rB ⊕ rD, and m′ is propagated from A to C with
the help of either (or both) B or D. At the end of this protocol, processor C can
compute m = m′ ⊕ rB ⊕ rD. From the point of view of processor B (D), all messages
are indistinguishable, since every m is consistent with exactly one choice of rD (rB).

1.2. Our results. In section 3, we characterize when an arbitrary partial broad-
cast network can support private point-to-point communication, based on the directed
and undirected connectivity of the hypergraph. One interpretation of this result is
that privacy depends more on the “shape” of the hypergraph than on the directionality
of its hyperedges. We then consider “subgraph networks” and “neighbor networks,”
which arise naturally from an arbitrary undirected graph connecting pairs of proces-
sors. For subgraph networks, privacy depends on the connectivity of the underlying
graph. For neighbor networks, however, connectivity is not sufficient to determine
privacy; we analyze several important graph topologies. We also show that deciding
privacy is co-NP-complete, but is in polynomial time when only a constant number
of processors are dishonest.

The protocols in section 3 have communication costs (round and bit complexity)
that are polynomial in the length of the message and the size of the network. How-
ever, the size of the network (number of hyperedges) might not be polynomial in the
number of processors. In section 4, we restrict our attention to protocols for which
communication costs are polynomial in the number n of participating processors. For
the case where up to t processors may be faulty, and where all partial broadcasts of
size k are allowed, we prove bounds relating t, k, and n. Our most general upper and
lower bounds, constraining the product tk, are within a log factor of each other.

2. Model and definitions. Notation. We write |S| to denote the cardinality
of the set S. When the universe of elements V is clear from context, we may write Ū
to denote the set V −U . We write ng(x) to denote the neighborhood of a vertex x in
a graph G = (V,E), i.e., ng(x) = {y ∈ V : (x, y) ∈ E}. A “star” centered at x is the
set {x} ∪ ng(x).

We assume that the messages to be sent privately are elements of some finite
group. We say that m1, . . .,ml are “random additive shares” of m if

∑l
i=1 mi = m

and m1, . . .,ml are otherwise random. For example, m1, . . .,ml−1 can be chosen from

the group according to the uniform distribution, and ml = m −
∑l−1

i=1 mi. It is an
elementary observation that no proper subset of random additive shares of m reveals
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any information about m.

A “partial broadcast channel” enables any message to be sent from some sender
x to some collection of receivers S. Only the members of S learn the message that
was sent by x, while all parties outside of S ∪ {x} learn nothing about the contents
of the message. A “simple channel” from x to y is a partial broadcast channel from
x to the singleton set S = {y}.

We can represent a partial broadcast channel from x to S as a directed hyperedge
connecting x to S. We can represent a collection of partial broadcast channels among
n parties [1 · · ·n] as a directed hypergraph on V = [1 · · ·n]. We say that a protocol
among the n parties [1 · · ·n] “simulates” a simple channel from x to y, x, y ∈ [1 · · ·n]
if the protocol begins with x choosing a message m and the protocol ends with y
outputting m (with zero probability of error). The protocol may be randomized; i.e.,
the processors can flip coins during execution. We are interested in using a collection
of partial broadcast channels on [1 · · ·n] to simulate a complete network of simple
channels on [1 · · ·n].

We say that a protocol is t-private, 1 ≤ t ≤ n− 2, if no collection L ⊆ [1 · · ·n] −
{x, y}, |L| = t, learns anything about the message m from the information it receives
after honestly participating in the protocol. More formally, let the “view” of a par-
ticipant be the record of its activity throughout the protocol: messages received and
sent, coins flipped, and computations performed. Then the distribution of combined
views of any t processors in [1 · · ·n] − {x, y} at the end of the protocol should be
independent of the message m that was chosen by x.

We may consider these t views to be seen at the end of the protocol by a single
adversary of unbounded computational power. The adversary does not know the
message m to be sent and has no advantage a priori in guessing the coin flips any
processor will make during the protocol. The adversary can be assumed to know
the identity of sender and receiver, the specification of the protocol, and auxiliary
memory contents of all processors at the start of the protocol (i.e., other than coin flips
or m itself). Since the adversary has unbounded computational power, this excludes
protocols that rely on complexity theoretic assumptions for their privacy. All protocols
have zero probability of error; i.e., correct message transmission is guaranteed.

We say that hypergraph H can simulate a complete network of simple channels
t-privately if there exists a protocol using only the communication channels given by
H to simulate the simple channel from x to y t-privately for every x, y ∈ [1 · · ·n].
Equivalently, we say that H “supports t-private point-to-point communication.” In
this paper, we investigate necessary and sufficient conditions on H and t for this task.

We write a directed hyperedge over a nodeset V as (v, S), where v ∈ V and
S ⊆ V − {v}. We say that there is a “directed link” from node v to node w if there
exists a hyperedge (v, S) such that w ∈ S. We say that there is an “undirected link”
from x to y if there is a directed link from x to y or a directed link from y to x. If
there is a directed (undirected) link from vi to vi+1 for every i, 0 ≤ i < k, then we
say that there is a “directed path” (“undirected path”) from v0 to vk. A hypergraph
is “strongly k-connected” (“weakly k-connected”) if for all nodes x, y ∈ V , and for
all U ⊂ V − {x, y}, |U | < k, there remains a directed (undirected) path from x to y
after the removal of U and all hyperedges (v, S) such that U ∩ (S ∪ {v}) 	= ∅. An
ordinary (nonhyper) undirected graph is k-connected if there are at least k vertex
disjoint paths connecting any two nodes.

3. Achieving privacy. In this section, we consider the conditions under which
t-private point-to-point communication can be simulated on an underlying network
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H of partial broadcast channels. We establish a necessary and sufficient condition for
private communication that depends more on the “shape” of the communication net-
work than on its “direction.” Then we consider private communication on subgraph
networks and neighbor networks.

We are not concerned in this section with the efficiency of our simulations. In
fact, all of our protocols will have round complexity proportional to the diameter of
the network, and bit complexity polynominal in the size of the network. However,
the size of the network is not necessarily polynominal in the number of processors:
A network of n processors can have up to n2n−1 distinct partial broadcast channels.
In a later section, we treat the case of private simulation using resources that are
polynominal in the number of processors.

3.1. Shape versus direction. The following theorem characterizes those par-
tial broadcast networks that can support point-to-point private communication.

Theorem 3.1. t-private point-to-point communication is possible on H if and
only if H is strongly 1-connected and weakly (t + 1)-connected.

Lemma 3.2. If H is not strongly 1-connected and weakly (t + 1)-connected, then
t-private point-to-point communication on H is impossible.

Proof. If H is not strongly 1-connected, then there exist x and y such that any
communication—private or not—from x to y is impossible.

If H is not weakly (t+1)-connected, we argue toward a contradiction of Shannon’s
impossibility result [20] for information theoretic secure two-party communication
without a priori information. There exist nodes x, y and subset S ⊆ V − {x, y},
|S| = t, such that every undirected path from x to y hits S. Suppose there were a
t-private message transmission protocol from x to y when the adversary controls S.
We can find subsets Vx, Vy such that Vx∪Vy = S̄ and every undirected path from (any
node in) Vx to (any node in) Vy hits S. The sender x could simulate the behavior of
every party in Vx, without any communication to y. The receiver y could simulate the
behavior of every party in Vy, without any communication to x. The simulation of the
parties in S could be maintained jointly by x and y, with public conversations to agree
on the coin flips of S and the messages received from outside S. By Shannon’s result,
this cannot be a secure two-party communication; i.e., a computationally unbounded
eavesdropper listening to the public conversations could learn the message that x is
sending to y. Thus the multiparty protocol cannot be secure.

Lemma 3.3 establishes the reverse direction of the theorem. Central to the proof
is the following protocol, which suffices for any party x to send a message m to any
party y whenever the condition of the lemma is met.

1. For every hyperedge e = (v, S) and for every u ∈ S, v → S : (u, reu). That is,
v broadcasts to every node in S the message “(u, reu).” The second element
of the broadcast message is reu, a random group element chosen by v from
the message space according to the uniform distribution. The first element of
the broadcast message is a “label” indicating that u is the “intended target”
of reu (even though the message is of course seen by all of S). We say that
v is the “originator” of reu. Note that a single hyperedge (v, S) causes v to
broadcast |S| distinct messages to S.

2. Every node u 	= x computes the sum of messages for which it was the intended
target and subtracts the sum of messages for which it was the originator:
Tu = (

∑
e=(v,S),u∈S reu) − (

∑
e=(u,S),s∈S res). Tx is computed similarly and

includes the message m : Tx = m + (
∑

e=(v,S),x∈S rex) − (
∑

e=(x,S),s∈S res).
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3. For every u 	= y, Tu is communicated to y through any series of partial
broadcasts, without concern for privacy. Then y can compute m =

∑
u Tu.

Lemma 3.3. If H is strongly 1-connected and weakly (t + 1)-connected, then the
above protocol achieves t-private point-to-point communication on H.

Proof. Consider the relevant information in the combined views of L ⊆ V −{x, y} :
any values reu sent or received by a party in L, and any sums Tu propagated through L
on their way to y. In the worst case from a security standpoint, it is possible that every
Tu except Ty passes through L on its way to y. It suffices to show that, for every L
such that |L| = t, the distribution of WORST-CASE-VIEWL(m) = {(u, reu) : u ∈ L},
{(u, reu) : e = (v, S), v ∈ L}, {(u, Tu) : u 	= y} is independent of the choice of
message m.

By weak (t + 1)-connectivity, there exists an undirected path from x to y that
misses L. Let x0 = x, x1, . . . , xk = y be the nodes on this path, and let e1, . . . , ek be
the corresponding hyperedges. The ith link from xi−1 to xi is “forward” if ei = (v, S)
where v = xi−1 and xi ∈ S. Otherwise, v = xi and xi−1 ∈ S and the ith link is
“backward.”

For any execution of the protocol with message m, and for any group element ∆,
consider the following modified execution: Add ∆ to reixi if the ith link is forward,
subtract ∆ from reixi−1

if the ith link is backward, and otherwise don’t change the
execution at all. The modification yields an execution of the protocol with message
m + ∆ for which the values of {(u, reu) : u ∈ L}, {(u, reu) : e = (v, S), v ∈ L},
{(u, Tu) : u 	= y} are unchanged. Thus the distribution of WORST-CASE-VIEWL(m)
is independent of the choice of message.

3.2. Subgraph networks. In this section we consider t-private point-to-point
communication on “subgraph networks.” A subgraph network is a directed hyper-
graph derived from an undirected connected graph as follows. Let G be an undirected
graph on n nodes. The (G, k)-subgraph network is the set of hyperedges such that
there is an edge to S from x /∈ S if and only if S ∪ {x} is a connected subgraph
of G of size k. Note that if G is connected, then the (G, k)-subgraph network is
strongly 1-connected (unless k > |V |). The following are straightforward corollaries
of Theorem 3.1.

Corollary 3.4. t-private point-to-point communication on a (G, k)-subgraph
network is possible if and only if t + k ≤ n and G is (t + 1)-connected.

Proof. Suppose G is (t + 1)-connected and t + k ≤ n. For every L of size t, and
for every x, y /∈ L, we need to show a path from x to y in the (G, k)-subgraph network
that misses L. By (t+1)-connectivity, there is a path in G from x to y that misses L.
If this path has length less than k, then a single hyperedge in the subgraph network
connects x to y (consisting of the path together with enough neighboring nodes of L̄).
If the path from x to y in G has length at least k, then every length-k subsequence
of the path corresponds to a hyperedge in the (G, k)-subgraph network. From these
hyperedges we can construct the path from x to y in the subgraph network. The other
direction is clear.

A “complete k-ary network” is a (Kn, k)-subgraph network, where Kn is the
complete graph on n nodes. It enables every processor to broadcast to any other k−1
processors. This network will be further studied in section 4.

Corollary 3.5. t-private point-to-point communication is possible on a complete
k-ary network if and only if t + k ≤ n.

3.3. Neighbor networks. In this section, we consider t-private point-to-point
communication on “neighbor networks.” Let G = (V,E) be an undirected graph
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on n nodes. The G-neighbor network is defined to be the set of hyperedges such
that there is a hyperedge from x to {y : (x, y) ∈ E} for every x ∈ V (sometimes
called a “star” centered at x). After giving some general technical conditions, we
analyze some particular neighbor networks with quite different privacy properties.
Although efficiency is not the focus of this section, we point out that the protocol
from section 3.1 is always efficient when executed on a neighbor network; i.e., round
complexity and bit complexity are polynominal in the number of processors n and
the size of the message (since the size of a neighbor network is linear in the number
of processors).

It is easy to show that t-private point-to-point communication on a G-neighbor
network requires that G be (t + 1)-connected, as for subgraph networks. Unlike
subgraph networks, however, that necessary condition is not, in general, sufficient.
In the next few sections, we will illustrate how privacy can vary with respect to
connectivity. Note that if G is connected, then its neighbor network is always strongly
1-connected.

3.3.1. Neighbor networks with minimal privacy. Although connectivity
provides an upper bound on privacy, it does not, in general, imply any lower bound
whatsoever. The simplest example of minimal privacy is the complete graph Kn,
which cannot support 1-private communication. Moreover, any single node can pre-
vent every pair of nodes from communicating privately.

For another example, let H2d be the 2d-dimensional hypercube, whose nodes are
identified with 2d-bit strings in the standard way. Let G be H2d together with a
special node z, where edges connect z to all hypercube nodes of weight d − 1, d,
and d + 1. This graph is (2d)-connected, while even 1-privacy is unachievable on its
neighbor network. Notice that although a single listener at z can prevent certain
private communications (e.g., from low weight senders to high weight receivers), no
single listener can cut off one node from all private communications.

3.3.2. Neighbor networks with maximal privacy. In this section, we show
that certain graphs yield neighbor networks with maximal privacy, i.e., t-private com-
munication when the graph is (t+1)-connected. The 4-node example from section 1.1
can be easily generalized to obtain 1-private communication between any two nodes
on an arbitrary ring. It is straightforward to see that a ring neighbor network is
strongly 1-connected and weakly 2-connected. To generalize to graphs of arbitrary
connectivity k ≥ 3, we use a construction in which a number of trees are “glued”
together at the leaves in an unusual way.

Theorem 3.6. For every k ≥ 2, there exists a k-connected graph G such that its
neighbor network is weakly k-connected and strongly 1-connected.

Proof. Let Tk,m be a full tree of depth m and degree k ≥ 3; i.e., the root has k
children, every internal node has k− 1 children, and there are m levels excluding the
root, m ≥ 2. Let Gk,m be k copies of Tk,m with leaves identified (“glued together
into superleaves”) so that each superleaf corresponds to one leaf from each tree, and
so that the following property holds: Every pair of superleaves are siblings in at most
one tree. There are many ways to achieve such a mapping.

For example, the mapping of leaves to superleaves can be created as follows. Let
T 1, . . . , T k be the k copies of Tk,m. Choose k primes p1, . . . , pk between k + 1 and
k(k − 1)m−2. Label the leaves of T i from left to right with increasing multiples of pi
mod k(k−1)m−1, so that the jth leaf from the left gets the label jpi mod k(k−1)m−1.
Let all leaves with label i get mapped to the ith superleaf of Gk,m. This mapping is
a bijection of leaves to superleaves for each tree, since each pi is relatively prime to
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k(k − 1)m−1. Suppose that two superleaves are mapped from siblings in T i. Then
the difference between the labels of the superleaves must be λipi mod k(k−1)m−1 for
some λi, 1 ≤ λi ≤ k − 2 (since siblings must be among k − 1 adjacent leaves in T i).
If the same two superleaves are mapped from siblings in some other tree T j , then we
would have λipi = λjpj mod k(k − 1)m−1, 1 ≤ λi, λj ≤ k − 2. This is impossible,
since the two sides of the equality are both less than the modulus, and each contains
a prime factor that is missing from the other.

To complete the proof, it suffices to show that Gk,m is k-connected, and that the
Gk,m-neighbor network is weakly k-connected. The details are in Appendix A.

3.3.3. Hypercube neighbor networks: “Halfway-between” privacy. In
this section, we consider neighbor networks in which the underlying graph is a hy-
percube. Let Hd denote the d-dimensional hypercube, with 2d nodes and d2d−1

edges. Although Hd is d-connected, t-private communication is possible only when
t <

⌈
d+1
2

⌉
, i.e., roughly halfway between the minimal and maximal levels of privacy

from a d-connected graph.
Let each node of Hd have a d-bit label in the standard way. Let L = {0d−11} ∪

{02i110d−2i−2 : 0 ≤ i ≤
⌈
d−1
2

⌉
− 1}. Then |L| =

⌈
d+1
2

⌉
, and L separates 0d from

the rest of Hd. The following theorem makes this bound tight. Proof details are in
Appendix B.

Theorem 3.7. The Hd-neighbor network is strongly 1-connected and weakly⌈
d+1
2

⌉
-connected for sufficiently large d.

3.4. Decision complexity. In this section, we consider the complexity of decid-
ing whether t-private point-to-point communication is possible for a given hypergraph
H, sender x, and receiver y. The size of a problem instance depends on t and the size
of H.

Theorem 3.8. Deciding the possibility of private point-to-point communication
is co-NP-complete.

Proof. Consider the complement problem of the impossibility of privacy. If there
is no directed path from x to y, or if removing some subset of t nodes leaves no
undirected path from x to y, then there is a short witness of this fact (e.g., the
disconnecting set, together with the computation of the reachability partition of the
nodeset). Thus the decision problem for impossibility can be shown to be in NP.

NP-hardness for the complement problem is shown by a reduction from vertex
cover. Given a graph G = (V,E), create a hypergraph H as follows. The nodes of
H are V ∪ {x, y} for new nodes x, y. There is a hyperedge from x to {u, v} for every
(u, v) ∈ E, and a hyperedge from u to {y} for every u ∈ V . A subset L ⊆ V − {x, y}
can weakly disconnect x and y in H if and only if L is a vertex cover for G.

Notice that this reduction uses only hyperedges of size two and three. Notice
also that the decision problem is polynominal time for constant t (e.g., the undirected
connectivity of x and y can be tested for every subset L of size t in V − {x, y}).

The decision problem remains co-NP-complete when H is restricted to being a
neighbor network by reducing dominating set to the impossibility problem. Given
a graph G = (V,E), let G′ = (V ′, E′), where V ′ = V ∪ {x, y}, and where E′ =
E ∪ {(x, u) : u ∈ V } ∪ {(u, y) : u ∈ V }. L is a dominating set of size t for G if and
only if L weakly disconnects x from y in the G′-neighbor network.

4. Efficient privacy. We say that a simulation is “efficient” if private com-
munication requires only a polynominal overhead in round and bit complexity, with
respect to the number of processors n and the length of the message. The protocol
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from section 3.1 is efficient only when the size of the partial broadcast network is
polynominal in the number of processors. In this section, we analyze when t-private
efficient point-to-point communication is possible given the ability to make partial
broadcasts of size k. Specifically, the assumption throughout this section is that the
underlying hypergraph H contains hyperedge (x, S) for every |S| = k − 1 and every
x /∈ S.

4.1. Requirements for k-ary networks.
Theorem 4.1. Efficient t-private point-to-point communication from partial

broadcasts of size k requires that tk = O(n log n).
Proof. Assume t is not a constant; otherwise the theorem is trivially true. Suppose

that x sends a message to y by participating in a t-private protocol among the n par-
ties wherein a total of l partial broadcasts (of size k) are sent. Let S ′ = {S′

1, . . . , S
′
l}

denote the parties involved in these partial broadcasts. Let S = {S1, . . . , Sl} denote
the parties remaining in the partial broadcasts after x and y are removed from con-
sideration, i.e., Si = S′

i − {x, y}. Then k − 2 ≤ |Si| ≤ k for all 1 ≤ i ≤ l. Privacy
is violated if there exists a set of parties R ⊆ [1 · · ·n] − {x, y}, |R| = t, such that
R ∩ Si 	= ∅ for all 1 ≤ i ≤ l. Thus for every R, |R| = t, there must exist an Sj ∈ S
such that R ⊆ S̄j . There are

(
n−2
t

)
choices for R. Privacy requires that some Sj must

satisfy R ⊆ S̄j for each possible R. However, each Si can satisfy R ⊆ S̄i for at most(
n−2−|Si|

t

)
≤

(
n−k
t

)
choices of R (i.e., the number of subsets of size t that miss x, y

and the parties in Si). Thus we have shown

l ≥
(
n− 2
t

)/(
n− k
t.

)
.(4.1)

Expanding (4.1), and ignoring constants that don’t affect superpolynomiality, we have

|S| ≥ n!/(n−t)!t!
(n−k)!/(n−t−k)!t! = n!(n−t−k)!

(n−t)!(n−k)! ≥ ( n
n−k )t, since x

y < x−λ
y−λ whenever x > y and

λ > 0. If ( n
n−k )t = (1 + k

n−k )t is polynomial in n and t, then k
n−k = O( log n

t ). That

is, there exists a c > 0 such that k
n−k ≤ c log n

t . Then kt ≤ c(n − k) log n, and thus
kt = O(n log n).

We observe that condition (4.1) also implies that k ≤ n− Θ( n
log n ) when t is not

a constant.

4.2. Protocols for k-ary networks. Now we give some protocols for efficient
private communication given a complete k-ary partial broadcast network. In fact, all
of our protocols for private communication in this case are noninteractive. All mes-
sages are initiated by x and include y as a recipient. We emphasize that Corollary 3.5
in section 3.1 considers the same environment as the results of this section, but with-
out requiring that communication costs be polynomial in n. The following two claims
treat the cases where t or k is a constant.

Claim 1. t-private point-to-point communication on a complete k-ary network is
efficient whenever k is a constant and t + k ≤ n.

Proof. The protocol from Lemma 3.3 is efficient in this case, but we give an even
more efficient protocol. The message m is split into l =

(
n−2
k−2

)
random additive shares

m1, . . . ,ml by the sender x. Let S1, . . . , Sl be all subsets of [1 · · ·n] − {x, y} of size
k−2. Then x sends mi to Si∪{y} for each i, 1 ≤ i ≤ l. This scheme is efficient, since
the number of partial broadcasts is

(
n−2
k−2

)
< nk, which is polynomial in n when k is a

constant. The scheme is private: Each subset L ∈ [1 · · ·n]−{x, y} of size t is disjoint
with at least one subset Si ∈ [1 · · ·n] − {x, y} of size k − 2, and thus an adversary
controlling L misses the additive share mi.
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Claim 2. t-private point-to-point communication on a complete k-ary network is
efficient whenever t is a constant and t + k ≤ n.

Proof. Suppose that x wishes to transmit to y. The message m is split into
l =

(
n−2
t

)
random additive shares m, . . . ,ml. Let S1, . . . , Sl be all subsets of [1 · · ·n]−

{x, y} of size t. Let Ŝi ⊆ [1 · · ·n] − (Si ∪ {x, y}) be an arbitrary subset of size k − 2;
existence is guaranteed since t + k ≤ n. Now x sends mi to Ŝi ∪ {y}, for each
i, 1 ≤ i ≤ l. This scheme is efficient, since the number of partial broadcasts is
l =

(
n−2
t

)
< nt, where t is a constant. The scheme is private, since an adversary

controlling any Si misses the additive share mi.

The following bound is within a logarithmic factor of the bound of Theorem 4.1.

Theorem 4.2. t-private point-to-point communication on a complete k-ary net-
work is efficient whenever t + k ≤ n and tk = O(n).

Proof. We can assume that t and k are not constant, or else one of the preceding
claims can be applied. Thus we can assume that t < cn and k < cn for every c > 0.
Suppose that x wants to send a message to y. First x finds a positive integer m
such that tk < (m− 1)n. Then x chooses λm random additive shares of his message,
where λ = � n−2

k+m−3. Now x finds a partition of [1 · · ·n]−{x, y} into λ disjoint subsets
S1, . . . , Sλ of size k + m − 3 each. Then x partially broadcasts a different share to
S∗
i ∪{y} for all i such that 1 ≤ i ≤ λ, and for all S∗

i ⊆ Si such that |S∗
i | = k− 2. The

number of messages sent is λ
(
k+m−3
k−2

)
< λ(k +m− 3)m−1 < n(k +m− 3)m−1, which

is polynominal in n and k.

The adversary cannot learn any information about the message unless it inter-
cepts every random additive share. Let S′

i ⊆ Si be the processors in Si controlled
by the adversary. If |S′

i| < m, then there exists at least one S∗
i ⊆ Si − S′

i such that
|S∗

i | = k − 2, and the adversary cannot intercept the share sent from x to S∗
i ∪ {y}.

Thus the adversary must control at least m processors in each Si, 1 ≤ i ≤ λ. It suffices,
then, to show that mλ > t. Since tk < (m− 1)n, and since t is not constant, we have
that mn > tk+n > tk+n+(m2 −m−3t). Since t, k < cn for all c > 0, we have that
tk +n+ (m2 −m− 3t) > tk +m(t+ k) + (m2 −m− 3t). Thus mn−mk−m2 +m >
tk + tm − 3t, and so t < mn−k−m+1

k+m−3 = m( n−2
k+m−3 − 1) ≤ m� n−2

k+m−3 = mλ as
required.

5. Conclusions. In conclusion, we have analyzed the possibility of achieving
private point-to-point communication on a given network of partial broadcast chan-
nels. We have given exact characterizations for different sorts of partial broadcast
networks, including those derived from subgraphs and neighborhoods of an arbitrary
underlying graph. We have also considered simulations for which communication costs
must be polynomial in the number of processors, and have given various bounds on
relevant parameters for this case. We also investigated the computational complexity
of deciding privacy.

There are many questions left unexplored, since the space of possible partial
broadcast networks is vast. Finding better characterizations for natural classes of
partial broadcast networks is a challenging problem, as is the simulation of secure
channels on these networks versus stronger adversaries. There are also natural gener-
alizations of neighbor networks. Define a (G, k)-neighbor network to be derived from
an undirected graph G as follows: There is a hyperedge to S from x if and only if S are
k − 1 neighbors of x. What conditions on G, k, t allow t-private point-to-point com-
munication? The same question could be asked for a network that allows broadcast
from any processor x to all nodes in G at distance k or less from x.
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Appendix A. Details of the proof of Theorem 3.6.

Lemma A.1. Gk,m is k-connected.

Proof. We show that there are k vertex disjoint paths connecting any pair of
nodes x, y. Let T x denote the tree containing x and let T y denote the tree containing
y. We divide our analysis into cases.

Case 1 is that x, y are in the same copy of Tk,m and neither is a superleaf. Then
there is a path from x to y, k − 1 paths from x to superleaves l1, . . . , lk−1, and k − 1
paths from y to superleaves l′1, . . . , l

′
k−1 such that all are vertex disjoint, and such

that all are within that single tree. Then the remaining k − 1 trees can complete the
paths, e.g., a path from li to l′i contained in the ith remaining tree.

Case 2 is that x, y are in the same tree and y is a superleaf. Then there is a path
from x to y, and k−1 paths from x to superleaves l1, . . . , l

′
k−1 such that all are vertex

disjoint and all are within that single tree. Then the ith remaining tree can complete
the path from li to y.

Case 3 is that x, y are both leaves. Then each of the k trees has its own path
from x to y.

Case 4 is that x, y are nonleaves from different trees, and neither is a root. Find
two superleaves l, l′ such that exactly one is a descendant of x and exactly one is
a descendant of y; this is always possible, no matter what mapping of leaves to
superleaves has been used. There are vertex disjoint paths from x to l and from x
to l′ entirely within T x; there are vertex disjoint paths from y to l and from y to l′

entirely within T y. Two vertex disjoint paths from x to y can be constructed from
these four partial paths. There are k − 2 remaining disjoint paths from x to leaves
and k − 2 disjoint paths from y to leaves, all disjoint and disjoint with the first two
paths. Each of the remaining k − 2 trees can join pairs of leaves to complete these
paths.

Case 5 is that x, y are nonleaves from different trees, and exactly one of them is a
root; without loss of generality, x is a root. Then there are two vertex disjoint paths
in T x from x to superleaves l, l′, such that l is a descendant of y and l′ is not. Then
complete the two paths in T y as in the previous case. Then find the k − 2 remaining
path as in the previous case.

The remaining case is that x, y are both roots. Then there are two vertex disjoint
paths entirely within T x to superleaves that have y as their least common ancestor in
T y. These paths can be completed in T y. Then find the k − 2 remaining paths as in
the previous two cases.

Lemma A.2. The Gk,m-neighbor network is weakly k-connected.

Proof. Let L be any set of nodes of size k− 1. We need to show that for any two
nodes x, y ∈ V − L there remains a weak path from x to y in the neighbor network
after the removal of L (and all affected hyperedges).

We first claim that there remains a weak path from any nonleaf x ∈ V − L to
some leaf. Let T be the tree containing x. The proof is by induction on the (shortest)
distance from x to a superleaf in Gk,m. The base case is when x is the parent of a
superleaf. For any two children of x, their neighborhoods have only x in common (by
the “tangled” mapping of leaves to superleaves). If L is disjoint with a star centered
at a child of x, then this single star is a weak path from x to a leaf. If L hits the star
centered at every child of x, then every element of L is a child of x or in a different
tree than x. Choose a node y 	= x in T such that y is the parent of a leaf. Then
there is a weak path in T connecting x to the children of y, beginning with the star
centered at y and ending with the star centered at the parent of x.
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Suppose that x is at a distance d from a leaf, d > 1, and that x is not the root
of T . If the star centered at every child of x hits L, then this accounts for all of L
(since these neighborhoods have only x in common). Let y be any leaf that is not a
descendant of x in T . Then there is a weak path in T from x to y, beginning with
the star centered at the parent of y in T and ending with the star centered at the
parent of x. Otherwise, the single star centered at some child of x is a weak path
from x to nodes that are closer to leaves than x. By the induction hypothesis, this
weak path can be completed. Lastly, if x is the root of T , then the star centered at
one of its k children is disjoint with L. By the induction hypothesis, this weak path
can be completed to a leaf.

Next, we claim that there remains a weak path between any two leaves x, y ∈
V − L. Suppose that L consists of λ leaves and µ nonleaves, λ + µ = k − 1. The
neighborhoods of any two parents of x have only x in common; the same is true for
y. Thus k − λ (or more) parents of x have no children in L; the same is true for y.
For at least k − λ − µ ≥ 1 of these parents of x, the tree containing the parent has
no nonleaves in L; the same is true for y. Let u be a parent of x in tree Tu such that
the star centered at u is disjoint with L and such that Tu has no nonleaves in L; find
a parent v of y in tree Tv similarly. For any tree in Gk,m, the stars centered at (at
least) k(k − 1)m−2 − λ − µ leaf parents are disjoint with L. Thus, when k ≥ 3 and
m ≥ 3, the stars centered at more than half of the leaf parents are disjoint with L
(i.e., k(k − 1)m−2 − λ − µ ≥ k > λ + µ). Thus there exists a leaf parent u′ in Tu

and a leaf parent v′ in Tv such that their neighborhoods are disjoint with L but not
disjoint with each other (i.e., have a leaf in common). Then the weak path from x
to y consists of a weak path entirely in Tu (beginning with the star centered at u
and ending with the star centered at u′) concatenated to a path entirely within Tv

(beginning with the star centered at v′ and ending with the star centered at v).

To complete the proof, if x, y ∈ V − L are both nonleaves, then a weak path
between them can be formed by combining a weak path from x to a leaf, a weak path
from y to a leaf, and a weak path between the leaves.

Appendix B. Details of the proof of Theorem 3.7. For the proof of Theo-
rem 3.7, we need the following four facts.

Fact 1 (Bollobas [5, Theorem 10.5]). Let S ⊂ Hd, where |S| =
∑r

i=0

(
d
i

)
. Then

|ng(S)| ≥
(

d
r+1

)
.

Fact 2. Let S, S′ ⊂ Hd, where S′ = S ∪ {x} for some x ∈ Hd. Then
(a) |ng(S′)| ≥ |ng(S)| − 1 and (b) |ng(S′)| + |ng(S′ ∪ ng(S′))| ≥ |ng(S)| + |ng(S ∪
ng(S))| − 1.

Proof of Fact 2. If y ∈ ng(S), then y /∈ S, and there exists z ∈ S such that y and
z are adjacent. Then y ∈ ng(S′) also, unless y = x. This suffices to prove part (a).

If y ∈ ng(S ∪ ng(S)), then y /∈ S ∪ ng(S), and there exists z ∈ ng(S) such that
y and z are adjacent. Then y ∈ ng(S′ ∪ ng(S′)) as well, unless y = x or y ∈ ng(x).
Furthermore, y ∈ ng(S′) when y ∈ ng(x).

Thus ng(S) ∪ ng(S ∪ ng(S)) − {x} ⊆ ng(S′) ∪ ng(S′ ∪ ng(S′)). Then |ng(S′)| +
|ng(S′ ∪ ng(S′))| ≥ |ng(S)| + |ng(S ∪ ng(S))| − 1. This proves part (b).

Fact 3. |ng(S)|+|ng(S∪ng(S))| ≥ d2 − d for all S ⊂ Hd, |S| = 2, for sufficiently
large d.

Proof of Fact 3. We prove for d ≥ 4. Let S = {x, y}. By symmetry, the size of
the neighborhoods will depend only on the distance from x to y. The relevant neigh-
borhoods of x and y are disjoint when the distance from x to y is greater than four,
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so only four cases need to be considered: {0d, 0d−11}, {0d, 0d−211}, {0d, 0d−3111},
{0d, 0d−41111}.

When S = {0d, 0d−11}, ng(S) ∪ ng(S ∪ ng(S)) contains (d − 1) nodes of weight
one (all but one), 1

2d(d − 1) nodes of weight two (all), and 1
2 (d − 1)(d − 2) nodes of

weight three (all ending in 1). The sum is d2 − d.

When S = {0d, 0d−211}, ng(S) ∪ ng(S ∪ ng(S)) contains d nodes of weight one
(all), 1

2d(d − 1) − 1 nodes of weight two (all but one), (d − 2) nodes of weight three
(all ending in 11), and 1

2 (d − 2)(d − 3) nodes of weight four (all ending in 11). The
sum is d2 − d.

When S = {0d, 0d−3111}, ng(S) ∪ ng(S ∪ ng(S)) contains d nodes of weight one
(all), 1

2d(d − 1) nodes of weight two (all), 3(d − 3) nodes of weight three (all ending
in 011, 101, 110), (d− 3) nodes of weight four (all ending in 111), and 1

2 (d− 3)(d− 4)
nodes of weight five (all ending in 111). The sum is d2 + d− 6 ≥ d2 − d.

When S = {0d, 0d−41111}, ng(S)∪ng(S ∪ng(S)) contains d nodes of weight one
(all), 1

2d(d− 1) nodes of weight two (all), 4 nodes of weight three (all starting 0d−4),
4(d − 4) nodes of weight four (all ending 0111, 1011, 1101, 1110), (d − 4) nodes of
weight five (all ending in 1111), and 1

2 (d− 4)(d− 5) nodes of weight six (all ending in
1111). The sum is d2 + d− 6 ≥ d2 − d.

Fact 4. |ng(S)|+|ng(S∪ng(S))| > (d+1)
⌈
d+1
2

⌉
, for all S ⊂ Hd, 1 < |S| < 2d−1,

for sufficiently large d.

Proof of Fact 4. We prove for d ≥ 7. The case |S| = 2 is handled by Fact 3 above.
When 2 < |S| ≤ d, let R ⊂ S, |R| = 2. By Fact 3 together with Fact 2(b), we have
|ng(S)| + |ng(S ∪ ng(S))| ≥ |ng(R)| + |ng(R ∪ ng(R))| − |S − R| ≥ d2 − d + 2 − |S|.
Thus |ng(S)| + |ng(S ∪ ng(S))| ≥ d2 − d + 2 − d > (d + 1)

⌈
d+1
2

⌉
for d ≥ 7.

Otherwise
∑j

i=0

(
d
i

)
≤ |S| <

∑j+1
i=0

(
d
i

)
for some j, 1 ≤ j ≤ d

2 − 1. Let R ⊂ S,

|R| =
∑j

i=0

(
d
i

)
. Then |ng(S)|+ |ng(S∪ng(S))| ≥ |ng(R)|+ |ng(R∪ng(R))|− |S−R|

by Fact 2(b). By Fact 1, |ng(R)| =
(

d
j+1

)
+∆ for some ∆ ≥ 0. By Fact 1 together with

Fact 2(a), |ng(R)|+ |ng(R ∪ ng(R))| ≥
(

d
j+1

)
+ ∆ +

(
d

j+2

)
−∆ =

(
d

j+1

)
+
(

d
j+2

)
. Thus

|ng(S)|+ |ng(S∪ng(S))| ≥
(

d
j+i

)
+
(

d
j+2

)
−|S−R| >

(
d

j+2

)
≥

(
d
3

)
= 1

6d(d−1)(d−2) >

(d + 1)
⌈
d+1
2

⌉
for d ≥ 7.

Proof of Theorem 3.7. Let L be any subset of nodes of Hd, |L| <
⌈
d+1
2

⌉
. Toward

a contradiction, suppose that no path remains from x to y after the removal from
Hd of L and all hyperedges that meet L. Let S be a maximal subset of V − L such
that x ∈ S, such that S is either a singleton or a union of stars in H, and such that
no path remains from z to y for any z ∈ S. Without loss of generality, |S| < 2d−1

(otherwise use y instead of x in the construction of S).

If S = {x}, then suppose that L contains k neighbors of x, 0 ≤ k ≤ d. Then
stars centered at the remaining d − k neighbors of x must meet elements of L in
ng({x} ∪ ng(x)). But every element of ng({x} ∪ ng(x)) belongs to exactly two stars
with centers in ng(x). Thus we need t ≥ k +

⌈
d−k

2

⌉
≥ 1 +

⌈
d−1
2

⌉
.

If S = {x} ∪ ng(x) (a single star), then suppose that L contains k elements of
ng(S), 0 ≤ k ≤ |ng(S)| = 1

2d(d−1). Then stars centered at the remaining 1
2d(d−1)−k

elements of ng(S) must hit elements of L in ng(S ∪ ng(S)). But every element of
ng(S ∪ ng(S)) belongs to exactly three stars with centers ng(S). Thus we need
t ≥ k +

⌈
1
3 ( 1

2d(d− 1) − k)
⌉
≥ 1 +

⌈
1
3 ( 1

2d(d− 1) − 1)
⌉
≥

⌈
d+1
2

⌉
, d ≥ 5.

When S is a union of more than one star, Fact 4 implies that the attempted
disconnection must fail when |ng(S)|+|ng(V −S)| > |L|+|ng(L)|. But |L|+|ng(L)| ≤
(d + 1)|L|, so it suffices to show that |ng(S)| + |ng(V − S)| ≥ (d + 1)

⌈
d+1
2

⌉
. Thus it
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suffices to show that |ng(C)| + |ng(C ∪ ng(C))| ≥ (d + 1)
⌈
d+1
2

⌉
for all nodesets C,

1 < |C| < 2d−1; here C is the set of centers of stars in S. By Fact 4, this is true for
d ≥ 7, completing the proof of the theorem.
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Abstract. We prove that the kth power Gk of a chordal graph G with maximum degree ∆
is O(

√
k∆(k+1)/2)-degenerate for even values of k and O(∆(k+1)/2)-degenerate for odd values. In

particular, this bounds the chromatic number χ(Gk) of the kth power of G. The bound proven for

odd values of k is the best possible. Another consequence is the bound λp,q(G) ≤ � (∆+1)3/2
√

6
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1) + ∆(2p − 1) on the least possible span λp,q(G) of an L(p, q)-labeling for chordal graphs G with
maximum degree ∆. On the other hand, a construction of such graphs with λp,q(G) ≥ Ω(∆3/2q+∆p)
is found.
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1. Introduction. The concept of an L(p, q)-labeling of graphs, in particular that
of an L(2, 1)-labeling, is an important graph-theoretical model for assignment of radio
frequencies, which is intensively studied both from the combinatorial and algorithmic
points of view [1, 4, 8, 9, 14]. An L(p, q)-labeling, p ≥ q ≥ 1, is an assignment of
numbers 0, . . . ,K to the vertices of an input graph G such that each two adjacent
vertices receive numbers which differ by at least p and each two vertices at distance
two receive numbers which differ by at least q. The number K is called the span, and
the minimum span for which a proper labeling exists is denoted by λp,q(G).

A study of the relation between the minimum span of an L(2, 1)-labeling and the
maximum degree ∆ of a graph G was stated in the paper of Griggs and Yeh [11].
They conjectured that each graph G has an L(2, 1)-labeling with the span at most ∆2

and proved the upper bound of ∆2 + 2∆. This bound was later improved to ∆2 + ∆
by Chang et al. [6]. The best currently known upper bound of ∆2 + ∆ − 1 is a
consequence of a recent result for the channel assignment problem of the author and
Škrekovski [13]. The conjecture of Griggs and Yeh remains unsettled but is known to
be true for several special classes of graphs, among them chordal graphs. The upper
bound of (∆ + 3)2/4 for chordal graphs was proved by Sakai [15]. The general bound
of (∆ + 2p− 1)2/4 for the case of L(p, 1)-labelings of chordal graphs can be found in
[7]. In the present paper, we prove asymptotically optimal bounds of O(∆3/2) on the
minimum span of an L(2, 1)-labeling and O(∆3/2q + ∆p) on the minimum span of an
L(p, q)-labeling for chordal graphs with maximum degree ∆.

1.1. Results. We are actually concerned with a more general problem to bound
the chromatic number of powers of a chordal graph G in terms of the maximum degree
of G. A graph G is said to be chordal if it contains no induced cycle of length four or
more. It is well known that a graph is chordal if and only if it has a perfect elimination
sequence. A perfect elimination sequence is an ordering v1, . . . , vn of vertices of G such
that for each i, the neighbors of the vertex vi preceding it in the sequence form a clique
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in G. The kth power Gk of a graph G is the graph on the same vertex set such that
two vertices in Gk are joined by an edge if their distance in G is at most k. Note
that χ(G2) = λ1,1(G) + 1. It is known [3] that if the girth of G is at least 7, then
χ(G2) ≤ O(∆2/ log ∆), and otherwise the chromatic number of G may reach Θ(∆2)
(this is witnessed by bipartite incidence graphs of finite projective planes). Our results
establish that χ(G2) ≤ O(∆3/2) if G is chordal.

More generally, we show in Theorem 3.1 that if G is a chordal graph with max-
imum degree ∆, then Gk is O(

√
k∆(k+1)/2)-degenerate, i.e., each subgraph H of Gk

contains a vertex of degree at most O(
√
k∆(k+1)/2). In Theorem 4.1, a better and

sharp bound for odd k’s is proven, namely, that Gk is O(∆(k+1)/2)-degenerate. It is
quite surprising that similar upper bounds also hold for the class of planar graphs [2].

Theorems 3.1 and 4.1 have several interesting corollaries. First, if G is a chordal
graph with maximum degree ∆, then the chromatic number of its kth power Gk is
at most O(

√
k∆(k+1)/2) if k is even and at most ∆(k+1)/2/4 + O(∆(k−1)/2) if k is

odd. Second, the minimum span of an L(2, 1)-labeling of G is at most O(∆3/2) and,
generally, the minimum span of an L(p, q)-labeling of G is at most O(∆3/2q+∆p). All
our results are asymptotically tight (for a fixed k) and the presented upper bound for
odd powers of chordal graphs is the best even possible (cf. Theorems 4.1 and 5.1). In
section 5, we describe a construction of chordal graphs G on n vertices with maximum
degree ∆ such that Gk is a clique for n = Ω(∆(k+1)/2). The lower bound Ω(∆3/2q +
∆p) for the minimum span of an L(p, q)-labeling of chordal graphs is then presented
in Corollary 5.4.

The shown upper and lower bounds match for odd powers of chordal graphs, but
they do not match for even powers, although in the case of the second power and
L(2, 1)-labeling, the proven leading coefficients are quite close. In Corollary 3.2, we
establish the following estimate on the chromatic number of the second power of a
chordal graph G with maximum degree ∆:

χ(G2) ≤
⌊

(∆ + 1)3/2√
6

⌋
+ ∆ + 1 ≈ 0.4082∆3/2 + O(∆).

And, in Theorem 3.3, we show the following bound on the span of its L(2, 1)-labeling:

λ2,1(G) ≤ ∆3/2

√
6

+ O(∆) ≈ 0.4082∆3/2 + O(∆).

On the other hand, there exists a chordal graph G with maximum degree ∆ such that
(see Theorem 5.3)

λ2,1(G) ≥ χ(G2) − 1 ≥ 2∆3/2

3
√

3
−O(∆107/84) ≈ 0.3849∆3/2 −O(∆107/84).

We conjecture that the lower bound is tight.
Conjecture 1.1. If G is a chordal graph with maximum degree ∆, then

χ(G2) ≤ λ2,1(G) + 1 ≤ 2∆3/2

3
√

3
+ O(∆).

1.2. Separators in chordal graphs. The proof of the upper bound in The-
orem 3.1 is based on a partial separator lemma which we prove in section 2. The
lemma seems to be of independent interest. We call Lemma 2.1 a partial separator
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lemma because we cut only a part of the set U (of size between κ and 2κ) from the
rest of a graph. We remark that the following separator theorem for chordal graphs
was proved by Gilbert, Rose, and Edenbrandt [10]: For each chordal graph G and
each set U ⊆ V (G), there is a clique C in G such that every component of G \ C
contains at most |U |/2 vertices of U . However, the proof of their result does not seem
adaptable to our case.

2. A partial separator lemma. It is well known [5] that the class of chordal
graphs is precisely the class of intersection graphs of subtrees of a tree, i.e., for each
chordal graph G, there exists a tree T and a mapping which assigns to each vertex v
of G a subtree Tv of T which have the following property: The vertices v and v′ of G
are joined by an edge if and only if Tv ∩ Tv′ �= ∅. Such a representation of a chordal
graph can be modified to a little more restricted representation which we will call a
nice tree representation of a chordal graph. We leave details of the straightforward
proof of the next proposition to the reader (A÷B denotes the symmetric difference
of sets A and B).

If G is a chordal graph, then there exists a rooted tree T and a mapping which
assigns to each vertex v ∈ V (G) a subtree Tv of T . For a vertex w of the tree T , let
τw = {v ∈ V (G) |w ∈ Tv}. The rooted tree T and the mapping have the following
properties:

(i) Tv ∩ Tw �= ∅ for v, w ∈ V (G) if and only if vw ∈ E(G), i.e., T and the
mapping is an intersection representation of G.

(ii) Each vertex of T has at most two children.
(iii) If w is a leaf or the root of T , then τw = ∅.
(iv) If w is a vertex of T with a single child w′, then |τw÷τw′ | ≤ 1.
(v) If w is a vertex of T with two children w′ and w′′ and a parent w0, then

τw = τw0
= τw′ = τw′′ .

Sketch of proof. Let T0 be a tree representation of the chordal graph G. We modify
T0 into another tree representation of G. First, replace sequentially each vertex w of
T0 of degree d ≥ 4 by a tree S with d leaves such that all internal vertices of S have
degree three, and identify the leaves of S with the neighbors of w. In addition, add
to each leaf a pending vertex contained in no tree Tv. Let T1 be the resulting tree.
Root T1 at any of its leaves. If Tv contains a vertex w of T0, then it contains all the
internal vertices of S in T1. Note that T1 already has the properties (i)–(iii).

Now replace each edge ww′ of T1 by a path of length |τw÷τw′ |. Let T2 be the
resulting tree and ww′ a fixed edge of T1. In addition, let v1, . . . , vk be all the vertices
of τw \ τw′ and let v′1, . . . , v

′
k′ be all the vertices of τw′ \ τw. If Tv contains in T1 both

the vertices w and w′, it contains the entire path between w and w′ in T2. The tree
Tvi contains the first i vertices of the path from w to w′ and Tv′

i
contains the last i

vertices. In this way, we make sure that T2 has the property (iv).
In the final step, for each vertex w of degree three in T2, we subdivide all the

edges incident with w. Let T3 be the resulting tree. If Tv contains a vertex w in T2,
then it contains w and all its three new neighbors in T3. The tree T3 and the subtrees
Tv have all five properties from the statement of the lemma.

Proposition 2 makes the proof of the following lemma quite simple.
Lemma 2.1. Let G be a chordal graph, U a subset of V (G), and 1 ≤ κ ≤ |U | a

real number. The graph G contains a clique C and a subgraph G0 which is a union of
some of the components of G \ C with the property κ ≤ |U ∩ V (G0)| ≤ 2κ.

Proof. Let T be a nice tree representation of G, i.e., a tree representation having
the properties described in Proposition 2. Note that T is a rooted tree. We can
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assume that each tree Tv, v ∈ V (G), is nonempty. Let T (w) be the maximal subtree
of T rooted at a vertex w, w ∈ V (T ), and let σ(w) be the number of subtrees Tu

with u ∈ U which are entirely contained in T (w) and which satisfies that w �∈ Tu, i.e.,
σ(w) = |{u ∈ U |Tu ⊆ T (w) \ {w}}|. The properties of (ii)–(v) from the statement of
Proposition 2 imply the following:

(i) If w is the root of T , then σ(w) = |U |.
(ii) If w is a leaf of T , then σ(w) = 0.
(iii) If w has a single child w′, then σ(w) is either σ(w′) or σ(w′) + 1.
(iv) If w has two children w′ and w′′, then σ(w) = σ(w′) + σ(w′′).

Choose now a vertex w of T with σ(w) ≥ κ but σ(w′) < κ for each child w′ of w
in T . Note that the vertex w is not a leaf of T because κ > 0. Let C be the clique
consisting of the vertices v whose tree Tv contains w, i.e., w ∈ Tv. Further, let G0 be
the subgraph of G induced by the vertices v such that Tv ⊆ T (w) \ {w}. G0 is clearly
a union of components of G \C. In addition, |U ∩ V (G0)| = σ(w) ≥ κ. It remains to
show that |U ∩V (G0)| ≤ 2κ. If w has a single child w′, then |U ∩V (G0)| < κ+1 ≤ 2κ
because |τw÷τw′ | ≤ 1 and σ(w′) < κ. On the other hand, if w has two children w′

and w′′, then |U ∩ V (G0)| = σ(w) = σ(w′) + σ(w′′) < 2κ by the choice of the vertex
w.

The proved factor 2 in Lemma 2.1 is the best possible. Consider three paths
consisting of m vertices and identify their ends such that a tree with a single vertex
v of degree three is obtained. The resulting graph G is a tree and hence it is chordal.
Let U be all the vertices of G except for v. The tightness is witnessed for the choice
κ = m + 1 as m goes to infinity.

3. Powers of chordal graphs and L(p, q)-labelings. The result of the fol-
lowing theorem is improved for odd values of k in the next section, but we state the
theorem in its general form.

Theorem 3.1. Let G be a chordal graph with maximum degree ∆ ≥ 2 and let
k ≥ 2. Each subgraph H of the kth power Gk of G contains a vertex of degree at most⌊√

91k − 118

384
(∆ + 1)(k+1)/2

⌋
+ ∆.

Proof. We may assume that G is connected. Suppose that the statement of
the theorem is false. Let H be a subgraph of Gk with the minimum degree at least

d0 := 

√

91k−118
384 (∆ + 1)(k+1)/2� + ∆ + 1. Note that d0 ≥ ∆ + 3. Apply Lemma 2.1

for κ = (d0 − ∆)/3 ≥ 1 and the set U = V (H). Let C be a clique and G0 an union
of some components of G \ C as described in Lemma 2.1. Let U0 = U ∩ V (G0),
G′ = G \ (G0 ∪C), and U ′ = U ∩ V (G′). Set κ0 to be |U0| = |U ∩ V (G0)|. Note that
κ ≤ κ0 ≤ 2κ and the order of the clique C is at most ∆. The latter follows from the
fact that κ0 ≥ 1.

An induced path in G from a vertex u ∈ U0 to a vertex w ∈ U ′ which passes
through a vertex v ∈ C is called an interconnecting path. We estimate the number of
interconnecting paths in G of length at most k. The length of a path is the number
of its edges. Since the minimum degree of H in Gk is at least d0 and |U0| = κ0, G

k

contains at least κ0(d0−|C|−κ0) edges between a vertex u ∈ U0 and a vertex w ∈ U ′.
For such an edge uw, G contains an interconnecting path from u to w of length at
most k. Therefore, the number of interconnecting paths of length at most k is at

least κ0(d0 − |C| − κ0) ≥ κ0(d0 −∆− κ0) ≥ 2(d0−∆)2

9 . Next, we bound the number of
interconnecting paths from above.
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Let deg0(v), degC(v), and deg′(v) be the number of neighbors of v ∈ C among the
vertices of V (G0), C, and V (G′), respectively. Note that deg0(v)+degC(v)+deg′(v) ≤
∆. The number of interconnecting paths of length l which contain exactly one vertex
of C is at most

∑
v∈C deg0(v) deg′(v)(l − 1)(∆ − 1)l−2. A vertex v of the clique C

can be one of l − 1 inner vertices of the path, and there are deg0(v) choices for its
neighbor in G0, deg′(v) choices for its neighbor in G′, and at most ∆ − 1 choices at
each vertex in G0 or in G′ of how to continue the path. Note that not all such paths
need to join a vertex of U0 and a vertex of U ′. Hence, the number of interconnecting
paths of length at most k which contain one vertex of C is bounded by the sum

k∑
l=2

∑
v∈C

deg0(v) deg′(v)(l − 1)(∆ − 1)l−2

=

(
k∑

l=2

(l − 1)(∆ − 1)l−2

)(∑
v∈C

deg0(v) deg′(v)

)

≤ (k − 1)

(
k∑

l=2

(∆ − 1)l−2

)(∑
v∈C

deg0(v)(∆ − degC(v) − deg0(v))

)

≤ (k − 1)∆k−2
∑
v∈C

(∆ − degC(v))2

4
= (k − 1)∆k−2

∑
v∈C

(∆ + 1 − |C|)2
4

= (k − 1)∆k−2 |C|(∆ − |C| + 1)2

4
≤ (k − 1)∆k−2(∆ + 1)3

27
.(3.1)

Let D0 =
∑

v∈C deg0(v) and D′ =
∑

v∈C deg′(v) be the number of edges between
the clique C and G0 and G′, respectively. Note that D0+D′+|C|(|C|−1) ≤ |C|∆. An
interconnecting path cannot contain three or more vertices of C because it is induced.
Moreover, if it contains two vertices of C, the two vertices of C are consecutive.
Therefore, the number of interconnecting paths of length l with two or more vertices
of C is equal to the number of interconnecting paths of length l containing an edge of
C. Hence, the number of such interconnecting paths is at most D0D

′(l−2)(∆−1)l−3.
An edge of C can be one of l−2 inner edges of the interconnecting paths, there are at
most D0 edges between C and G0 and at most D′ edges between C and G′, and there
are at most ∆ − 1 choices at each vertex in G0 or G \ (C ∪ G0) of how to continue
the path. Again, not all the paths counted in this way need to be interconnecting.
Hence, the following expression bounds the number of interconnecting paths of length
at most k:

k∑
l=2

D0D
′(l − 2)(∆ − 1)l−3 = D0D

′
k∑

l=2

(l − 2)(∆ − 1)l−3

≤ (|C|∆ − |C|(|C| − 1))2

4
(k − 2)

k∑
l=2

(∆ − 1)l−3
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≤ (|C|(∆ + 1 − |C|))2
4

(k − 2)∆k−3 ≤ (∆ + 1)4(k − 2)∆k−3

64
.(3.2)

The upper bound on the number of interconnecting paths of length at most k is
equal to the sum of (3.1) and (3.2):

(∆ + 1)3∆k−2(k − 1)

27
+

(∆ + 1)4∆k−3(k − 2)

64

≤
(
k − 1

27
+

k − 2

64

)
(∆ + 1)k+1 =

91k − 118

1728
(∆ + 1)k+1.

We now compare the obtained upper and lower bounds on the number of intercon-
necting paths of length at most k. This will yield a contradiction with the inequality

d0 >
√

91k−118
384 (∆ + 1)(k+1)/2 + ∆ following from the choice of d0:

2(d0 − ∆)2

9
≤ 91k − 118

1728
(∆ + 1)k+1,

(d0 − ∆)2 ≤ 91k − 118

384
(∆ + 1)k+1,

d0 ≤
√

91k − 118

384
(∆ + 1)k+1 + ∆.

An immediate corollary of Theorem 3.1 is the following upper bound on the
chromatic number of powers of chordal graphs.

Corollary 3.2. If G is a chordal graph with maximum degree ∆ ≥ 2, then

χ(Gk) ≤
⌊√

91k − 118

384
(∆ + 1)(k+1)/2

⌋
+ ∆ + 1 = O(

√
k∆(k+1)/2).

In particular,

χ(G2) ≤
⌊

(∆ + 1)3/2√
6

⌋
+ ∆ + 1 ≈ 0.4082∆3/2 + O(∆).

Another corollary of Theorem 3.1 is an O(∆3/2)-bound on the minimum span of
the L(2, 1)-labeling and the L(p, q)-labeling.

Theorem 3.3. If G is a chordal graph with maximum degree ∆ ≥ 2, then

λp,q(G) ≤
⌊

(∆ + 1)3/2√
6

⌋
(2q − 1) + ∆(2p− 1) =

∆3/2

√
6

(2q − 1) + O(∆p).

In particular,

λ2,1(G) ≤
⌊

(∆ + 1)3/2√
6

⌋
+ 3∆ =

∆3/2

√
6

+ O(∆) ≈ 0.4082∆3/2 + O(∆).

Proof. Since G is 

√

91k−118
384 (∆+1)(k+1)/2+∆�-degenerate by Theorem 3.1, there

is an ordering v1, . . . , vn of the vertices of G such that vi has at most 
 (∆+1)3/2

√
6

�+ ∆

neighbors among the vertices v1, . . . , vi−1 in G2. Label the vertices of G in this order
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by labels from 0 to 
 (∆+1)3/2

√
6

�(2q − 1) + ∆(2p − 1) in a greedy fashion. Consider a

step when a label to the vertex vi is to be assigned. Each of the neighbors of vi in
G2 among the vertices v1, . . . , vi−1 prevents assigning at most 2q − 1 different labels
to vi. In addition, each of at most ∆ neighbors of vi in G among the preceding
vertices prevents assigning at most 2p − 1 − (2q − 1) = 2p − 2q additional labels to

vi. Altogether, at most 
 (∆+1)3/2

√
6

�(2q − 1) + ∆(2p − 1) labels are forbidden. Hence,

there exists a label which can be assigned to the vertex vi.

4. Odd powers of chordal graphs. The proof of degeneracy in the case of odd
powers of chordal graphs is based on a simple proof of the well-known fact that odd
powers of chordal graphs are chordal. As we noted in the introduction, the proven
upper bound is the best possible, i.e., it matches the lower bound which we show in
Theorem 5.1.

Theorem 4.1. Let G be a chordal graph with maximum degree ∆ ≥ 2 and let
k ≥ 3 be an odd integer. The kth power Gk of G is d-degenerate for the following
choice of d:

d =

⎧⎪⎪⎨⎪⎪⎩
k if ∆ = 2,⌊

(∆+2)2

4

⌋
− 1 if ∆ ≥ 3 and k = 3,⌈

∆+1
2

⌉
+
⌊

(∆+1)2

4

⌋
(∆−1)(k−1)/2−1

∆−2 − 1 otherwise.

Proof. If ∆ = 2, then G is a disjoint union of paths and triangles and hence Gk

is k-degenerate. We assume that ∆ ≥ 3 in the rest of the proof. Let T be a (not
necessarily nice) tree representation of G and let Tv be the subtree corresponding to
a vertex v of G. We construct a tree representation of Gk with the same underlying
tree T ′ = T : A vertex v of Gk is represented by a tree T ′

v =
⋃

w∈N(k−1)/2(v) Tw, where

Ni(v) is the set of all vertices of G whose distance from v is at most i in G. It is easy to
check that each of the subtrees T ′

v is connected, i.e., T ′
v is a subtree of T ′. In addition,

T ′
u ∩ T ′

v �= ∅ if and only if the distance between u and v is at most 2 · k−1
2 + 1 = k in

G. Hence, we obtained a tree representation of Gk. In particular, Gk is chordal.
If ω(Gk) is the order of the largest clique of Gk, then the graph Gk is d-degenerate

for d = ω(Gk)−1 (consider a perfect elimination sequence for Gk). Hence, it is enough
to prove the inequality

ω(Gk) ≤

⎧⎨⎩
⌊

(∆+2)2

4

⌋
if k = 3,⌈

∆+1
2

⌉
+
⌊

(∆+1)2

4

⌋
(∆−1)(k−1)/2−1

∆−2 otherwise.

Let C0 be a largest clique of Gk. Since subtrees of a tree satisfy a so-called Helly-
property, there exists a vertex u0 of T ′ such that u0 ∈ T ′

v for each v ∈ C0. Let C be
the clique of G comprised by all the vertices v with u0 ∈ Tv and let p be its order.
The distance of a vertex v from C (in G) is the smallest distance of the vertex v from
some vertex of C. The clique C0 consists (precisely) of all the vertices which are at
distance at most (k − 1)/2 from C (recall the definition of T ′). There are at most
p(∆− (p− 1)) vertices at distance one and additionally at most p(∆− (p− 1))(∆− 1)
vertices at distance two from C. In general, the number of vertices at distance i from
C is at most p(∆ − (p− 1))(∆ − 1)i−1. Hence, the order of the clique C0 is bounded
from above by the sum

p + p(∆ + 1 − p) + p(∆ + 1 − p)(∆ − 1) + · · · + p(∆ + 1 − p)(∆ − 1)(k−3)/2.
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If k = 3, then the order of C0 is at most

p + p(∆ + 1 − p) = p(∆ + 2 − p) ≤
⌊

∆ + 2

2

⌋⌈
∆ + 2

2

⌉
=

⌊
(∆ + 2)2

4

⌋
.

In the general case k ≥ 5, the order of C0 is at most

p + p(∆ + 1 − p)
(∆ − 1)(k−1)/2 − 1

∆ − 2

≤
⌈

∆ + 1

2

⌉
+

⌊
∆ + 1

2

⌋⌈
∆ + 1

2

⌉
(∆ − 1)(k−1)/2 − 1

∆ − 2

=

⌈
∆ + 1

2

⌉
+

⌊
(∆ + 1)2

4

⌋
(∆ − 1)(k−1)/2 − 1

∆ − 2
.

An immediate corollary of Theorem 4.1 is the following bound for the chromatic
number of odd powers of chordal graphs.

Corollary 4.2. If G is a chordal graph with maximum degree ∆ ≥ 1 and k ≥ 3
is an odd integer, then

χ(Gk) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if ∆ = 1,
k + 1 if ∆ = 2,⌊

(∆+2)2

4

⌋
if ∆ ≥ 3 and k = 3,⌈

∆+1
2

⌉
+
⌊

(∆+1)2

4

⌋
(∆−1)(k−1)/2−1

∆−2 otherwise.

5. Lower bounds. We first prove that the bound shown in Theorem 4.1 is tight.
Theorem 5.1. Let k ≥ 3 be an odd integer and let ∆ ≥ 1 be an integer. There

is a chordal graph G of order n whose maximum degree is ∆ such that the kth power
Gk of G is a clique for the following choice of n:

n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if ∆ = 1,
k + 1 if ∆ = 2,⌊

(∆+2)2

4

⌋
if ∆ ≥ 3 and k = 3,⌈

∆+1
2

⌉
+
⌊

(∆+1)2

4

⌋
(∆−1)(k−1)/2−1

∆−2 otherwise.

Proof. If ∆ = 1, then set G to be K2. If ∆ = 2, set G to be a path of length k.
If ∆ ≥ 3 and k = 3, then we choose G to be a clique of order ∆+2

2 � such that each

vertex of the clique is adjacent to 
∆
2 � vertices of degree one.

We may now assume that ∆ ≥ 3 and k ≥ 5. The graph G contains a clique
of order ∆+1

2 �. Each vertex of the clique has 
∆+1
2 � neighbors such that each of

them has degree one. These vertices of degree one form the first level. Each vertex
of the first level has ∆ − 1 neighbors which form the second level, each vertex of the
second level has ∆ − 1 neighbors which form the third level, etc. The graph G has
altogether (k − 1)/2 levels. The vertices of the same level form an independent set.
This completes the construction of the graph G.

It is easy to verify that the maximum degree of G is ∆ and Gk is a clique. The
number of vertices of the graph G is equal to the sum⌈

∆ + 1

2

⌉
+

⌊
∆ + 1

2

⌋⌈
∆ + 1

2

⌉
+

⌊
∆ + 1

2

⌋⌈
∆ + 1

2

⌉
(∆ − 1) + · · ·
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+

⌊
∆ + 1

2

⌋⌈
∆ + 1

2

⌉
(∆ − 1)(k−3)/2

=

⌈
∆ + 1

2

⌉
+

⌊
(∆ + 1)2

4

⌋
(∆ − 1)(k−1)/2 − 1

∆ − 2
.

The following result of Iwaniec and Pintz [12], which was drawn to our attention
by Martin Klazar, is used in the lower bound construction for the case of even powers
of chordal graphs.

Proposition 5.2. For each n ≥ 2, there is a prime p such that n−n23/42 ≤ p ≤
n.

Theorem 5.3. If k ≥ 2 is an even integer and ∆ ≥ 12, then there exists a
chordal graph G of order n whose maximum degree is ∆ such that the kth power Gk

of G is a clique for the following choice of n:

n =

{
2∆3/2

3
√

3
−O(∆107/84) ≈ 0.3849∆3/2 −O(∆107/84) if k = 2,

1
2
√

2
∆(k+1)/2 −O(∆k/2+23/84) if k ≥ 4.

In particular, there is a chordal graph G with maximum degree ∆ such that

λ2,1(G) ≥ χ(G2) − 1 ≥ 2∆3/2

3
√

3
−O(∆107/84) ≈ 0.3849∆3/2 −O(∆107/84).

Proof. We first consider the case that k = 2. Let q0 = 

√

∆
3 � − 1 ≥ 1. If q0 ≥ 2,

let p be a prime between q0 − q
23/42
0 and q0. Such a prime p exists by Proposition 5.2.

And further, let (X,Π) be a finite projective plane of order p (thus |X| = p2 + p+ 1).
If q0 = 1, let p = 1, and let (X,Π) be a pair of sets such that |X| = 3 and Π contains
all three pairs of elements of X. In the rest of the proof, it does not matter whether
(X,Π) is a projective plane or a “triangle” formed by three “segments.”

Let m = 
2
√

∆
3 � ≥ 4. The desired graph G consists of p2 + p + 1 vertices vx for

each x ∈ X and m vertices v1
π, . . . , v

m
π for each of the p2 + p + 1 lines π of Π. Hence,

the order of the graph G is (p2 + p + 1)(m + 1) = 2∆3/2

3
√

3
− O(∆107/84) vertices. We

now describe the edges contained in G. The vertices vx, x ∈ X, form a clique of order
|X| = p2 +p+1 and each vertex viπ, π ∈ Π, and 1 ≤ i ≤ m, is joined by an edge to the
vertex vx, x ∈ X, for each x ∈ π. The sequence of vertices containing the vertices vx
first and then the vertices viπ is a perfect elimination sequence and hence the obtained
graph G is chordal.

In order to show that the square G2 of G is a clique, we need to verify that each
pair of nonadjacent vertices has a common neighbor. This is clear for every pair of
vertices vx and viπ. Consider now a pair of vertices viπ and vi

′

π′ . Since Π is a projective
plane, there exists a point x ∈ X such that x ∈ π ∩ π′. The sought common neighbor
of viπ and vi

′

π′ is the vertex vx. Therefore, G2 is a clique.
It remains to verify that the maximum degree of G is at most ∆. The degree of

a vertex vx contained in the central clique is

p2 + p + (p + 1)m ≤ (q0 + 1)(q0 + m) ≤
√

∆

3
·
(√

∆

3
+ 2

√
∆

3

)
= ∆.
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The degree of a vertex viπ is even smaller, namely, (p + 1).

If k ≥ 4, we first proceed as in the case k = 2. We obtain a graph G for the

choice of parameters q0 = 

√

∆
2 � − 1 and m = 


√
∆
2 �. The number p is again a

prime between q0 − q
23/42
0 and q0 if q0 ≥ 2 and it is one if q0 = 1. Note that the

degrees of the vertices contained in the clique are bounded by p2 + p + (p + 1)m ≤
(p+1)2+(p+1)m ≤ (q0+1)2+(q0+1)m ≤ ∆. In the second part of the construction,
we proceed similarly as in the proof of Theorem 5.1. We consider the vertices viπ to
form the first level. Each of these vertices has ∆ − (p + 1) neighbors which form the
second level. Additional (k − 4)/2 levels are formed by adding ∆ − 1 new vertices
adjacent to each vertex of the preceding level. The vertices of each level form an
independent set and their degrees are bounded by ∆. The maximum degree of the
graph G is ∆ and the kth power Gk of G is a clique. The number of vertices of G
forming the last level is equal to the product

(p2 + p + 1)m(∆ − (p + 1))(∆ − 1)(k−4)/2

=
∆

2
·
√

∆

2
· ∆ · (∆ − 1)(k−4)/2 −O(∆k/2+23/84)

=
1

2
√

2
∆(k+1)/2 −O(∆k/2+23/84).

Since the number of vertices of the last level dominates the number of vertices of
the remaining levels, we may then conclude that the order of G is 1

2
√

2
∆(k+1)/2 −

O(∆k/2+23/84).

The construction presented in Theorem 5.3 also gives a good lower bound on the
minimum span of an L(p, q)-labeling of a chordal graph.

Corollary 5.4. There exists a chordal graph G with maximum degree ∆ such
that λp,q(G) ≥ Ω(∆3/2q + ∆p).

Proof. Consider a chordal graph G from Theorem 5.3 for k = 2. The order

of G is 2∆3/2

3
√

3
− O(∆107/84) and its second power is a clique. Hence, λp,q(G) ≥

( 2∆3/2

3
√

3
− 1)q − O(∆107/84q). On the other hand, the graph G contains a clique of

order q2
0 + q0 + 1 = Θ(∆), where q0 is as in the proof of Theorem 5.3. Therefore,

λp,q(G) ≥ Ω(∆p). Combining both the lower bounds on λp,q(G) yields the claimed
bound.
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THE BAR VISIBILITY NUMBER OF A GRAPH∗
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Abstract. The bar visibility number of a graph G, denoted b(G), is the minimum t such that G
can be represented by assigning each vertex x the set Sx of points in at most t horizontal segments
in the plane so that uv ∈ E(G) if and only if some point of Su sees some point of Sv via a vertical
segment of positive width unobstructed by assigned points. Among our results are the following:

(1) Every planar graph has bar visibility number at most 2, which is sharp.

(2) r ≤ b(Km,n) ≤ r + 1, where r =
⌈

mn+4
2m+2n

⌉
.

(3) b(Kn) = �n/6�.
(4) If G has n vertices, then b(G) ≤ �n/6� + 2.

Key words. bar visibility graph, interval number, planar graph, thickness, splitting number

AMS subject classifications. 05C62, 05C35, 05C10
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1. Introduction. In computational geometry, graphs are used to model visibil-
ity relations in the plane. For example, we may say that two vertices of a polygon
“see” each other if the segment joining them lies inside the polygon. In the visibility
graph on the vertex set, vertices are adjacent if they see each other. Similarly, we can
define visibility on a set of line segments; two segments see each other if some segment
joining them crosses no other segment in the set. Dozens of papers have been written
concerning the computation and the recognition of visibility graphs and discussing
applications to search problems and motion planning.

We consider a simpler model where all visibility is vertical. Let S be a family
of pairwise disjoint horizontal segments (henceforth “bars”) in the plane. The bar
visibility graph of S is the graph with vertex set S in which two vertices are adjacent
if and only if there is an unobstructed vertical channel (a strip of positive width)
joining those bars. Requiring a channel of positive width is realistic, and it permits
bars [(a, y), (x, y)] and [(x, z), (c, z)] to block visibility at x without seeing each other.

Tamassia and Tollis [18] and Wismath [22] characterized bar visibility graphs as
the planar graphs that are embeddable with all cut-vertices on a common face. Similar
questions have been studied for other models. Hutchinson, Shermer, and Vince [12]
studied graphs generated by horizontal and vertical visibility of rectangles in the plane
(see also [4, 5]). Hutchinson [11] studied polar visibility of arcs on concentric circles
centered at the origin. An introduction to bar visibility and other models appears in
[16].
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We study a generalization of visibility graphs analogous to a well-studied gener-
alization of interval graphs. The interval graph of a family S of intervals on the real
line is the graph with vertex set S in which two vertices are adjacent if and only if as
intervals they intersect. Bar visibility graphs provide a geometric analogue of interval
graphs; visibility replaces intersection as the adjacency relation, and the intervals may
be at various heights.

To generalize interval representations, we let a t-interval be the set of points in
a union of (at most) t intervals on a line. A t-interval representation of a graph G
assigns t-intervals to vertices so that vertices are adjacent if and only if their assigned
t-intervals intersect. The interval number i(G) of G is the minimum t such that G has
a t-interval representation. A recent nice result and further references on i(G) appear
in [2].

Here we similarly generalize the bar visibility model. A t-bar is the set of points
in a union of (at most) t horizontal bars in the plane. A t-bar representation of G
is an assignment of t-bars to vertices of G so that vertices are adjacent if and only
if some vertical channel of positive width links their t-bars without intersecting any
other assigned t-bar. The bar visibility number b(G) of a graph G is the minimum t
such that G has a t-bar representation. For simplicity, in this paper we abbreviate
the term to visibility number. Note that bar visibility graphs are the graphs with
visibility number equal to 1.

For graphs without large cliques, visibility number tends to be smaller than inter-
val number, because bars can block visibility and because the upper and lower “sides”
of a bar can be used independently to establish edges. In section 2, we observe that
it follows easily from the results of [18] or [22] that every planar graph has visibility
number at most two, and this is sharp (planar graphs have interval number at most
three [17]).

For other families, our lower bounds arise from an easy lemma based on the max-
imum number of edges in N -vertex planar graphs. Constructions are more difficult;
we study complete bipartite graphs, complete graphs, and general n-vertex graphs.
The visibility number of the complete bipartite graph Km,n is roughly half its interval
number, being either

⌈
mn+4
2m+2n

⌉
or one more than this (section 3), but the complete

graph Kn has interval number 1 and visibility number �n/6� (section 4).
Every planar graph without cut-vertices is a visibility graph. Thus in some sense

visibility number is a measure of how far a graph is from being planar. It is related
to other such parameters, such as “thickness” (section 2) and “splitting number”
(sections 3 and 5). The optimal upper bound on the visibility number of Kn arises
from the solution of “Heawood’s empire problem” (section 4).

We conjecture that b(G) ≤ �n/6� when G has n vertices; equality holds for Kn.
In support of this conjecture, in section 5 we show that b(G) ≤ �n/6� + 2. We
use the result of Lovász [15] that every m-vertex graph decomposes into at most
�m/2� paths and cycles. Gallai’s conjecture [6] that �m/2� paths suffice would yield
b(G) ≤ �n/6� + 1.

2. Planar graphs and thickness. The extremal problem for visibility number
of planar graphs is solved by expressing an arbitrary planar graph as the union of two
bar visibility graphs.

Remark 1. b(G ∪H) ≤ b(G) + b(H).
Proof. Bar visibility representations of G and H can be placed in disjoint vertical

strips to represent G ∪H.
There are two ways to use earlier results to show that all planar graphs have vis-
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ibility number at most 2. The most immediate uses a result of Wismath [22] showing
that every planar graph is a rectangle-visibility graph, meaning that vertices can be
assigned rectangles so that two vertices are adjacent if and only if the corresponding
rectangles can see each other along a horizontal or a vertical strip of positive width.

Remark 2. If G is a planar graph, then b(G) ≤ 2.

Proof. By [22], G has a rectangle-visibility representation. The projections in
the horizontal and vertical directions yield two bar visibility graphs whose union is
G.

As mentioned earlier, a graph is a bar visibility graph if and only if it is a planar
graph embeddable so that all cut-vertices lie on a single face [18, 22]. The minimal
planar graphs not embeddable with every vertex on a single face are K4 and K2,3.
Adding a pendant edge at each vertex of such a graph produces a planar graph that
is not a bar visibility graph because the cut-vertices cannot lie on a single face. Thus
the bound in Remark 2 is sharp.

The characterization of bar visibility graphs also yields another proof of the upper
bound via an inductive proof of a technically stronger statement. The block-cutpoint
tree of a connected graph G is the bipartite graph whose partite sets are the cut-
vertices and the blocks of G, with vertex v adjacent to block B if v ∈ V (B). The
block-cutpoint graph was introduced by Harary and Prins [8], and it is an elementary
exercise that it is a tree.

Theorem 3. Every planar graph has a 2-bar representation in which every vertex
that is not a cut-vertex is assigned a 1-bar.

Proof. If H is a disjoint union of planar graphs with at most one cut-vertex in
each component, then the characterization in [18, 22] yields b(H) = 1. We express
a planar graph G as the union of two such graphs G0 and G1, and then Remark 1
applies.

We may assume that G is connected. We allocate the blocks of G to G0 and G1.
Let B0 be an arbitrary block of G. The distance of each block from B0 in the block-
cutpoint tree B(G) is even; place a block in Gi if its distance from B0 is congruent
to 2i modulo 4. Two blocks wind up in the same component of G0 or G1 if and only
if they share the same cut-vertex as neighbor on their paths to B0 in B(G). Hence
a component of G0 or G1 consists of one or more such blocks of G sharing a single
cut-vertex.

Our subsequent lower bounds on visibility number use an easy counting argument
based on the number of edges in planar graphs.

Lemma 4. The visibility number of a graph G with n vertices and e edges is at
least

⌈
e+6
3n

⌉
. If the graph is triangle-free, then b(G) ≥

⌈
e+4
2n

⌉
.

Proof. Consider a t-bar representation of G. Let N be the total number of bars
used, so N ≤ nt. In the plane, draw one vertical segment joining each pair of bars
that see each other. Now shrink each bar so that it becomes a single point. The
added segments remain, covering the edges of G. The result is a simple planar graph
G′ with N vertices and at least e edges. Since it also has at most 3N − 6 edges, we
have the desired bound.

If G is triangle-free, then the graph G′ will remain simple and triangle-free after
we contract edges joining points assigned to the same vertex of G. Now G′ has at
most 2N − 4 edges, and again these cover all edges of G.

The thickness of a graph G is the minimum number of planar graphs needed to
decompose it. Each graph in a decomposition has at most 3n− 6 edges when G has
n vertices, and is bipartite when G is bipartite. Hence the thickness of an n-vertex
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graph with e edges is at least
⌈

e
3n−6

⌉
, and it is at least

⌈
e

2n−4

⌉
if the graph is bipartite.

These lower bounds on thickness are slightly larger than the lower bounds of
Lemma 4 on visibility number. If G has an optimal decomposition using 2-connected
planar graphs, then the thickness of G becomes an upper bound on visibility number.
This bound need not be optimal, since the lower bound on visibility number is smaller.
In general, we can do better for bar visibility representations because the planar pieces
can “interact”.

For the complete graph Kn, with two exceptions, the thickness equals the counting
bound, as shown in [1]. The bound simplifies to �(n + 2)/6�. When n is 9 or 10, the
thickness is 3 (see [3, 20]), although the general formula suggests 2. For n ≥ 7, we
improve these upper bounds by showing in section 4 that b(Kn) = �n/6�.

A graph represented with one bar per vertex must be planar, so the upper bound
using thickness cannot be improved when 5 ≤ n ≤ 6. However, it can be improved
when n = 9.

Construction 5. b(K9) = 2.

Proof. Since K9 is nonplanar, b(K9) ≥ 2. Although the thickness of K9 is 3,
we can express K9 − ws as the union of two planar graphs when ws is an edge in
K9. We can put a representation of one of these above the other and extend bars for
w and s as in Figure 1 to obtain the missing visibility for ws. This establishes
b(K9) = 2.
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Fig. 1. 2-bar representation of K9.

Thickness also yields an upper bound for visibility number of the complete bipar-
tite graph Km,n. The thickness is conjectured to equal the counting bound

⌈
mn

2m+2n−4

⌉
.

For K10,6, the lower bound on thickness is 3. Nevertheless, Construction 6 shows that
b(K10,6) = 2. In section 3, we show that the counting bound on b(Km,n) can be
achieved within 1. Our upper bound

⌈
mn+4
2m+2n

⌉
+ 1 is generally less than the thickness

bound.
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Construction 6. b(K10,6) = 2.
Proof. Since (mn + 4)/(2m + 2n) exactly equals 2, achieving the lower bound

is quite delicate. Our partite sets are X = {1, . . . , 10} and Y = {a, . . . , f}. The
construction is shown in Figure 2, with the bars for Y in bold. Neighboring bars on
a line meet at their endpoints; there is no visibility through the gap.

2 10 4 1 5 6 3 2 10 3

1

4

9 8 7 6

5 7 8 9

f b c b

e d e ad

f

c

a

Fig. 2. 2-bar representation of K10,6.

3. Complete bipartite graphs and splitting number. Lemma 4 implies
that b(Km,n) ≥

⌈
mn+4
2m+2n

⌉
; Construction 6 gives hope for equality. Trotter and Harary

[19] proved that i(Km,n) =
⌈
mn+1
m+n

⌉
. Our lower bound for b(Km,n) always equals

�i(Km,n)/2� or �i(Km,n)/2� + 1. By using the tops and bottoms of bars separately,
we prove constructively that b(Km,n) is within one of the lower bound from Lemma 4.

Before presenting our construction, we compare b(Km,n) with another parameter.
Let a vertex split of a graph be the replacement of a vertex by two nonadjacent vertices,
with each edge incident to the deleted vertex becoming incident instead to exactly one
of the new vertices. The splitting number s(G) of a graph G is the minimum number
of vertex splits needed to turn G into a planar graph. Each vertex of G becomes an
independent set in the resulting planar graph G′. If G′ is 2-connected, then it has a
bar visibility representation using n(G) + s(G) bars. Thus b(G) ≥ 1 + s(G)/n(G).

Jackson and Ringel [14] proved that if m and n are both at least 2, then s(Km,n) =

�(m− 2)(n− 2)/2�. Although 1+ (m−2)(n−2)
2(m+n) = mn+4

2m+2n , this does not yield b(Km,n) ≤⌈
mn+4
2m+2n

⌉
, because the independent sets corresponding to vertices of b(Km,n) in its

optimal split need not have the same size. Indeed, the construction of [14] splits
vertices in only one partite set.

We have observed that a bipartite graph G has at most 2N − 4 edges if it has a
t-bar representation using altogether N bars. Since Km,n has mn edges, this means
that when mn+4

2m+2n is an integer, achieving b(Km,n) = mn+4
2m+2n requires an mn+4

2m+2n -bar

representation in which every vertex is assigned exactly mn+4
2m+2n bars, and every face in

the planar graph that results from turning the visibilities into edges and shrinking the
bars has length exactly 4. It may be that b(Km,n) =

⌈
mn+4
2m+2n

⌉
always, but we have

not proved this. Instead, we prove that allowing one more bar per vertex provides
enough flexibility for a general construction.

Theorem 7. If r =
⌈

mn+4
2m+2n

⌉
, then r ≤ b(Km,n) ≤ r + 1.

Proof. We may take m ≥ n and let the partite sets be X and Y with X =
{x1, . . . , xm} and Y = {y1, . . . , yn}. As m grows, r increases to �n/2�. When r =
�n/2�, we construct an r-bar representation using r vertical strips, where the jth strip
consists of one bar each for yj and yn+1−j with one bar for each vertex of X between
them.
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We may therefore assume that r ≤ �(n− 1)/2�. Let s = �(n− 1)/2� − r; note
that s ≥ 0. Since r > n/4, we have r > s. We construct an (r+ 1)-bar representation
of Km,n.

We start with (up to) 2(r + 1) rows of bars for vertices of Y as in Figure 3 (in
bold, with some labels dropped for clarity). The first row has bars for y1, . . . , y�n/2�,
the second for y�n/2�+1, . . . , yn, and thereafter these two types alternate. In each row,
the ith bar extends from horizontal coordinate i− 1 to i, except that when n is odd
the bars for yn extend from (n− 3)/2 to (n + 1)/2.

We add rows of up to �n/2� − 1 bars for X between successive rows for Y .
Consecutive bars in a row share endpoints, so each bar sees only bars for vertices of
the opposite partite set in the two neighboring rows.

y8 y9 y10y7 y11

y1 y6

y7 y11

y1 y6

y7 y11

y1 y6y2 y5y3 y4

x11 x12 x11 x12

x8 x9 x10 x9 x10

x5 x6 x7 x8 x7

x4 x3 x4 x5 x6

x1 x2 x1 x2 x3

Fig. 3. Part of a 4-bar representation of K12,11; r = 3 and s = 2.

Reading from left to right within successive rows for X from top to bottom, we
alternate x1, x2 until we have s bars for each, then we alternate x3, x4, etc. We do this
until we reach x2�m/2�, using 2s �m/2� positions for X. The last of these bars extends
out to the right, filling the row to avoid visibilities within Y . Having enough positions
available requires 2s �m/2� ≤ (2r+1)(�n/2�− 1); we prove this. From mn+4

2m+2n ≤ r we
obtain m(n/2 − r) ≤ rn− 2, and hence

2s
⌊m

2

⌋
≤ ms ≤ m

(
n− 1

2
− r

)
≤ rn− 2 − m

2
≤ 2r

⌊
n− 1

2

⌋
+ 2r − 2 − m

2
.

Since r ≤ �n/2� ≤ �m/2�, we have 2r − 1 − m/2 ≤ �n/2�, which yields the desired
inequality.

If m is odd, then we add one or two long bars for xm. If we ended with x2�m/2�
after an odd number of rows for X, as in Figure 3, then we put one bar for xm above
the top row for Y and another below the bottom row. If we ended with x2�m/2� after
an even number of rows for X, then we have another row for y�n/2�+1, . . . , yn available
to add and put one bar for xm between the bottom two rows for Y . This establishes
all visibilities for xm.

We complete the construction by adding r + 1 − s more bars for each x ∈
{x1, . . . , x2�m/2�}. Partition Y into �n/2� sets: the pairs of the form {yj , yj+�n/2�},
plus the singleton y�n/2� if n is odd. Via the s bars already placed, x already sees
bars for 2s of these sets. Since 2s < s + r = �(n− 1)/2�, the s bars for x cannot
stretch far enough to cover two neighboring “columns” or the same “column” twice,
and hence the 2s sets seen by x are distinct.

Since r + 1 − s = �n/2� − 2s, it suffices to insert the remaining bars for x so
that each such bar sees another of these sets. At a place where bars for a needed set
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appear (or at the right end when the set is {y�n/2�}), we shrink the intervening bars
for vertices of X and insert small bars for vertices of X that need to add visibility to
this set. (When s = 0, there are no bars to shrink, and the inserted bars block all the
vertical space.)

4. Complete graphs and Heawood’s empire problem. Heawood general-
ized the Four Color Problem by considering maps where many regions belong to a
single “empire”. Regions in a single empire must get the same color. Gardner [7]
coined the term m-pire for an empire consisting of m regions. Jackson and Ringel [13]
defined an m-pire map to be a map in the plane in which every empire consists of
at most m regions. Heawood [10] proved that every m-pire map can be colored with
6m colors. He conjectured that the bound is sharp for m > 1; this became Heawood’s
empire problem.

Heawood’s conjecture is proved by building a map with 6m pairwise adjacent
m-pires. The adjacency graph is then K6m, which requires 6m colors. Heawood did
this for m = 2, and Taylor (see [7]) did it for m = 3 and m = 4. For larger m, it was
first done by Jackson and Ringel [13]. Wessel [21] later gave a short proof. The result
determines b(Kn).

Theorem 8. If n ≥ 7, then b(Kn) = �n/6�.
Proof. For n ≥ 7, Lemma 4 yields b(Kn) ≥

⌈
n−1

6 + 2
n

⌉
= �n/6�. For the upper

bound, we may assume that n is divisible by 6, because the absence of unwanted
visibilities in the complete graph implies that deleting the bars for a vertex in an
m-bar representation of Kn yields an m-bar representation of Kn−1.

Consider an m-pire map with 6m pairwise adjacent m-pires. When we associate
a vertex with each region, we obtain a dual graph with at most 6m2 vertices. The
dual graph is a plane graph, and we may assume that it is 2-connected because the
m-pires are pairwise adjacent. That is, a cut-vertex in the dual would correspond
to an annular region R that separates one set of regions from another. In cutting a
channel through R to establish a common boundary for the two sets that had been
separated, we do not change the set of regions neighboring R.

Being a 2-connected plane graph, the dual is a bar visibility graph. Associating the
bars arising from each m-pire with one vertex of K6m yields an m-bar representation
of K6m.

The m-pire maps used to prove Heawood’s conjecture are quite complex, even
in Wessel’s proof. A surprisingly simple visibility construction produces a represen-
tation using at most b(Kn)+1 bars per vertex. It will motivate the construction in
Theorem 10.

Construction 9. b(Kn) ≤ �n/6� + 1.
Proof. As in Theorem 8, we may assume that n is divisible by 6. Let n = 6m. We

partition the vertex set into three sets A1, A2, A3, each of size 2m. A complete graph
with 2m vertices has a decomposition into m spanning paths, consisting of the m
rotations of a zigzag path when the vertices are placed around a circle (see Figure 4).

•
•

•
••

•

•
• •

•

•
••

•

•
• •

•

•
••

•

•
• •

•

•
••

•

•
•

Fig. 4. Path decomposition of K8.
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Our representation of Kn has 3m modules; each is a bar visibility representation
of P2m∨2K1 (the join G∨H of graphs G and H is the graph formed from the disjoint
union of G and H by adding edges to make each vertex of G adjacent to each vertex
of H). We represent the path P2m by a staircase of bars; each sees the bar before and
after it. We add one long bar above and one long bar below; each sees the entire path
(see Figure 5).

Fig. 5. Bar visibility representation of P2m ∨ 2K1.

To each path in the decomposition of Ai, we assign two vertices in Ai+1 (indices
modulo 3). This produces m pairwise edge-disjoint copies of P2m ∨ 2K1. Their union
covers the complete graph on Ai and all edges from Ai to Ai+1. Doing this for each
Ai yields 3m modules whose union represents Kn.

A vertex of Ai appears in each path drawn from Ai, and it appears once as a top
or bottom bar in a module for a path in Ai−1. Thus each vertex is assigned m + 1
bars.

5. n-vertex graphs. When bounding b(G), it is tempting to use Remark 1 and
express G as a union of bar visibility graphs. Unfortunately, as we have noted, the
number of bars per vertex in the resulting representation is at least the thickness of
G, which is too large.

Splitting number is more promising. If H ⊆ G, then s(H) ≤ s(G), since any
sequence of splits that reduces G to a planar graph also reduces H to a planar graph.
Thus it may be possible to prove the conjecture that b(G) ≤ �n/6� by using a map
with 6m pairwise adjacent m-pires (where m = �n/6�), convert it to a splitting of
K6m, and delete adjacencies to reach a splitting of G without introducing a need for
extra bars.

In addition to the splittings that result from Wessel’s construction, one might
also start with splittings of Kn studied by Hartsfield, Jackson, and Ringel [9]; they
proved that s(Kn) = �(n− 3)(n− 4)/6�. If their construction split vertices equally
often, then it would like Wessel’s construction yield an �n/6�-bar representation of
Kn.

In both results, the splittings of Kn are hard to describe, and it is not clear how
to do the other steps. Instead, we generalize Construction 9 to prove directly that
b(G) ≤ �n/6� + 2.

It is hard to modify Construction 9 directly to delete arbitrary edges. For example,
let u, v, w appear consecutively on some path in the decomposition of A1, and let y, z
be the vertices of A2 whose bars surround this path. Extending the bar for u or w
can block v from seeing y or z. Deleting the bar for v and extending those for u and
w to the same vertical line can delete all these edges. However, how can we delete
vy, vz, uv and keep vw?

If all edges of the path in Ai were present, then we could delete arbitrary edges
to y and z by extending the bars for vertices on the path. If tk is the maximum
number of paths needed to partition the edges of a k-vertex graph, we could thus
obtain b(G) ≤ tn/3 + 1. Gallai [6] conjectured that tk = �k/2�, which would yield
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b(G) ≤ �n/6� + 1.
We do almost as well by using the result of Lovász [15] that every k-vertex graph

can be decomposed into �k/2� paths and cycles. Each vertex of odd degree must be
an endpoint of some path in such a decomposition. Thus the decomposition must
consist entirely of paths when G has at most one vertex of even degree.

Theorem 10. If G has n vertices, then b(G) ≤ �n/6� + 2.
Proof. By adding isolated vertices, we may assume that n is divisible by 6. Let

n = 6m, and again partition V (G) into sets A1, A2, A3 of size 2m. To the subgraph
G[Ai] induced by Ai, add one vertex w adjacent to all vertices with even degree in
G[Ai]; call this graph G′

i. Since G′
i has at most one vertex of even degree, G′

i has a
decomposition into m paths, since �(2m + 1)/2� = m.

With each such path P we associate two “special” vertices y and z of Ai+1, using
different special vertices for different paths. We design a module that establishes the
edges of P and the edges of G from Ai to y and z. We use at most one bar for each
vertex of Ai and at most two bars each for y and z. Doing this for each i and each P
in the decomposition of G′

i produces an (m + 2)-bar representation of G (see Figure
6), since each vertex serves as a special vertex only once.

y y

z z

Fig. 6. Module for representation of general graph.

Let Iv denote the set assigned to v in such a module. We begin by representing
P ∨ {y, z} as in Figure 5: a staircase plus a bar for y underneath and a bar for z
above. The edges on P not involving the added vertex w belong to G, so we do not
block these visibilities. Erasing Iw (if w ∈ V (P )) produces a gap that may cause us
to break Iy and Iz.

Beginning at the upper right end of P , we block visibilities between y and P as
needed. When the current vertex v of P is not adjacent to y, we extend the bar for the
next lower vertex of P to the right end of the current Iv. If the last vertex v before w
is not adjacent to y, then we cannot extend a lower bar to block Iv from Iy; instead,
we break Iy and shorten the left end of the right portion to the right endpoint of Iv.

Delete Iw; note that the bars for the neighbors of w on P do not see each other.
Block bars in the lower part of P from seeing Iy as needed, in the same manner
as before. Visibilities up to Iz are corrected in the same manner, working from the
bottom left end of P .

For q ∈ Ai − V (P ), we also must consider edges from q to {y, z}. If y, z /∈ N(q),
then we add no bar for q in this module. For all q ∈ N(y) − N(z), we add a bar at
the right of P ; none of these see each other, and Iy extends to the right to see them
all. Similarly, bars for vertices of Ai − V (P ) in N(z) −N(y) are added at the left of
the bars for P .

Now consider common neighbors of y and z in Ai − V (P ). If w ∈ V (P ), then we
add bars in the gap between the left and right portions of P where Iw was deleted.
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Together they fill this gap so that Iy does not see Iz. The left portion of Iy and
the right portion of Iz see these bars. If there are no vertices of V (A) − V (P ) in
N(y)∩N(z), then we shorten the left portion of Iy and the right portion of z so that
they will not see each other. If w /∈ V (P ), then we did not break Iy or Iz into two
bars. We therefore can place another bar for y and z at the right end of the module
and use these to establish visibilities for the edges from (V (Ai)−V (P ))∩N(y)∩N(z)
to {y, z}, as above.

We have established and/or deleted all the desired adjacencies, using the desired
number of bars for each vertex.

Note added in proof. W. Cao has improved the upper bound in Theorem 7
by eliminating the “+1” when m and n are both even, thereby computing b(Km,n)
exactly.
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1. Introduction. Suppose G is a finite group and fix S ⊂ G. Let C(G) be the
space of real-valued maps on G. A finite analogue of the Radon transform may be
described as follows: For all f ∈ C(G), define the Radon transform based on translates
of S ⊂ G as

f(k) =
∑

j∈S+a

f(j).

Diaconis and Graham [2] discuss the cases where G = Z
k
2 , the group of binary

k-tuples, and where G = Sn, the symmetric group on n letters, in order to provide
an exposition on discrete Radon transforms which appear in applied statistics. Fill
[4] examines the case G = Zn, the group of integers modulo n. This case arises in
directional data analysis and circular time series. Other finite analogues of the Radon
transform occur, but we shall restrict ourselves to the case G = Z

k
n, the group of

k-tuples of the integers modulo n, as these results are of use in k-dimensional toroidal
time series.

In section 1, we use representation theory as described in DeDeo and Velasquez [1]
to describe the Radon transform on Z

k
n and its invertibility conditions. In section 2,

we discuss a specific example, the Radon transform based on a translate of a fixed
Sr ⊂ Z

k
n, where Sr denotes a sphere of radius r. In this situation, Z

k
n is associated

with a Cayley graph with a Hamming metric. The injectivity of the Radon transform
is seen to depend on the zeros of particular Krawtchouk polynomials. The proof of
this includes a counting argument rather than computing the appropriate spherical
functions for the graph. Inversion formulas are presented in section 3. First, explicit
formulas are computed using the Fourier transform, its inverse, and a Moore–Penrose
generalized inverse transform. Then inverse algorithms, which do not rely on the
Fourier transform, are described for the Radon transform based on translates of the
fixed spheres Sr in Z

k
n.

1.1. Motivation. This is an extension of DeDeo and Velasqeuz [1] which at-
tempts to extend directional data and time series to discretized analogues of mani-
folds. Two-dimensional manifolds are homomorphically either spheres with handles
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or spheres with crosscaps. For dimensions greater than two, the situation is more
complex. In this paper we shall inspect the discrete analogue of the sphere with
k-handles, i.e., the discretized k-dimensional torus denoted by Z

k
n.

Functions relevant to time series are the maps f : T k → R or f : Z
k
n → R, with

Z
k
n the proposed discretization of the k-fold torus. The act of employing a certain

linear filter to functions on Z
k
n may be considered to be the mapping of f to f, its

Radon transform, where

f(a) =
∑
j∈Zk

n

ϕ(j − a)f(j)

for some ϕ : Z
k
n → R. If ϕ is the characteristic function of a fixed S in Z

k
n, the mapping

above reduces to the usual Radon transform based on translates of S in Z
k
n.

2. Fourier analysis on Z
k
n. Throughout the next two sections, we set G = Z

k
n,

the group of k-tuples with elements in Zn. Explicitly, Z
k
n = (A,+), where A = {x|x =

(x1, x2, . . . , xk)
t for xi in Zn, where i = 1, . . . , k}. Assign the natural inner product

to Z
k
n such that, for all x and y in Z

k
n, x · y =

∑k
i=1 xiyi. Thus Z

k
n is an abelian group

under addition and its group representations all have degree one since Z
k
n
∼=

∏k
Zn.

We have that the characters are the homomorphisms χj : Z
k
n → C

×, where

χj(z) =

k∏
i=1

χji(zi)

for all z = (z1, z2, . . . , zk)
t and j = (j1, j2, . . . , jk)

t in Z
k
n, C

× denotes the nonzero
complex numbers, and χj denotes the character of the jth copy of Zn. Recall that the
characters of Zn are explicitly the functions χm : Zn → C

× defined by χm(y) = ωm·y

for m ∈ {0, . . . , n − 1}, where ω = e
2πi
n , an nth root of unity. Thus we have that

χj : Z
k
n → C

× defined by χj(z) = ωj·z indexed by j ∈ Z
k
n are the inequivalent,

irreducible unitary representations of Z
k
n. We denote the Hilbert spaces of functions

on Z
k
n and Ẑk

n, the space of characters of Z
k
n, by L2(Zk

n), and the space of square-

differentiable functions on Z
k
n by L2(Ẑk

n).

The Fourier transform for Z
k
n from L2(Zk

n) → L2(Ẑk
n) is

(Ff) = f̂(x) = f̂(χx) =
∑

f(y)∈Zk
n

χx(y) =
∑

f(y)∈Zk
n

f(y)ωx·y

with the Fourier inverse from L2(Ẑk
n) → L2(Zk

n) as

(F−1f̂) = f(y) =
1

nk

∑
f̂(y)∈Ẑk

n

χ(y−1)f̂(χ)

=
1

nk

∑
x∈Zk

n

χx(y−1)f̂(χx)

=
1

nk

∑
x∈Zk

n

ω−x·y f̂(x).

For all functions f ∈ C(Zk
n), the Radon transform

(Rf) = f(a) =
∑

j∈S+a

f(j) =
∑
j∈Zk

n

ϕS(j − a)f (j) ,
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where ϕS(·) is the characteristic function of S in Z
k
n. Therefore, we can identify the

Radon transform R with the matrix

(R)k,j = ϕS(j − k)

and the finite Fourier transform F and its inverse with the matrices

(F)l,m = ωl·m and
(
F−1

)
l,m

=
1

nk
(F)

∗
m,l =

1

nk
ωl·m,

respectively, where ω is a fixed root of unity and ∗ denotes the conjugate transpose. We
wish to describe the invertibility of the Radon matrix. The group

(
Z
k
n,+

)
is abelian;

therefore, singular value decompression via Fourier matrices results in a diagonal
matrix.

Proposition 2.1. (FRF∗)j,l = δj,ln
kϕ̂s(−l), where δj,l = 1 if j = l and 0

otherwise.

Proof. We refer the reader to DeDeo and Velasquez [1].

We note that the Radon matrix is not invertible if S = Z
k
n as it leads to a matrix

of all 1’s, and that the matrix is always invertible if S has one element.

3. The Krawtchouk polynomial and invertibility. Consider a subset of
Z
k
n. Specifically, for a fixed r ∈ N, set S = Sr = {x ∈ Z

k
n|H(x) = r} = H(x),

where H(x) is the Hamming distance of x from the origin of Z
k
n. In other words,

we associate Z
k
n with the graph X = X(V,E) with vertex set V = Z

k
n and edge set

E = {(x, y) ∈ V × V |H(x, y) = 1}, and where H(x) is the Hamming metric, the
number of coordinates in which x and y differ.

Definition 3.1. Fix the following integers r in 0, . . . , k and let q be a prime.
The Krawtchouk polynomial (MacWilliams and Sloane [6]) is

pkr (ν; q) =
∑
l∈Zr

(−1)l(q − 1)k−1

(
ν

l

)(
k − ν

r − l

)
,

where
(
a
b

)
denotes the usual binomial coefficient. Setting q = 2 results in the form we

will be using for the remainder of the paper:

pkr (ν) =
∑
l∈Zr

(−1)l
(
ν

l

)(
k − ν

r − l

)
.

Proposition 3.2 (DeDeo and Velasquez [1]). For x ∈ Z
k
n, ϕ̂Sr

(x) = pkr (H(x)).

Proof. For x ∈ Z
k
n, we have ϕ̂Sr

(x) =
∑

s∈Sr
ωx·s, where ω is a primitive nth

root of unity. Since ϕ̂Sr
(x) depends on x = (x1, . . . , xk)

t
in Z

k
n only through the

unordered set {x1, . . . , xk} , then we may assume, without loss of generality, that
xi �= 0 for i = 1, . . . , h, where h := H(x) and xi = 0 for i = h + 1, . . . , k. Now

ϕ̂Sr
(x) =

r∑
l=0

∑
{α1,...,αl}⊂{1,...,k}

∑
s∈Sr({α1,...,αl})

ωx·s

with Sr({α1, . . . , αl}) := {s ∈ S|si �= 0 for i ∈ {α1, . . . , αl} and si = 0 for i ∈
{1, . . . , k}/{α1, . . . , αl}}.
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Then

∑
s∈Sr({α1,...,αl})

ωx·s =

(
k − h

r − l

) ∑
Sα1

�=0

· · ·
∑

Sαl
�=0

ω

l∑
j=1

xαj
·sαj

=

(
k − h

r − l

) l∏
j=1

[
k∑

s=1

ωxαj
·s
]

=

(
k − h

r − l

) l∏
j=1

[
0 − ωxαj

·0
]

= (−1)l
(
k − h

r − l

)
since ω is a primitive root of unity and xαj �= 0.

Hence ϕ̂Sr
(x) =

∑r
l=0

(
H(x)

l

)
(−1)l

(
k−H(x)

r−l

)
= pkr (H(x)).

4. Inversion algorithms. We now consider the case of an invertible Radon
matrix along with a typically noninvertible Radon matrix. Inversion formulas using
standard Fourier methods are constructed. Then follows an exposition of inversion
algorithms which do not use Fourier transforms.

Definition 4.1. If T is a finite-dimensional matrix, let the Moore–Penrose
generalized inverse matrix of T be the unique matrix U satisfying (1) TUT = T ;
(2) UTU = U ; (3) (TU)∗ = TU ; (4) (UT )∗ = UT , where ∗ is the conjugate transpose
of T .

We shall denote U by T÷.

Proposition 4.2 (DeDeo and Velasquez [1]). Suppose f ∈ C(Zk
n). Then we have

the following.

i. If ϕS(x) �= 0 for all x ∈ Z
k
n, then, for all z ∈ Z

k
n,

f(x) =
∑
z∈Zk

n

f(z) · 1

nk

∑
y∈Zk

n

ω(z−x)·y

ϕ̂Sr
(−y)

.

ii. If ϕS(x) = 0 for some x ∈ Z
k
n, let matrix Λ be given by

(Λ)j,l = δjln
k
∑
s∈S

ω−l·s,

which implies that

(Λ÷)jl = δjlλ
÷
l withλ

÷
l =

⎧⎨⎩ 1
nk

(∑
s∈S

ω−l·s
)−1

if
∑
s∈S

ω−l·s �= 0.

0 otherwise

Then f = R÷f with R÷ ≡ F∗Λ÷F . In other words, the reconstruction of f ∈
C(Zk

n) for ϕ̂S(x) is

f(x)
def
= R÷(f(x)) =

1

nk

∑
y,z∈Zk

n

λ÷
y ω

y·(z−x)f(x).
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Fill [4] estimates the possibility of the accurate reconstruction of a function by a
least squares error discussion. This argument is completely valid for Z

k
n. Hence, we

provide a brief sketch here and refer the reader to Fill [4] for the details.
Given g in C(Zk

n), we need to redefine the residual vector E(f) for all f in C(Zk
n)

such that

E(f) = g −Rf in C(Zk
n).

Then

‖E(f)‖2
= ‖g −Rf‖2

=
∑
x∈Zk

n

|g(x) − (Rf)(x)|2 .

If f0 = R÷f and f = f0 + h, where h ∈ C(Zk
n), then the least squares error is

‖E0‖2
= ‖f − f0‖2

=
∥∥(I −RR÷)g

∥∥ ,
where I is the identity transform.

We now consider inversion algorithms based on a linear equations approach rather
than the use of Fourier transforms. Diaconis and Graham [2] consider algorithms for
shells and balls of Hamming radius 1. We shall consider shells to indicate the general
scheme.

Proposition 4.3. Suppose f is in C(Zk
n). For m ∈ {0, . . . , k}, define

g(m) =
∑

H(x)=m

f(x) and g(m) =
∑

H(x)=m

f(x),

where f is the Radon transform of f on translates of a shell of Hamming radius 1.
Then

g(m) = (n− 1)(k −m + 1) · g(m− 1) + (n− 2)m · g(m) + (m + 1) · g(m + 1)

with g(−1) ≡ g(k + 1) ≡ 0.
Proof. Given f ∈ C(Zk

n), note that the Radon transform of f on a shell of radius
1 is

f(x) =
∑

y∈S1+x

f(y) =
∑

y:H(x,y)=1

f(y).

Given x in Z
k
n, we examine y in Z

k
n such that H(x, y) = 1. Suppose x ∈ Sm

def
= {x ∈

Z
k
n|H(x) = m}. Then there are three possible radii for y : H(y) = m− 1,m, or m+1.

We shall consider each case separately.
First, we discuss some notation. Fix m ∈ {0, . . . , k} and consider w = wi1 . . . wim

in Sm. Then w has m nonzero coordinates wiα for α ∈ {1, . . . ,m}. We choose {iα}m1 ⊂
{j}k1 .

1. H(y) = m − 1. Let x = xi1 . . . xim ∈ Sm. It is clear that there exists a y in
Sm−1 such that y = xi1 . . . xim−1

. For a fixed y, partition Sm into subsets
where

Fy = {xi1 . . . xim−1
xim |y = xi1 . . . xim−1

}.

Since xim has k − (m − 1) possible coordinate positions in the k-tuple and
n − 1 possible nonzero values to assume at each position, we have that the
cardinality of Fy is (k−m+ 1)(n− 1) for a fixed y. It is also clear that there
is a one-to-one correspondence between the y ∈ Sm and Fy.
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2. H(y) = m. Let x = xi1 . . . xim ∈ Sm. Each xia has some value in Z
×. Thus

each coordinate is a map xiν : A ⊂ Z
k
n → Z

×
n , where xiν → xiν (βν) ≡ x

βν
iν

for
ν = 1, . . . ,m. Fix x0 in Sm. Then x0 looks like xα1

i1
. . . xαm

im
for fixed coordinate

positions {iν}m1 and fixed values {αν}m1 . If y ∈ Sm ∩ {y|H(x, y) = 1}, then y
can have the forms

x
β1
i1
xα2
i2
xα3
i3

. . . xαm
im

, xα1
i1
x
β2
i2
xα3
i3

. . . xαm
im

, . . . , xα1
i1

. . . x
αm−1

im−1
x
βm
im

,

where βj �= αj for j = 1, . . . ,m. Outputting other x’s of the form

x
γ1
i1
xα2
i2
xα3
i3

. . . xαm
im

, xα1
i1
x
γ2
i2
xα3
i3

. . . xαm
im

, . . . , xα1
i1

. . . x
αm−1

im−1
x
γm
im

,

where γj �= αj , results in the y’s associated with each outputted x. For

example, consider x
γ1
i1
xα2
i2
xα3
i3

. . . xαm
im

, where γ1 �= α1. We already know that
the associated y’s are

x
β1 �=γ1
i1

x
β2=α2

i2
x
β3=α3

i3
. . . x

βm=αm

im
,

x
β1=α1

i1
x
β2 �=α2

i2
x
β3=α3

i3
. . . x

βm=αm

im
,

. . . , x
β1=α1

i1
. . . x

βm−1=αm−1

im−1
x
βm �=αm

im

for βδ in 1, . . . , d − 1 if δ = 1, . . . ,m unless stated otherwise. We need only

examine y in {xβ1 �=γ1
i1

x
β2=α2

i2
x
β3=α3

i3
. . . x

βm=αm

im
}β1=d−1
β1=1 . This set has cardi-

nality d − 2 and contains a unique y0 such that y0 = xα1
i1

. . . xαm
im

. In other
words, there exists β1 such that β1 = α1 �= γ1 for some β1 in 1, . . . , d − 1.
For each fixed γ1, we can find a copy of x0 which we denote as y0. Thus there
are d− 2 copies of x0 among the y associates if we output x in Sm such that
x = x

γ1
i1
xα2
i2
xα3
i3

. . . xαm
im

for all γ1 = 1, . . . , d− 1, where γ1 �= α1.
If we output all forms of x as described above, we get (d − 2) ∗m copies of
x0. No more repetitions of x0 can occur amongst the y associates because we
have exhausted all possible forms of x with which to compute y associates.
Since x0 was arbitrary, outputting all x from Sm results in (d− 2) ∗m copies
of each y in Sm.

3. H(y) = m + 1. Fix y0 in Sm+1. Then y0 = yα1
i1
yα2
i2

. . . y
αm+1

im+1
for fixed coordi-

nate positions {iν}m+1
1 and fixed values {αν}m+1

1 . Partition Sm into families
which are projections of y in Sm+1. (For example, y0 has the projection
Fy0 = {yα1

i1
yα2
i2

. . . yαm
im

, yα1
i1
yα2
i2

. . . y
αm−1

im−1
y
αm+1

im+1
, . . . , yα2

i2
yα3
i3

. . . y
αm+1

im+1
}.) Then

given y in Sm+1, the cardinality of Fy0 is m + 1. It is clear that there ex-
ists a one-to-one correspondence between y in Sm+1 and Fy0 as a subset of
Sm+1.

We use the results of Proposition 4.2 to describe the system of equations ḡ(p) =
(G)m,pg(m) for 0 ≤ m, p ≤ k and

G
def
= (G)m,p

def
=

⎧⎪⎪⎨⎪⎪⎩
(n− 1) · (k −m + 1) when m = p− 1,
(n− 2) ·m when m = p,
m + 1 when m = p + 1,
0 otherwise.

Then G is a singular, nonsymmetric tridiagonal matrix. (Note that when r ≥ 1, G
is a singular, nonsymmetric band-limited matrix with bandwidth proportional to r.)
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Therefore, in order to describe the system of equations g(m) = ((G)m,p)
−1ḡ(p), we

need to set (G)−1 ≡ G+, the generalized Moore–Penrose inverse of G.
Proposition 4.4. Suppose f is in C(Zk

n). If χ̂S1
�≡ 0, then

f(y) =

k∑
H(x,y)=0

(G+)1,H(x,y)f(x),

where

f(x) =
∑

H(x,y)=1

f(y)

and G+ is the Moore–Penrose inverse of G.
Proof. We note that from DeDeo and Velasquez [1], the inversion problem has

become one of inverting singular, nonsymmetric band-limited matrices. For r = 1,
band-limited means inverting the tridiagonal matrix G computed in Proposition 4.2.
Using the definitions and results from Proposition 4.2, we have that

g(0) =

k∑
β=0

(G+(s, t))1,βg(β)

with (G+(s, t))α,β = G+(s, t), the Moore–Penrose inverse of G = G(s, t). Then, since
f(0) = g(0), we have that

f(0) =
k∑

H(x)=0

(G+(s, t))1,H(x,y)f(x)

and, by a shift action,

f(y) =
k∑

H(x,y)=0

(G+(s, t))1,H(x,y)f(x) .
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[7] P. Rózsa, R. Bevilacqua, F. Romani, and P. Favati, On band matrices and their inverses,

Linear Algebra Appl., 150 (1991), pp. 287–295.
[8] D. Stanton, Orthogonal polynomials and Chevalley groups, in Special Functions: Group Theo-

retical Aspects and Applications, R. A. Askey et al., eds., D. Reidel, Boston, MA, 1984, pp.
87–128.

[9] D. Stanton, An introduction to group representations and orthogonal polynomials, in Orthog-
onal Polynomials, P. Nevai, ed., Kluwer Academic, Norwell, MA, 1990, pp. 419–433.
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Abstract. In this paper, we obtain three general reduction formulas to determine the orientable
and nonorientable genera for complete tripartite graphs. As corollaries, we (1) reduce the determi-
nation of the orientable (nonorientable, respectively) genera of 75 percent (85 percent, respectively)
of nonsymmetric (with respect to l,m, and n) Kl,m,n to that of Km,m,n, and (2) determine the
orientable and nonorientable genera for several classes of complete tripartite graphs.

Key words. complete tripartite graph, orientable genus, nonorientable genus
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1. Introduction. The surfaces appearing in this paper are closed compact 2-
manifolds without boundaries. The orientable surface with h handles is denoted by
Sh, h ≥ 0. The nonorientable surface with k crosscaps is denoted by Nk, k ≥ 1. The
orientable genus γ(G) of a graph G is the minimum h such that G has an embedding
into the surface Sh. Likewise, the nonorientable genus γ(G) of G is the minimum k
such that G has an embedding into Nk [GT, MT].

While the orientable and nonorientable genera of the whole family of complete
bipartite graphs were determined by Ringel [Ri1, Ri2] as early as the 1960s, only
partial results for the genera of complete tripartite graphs are known. Let Kl,m,n, l ≥
m ≥ n, denote the family of complete tripartite graphs. By applying Euler’s formula,
Stahl and White [SW] provided the following lower bounds for genera of Kl,m,n:

γ(Kl,m,n) ≥
⌈

(l − 2)(m + n− 2)

4

⌉
, l ≥ m ≥ n ≥ 1,(1.1)

γ(Kl,m,n) ≥
⌈

(l − 2)(m + n− 2)

2

⌉
, l ≥ m ≥ n ≥ 1.(1.2)

They also made the following conjecture.
Conjecture 1.1 (Stahl and White [SW]). Equality holds in (1.1) and (1.2).
White [Wh1] proved that the orientable conjecture is true for Kl,m,n, where m+

n ≤ 6, and for Kmn,n,n, where m,n ∈ N [Wh2].
Ringel and Youngs [RY] also proved the orientable conjecture for Kn,n,n. Stahl

and White [SW] proved that the orientable conjecture holds for Kn,n,n−2 when n ≥ 2
is even, and for K2n,2n,n for all n ≥ 1. They also showed that the nonorientable
conjecture holds for Kn,n,n−2 for all n ≥ 3, and for Kn,n,n−4 when n ≥ 4 is even.
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Nothing further was discovered until 1998, when Craft [Cr1] proved that the
orientable conjecture holds for Kl,m,n when l ≥ 2(m + n − 2) and when m + n and
l are both even. (Craft also determined the orientable genera for more complete
tripartite graphs in his dissertation [Cr2].) Recently, Ellingham, Stephens, and Zha
[ESZ1] proved that, in fact, the nonorientable conjecture is not true for K3,3,3, K4,4,1,
and K4,4,3. They also showed that these are the only exceptions to either conjecture
for Kl,m,n with l ≥ m ≥ n and l ≤ 5. Together with K7 being the only counterexample
among the complete graphs to the possible nonorientable genus values obtained from
Euler’s formula, these counterexamples seem to form an interesting phenomenon:
Suppose T is a family of graphs. If the possible values for orientable genera obtained
by the Euler formula are, in fact, right for all graphs in T , then the possible values
for nonorientable genera obtained by Euler’s formula may also be right for all graphs
in T , except for a few small cases. Counterexamples obtained in [ESZ1] may also be
considered as graphs called orientably simple. (A graph is called orientably simple if
its orientable genus is g and its nonorientable genus is 2g + 1, which is an obvious
upper bound for the nonorientable genus (see [SB] and [HMR] for details).) It would
be nice to see that these three graphs are the only counterexamples to Conjecture 1.1.

In this paper, we first provide some constructions which reduce the determination
of genera of some complete tripartite graphs to the determination of the genera of
other complete tripartite graphs. In particular, we reduce the verification of the genera
of Kl,m,n for over 75 percent of all generally nonsymmetric triples (l,m, n) to that
of semisymmetric triples (m,m, n). We hope this reduction will shed some light on
the verification of Conjecture 1.1. Parallel results for nonorientable genera are also
obtained. As corollaries of the general reduction formulas, we confirm Conjecture 1.1
for several larger subclasses of Kl,m,n.

Since submitting the original version of this paper, two of the authors, together
with Ellingham, have shown [ESZ2] that the nonorientable portion of Conjecture 1.1
is true with only the three exceptions described in [ESZ1]; the constructions in this
paper form the step for the induction argument used in [ESZ2].

2. Technical lemmas. In this section we prove two technical lemmas about the
ceiling function.

Lemma 2.1. Let f(x1, . . . , xs) and g(x1, . . . , xs) be polynomials with integer co-
efficients on multivariables x1, . . . , xs, and let n1, . . . , ns be integers. Suppose p is a
positive integer. Then⌈

f(n1, . . . , ns)

p

⌉
+

⌈
g(n1, . . . , ns)

p

⌉
=

⌈
f(n1, . . . , ns) + g(n1, . . . , ns)

p

⌉
(2.1)

if and only if⌈
f(n∗

1, . . . , n
∗
s)

p

⌉
+

⌈
g(n∗

1, . . . , n
∗
s)

p

⌉
=

⌈
f(n∗

1, . . . , n
∗
s)

p
+

g(n∗
1, . . . , n

∗
s)

p

⌉
,

where ni ≡ n∗
i mod p, i = 1, . . . , s.

Proof. We first observe that if n is an integer and x is a real number, then

�n + x� = n + �x�.(2.2)

We use LHS and RHS to represent the left-hand side and the right-hand side of
(2.1), respectively.
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Suppose ni = pqi + n∗
i , i = 1, . . . , s. Then

LHS =

⌈
f(pq1 + n∗

1, . . . , pqs + n∗
s)

p

⌉
+

⌈
g(pq1 + n∗

1, . . . , pqs + n∗
s)

p

⌉
=

⌈
f(n∗

1, . . . , n
∗
s) + pAf

p

⌉
+

⌈
g(n∗

1, . . . , n
∗
s) + pAg

p

⌉
= Af +

⌈
f(n∗

1, . . . , n
∗
s)

p

⌉
+ Ag +

⌈
g(n∗

1, . . . , n
∗
s)

p

⌉
,

where pAf and pAg are the parts of the binomial expansions of f(pq1+n∗
1, . . . , pqs+n∗

s)
and g(pq1 + n∗

1, . . . , pqs + n∗
s), respectively, that contain p as a factor.

Similarly,

RHS = Af + Ag +

⌈
f(n∗

1, . . . , n
∗
s)

p
+

g(n∗
1, . . . , n

∗
s)

p

⌉
.

Therefore Lemma 2.1 is true.
Lemma 2.2. Let l ≥ k ≥ m ≥ n ≥ 1 be four positive integers. Then
(i)⌈

(l − k)(m + n− 2)

2

⌉
+

⌈
(k − 2)(m + n− 2)

2

⌉
=

⌈
(l − 2)(m + n− 2)

2

⌉
+ ε1,(2.3)

(ii)⌈
(l − k)(m + n− 2)

4

⌉
+

⌈
(k − 2)(m + n− 2)

4

⌉
=

⌈
(l − 2)(m + n− 2)

4

⌉
+ ε2,(2.4)

where

ε1 =

{
1 if l even, k odd, m + n odd,
0 otherwise,

and

ε2 =
{

1 if (l, k,m + n) ∈ S in Table 2.1,
0 otherwise.

Proof. We first prove (2.3). If k is even, or if m+ n is even, then (k−2)(m+n−2)
2 is

an integer. By (2.2), the lemma is true with ε1 = 0. Similarly, if both l and k are odd,

then (l−k)(m+n−2)
2 is an integer, and therefore the lemma is also true with ε1 = 0.

This leaves the case that l is even and both k and m+n are odd. By Lemma 2.1,
we only need to consider the case that l = 0, k = m + n = 1. It is easy to verify that
the lemma is true in this case with ε1 = 1. Therefore (2.3) is true.

We now prove (2.4). Let η1 and η2 be the least nonnegative residue (mod 4) of
(l−k)(m+n−2)

4 and (k−2)(m+n−2)
4 , respectively. It is clear that the following is true.

Observation. (2.4) holds with ε2 = 0 if and only if either one of η1 and η2 is 0, or
η1 + η2 > 1.

By Lemma 2.1, we only need to consider the cases with 0 ≤ l, k,m + n ≤ 3.
Case 1. Both k and m+n are even. In this case, η2 = 0, and by the observation,

(2.4) is true with ε2 = 0.
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Table 2.1

S = {(l, k,m + n)} (modulo 4).

l k m + n

1 0
3 0

0
1 1
3 3

0 3
1

3 3

1 0
3 0
0 1
0 3

2
1 1
1 3
3 3
3 1

0 1
3

1 1

Case 2. k is odd and m + n is even. If l is also odd or m + n = 2, then η1 = 0,
and hence (2.4) is true with ε2 = 0.

Now we assume that l = 0 or 2, and m + n = 0. In all four cases of (l, k,m + n),
η1 = η2 = 1

2 . Hence by the observation, (2.4) holds with ε2 = 1.
Case 3. k is even and m + n is odd. If k = 2 or l = k, then either η2 = 0 or

η1 = 0, and hence (2.4) holds with ε2 = 0.
Now we assume k = 0 and l = 1, 2, or 3. If m + n = 1 and l = 2, or if m + n = 3

and l = 2, then η1 = η2 = 1
2 . If m + n = 1 and l = 3, or if m + n = 3 and l = 1, then

η1 = 1
4 . Therefore (2.4) holds with ε2 = 1.

Case 4. k and m + n are both odd. There are 16 cases of (l, k,m + n) with
l = 0, 1, 2, 3, k = 1, 3, and m + n = 1, 3.

If l = k = 1 or 3, and m + n = 1 or 3, then η1 = 0. By (2.2), (2.4) holds with
ε2 = 0.

If k = 1,m + n = 3, and l = 0 or 3, or if k = 3,m + n = 1, and l = 0 or 1, then
η1 ≥ 2

4 and η2 = 3
4 . By the observation, (2.4) holds with ε2 = 0.

If k = 1,m + n = 3, and l = 2, or if k = 3,m + n = 1, and l = 2, then η1 = 1
4 .

If k = 1,m + n = 1, and l = 0, 2, or 3, or if k = 3,m + n = 3, and l = 0, 1, or 2,
then η2 = 1

4 . Therefore η1 + η2 ≤ 1, and hence by the observation, (2.4) holds with
ε2 = 1 for these cases. This finishes the verification of (2.4). Therefore Lemma 2.2 is
true.

3. Main results. The following operation is an extension of Mohar and Thomas-
sen’s [MT, Theorem 4.4.7, pp. 117–118] interpretation of a construction by Bouchet
[Bo]. Bouchet used his construction to give a new proof for the genus of a complete
bipartite graph.

Operation 3.1. Let Ψ1 : G1 → Σ1 and Ψ2 : G2 → Σ2 be two embeddings
of G1 and G2 into the surfaces Σ1 and Σ2, respectively. Suppose u ∈ V (G1) and
v ∈ V (G2) are two vertices, each adjacent to n vertices u1, u2, . . . , un ∈ V (G1) and
vn, vn−1, . . . , v1 ∈ V (G2), respectively, in this clockwise order. Let D1 be a closed
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disk contained in a small neighborhood of the star st(u) = {u} ∪ {uu1, uu2, . . . , uun}
that contains st(u) and intersects G1 only at u1, u2, . . . , un. Choose D2 in a small
neighborhood of the star {v} ∪ {vv1, vv2, . . . , vvn} in a similar way. Remove D◦

1 and
D◦

2 (the interior of D1 and D2, respectively) from Σ1 and Σ2, respectively, and identify
the boundaries of Σ1\D1 and Σ2\D2 to obtain a new embedding Ψ of a new graph
G in the surface Σ1 ◦ Σ2, where Σ1 ◦ Σ2 is the disk sum of Σ1 and Σ2, and G is
obtained from G1\{u} and G2\{v} by identifying ui with vi, i = 1, 2, . . . , n. We use
the notation

(G1, u)♦(G2, v)

for the operation on the graph, and

Ψ1(G1, u)♦Ψ2(G2, v)

for the operation on the embedding. We call these operations the diamond sum of
graphs and the diamond sums of embeddings, respectively.

Remark 3.2. If one of Ψ1(G1) and Ψ2(G2) is a nonorientable embedding, then
Ψ1(G1, u)♦Ψ2(G2, v) is also a nonorientable embedding.

Theorem 3.3. Suppose l ≥ k ≥ m ≥ n.

(i) If γ(Kk,m,n) = � (k−2)(m+n−2)
4 � and (l, k,m + n) �∈ S of Table 2.1, then

γ(Kl,m,n) = � (l−2)(m+n−2)
4 �.

(ii) If γ(Kk,m,n) = � (k−2)(m+n−2)
4 � and

2

⌈
(k − 2)(m + n− 2)

4

⌉
+

⌈
(l − k)(m + n− 2)

2

⌉
=

⌈
(l − 2)(m + n− 2)

2

⌉
,(3.1)

then γ(Kl,m,n) = � (l−2)(m+n−2)
2 � if l > m.

(iii) If γ(Kk,m,n) = � (k−2)(m+n−2)
2 � and l is odd or one of k or m + n is even,

then γ(Kl,m,n) = � (l−2)(m+n−2)
2 � if l > m.

Proof. We state the genera for complete bipartite graphs first [Ri1, Ri2]:

γ(Ks,t) =

⌈
(s− 2)(t− 2)

4

⌉
,

γ(Ks,t) =

⌈
(s− 2)(t− 2)

2

⌉
.

To obtain Theorem 3.3(i), we construct the diamond sum (Operation 3.1) of
an embedding of Kk,m,n in S� (k−2)(m+n−2)

4 � and an embedding of Kl−k+2,m+n in

S� (l−k)(m+n−2)
4 �, and then apply Lemma 2.2(ii) with ε2 = 0.

Similarly, to obtain Theorem 3.3(iii), we construct the diamond sum of an embed-
ding of Kk,m,n in N� (k−2)(m+n−2)

2 � and an embedding of Kl−k+2,m+n in N� (l−k)(m+n−2)
2 �,

and then apply Lemma 2.2(i) with ε1 = 0.
To obtain Theorem 3.3(ii), we construct the diamond sum of an embedding of

Kk,m,n in S� (k−2)(m+n−2)
4 � and an embedding of Kl−k+2,m+n in N� (l−k)(m+n−2)

2 �. Notice

that in the genus counting, each handle in the orientable surface is traded for two
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crosscaps in the nonorientable surface. By Remark 3.2 and the assumption (3.1), we
have Theorem 3.3(ii).

If we let k = m and apply Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Suppose l ≥ m ≥ n.

(i) If γ(Km,m,n) = � (m−2)(m+n−2)
4 �, then γ(Kl,m,n) = � (l−2)(m+n−2)

4 � if l ≥ m ≥
n and (l,m,m + n) �∈ S in Table 2.1.

(ii) If γ(Km,m,n) = � (m−2)(m+n−2)
4 � and

2

⌈
(m− 2)(m + n− 2)

4

⌉
+

⌈
(l −m)(m + n− 2)

2

⌉
=

⌈
(l − 2)(m + n− 2)

2

⌉
,

then γ(Kl,m,n) = � (l−2)(m+n−2)
2 � if l > m ≥ n.

(iii) If γ(Km,m,n) = � (m−2)(m+n−2)
2 �, then γ(Kl,m,n) = � (l−2)(m+n−2)

2 � if l >
m ≥ n and n is odd or one of l or m is even.

Remark 3.5. Corollary 3.4(i) reduces the verification of the orientable genera
of Kl,m,n for three-fourths of all generally nonsymmetric triples (l,m, n) to that of
semisymmetric triples (m,m, n). Corollary 3.4(iii) reduces the verification of the
nonorientable genera of Kl,m,n for seven-eighths of generally nonsymmetric triples
(l,m, n) to that of semisymmetric triples (m,m, n). It is hoped that the determination
of genera of Km,m,n is easier.

Continuing to apply Theorem 3.3, we are able to determine the genera for the
following complete tripartite graphs.

Corollary 3.6.

(i)

γ(Kl,n,n) =

⌈
(l − 2)(n− 1)

2

⌉
, l ≥ n ≥ 2,(3.2)

γ(Kl,n,n) = (l − 2)(n− 1), l > n ≥ 2.(3.3)

(ii)

γ(Kl,m,n) =

⌈
(l − 2)(m + n− 2)

4

⌉
, m + n even, l ≥ 2(m + n− 2),(3.4)

γ(Kl,m,n) =

⌈
(l − 2)(m + n− 2)

2

⌉
, m + n even, l > 2(m + n− 2).(3.5)

(iii)

γ(Kl,n+2,n) =

⌈
n(l − 2)

2

⌉
, l ≥ n + 2 ≥ 2 and n is even,(3.6)

γ(Kl,n+2,n) = n(l − 2), l ≥ n + 2 ≥ 3.(3.7)
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(iv)

γ(Kl,2n,n) =

⌈
(l − 2)(3n− 2)

4

⌉
, l ≥ 2n ≥ 2,(3.8)

γ(Kl,2n,n) =

⌈
(l − 2)(3n− 2)

2

⌉
, l > 2n ≥ 2.(3.9)

(v)

γ(Kl,n+4,n) = (l − 2)(n + 1), l ≥ n + 4 ≥ 4 and n is even.(3.10)

In Corollary 3.6, (3.2) extends the orientable genus results of Ringel and Youngs
[RY] on Kn,n,n and White [Wh2] on Kmn,n,n (Craft also obtained the same result as
in (3.2) in his dissertation [Cr2]), (3.4) extends a result of Craft [Cr1] on the orientable
genus of Kl,m,n, where l ≥ 2(m+ n− 2) and m+ n and l are both even (Craft had a
stronger result than in (3.4) in his dissertation [Cr2]), (3.6) and (3.8) extend results of
Stahl and White [SW] on orientable genera of Kn+2,n+2,n and K2n,2n,n, respectively,
and (3.7) and (3.10) extend results of Stahl and White [SW] on nonorientable genera
of Kn+2,n+2,n and Kn+4,n+4,n, respectively.

Proof of Corollary 3.6. Since γ(Kn,n,n) = 1
2 (n − 1)(n − 2) [RY, Wh2], by The-

orem 3.3(i) (with k = m = n) we obtain (3.2), and by Theorem 3.3(ii) we obtain
(3.3).

Since γ(K2m+2n−4,m,n) = 1
2 (m + n− 3)(m + n− 2) [Cr1], by Theorem 3.3(i) we

obtain (3.4) and by Theorem 3.3(ii) we obtain (3.5).

By [SW], for n ≥ 4 and even, γ(Kn+2,n+2,n) = �n2

2 �. Let k = m = n+2, where n
is even. Then (k,m, n) = (n+ 2, n+ 2, n) �∈ S of Table 2.1. Applying Theorem 3.3(i)
with k = m = n + 2, we obtain (3.6).

By [SW], γ(Kn+2,n+2,n) = n2. Applying Theorem 3.3(iii) with k = m = n + 2
(hence m + n is even), we obtain (3.7).

Also by [SW], γ(K2n,2n,n) = (n−1)(3n−2)
2 . Apply Theorem 3.3(i) with k =

m = 2n. Since (l,m, n) = (l, 2n, 3n) �∈ S of Table 2.1, we obtain (3.8). Apply

Theorem 3.3(ii) with k = m = 2n. Since 2� (2n−2)(2n+n−2)
4 � + � (l−2n)(2n+n−2)

2 � =

(n− 1)(3n− 2) + � (l−2n)(3n−2)
2 � = � (l−2)(3n−2)

2 �, we have (3.9).
Since γ(Kn+4,n+4,n) = (n + 1)(n + 2), applying Theorem 3.3(iii) with k = m =

n + 4, we have (3.10). This finishes the proof of Corollary 3.6.
We also have the following bounds for γ(Kl,m,n) (respectively, γ(Kl,m,n)).
Theorem 3.7. Suppose l ≥ k ≥ m ≥ n.

(i) If γ(Kk,m,n) = � (k−2)(m+n−2)
4 �, then⌈

(l − 2)(m + n− 2)

4

⌉
≤ γ(Kl,m,n) ≤

⌈
(l − 2)(m + n− 2)

4

⌉
+ 1.(3.11)

(ii) If γ(Kk,m,n) = � (k−2)(m+n−2)
2 �, then⌈

(l − 2)(m + n− 2)

2

⌉
≤ γ(Kl,m,n) ≤

⌈
(l − 2)(m + n− 2)

2

⌉
+ 1.(3.12)

Proof. The first inequalities of (3.11) and (3.12) are just (1.1) and (1.2), respec-
tively.



486 K.-I. KAWARABAYASHI, C. STEPHENS, AND X. ZHA

To obtain the second inequality of (3.11), construct the diamond sum of an embed-
ding of Kk,m,n in S� (k−2)(m+n−2)

4 � and an embedding of Kl−k+2,m+n in S� (l−k)(m+n−2)
4 �,

and then apply Lemma 2.2(ii).

To obtain the second inequality of (3.12), construct the diamond sum of an embed-
ding of Kk,m,n in N� (k−2)(m+n−2)

2 � and an embedding of Kl−k+2,m+n in N� (l−k)(m+n−2)
2 �,

and then apply Lemma 2.2(i).

We make the following remark to conclude our paper. As shown in section 3,
the simple yet useful diamond sum of a complete tripartite graph with a complete
bipartite graph (Operation 3.1) helps us obtain a large percentage of genus embeddings
(orientable and nonorientable) of complete tripartite graphs (Theorem 3.3). It also
helps us reduce the determination of genera (orientable and nonorientable) of at least
75 percent of Kl,m,n’s to that of Km,m,n.

On the other hand, many conjectured genus embeddings of complete tripartite
graphs cannot be obtained by this operation. One reason for this is that in some
cases the sum of two ceiling functions may result in a number which is one more
than we need, as indicated in Lemma 2.2. One might be tempted to try to modify
Operation 3.1 by choosing the deleted vertex u from some part other than the largest
part of the 3-partition of the vertices of Kl,m,n. This will not work. The result
will, of course, be an embedding, but not a genus embedding; it is only possible to
construct genus embeddings by choosing u from the largest part. The reason for this
is that for an embedding to be a genus embedding, the number of faces must be as
large as possible. In particular, the number of triangular faces must be as large as
possible. In fact, the known lower bound on the genus of Kl,m,n, l ≥ m ≥ n, is
obtained by assuming that each edge between the part containing m vertices and
the part containing n vertices corresponds to a side of two different triangular faces.
Such triangular faces must be preexisting in the embedding of the complete tripartite
graph, for the faces from the complete bipartite graph have a size of at least four and
therefore the diamond sum will not add any new triangular faces.
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Abstract. A basic problem in graphs and hypergraphs is that of finding a large independent
set—one of guaranteed size. Understanding the parallel complexity of this and related independent
set problems on hypergraphs is a fundamental open issue in parallel computation. Caro and Tuza
[J. Graph Theory, 15 (1991), pp. 99–107] have shown a certain lower bound αk(H) on the size
of a maximum independent set in a given k-uniform hypergraph H and have also presented an
efficient sequential algorithm to find an independent set of size αk(H). They also show that αk(H)
is the size of the maximum independent set for various hypergraph families. Here, we show that
an RNC algorithm due to Beame and Luby [in Proceedings of the ACM–SIAM Symposium on
Discrete Algorithms, 1990, pp. 212–218] finds an independent set of expected size αk(H) and also
derandomizes it for certain special cases. (An intriguing conjecture of Beame and Luby implies that
understanding this algorithm better may yield an RNC algorithm to find a maximal independent
set in hypergraphs, which is among the outstanding open questions in parallel computation.) We
also present lower bounds on independent set size for nonuniform hypergraphs using this algorithm.
For graphs, we get an NC algorithm to find independent sets of size essentially that guaranteed by
the general (degree-sequence based) version of Turán’s theorem.
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1. Introduction. Finding large/maximal independent sets (ISs) in (hyper)graphs,
defined formally below, is a fundamental problem in parallel combinatorial optimiza-
tion. An outstanding open question in parallel computation is whether a maximal IS
in a given hypergraph can be found in (R)NC [13]. The work of Karp and Wigder-
son [15] on finding maximal independent sets (MISs) in graphs in NC was a break-
through that inspired several graph-theoretic NC algorithms and also led to a rich
theory of derandomization. The corresponding problems on hypergraphs have ap-
plications, e.g., to feasible communication in channelized cellular telephone systems
[19] but seem much harder than in the case of graphs. In this work we consider an
RNC algorithm for finding large ISs in hypergraphs due to Beame and Luby [3]1 and
derandomize it for various special cases. We show that this algorithm finds IS that
have been shown to exist for uniform hypergraphs via a sequential algorithm in [5]; we
also use the algorithm to give lower bounds on IS size for certain families of nonuni-
form hypergraphs. For graphs, our derandomization yields the first NC algorithm to
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1We describe the algorithm in section 2.1.
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find ISs of size essentially that guaranteed by the degree-sequence version of Turán’s
theorem [28].

Recall that a hypergraph H = (V,E) consists of a vertex set V and a collection
E of subsets of V ; each element of E is called a (hyper)edge. We will consider only
finite hypergraphs here and will throughout denote the number of vertices and edges
in a given hypergraph by n and m, respectively. An IS in H is a subset S of V that
does not contain any edge. S is an MIS if S is an IS and if no proper superset of S is
an IS. It is easy to find an MIS sequentially, but efficient parallel algorithms appear
much harder. There has been much work on finding MISs in parallel in graphs (see,
e.g., [8, 15, 17, 21]) and in hypergraphs (e.g., [1, 3, 6, 16, 14, 12]); as mentioned above,
it is a major open question in parallel computation whether these can be found in
RNC on hypergraphs. Since an MIS can be much smaller than a maximum IS (as in
the case of a star graph), it is also of much interest to find ISs that have a guaranteed
size. What is known in this context? Recall that given a hypergraph H = (V,E), the
degree of a vertex is the number of edges that it lies in; H is called k-uniform if all
the edges have exactly k elements. Also, for any integer � ≥ 0 and real r,(

r

�

)
≡ r(r − 1) · · · (r − l + 1)

�!
.(1)

Caro and Tuza showed in [5] that for any k ≥ 2, any k-uniform hypergraph H contains
an IS of size at least

αk(H) =
∑
v∈V

1(
d(v) + 1/(k − 1)

d(v)

) ;(2)

here and from now on, d(v) denotes the degree of v ∈ V . They showed that this
bound is tight for a large class of hypergraphs and also gave a sequential algorithm
that finds an IS of size αk(H) in O(km+ n) steps. Note that when k = 2, the bound
in (2) reduces to

α2(G) =
∑
v∈V

1

d(v) + 1
,(3)

which is the classical Turán bound for graphs [28]. To give the reader a better feel
for (2), we point out that(

d(v) + 1/(k − 1)

d(v)

)
= Θ((d(v))1/(k−1)).(4)

This can be shown as follows. We set in (1) r = d(v) + 1/(k − 1) and � = d(v) to get

(
d(v) + 1/(k − 1)

d(v)

)
=

d(v)∏
i=1

(
1 +

1

i(k − 1)

)
.(5)

By a standard expansion of ln(1 + x) for x ≥ 0 (see, e.g., [24]),

exp(x− x2/2) ≤ 1 + x ≤ exp(x).(6)

(Here and in what follows, exp(x) denotes ex.) Applying (6) to (5), we have (4).
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Remark 1. To handle the case where d(v) = 0, the right-hand side of (4) should
actually be Θ((d(v) + 1)1/(k−1)). However, since vertices of degree zero are irrelevant
and can always be added to our IS, we will always assume that vertex-degrees are
nonzero.

Our main results are as follows; these are spelled out in more detail in section 1.2.
Beame and Luby have presented a simple and elegant RNC algorithm for finding an IS
in a given hypergraph H [3]; intriguingly, they also conjecture that repeatedly finding
and removing such ISs, followed by obvious updates to H, finds an MIS in RNC.
(The work of [3] also presents another, more involved, candidate RNC algorithm for
finding an MIS in a given hypergraph. By the analysis of [16], this indeed yields
an RNC algorithm for MIS in hypergraphs with constant-sized edges.) Thus, it
is of interest to understand this algorithm better. We analyze the performance of
this algorithm and show that it finds an IS of expected size αk(H) for k-uniform
hypergraphs, for any k ≥ 2. We also analyze its performance for certain families of
nonuniform hypergraphs. Finally, we derandomize the algorithm for certain special
cases; in particular, in the case of graphs G, this yields an NC algorithm to find ISs
of size essentially α2(G).

1.1. Related work. The following parallel algorithms are known in the case of
graphs. Spencer [26] gave an RNC algorithm that yields an IS of expected size α2(G)
in graphs G. Goldberg and Spencer [9] presented an NC algorithm that finds an IS
of size at least �n2/(2m + n)� in any graph G, where n and m denote the number of
vertices and edges in G, respectively. This bound equals α2(G) when G is regular;
in all other cases, α2(G) is larger. (In fact, it is not hard to construct graph families
for which α2(G) = Θ(n) and n2/(2m + n) is just Θ(1); see item (i) in section 1.2.)
Alon, Babai, and Itai [1] studied the MIS problem on hypergraphs: they gave an NC
algorithm that finds an IS of size c(nk/m)1/(k−1), 0 < c < 1, in k-uniform hypergraphs
with k ≥ 2 being any constant. The work of Karger and Koller [12] generalized this
to arbitrary k.

1.2. Main results. The RNC algorithm of [3] that we shall analyze will be
defined in section 2.1; we will refer to it as algorithm A. We show that A finds an IS
of expected size αk(H) in k-uniform hypergraphs and also present related results and
extensions. Our main contributions are as follows.

(i) The expected size of the IS produced by A is larger than the size of the IS
found by other parallel algorithms for this problem. For instance, αk(H) is
always at least as large as the bound c(nk/m)1/(k−1) of [1, 12]. Furthermore,
one can construct families of k-uniform hypergraphs for which αk(H) is Θ(n)
while (nk/m)1/(k−1) is Θ(1). For instance, in the case of constant k, consider
hypergraphs H where:

– the vertex set is partitioned into two equal-sized sets V1 and V2, and
– H contains as (hyper)edges all k-sized subsets of V1 and n/(2k) many

pairwise-disjoint k-sized subsets of V2.
It is easy to check that for such families of hypergraphs, αk(H) = Θ(n) and
(nk/m)1/(k−1) = Θ(1).

(ii) We show how our analysis extends to certain families of nonuniform hyper-
graphs; we are not aware of any such bounds relating to large IS in this
nonuniform case.

(iii) Regarding derandomized versions, we have the following. Let C be a suitably
large positive constant. Given a graph or hypergraph, let ε = (n+m)−C . For
graphs G, we show how to construct an IS of size at least (1 − ε)α2(G), in
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NC. For hypergraphs where all the vertex-degrees are at most O(lg(n+m)),
we present NC algorithms to construct ISs of size at least (1 − ε) times the
size guaranteed by our above-mentioned RNC algorithms.

(iv) All of our results extend without any change in the processor or time com-
plexity to their weighted analogues. In the weighted analogues, we are given a
nonnegative weight for each vertex and wish to find an IS of large total weight.
The only way that we are aware of to extend arbitrary IS algorithms to their
weighted analogues is by a suitable (polynomial) blowup in the size of the
hypergraph, leading to a loss in efficiency.

One key facilitator of our results is a simple way of generating random permu-
tations that provides sufficient stochastic independence to conduct our analysis (see
Lemma 2.1).

2. The RNC algorithm.

2.1. Algorithms and tools. The algorithm A of [3] that we shall analyze is as
follows.2 Randomly permute the vertices; add a vertex v ∈ V to the IS iff there is no
edge e ∈ E such that v ∈ e and v is last among the vertices of e in the random order.
It is easy to verify that we produce a valid IS in this fashion. Spencer independently
considered this algorithm in the case of graphs and showed that the expected size of
the IS found is α2(G) [26]. (Actually, the algorithm of [3] adds v to the IS iff there is
no edge e ∈ E such that v ∈ e and v is first among the vertices of e in the random
order. It is easy to verify that this is equivalent to our description of A a few lines
above; our description is given so that we get a direct generalization of the algorithm
of [26].)

Our main analysis tool will be the Fortuin–Kasteleyn–Ginibre (FKG) inequality
[7]; for our purposes, we now recall a special case of the inequality. The reader is

referred to [2] for more about the inequality. Given a vector �Y = (Y1, Y2, . . . , Y�) of
independent random variables Yi ∈ {0, 1} and an event F that is completely deter-
mined by the Yi’s, call F increasing iff the following holds: for any �a such that F
holds when �Y = �a, F also holds when �Y = �b for any �b that coordinatewise dominates
�a (i.e., ai ≤ bi for all i). Then, for any collection of increasing events F1, F2, . . . , Ft,
the FKG inequality shows that

Prob

(
t∧

i=1

Fi

)
≥

t∏
i=1

Prob(Fi).(7)

A specific way of implementing algorithm A is given in Figure 1. As will be seen
in the proof of Lemma 2.1, the method of generating random permutations that we
adopt provides sufficient independence to employ tools such as the FKG inequality.

It is readily seen that A can be implemented in RNC. For each edge, we first
choose the vertex u in it of highest Xu value; removing duplicates from this multiset
of chosen vertices (e.g., through sorting) yields the set of vertices that will not lie
in our IS. This is easily done on a CREW PRAM in O(lg(m + n)) steps, using
(
∑

ei∈E |ei|) ≤ mn processors. Also, since this algorithm is simple and just uses some
basic primitives, it should be easy to implement in other parallel/distributed settings.

The following notation will be used frequently in the rest of this paper: given a
hypergraph H, denote by Bv the event that vertex v is in the final IS produced by

2The algorithm is called the permutation algorithm in [3].
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Algorithm A:
Independently for all v ∈ V do:

Sample Xv ∈ [0, 1) using the uniform distribution
on [0, 1).

Define a permutation π of the vertices in which
π(v) < π(u) iff Xv < Xu.
I := ∅;
for all v ∈ V do

{
jv = true.
For all e ∈ E such that v ∈ e

if π(v) = maxu∈e π(u), then jv = false.
If jv, then I := I ∪ {v};

}
return(I).

Fig. 1. The algorithm A.

our algorithm.

Remark 2. In case generating random reals poses a problem, we can take up the
following standard alternative for producing random permutations; this will also be
useful in section 3. Our modified algorithm A′ is as follows. Let K > 2 be an arbitrary
constant. Instead of choosing the Xv from [0, 1), A′ will independently select each Xv

uniformly at random from the set {0, 1, . . . , nK − 1}; for any vertex v, we now add v
to the IS iff there is no edge e such that v ∈ e and such that Xv ≥ Xu for all u ∈ e.
It is easy to verify that we will still produce an IS in this way. Furthermore, let E
be the event that all the Xv are distinct. First, note that for any distinct v and w,
Prob(Xv = Xw) = 1/nK ; so, by a union bound,

Prob(E) ≤ n2 · 1/nK = o(1).

Next, if we condition on E , the permutation π of A′ is distributed as a random
permutation. In particular, let Prob(Bv) and Prob′(Bv) denote the probability of
event Bv occurring, when we use algorithms A and A′, respectively. Then,

Prob′(Bv) ≥ Prob(E) ·Prob′(Bv

∣∣ E) = Prob(E) ·Prob(Bv) ≥ (1−n2−K) ·Prob(Bv).
(8)
Thus, if K > 2, the expected size of the IS constructed by A′ is essentially as large
as that constructed by A.

2.2. Analysis of the performance of A. We now analyze the performance
of algorithm A. Our basic tool will be Lemma 2.1. Before presenting the lemma,
we recall that a linear hypergraph is one in which every pair of distinct edges shares
at most one vertex. Linear hypergraphs have been studied in the context of parallel
construction of MISs, and NC algorithms are known for the MIS problem on linear
hypergraphs [18, 27]. Hence, we also see how well algorithm A does on linear hyper-
graphs; Lemma 2.1 also helps provide an exact bound on our algorithm’s performance
in this case.
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Lemma 2.1. Suppose a vertex v lies in edges e1, e2, . . . , et, whose respective
cardinalities are k1, k2, . . . , kt. Then,

Prob(Bv) ≥
∫ 1

0

[
t∏

i=1

(1 − xki−1)

]
dx.

Furthermore, this inequality becomes an equality in the case of linear hypergraphs.
Proof. Recall the random variables Xu from Figure 1. The main idea behind our

proof is that the computations become tractable once we condition on the value of
Xv. As we will see, the fact that the Xu’s are independent will help us much; this way
of introducing independence into a choice of permutations helps us use tools such as
the FKG inequality. Let x ∈ [0, 1) be arbitrary, and define, for all u 	= v, the random
variable Yu = 1 if Xu > x, and Yu = 0 otherwise. For each edge e, define the random
variable C(e) to be 1 if maxu:u∈e Xu > x, and C(e) to be 0 otherwise. Then

Prob(Bv|Xv = x) = Prob

([ ∧
e:v∈e

(C(e) = 1)

]
|Xv = x

)
.

Now, even conditional on Xv = x, the random variables Yu are independent with
Prob(Yu = 1) = 1 − x. Also, conditional on Xv = x, each C(e) is determined by
the values of the Yu and is increasing as a function of the Yu. Thus, by the FKG
inequality,

Prob(Bv|Xv = x) ≥
t∏

i=1

Prob(C(ei) = 1|Xv = x) =

t∏
i=1

(1 − xki−1).(9)

The first part of the lemma now follows from the fact that

Prob(Bv) =

∫ 1

0

Prob(Bv|Xv = x) dx.

It is also easy to check that the inequality in (9) becomes an equality in the case
of linear hypergraphs. Hence, the inequality of this lemma is in fact an equality for
linear hypergraphs.

Applying the linearity of expectation, we get the following theorem on the ex-
pected quality of the IS produced by A for an arbitrary hypergraph.

Theorem 2.2. Suppose we are given an arbitrary hypergraph H = (V,E) with
a weight wv ≥ 0 for each vertex v. Suppose each vertex v lies in d(v) edges, whose
cardinalities are kv,1, kv,2, . . . , kv,d(v). Then, the expected weight of the IS produced by
A is at least

∑
v

⎛⎝wv ·
∫ 1

0

⎡⎣d(v)∏
i=1

(1 − xkv,i−1)

⎤⎦ dx

⎞⎠ ;

in the case of linear hypergraphs, this lower bound is an exact bound on the expected
weight.

The next theorem considers the performance of A for unweighted uniform hyper-
graphs and shows that the expected size of the IS produced is at least as large as
αk(H).
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Theorem 2.3. For any k ≥ 2 and any k-uniform hypergraph H, A finds an IS
of expected size at least αk(H).

Proof. We will use the following identity from [10], which holds for any nonnegative
integer d and any real x that does not lie in the set {−d,−d + 1, . . . , 0}:

d∑
l=0

(
d
l

)
(−1)l

x + l
=

1

x

(
d + x
d

) .(10)

Specialized to k-uniform hypergraphs, Lemma 2.1 shows that

Prob(Bv) ≥
∫ 1

0

(1 − xk−1)d(v) dx

=

d(v)∑
l=0

(−1)l
(
d(v)

l

)∫ 1

0

x(k−1)l dx

=

d(v)∑
l=0

(−1)l
(
d(v)

l

)
1

1 + (k − 1)l

=

(
d(v) + 1/(k − 1)

d(v)

)−1

by (10).
Summing over all the vertices and applying the linearity of expectation completes

the proof.
Remark 3. If an edge is just a singleton {v}, then vertex v cannot lie in any IS.

Hence, whenever we calculate Prob(Bv) below, we assume without loss of generality
that all edges that v lies in have size at least 2.

Any algorithm that works for k-uniform hypergraphs and whose output solution
is a nonincreasing function of each vertex-degree (as is the function αk(H)) can be
immediately extended to give the same guarantee for hypergraphs in which all edges
have size at least k. We simply replace each edge by an arbitrary subset of it of size k to
achieve this. Thus, our results such as Theorem 2.3 also hold for hypergraphs with at
least k vertices in each edge. However, in various families of nonuniform hypergraphs
we can do better than this simple approach, as we demonstrate in Theorem 2.4.

We need some notation. Suppose each vertex v lies in D(j, v) edges of cardinality
k(j, v) for j = 1, 2, . . . , a(v). (In other words, vertex v lies in edges of a(v) different
sizes: k(j, v) for j = 1, 2, . . . , a(v). If H is a uniform hypergraph, then a(v) ≡ 1.) As
mentioned in Remark 3, we assume that k(j, v) > 1 for all j, v. Define

f(v) = min
j=1,2,...,a(v)

[D(j, v)]−1/(k(j,v)−1),

and let b(v) = minj(k(j, v)−1). Then, Theorem 2.4 shows that given a weight w(v) for
each vertex, A produces an IS of expected total weight at least Ω(

∑
v(w(v)/a(v)1/b(v))·

f(v)). We prove this by lower-bounding the quantity guaranteed by Theorem 2.2.
Our proof of Theorem 2.4 shows that the quantity guaranteed by Theorem 2.2 is

O(
∑

v w(v)f(v)); so our “closed-form” bound Ω(
∑

v(w(v)/a(v)1/b(v)) · f(v)) approxi-
mates the guarantee of Theorem 2.2 well when a(v) is “small” or b(v) is “large.”
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Theorem 2.4. In a hypergraph H = (V,E), let the notation a(v), b(v), and f(v)
be as above. Then, given weights w(v) ≥ 0 for the vertices, the expected weight of the
IS produced by A is at least Ω(

∑
v(w(v)/a(v)1/b(v)) · f(v)).

Proof. Fix a vertex v. For notational simplicity, let a = a(v), b = b(v), k(j) =
k(j, v), D(j) = D(j, v), and f = f(v). By Theorem 2.2, it suffices to show that

β
.
=

∫ 1

0

⎡⎣ a∏
j=1

(1 − xk(j)−1)D(j)

⎤⎦ dx ≥ Ω(f/a1/b).(11)

Let s = s(v) = argminj=1,2,...,a[D(j)]−1/(k(j)−1). The bound (4) and the proof of
Theorem 2.3 help show that

β ≤
∫ 1

0

(1 − xk(s)−1)D(s) dx = Θ(f);

thus, (11) is tight to within a constant factor if, e.g., a(v) is bounded by an absolute
constant (in particular, (11) is a tight bound for hypergraphs of constant maximum
degree), or if b(v) = Ω(log n).

We now prove (11). Let t = f/(2 · a1/b), and note that t ∈ [0, 1/2]. Define
γ

.
=

∏a
j=1(1 − tk(j)−1)D(j). Note that 1 − z ≥ exp(−2z) for 0 ≤ z ≤ 1/2. Thus we

have

γ ≥ exp

⎛⎝−O

⎛⎝ a∑
j=1

D(j)tk(j)−1

⎞⎠⎞⎠
≥ exp

⎛⎝−O

⎛⎝ a∑
j=1

D(j)
fk(j)−1

a

⎞⎠⎞⎠ (by the definition of b)

= exp

⎛⎝−O

⎛⎝1

a
·

a∑
j=1

D(j)fk(j)−1

⎞⎠⎞⎠
≥ exp

⎛⎝−O

⎛⎝1

a
·

a∑
j=1

1

⎞⎠⎞⎠ (by the definition of f)

= Ω(1).

Thus,

β ≥
∫ t

0

⎡⎣ a∏
j=1

(1 − xk(j)−1)D(j)

⎤⎦ dx ≥
∫ t

0

γ dx = tγ ≥ Ω(t),

establishing (11).

3. NC algorithms. Recall algorithm A′ of section 2.1, which is presented soon
after defining algorithm A. Note, in particular, from (8) that the expected size of the
IS constructed by A′ is essentially as large as that constructed by A. We now take up
the task of derandomizing algorithm A′. We will employ an “automata-fooling” ap-
proach of [22, 23, 12, 20]; see [25] for a different perspective on this approach through
Logspace-computable statistical tests. Specializing this approach for our purposes, we
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have the following. Suppose we have h finite-state automata A1,A2, . . . ,Ah with re-
spective state-sets S1, S2, . . . , Sh, such that Si∩Sj = ∅ if i 	= j. Each Si is partitioned
into n+1 layers, numbered 0, 1, . . . , n. Layer 0 has a unique state si, which is also the
start-state of Ai. All transitions are only from one layer to the layer numbered one
higher; there are no transitions from layer n. Outgoing arcs from a state are num-
bered by an integer in the range {0, 1, . . . , 2d − 1} for some integer d. Given a word
γ1γ2 . . . γn, where each γi is a d-bit string, each Ai moves from its start-state si to
some state in layer n of Si, in the obvious way. (In case some γi does not correspond to
a valid transition, Ai moves to a unique “reject” state at which it remains from then
on.) Now suppose we are given a parameter ε ∈ (0, 1). Let R = r + 2d + 1/ε, where
r =

∑
i |Si|. Then, there is an explicit deterministic parallel algorithm to construct a

certain multiset T whose elements are from the set {0, 1, . . . , 2d − 1}n such that the
total cardinality of T is at most poly(R) [22, 23, 12, 20]; this algorithm uses poly(R)
processors and runs in polylog(R) time. The key property of T is as follows. Given a
state t in layer n of Si, let p1(i, t) be the probability of reaching state t if we choose
γ1γ2 . . . γn uniformly at random from {0, 1, . . . , 2d−1}n; let p2(i, t) be this probability
if γ1γ2 . . . γn is chosen uniformly at random from T . Then, T has the useful property
that

∀(i, t), |p1(i, t) − p2(i, t)| ≤ ε.(12)

We will show how to adapt the above framework to derandomize some of our
results. In our applications, automaton Ai will basically correspond to running A′

and deciding if a vertex i is put in the IS or not by A′; in particular, we will have
h = n. Fix an automaton Ai. The transitions from layer j−1 to j in it will correspond
to the various choices of the value Xj . (Since Xj is chosen at random from the set
{0, 1, . . . , nK − 1}, the value d will be Θ(lgn).) Now suppose we can construct a
layered automaton Ai of this type with poly(n + m) states, such that the final state
entered by Ai determines whether A′ puts the vertex i in the IS or not. Then we can
choose ε to be of the form (n + m)−C , where C is a suitably large positive constant;
by (12), we will have a polynomial-sized sample space T constructible in NC, such
that sampling from T produces an IS of sufficiently large expected size. By trying out
all points in T , we will achieve the desired NC-derandomization.

Thus, the question boils down to the following: for what families of hypergraphs
do polynomial-sized layered automata of the above type exist? We show that this
property holds for two families of hypergraphs:

(H1) graphs, and
(H2) hypergraphs where, for some constant c, all the vertex-degrees are bounded

by c · lg(n + m).
Fix a vertex i. By renumbering the vertices (just for the sake of this automaton), we
will assume that i = 1. The automaton Ai for both these families of hypergraphs
will have the following structure. Layer 0 has the unique start-state si. Layer 1 has
nK states numbered s1,0, s1,1, . . . , s1,nK−1; Ai (i.e., A1 after our renumbering) will
transit from si to state s1,� in layer 1 iff Xi = �; this way, the automaton can be made
to remember the value of Xi. Layer n has two states “accepti,n” and “rejecti,n”:
for a given choice of all the random variables Xv, Ai will enter these states if A′,
respectively, puts i or does not put i in the IS. Consider any other layer j of Ai (i.e.,
2 ≤ j ≤ n − 1). This layer has a state “rejecti,j” as well as a polynomial number
of other states. All transitions from rejecti,j are to the state rejecti,j+1 in the next
layer. The invariant we wish to maintain is the following:
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(P) For j = 2, 3, . . . , n, Ai enters state rejecti,j for a given sequence
of values for the Xv iff, just by inspecting the value of X1 (i.e., Xi)
and those of X2, X3, . . . , Xj , we have with probability one that A′

will not put vertex i in the IS.
We may use the nonreject states to remember some useful information to assist us in
maintaining the invariant (P).

The automata-construction is simple in the case of graphs: Ai simply has two
states, ok-so-fari,j and rejecti,j , in layer j for j = 2, 3, . . . , n, and the states ok-so-fari,n
and accepti,n are identical. As above, all transitions from rejecti,j go to rejecti,j+1.
There is a transition from state s1,� in layer 1 to rejecti,2 iff vertex 2 is a neighbor
of i, and if X2 ≤ X1(= �); otherwise, we transit from s1,� to ok-so-fari,2. In general,
there is a transition from ok-so-fari,j−1 to rejecti,j iff vertex j is a neighbor of i, and
if Xj ≤ Xi; otherwise, we will transit from ok-so-fari,j−1 to ok-so-fari,j . It is easy to
see that this construction satisfies (P), and so we are done in the case of graphs.

For the family of hypergraphs (H2), the situation is not much more difficult.
Consider Ai, and once again renumber the vertices so that i = 1. Let e1, e2, . . . , et
be the sets in the given hypergraph that contain the vertex i, and define e�,j = e� ∩
{1, 2, . . . , j}. To maintain the invariant (P), it suffices to know which of the following
three disjoint cases holds for each e�, after reading the values of X1, X2, . . . , Xj :

(i) e�,j = e�, and Xu ≤ Xi for all u ∈ e�,j ;
(ii) e�,j 	= e�, and Xu ≤ Xi for all u ∈ e�,j ;
(iii) Xu > Xi for some u ∈ e�,j .

Note that Ai should enter state rejecti,j iff case (i) holds for some �. Otherwise, case
(ii) or case (iii) holds for each �. Thus, in addition to state rejecti,j , we need only
2t ≤ 2c·lg(n+m) = (n + m)c states to remember which case holds for each �. Given
these semantics for the states, it is also easy to see how the state-transitions should
occur. Thus, we get a polynomial-sized bound for Si for the family of hypergraphs
(H2) also.

Constant-degree hypergraphs. When the maximum degree of any vertex is bounded
by some constant d > 1, we propose an alternative approach for finding a random
permutation of the vertices. The resulting algorithm yields an IS of weight at least
(1−ε) times the expected value presented in Theorem 2.2; ε here denotes an arbitrary
positive constant.

Our approach uses algorithm A, as given in Figure 1. Recall that Bv is the event
that vertex v is in the final IS produced by A. We rewrite Prob(Bv) as follows. Sup-
pose that the vertex v lies in edges ev,1, ev,2, . . . , ev,d(v), where d(v) ≤ d; as mentioned
in Remark 3, we assume that all of these edges have size at least 2. Let [k] denote the
set {1, 2, . . . , k}. Denote by Cv,u the event “Xv ≥ Xu”; then, by inclusion-exclusion,

Prob(Bv) = 1 +
∑

S⊆[d(v)], |S|≥1

(−1)|S| · Prob

(∧
i∈S

[∀u ∈ ev,i, Cv,u]

)
(13)

= 1 +
∑

S⊆[d(v)], |S|≥1

(−1)|S| · Prob

(
∀u ∈

[(⋃
i∈S

ev,i

)
\{v}

]
, Cv,u

)
(14)

= 1 +
∑

S⊆[d(v)], |S|≥1

(−1)|S| ·
(

1 +

∣∣∣∣∣
(⋃

i∈S

ev,i

)
− {v}

∣∣∣∣∣
)−1

;(15)
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equation (15) follows from the fact that each Xu, u ∈
⋃

i∈S ev,i, is equally likely to be
max{Xw : w ∈

⋃
i∈S ev,i}.

Denote by Sn the set of all permutations of [n]. A family of permutations F ⊆ Sn

is defined in [4] to be approximately minwise independent with relative error δ > 0 if,
for all X ⊆ [n] and x ∈ X, we have for a randomly chosen permutation π ∈ F that∣∣∣∣Prob(min{π(X)} = π(x)) − 1

|X|

∣∣∣∣ ≤ δ

|X| .

We abbreviate the above property by (n, δ)-amw. We will use the property that for
any n and δ > 0, there is an explicitly constructible permutation family F (n, δ) that
satisfies property (n, δ)-amw and has cardinality nO(lg(1/δ)) [11]. Note that given such
a family F (n, δ), we can generate a family of permutations of the same size3 that
satisfies

1 − δ

|X| ≤ Prob(max{π(X)} = π(x)) ≤ 1 + δ

|X| .(16)

Thus, without loss of generality, when referring to F (n, δ), we assume that F satisfies
(16). We show below that for an appropriate constant δ = δ(ε, d), the expected size of
an IS produced by using a random element of F (n, δ) is at least (1−ε) times the value
guaranteed by Theorem 2.2. Thus, it suffices to choose a random permutation from
the explicit polynomial-sized set F (n, δ). We can then apply a parallel exhaustive
search on the polynomial-sized F (n, δ) to find a “good” permutation in NC.

Theorem 3.1. Consider the family of hypergraphs with maximum degree at most
d for any given constant d > 0. Then, given any constant ε > 0, there is an NC
algorithm to find in these hypergraphs an IS of total weight at least (1 − ε) times the
expected weight guaranteed by Theorem 2.2.

Proof. Let δ > 0 be a constant (to be determined). We denote by Prob(Bv|F (n, δ))
the probability that vertex v is in the final IS produced by A, conditioned on the ran-
dom choice of π from F (n, δ); then, it is sufficient to show that for any v ∈ V ,
Prob(Bv|F (n, δ)) is at least (1 − ε) times the value guaranteed by Lemma 2.1. The
statement of the theorem will then follow from the linearity of expectation. Denote
by VS the set of vertices that lie in the subset of edges ev,i1 , . . . , ev,i|S| . Then, by
inclusion-exclusion,

Prob(Bv|F (n, δ)) =
∑

S⊆[d(v)]

(−1)|S|·Prob(v is last in π among the vertices in

VS | F (n, δ)).

Using (15) and (16), we get that

Prob(Bv|F (n, δ)) ≥ 1 +
∑

S⊆[d(v)]: |S|≥1

(−1)|S| ·
(

1 +

∣∣∣∣∣
(⋃

i∈S

ev,i

)
− {v}

∣∣∣∣∣
)−1

−δ
∑

S⊆[d(v)]: |S|≥1

(
1 +

∣∣∣∣∣
(⋃

i∈S

ev,i

)
− {v}

∣∣∣∣∣
)−1

3This is done by taking, for any permutation π chosen from F , the reverse permutation π′, that
is, π′(i) = n + 1 − π(i) for all i.
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≥ Prob(Bv) − δ
∑

S⊆[d(v)]: |S|≥1

(1/2)

= Prob(Bv) − δ

(
2d−1 − 1

2

)
.

(The second inequality follows from our assumption that all the edges ev,i have size at

least 2.) It follows from Lemma 2.1 that Prob(Bv) ≥
∫ 1

0
(1−x)d(v) dx = 1

d(v)+1 ≥ 1
d+1 .

Hence, taking δ = 2ε
(d+1)(2d−1)

and summing over all v ∈ V , we get the statement of

the theorem.

4. Concluding remarks. A question that remains open is to obtain a full de-
randomization of our RNC algorithms. Any progress on the classical MIS problem
on hypergraphs would also be most interesting.
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Abstract. For several graph-theoretic parameters such as vertex cover and dominating set,
it is known that if their sizes are bounded by k, then the treewidth of the graph is bounded by
some function of k. This fact is used as the main tool for the design of several fixed-parameter
algorithms on minor-closed graph classes such as planar graphs, single-crossing-minor-free graphs,
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parameter-treewidth property if F has bounded local treewidth. We also show “if and only if” for
some graph parameters, and thus, this result is in some sense tight. In addition we show that, for
a slightly smaller family of graph parameters called minor-bidimensional, all minor-closed graph
families F , excluding some fixed graphs, have the parameter-treewidth property. The contraction-
bidimensional parameters include many domination and covering graph parameters such as vertex
cover, feedback vertex set, dominating set, edge-dominating set, and q-dominating set (for fixed q).
We use our theorems to develop new fixed-parameter algorithms in these contexts.
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1. Introduction. The last ten years have witnessed the rapid development of
a new branch of computational complexity called parameterized complexity; see the
book of Downey and Fellows [19]. Roughly speaking, a parameterized problem with
a parameter of nonnegative integer k is fixed-parameter tractable (FPT) if it admits
an algorithm with running time h(k) |I|O(1). (Here h is a function depending only on
k and |I| is the size of the instance.)

A celebrated example of an FPT problem is the vertex cover, which asks whether
an input graph has at most k vertices that are incident to all its edges. When parame-
terized by k, the k-vertex cover problem admits a solution as fast as O(kn+1.285k) [9].
Moreover, if we restrict k-vertex cover to planar graphs, then it is possible to design
FPT algorithms where the contribution of k in the nonpolynomial part of their com-
plexity is subexponential. The first algorithm of this type was given by Alber, Fernau,

and Niedermeier [4]. Recently, Fomin and Thilikos reported an O(k4 + 24.5
√
k + kn)
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pus Nord – Mòdul C5, c/Jordi Girona Salgado 1-3, E-08034, Barcelona, Spain (sedthilk@lsi.upc.es).
Supported by the EU basic research project 001907 DELIS and by the Spanish CICYT project
TIC-2002-04498-C05-03 (TRACER).

501



502 DEMAINE, FOMIN, HAJIAGHAYI, AND THILIKOS

algorithm for planar k-vertex cover [25].

However, not all parameterized problems are FPT. A typical example of such a
problem is the dominating set, asking whether an input graph has at most k ver-
tices that are adjacent to the rest of the vertices. When parameterized by k, the
k-dominating set problem is known to be W [2]-complete and thus it is not expected
to be FPT [19]. Interestingly, the fixed-parameter complexity of the same problem
can be distinct for special graph classes. During the last five years, there has been
substantial work on fixed-parameter algorithms for solving the k-dominating set on
planar graphs and different generalizations of planar graphs. For this class, the prob-
lem can be solved in O(8kn) time [2]. An algorithm with a sublinear exponent for the

problem with running time O(46
√

34kn) was given by Alber et al. [1]. Recently, Kanj

and Perković [30] improved the running time to O(227
√
kn) and Fomin and Thilikos

to O(215.13
√
kk + n3 + k4) [23, 25]. The fixed-parameter algorithms for extensions of

planar graphs, like bounded-genus graphs and graphs excluding single-crossing graphs
as minors, are introduced in [13, 15, 20].

In the majority of these results, the design of FPT algorithms for solving prob-
lems such as k-vertex cover or k-dominating set in a sparse graph class F is based on
the following lemma: every graph G in F , where the value of the graph parameter
is at most k, has treewidth bounded by t(k), where t is a strictly increasing function
depending only on F . With some work (sometimes very technical), a tree decom-
position of width t(k) is constructed and standard dynamic-programming techniques
on graphs of bounded treewidth are implemented. Of course this method cannot be
applied for any graph class F . For instance, the n-vertex complete graph Kn has a
dominating set of size one and treewidth equal to n− 1. So the emerging question is:
For which (larger) graph classes and for which graph parameters can the “bounding
treewidth method” be applied?

In this paper we give a complete characterization of minor-closed graph families for
which the aforementioned “bounding treewidth method” can be applied for a wide
family of graph parameters. For a given graph parameter P , we say that a graph
family F has the parameter-treewidth property for P if there is a strictly increasing
function t : N → N such that every graph G ∈ F where P (G) ≤ k implies that G
has treewidth at most t(k). For example, it is known [1, 23, 30] that any planar
graph with a dominating set of size at most k has treewidth O(

√
k). Therefore, the

class of planar graphs has the parameter-treewidth property for the dominating-set
parameter.

Our main result is that for a large family of graph parameters called contraction-
bidimensional, a minor-closed graph family F has the parameter-treewidth property
if F has bounded local treewidth. Moreover, we show that the inverse is also correct
if some simple condition is satisfied by P . In addition we show that, for a slightly
smaller family of graph parameters called minor-bidimensional, every minor-closed
graph family F excluding some fixed graph has the parameter-treewidth property.
The bidimensional-parameter family includes many domination and covering graph
parameters such as vertex cover, feedback vertex set, dominating set, edge-dominating
set, and q-dominating set (for fixed q) (see also [15, 12] for more examples). Another
example of a contraction-bidimensional parameter is the length of a minimum travel-
ing salesman tour, i.e., the smallest number of edges in a walk visiting all vertices of
the graph.

The proof of the main result uses the characterization of Eppstein for minor-
closed families of bounded local treewidth [21] and Diestel et al.’s modification of



BIDIMENSIONAL PARAMETERS AND LOCAL TREEWIDTH 503

the Robertson and Seymour excluded-grid-minor theorem [18]. In addition, the
proof is constructive and can be used for constructing fixed-parameter algorithms
to decide bidimensional graph parameters on minor-closed families of bounded local
treewidth. These algorithms parallel the general fixed-parameter algorithm of Frick
and Grohe [27] for properties definable in first-order logic in graph families of bounded
local treewidth; our results apply, e.g., to minor-bidimensional parameters definable
in monadic second-order logic in nontrivial minor-closed graph families. See section 5
for details.

This paper is organized as follows. Section 2 contains the formal definitions of
the concepts used in the paper. Section 3 presents two combinatorial results which
support the main result of the paper, proved in section 4. Finally, in section 5 we
present the algorithmic consequences of our results and we conclude with some open
problems.

2. Definitions and preliminary results. Let G be a graph with vertex set
V (G) and edge set E(G). We let n denote the number of vertices of a graph when it
is clear from context. For every nonempty W ⊆ V (G), the subgraph of G induced by
W is denoted by G[W ]. We define the q-neighborhood of a vertex v ∈ V (G), denoted
by Nq

G[v], to be the set of vertices of G at distance at most q from v. Notice that
v ∈ Nq

G[v]. We put NG[v] = N1
G[v]. We also often say that a vertex v dominates

subset S ⊆ V (G) if NG[v] ⊇ S.
Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by

contracting the edge e; that is, to get G/e we identify the vertices x and y and remove
all loops and duplicate edges. A graph H obtained by a sequence of edge contractions
is said to be a contraction of G. We use the notation H �c G for H a contraction
of G. Notice that the relation H �c G partitions the edge set of G into edges that
are also the edges of H and the contracted edges. We say that a vertex v of G is
contracted to a vertex u of H if there is a path from u to v in G such that all edges
in this path are contracted. A graph H is a minor of a graph G if H is the subgraph
of a contraction of G. We use the notation H � G (respectively, H �c G) for H a
minor (contraction) of G. A family (or class) of graphs F is minor-closed if G ∈ F
implies that every minor of G is in F . A minor-closed graph family F is H-minor-free
if H /∈ F .

The m×m grid is the graph on {1, 2, . . . ,m2} vertices {(i, j) : 1 ≤ i, j ≤ m} with
the edge set

{(i, j)(i′, j′) : |i− i′| + |j − j′| = 1}.

For i ∈ {1, 2, . . . ,m}, the vertex set (i, j), j ∈ {1, 2, . . . ,m}, is referred to as the ith
row and the vertex set (j, i), j ∈ {1, 2, . . . ,m}, is referred to as the ith column of the
m ×m grid. The vertices (i, j) of the m ×m grid with i ∈ {1,m} or j ∈ {1,m} are
called boundary vertices and the rest of the vertices are called nonboundary vertices.

The notion of treewidth was introduced by Robertson and Seymour [31]. A tree
decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )) with {Xi | i ∈ I} a
family of subsets of V (G) and T a tree, such that

1.
⋃

i∈I Xi = V (G);
2. for all {v, w} ∈ E(G), there is an i ∈ I with v, w ∈ Xi; and
3. for all i0, i1, i2 ∈ I, if i1 is on the path from i0 to i2 in T , then Xi0∩Xi2 ⊆ Xi1 .

The width of the tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The
treewidth tw(G) of a graph G is the minimum width of a tree decomposition of G.

We need the following facts about treewidth. The first fact is trivial.
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• For any complete graph Kn on n vertices, tw(Kn) = n− 1.

The second fact is well known but its proof is not trivial. (See, e.g., [17].)

• The treewidth of the m×m grid is m.

The next fact we need is the improved version of the Robertson and Seymour
theorem on excluded grid minors [32] due to Diestel et al. [18]. (See also the textbook
[17].)

Theorem 2.1 (see [18]). Let r,m be integers, and let G be a graph of treewidth

at least m4r2(m+2). Then G contains either Kr or the m×m grid as a minor.

Formally, a graph parameter P is a function that maps graphs to nonnegative
integers. The parameterized problem associated with P asks, for a fixed k, whether
P (G) ≤ k for a given graph G. Given a graph parameter P , we say that a graph
family F has the parameter-treewidth property for P if there is a strictly increasing
function t such that every graph G ∈ F has treewidth at most t(P (G)).

Definition 2.2. Let g : N → N be a strictly increasing function. We say that a
graph parameter P is g-minor-bidimensional1 if the following apply:

• Contracting an edge, deleting an edge, or deleting a vertex in a graph G cannot
increase P (G).

• For the r × r grid R, P (R) ≥ g(r).

Similarly, a graph parameter P is g-contraction-bidimensional if the following
apply:

• Contracting an edge in a graph G cannot increase P (G).
• For any r × r augmented grid R of constant span, P (R) ≥ g(r).

In the above definition, an r × r augmented grid of span s is an r × r grid with
some extra edges such that each vertex is attached to at most s nonboundary vertices
of the grid (see an example in Figure 2.1). Intuitively, bidimensional parameters are
required to be “large” in two-dimensional grids.

We note that a g-minor-bidimensional parameter is also a g-contraction-bidimen-
sional parameter. One can easily observe that many graph parameters, such as min-
imum sizes of a dominating set, q-dominating set (distance q-dominating set for a
fixed q), vertex cover, feedback vertex set, and edge-dominating set (see exact defini-
tions of the corresponding graph parameters in [15]), are Θ(r2)-minor-bidimensional
or Θ(r2)-contraction-bidimensional parameters.

Here, we present a theorem for minor-bidimensional parameters on general minor-
closed classes of graphs excluding some fixed graphs, which plays an important role
in the main result of this paper.

Theorem 2.3. If a g-minor-bidimensional parameter P on an H-minor-free
graph G has value at most k, then tw(G) ≤ 24|V (H)|2(g−1(k)+2) log(g−1(k)) =

2O(g−1(k) log(g−1(k))).

Proof. Notice that K|V (H)| contains as a minor any graph on |V (H)| vertices.
Therefore we may assume that G is K|V (H)|-minor-free. If the claimed upper bound
for the treewidth of G is not correct, then Theorem 2.1 implies that G contains a
m × m grid R as a minor for m > g−1(k). Because P is g-minor-bidimensional,
P (R) ≥ g(m). The bidimensionality of P along with the fact that R is a minor of G
yields P (G) ≥ g(m). Therefore, k ≥ g(m), a contradiction.

Theorem 2.3 can be applied for minor-bidimensional parameters such as a vertex
cover or feedback vertex set.

1Closely related notions of bidimensional parameters are introduced by the authors in [13].
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Fig. 2.1. An augmented 12 × 12 grid with span 8.

The notion of local treewidth was introduced by Eppstein [21] (see also [29]). The
local treewidth of a graph G is

ltw(G, r) = max{tw(G[Nr
G[v]]) : v ∈ V (G)}.

For a function f : N → N we define the minor-closed class of graphs of bounded local
treewidth

L(f) = {G : ∀H � G ∀r ≥ 0, ltw(H, r) ≤ f(r)}.

Also we say that a minor-closed class of graphs C has bounded local treewidth if
C ⊆ L(f) for some function f .

Well-known examples of minor-closed classes of graphs of bounded local treewidth
are graphs of bounded treewidth, planar graphs, graphs of bounded genus, and single-
crossing-minor-free graphs.

Many difficult graph problems can be solved efficiently when the input is re-
stricted to graphs of bounded treewidth (see, e.g., Bodlaender’s survey [7]). Eppstein
[21] made a step forward by proving that some problems, like subgraph isomorphism
and induced subgraph isomorphism, can be solved in linear time on minor-closed
graphs of bounded local treewidth. Also, the classic Baker’s technique [6] for ob-
taining approximation schemes on planar graphs for different NP-hard problems can
be generalized to minor-closed families of bounded local treewidth. (See [21] for a
generalization of these techniques.)

An apex graph is a graph G such that, for some vertex v (the apex ), G − v is
planar. The following result is due to Eppstein [21].

Theorem 2.4 (see [21]). Let F be a minor-closed family of graphs. Then F is
of bounded local treewidth if and only if F does not contain all apex graphs.

3. Combinatorial lemmas. In this section we prove two combinatorial lemmas
regarding grids and graphs of bounded local treewidth.

Lemma 3.1. Suppose we have an m×m grid H and a subset S of vertices in the
central (m− 2�)× (m− 2�) subgrid H ′, where s = |S| and � = � 4

√
s�. Then H has as
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l l

Fig. 3.1. Left: The grid H, the points in S′′, and their grouping. Here � = 6. Right: Con-
struction of the minor �× � grid R passing through the points in S′′.

a minor the � × � grid R such that each vertex in R is a contraction of at least one
vertex in S and other vertices in H.

Proof. Let sx denote the number of distinct x coordinates of the vertices in S,
and let sy denote the number of distinct y coordinates of the vertices in S. Thus,
s ≤ sx · sy. Assume by symmetry that sy ≥ sx, and therefore sy ≥

√
s.

We define the subset S′ of S by removing all points but one that share a common
y coordinate, for each y coordinate. Thus, all y coordinates of the vertices in S′

are distinct, and |S′| = sy. We discard all but �2 vertices in S′ to form a slightly
smaller set S′′, because |S′| = sy ≥

√
s ≥ (� 4

√
s�)2 = �2. We divide these �2 vertices

into � groups, each of exactly � consecutive vertices according to the order of their y
coordinates. Now we have the situation shown on the left of Figure 3.1.

We construct the minor grid R as shown on the right of Figure 3.1. Because
each y coordinate is unique, we can draw long horizontal segments through every
point. The � columns on the left-hand and right-hand sides of H allow us to connect
these horizontal segments together into � vertex-disjoint paths, each passing through
exactly � vertices of S′′. These paths can be connected by vertical segments within
each group. By contracting each horizontal segment into a single vertex, and by some
further contraction, we can obtain the desired � × � grid R as a minor. Each vertex
of this grid R is a contraction of at least one vertex in S′′ (and hence in S) and other
vertices in H.

Lemma 3.2. Let G ∈ L(f) be a graph containing the m×m grid H as a subgraph,
m > 2�, where � = f(2) + 1. Then the central (m− 2�)× (m− 2�) subgrid H ′ has the
property that every vertex v ∈ V (G) is adjacent to less than �4 vertices in H ′.

Proof. Suppose for contradiction that there is a vertex v ∈ V (G) such that
S = NG[v] ∩ V (H) has size s = |S| ≥ �4. By Lemma 3.1, H ′ has as a minor an �× �
grid R such that each vertex in R is a contraction of at least one vertex in S and other
vertices in H ′. If we perform these contractions and deletions in G, then v is adjacent
to all vertices in R. Define R+v to be the grid R plus the vertex v (if v is not already
in R) and the star of connections between v and all vertices in R. Then R + v is a
minor of G, but has diameter 2 and treewidth � ≥ f(2) + 1, a contradiction.
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4. Main theorem. Now we are ready to present the main result of this paper.

Theorem 4.1. Let P be a contraction-bidimensional parameter. A minor-closed
graph class F has the parameter-treewidth property for P if F is of bounded local
treewidth. In particular, for any g-contraction-bidimensional parameter P , function
f : N → N, and any graph G ∈ L(f) on which P has value at most k, we have

tw(G) ≤ 2O(g−1(k) log g−1(k)). (The constant in the O notation depends on f(1) and
f(2).)

Proof. Let r = f(1) + 1 and � = f(2) + 1. Let G ∈ L(f) be a graph on
which the graph parameter P has value k. Let m be the largest integer such that
tw(G) ≥ m4r2(m+2). Without loss of generality, we assume G is connected, and
m > 2� (otherwise, tw(G) is a constant because both r and � are constants). Then
G has no complete graph Kr as a minor. By Theorem 2.1, G contains an m × m
grid H as a minor. Thus there exists a sequence of edge contractions and edge/vertex
deletions reducing G to H. We apply to G the edge contractions from this sequence,
we ignore the edge deletions, and instead of deletion of a vertex v, we only contract
v into one of its neighbors. Call the new graph G′, which has the m × m grid H
as a subgraph and, in addition, V (G′) = V (H). Because graph parameter P is
contraction-bidimensional, its value on G′ will not increase. By Lemma 3.2, we know
that the central (m − 2�) × (m − 2�) subgrid H ′ of H has the property that every
vertex v ∈ V (G′) is adjacent to less than �4 vertices in H ′.

Now, suppose that in graph G′, we further contract all 2� boundary rows and 2�
boundary columns into two boundary rows and two boundary columns (one on each
side) and call the new graph G′′. Note that here, G′′ and H ′ have the same set of
vertices. The degree of each vertex of G′′ to the vertices that are not on the boundary
is at most (� + 1)2�4, which is a constant because � is a constant. Here the factor
(�+1)2 is for the boundary vertices, each of which is obtained by contraction of at most
(�+ 1)2 vertices. Again, because graph parameter P is contraction-bidimensional, its
value on G′′ does not increase and thus it is at most p. On the other hand, because
the graph parameter is g-contraction-bidimensional, its value on graph G′′ is at least
g(m−2�). Thus g−1(k) ≥ m−2�, so m = O(g−1(k)). By Theorem 2.3, the treewidth

of the original graph G is at most 2O(g−1(k) log g−1(k)), as desired.

The apex graphs Ai, i = 1, 2, 3, . . . , are obtained from the i × i grid by adding a
vertex v adjacent to all vertices of the grid. It is interesting to see that, for a wide
range of graph parameters, the inverse of Theorem 4.1 also holds.

Lemma 4.2. Let P be any contraction-bidimensional parameter where P (Ai) =
O(1) for any i ≥ 1. A minor-closed graph class F has the parameter-treewidth property
for P only if F is of bounded local treewidth.

Proof. The proof follows from Theorem 2.4. The apex graph Ai has diameter
≤ 2 and treewidth ≥ i. So a minor-closed family of graphs with the parameter-
treewidth property for P cannot contain all apex graphs and hence it is of bounded
local treewidth.

Typical examples of graph parameters satisfying Theorem 4.1 and Lemma 4.2 are
the dominating set and its generalization q-dominating set for a fixed constant q (in
which each vertex can dominate its q-neighborhood). These graph parameters are
Θ(r2)-contraction-bidimensional and their value is 1 for any apex graph Ai, i ≥ 1.

We can strengthen the “if and only if” result provided by Theorem 4.1 and
Lemma 4.2 with the following lemma. We just need to use the fact that if the value
of P is less than the value of P ′, then the parameter-treewidth property for P implies
the parameter-treewidth property for P ′ as well.
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Lemma 4.3. Let P be a graph parameter whose value is lower bounded by some
contraction-bidimensional parameter and let P (Ai) = O(1) for any i ≥ 1. Then a
minor-closed graph class F has the parameter-treewidth property for P if and only if
F is of bounded local treewidth.

Proof. The “only if” direction is the same as in Lemma 4.2. Suppose now that
P ′ is a contraction-bidimensional parameter where, for any graph G, P ′(G) ≤ P (G).
Applying Theorem 4.1 to P ′ we obtain that, if F is of bounded local treewidth,
then F has the parameter-treewidth property for P ′, which means that there exists
a strictly increasing function t such that, for any graph G ∈ F , tw(G) ≤ t(P ′(G)).
As P ′(G) ≤ P (G), we have that tw(G) ≤ t(P (G)), and thus F has the parameter-
treewidth property for P .

Lemma 4.3 can be used not only for contraction-bidimensional graph parameters.
As an example, we mention the clique-transversal number of a graph, i.e., the minimum
number of vertices meeting all the maximal cliques of a graph. (The clique-transversal
number is not contraction-bidimensional because an edge contraction may create a
new maximal clique and the value of the clique-transversal number may increase.) It
is easy to see that this graph parameter always exceeds the domination number (the
size of a minimum dominating set) and that any graph in Ai has a clique-transversal
set of size 1.

Another application is the Π-domination number, i.e., the minimum cardinality
of a vertex set that is a dominating set of G and satisfies some property Π in G. If this
property is satisfied for any one-element subset of V (G), then we call it regular. Ex-
amples of known variants of the parameterized dominating-set problem corresponding
to the Π-domination number for some regular property Π are the following parame-
terized problems: the independent dominating set problem, the total dominating set
problem, the perfect dominating set problem, and the perfect independent dominating
set problem (see the exact definitions in [1]).

We summarize the previous observations with the following.
Corollary 4.4. Let P be any of the following graph parameters: the minimum

cardinality of a dominating set, the minimum cardinality of a q-dominating set (for
any fixed q), the minimum cardinality of a clique-transversal set, or the minimum
cardinality of a dominating set with some regular property Π. A minor-closed family
of graphs F has the parameter-treewidth property for P if and only if F is of bounded

local treewidth. The function t(k) in the parameter-treewidth property is 2O(
√
k log k).

5. Algorithmic consequences and concluding remarks. Courcelle [10]
proved a metatheorem on graphs of bounded treewidth; he showed that, if φ is a
property of graphs that is definable in monadic second-order logic, then φ can be
decided in linear time on graphs of bounded treewidth. Frick and Grohe [27] partially
extended this result to graphs of bounded local treewidth; they showed that, for any
property φ that is definable in first-order logic and for any class of graphs of bounded
local treewidth, there is an O(n1+ε)-time algorithm deciding whether a given graph
has property φ for any ε > 0. The constant in the O notation depends on 1/ε, φ,
and the local treewidth bound. However, the running time of Frick and Grohe’s algo-
rithm remains unanalyzed in terms of φ: their algorithm transforms φ into so-called
“Gaifman normal form” [28] and the complexity of this transformation is unknown.

Using Theorems 2.3 and 4.1, we obtain a result along lines similar to Frick and
Grohe. Specifically, consider any property that is solvable in polynomial time on
graphs of bounded treewidth, e.g., properties definable in monadic second-order logic.
If the property is minor-bidimensional, we obtain a fixed-parameter algorithm on
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general minor-closed graph families excluding some fixed graphs; if the property is
contraction-bidimensional, we obtain a fixed-parameter algorithm on minor-closed
graph families of bounded local treewidth. The differences between our result and
Frick and Grohe’s result are that our properties must be bidimensional but need not
be definable in first-order logic, and our graph families must be minor-closed but
need not have bounded local treewidth (for minor-bidimensional properties). Also, in
contrast to the work of Frick and Grohe, the running time of our algorithm has an
explicit bound.

Theorem 5.1. Let P be a graph parameter such that, given a tree decomposition
of width at most w for a graph G, the graph parameter can be computed in h(w)nO(1)

time. Now, if P is a g-minor-bidimensional parameter and G belongs to a minor-
closed graph family excluding some fixed graphs, or P is a g-contraction-bidimensional
parameter and G belongs to a minor-closed family of graphs of bounded local treewidth,

then we can compute P on G in h(2O(g−1(k) log g−1(k)))nO(1) + 22O(g−1(k) log g−1(k))

n3+ε

time for any ε > 0.
Proof. The algorithm is as follows. We check whether tw(G) is in 2O(g−1(k) log g−1(k)).

By Theorems 2.3 and 4.1, if it is not, graph parameter P has value more than k on
graph G. This step can be performed by Amir’s algorithm [5], which, for a given graph
G and integer ω, either reports that the treewidth of G is at least ω or produces a
tree decomposition of width at most (3 + 2

3 )ω in time O(23.698ωn3ω3 log4 n). Thus,
by using Amir’s algorithm we can either compute a tree decomposition of G of size

2O(g−1(k) log g−1(k)) in time 22O(g−1(k) log g−1(k))

n3+ε or conclude that the treewidth of G
is not in 2O(g−1(k) log g−1(k)).

Now if we find a tree decomposition of the aforementioned width, we can compute
P on G in h(2O(g−1(k) log g−1(k)))nO(1) time. The running time of this algorithm is the
one mentioned in the statement of the theorem.

For example, let G be a graph from a minor-closed family F of bounded local
treewidth. Because the dominating set of a graph with a given tree decomposition
of width at most ω can be computed in time O(22ωn) [1], Theorem 5.1 gives an
algorithm which either computes a dominating set of size at most k or concludes that

there is no such dominating set in 22O(
√

k log k)

nO(1) time. The same result holds also
for computing the minimum size of a q-dominating set. Indeed, Theorem 5.1 can be
applied because the q-dominating set of a graph with a given tree decomposition of
width at most ω can be computed in time O(qO(ω)n) [12]. Also, algorithms on graphs
of bounded treewidth for the clique-transversal set and Π-domination set appeared
in [8] and [1], respectively. Using these algorithms, and the fact that all these graph
parameters are lower bounded by the domination number, the methodology of the
proof of Theorem 5.1 can give algorithmic results for the clique-transversal set and
Π-domination set with the same running times as in the case of the dominating set

(i.e., 22O(
√

k log k)

nO(1)).
Clearly, the algorithmic results of this paper are mainly of theoretical importance.

Toward more practical algorithms, we mention some open problems. It is known that,
for any planar graph G with a dominating set of size at most k, we have tw(G) =
O(

√
k). The same holds for many other graph parameters [1]. The same bound has

also been proved for more general graph classes like graphs of bounded genus [13, 26,
16] and minor-closed graph families of bounded local treewidth [14]. It is natural to
ask whether such a smaller bound holds in the case of any bidimensional parameter.
This would provide subexponential fixed-parameter algorithms on minor-closed graph
families of bounded local treewidth for any such graph parameter.
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It is known that the dominating set problem admits a linear size kernel on planar
graphs [3]. Recently, this result was extended to graphs of bounded genus [26]. It
is tempting to ask whether such a kernel exists for any minor-closed graph class
of bounded local treewidth, i.e., any minor-closed graph class with the parameter-
treewidth property for a dominating set. The same question can be asked for other
bidimensional parameters. In particular, we wonder whether there is any link between
linear kernels and bidimensionality.
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Abstract. We study optimization problems over partitions of the finite set N = {1, . . . , n},
where each element i in the partitioned set N is associated with a real number θi and the ob-
jective associated with a partition π = (π1, . . . , πp) has the form F (π) = f(θπ), where θπ =
(
∑

i∈π1
θi, . . . ,

∑
i∈πp

θi). When F is to be either maximized or minimized, we obtain condi-

tions that allow for simple constructions of partitions that are uniformly optimal for all Schur convex
functions f .
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1. Introduction. We consider partitions of the finite set N = {1, . . . , n} into
nonempty parts. When a corresponding partition π has p parts, we refer to it as a p-
partition and denote it by π = (π1, . . . , πp); also, we refer to the vector (|π1|, . . . , |πp|)
as the shape of the partition π.

Throughout, we assume that each element i in the partitioned set N is associated
with a real number θi and, by possibly permuting the elements of N , we may assume
that θ1 ≤ θ2 ≤ · · · ≤ θn. A partition is called consecutive if (after the possible
permutation of N) the elements in each part are consecutive integers.

We consider optimization problems (maximization and minimization) over fami-
lies of partitions where the objective value F (π) associated with a partition π is given
through a real-valued function f that is defined on Rp and F (π) = f

(∑
i∈π1

θi, . . . ,∑
i∈ππ

θi
)
; such partitioning problems are called sum partitioning problems. Of partic-

ular interest are constrained shape, bounded-shape, and single-shape problems, where
the underlying sets of partitions are defined, respectively, by restrictions, bounds,
and specification on the shape of partitions. For many applications of partitioning
problems see, for example, [1, 2, 3, 4].

An important tool for studying optimization problems is the identification of
properties that are satisfied by optimal solutions. In particular, determining the
existence of optimal solutions with a particular property allows one to restrict the
search for an optimal solution to a smaller class of feasible solutions, namely, those
that satisfy the property. For partitioning problems, consecutiveness is a particularly
valuable property, as the number of p-partitions with prescribed shape is exponential
in n, while the number of consecutive p-partitions is p!. Conditions on the function f
that suffice for the optimality of consecutive partitions have been studied extensively
in the literature. Hwang and Rothblum [3] introduced a class of functions called
asymmetric Schur convex functions, unifying classical (quasi) convexity and Schur
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convexity; asymmetric Schur convexity was shown in Gao, Hwang, Li, and Rothblum
[1] to be sufficient for optimality of consecutive partitions, generalizing many earlier
results.

The goal of the current paper is to study bounded-shape partitioning problems
where the function f is Schur convex and the objective is to either maximize F or to
minimize it. We identify conditions that allow for explicit solution of such problems
without the need to scan through all consecutive partitions. Under these conditions,
optimality turns out to be invariant of the particular (Schur convex) function f . It
follows that, depending on whether the objective function is to be maximized or min-
imized, the vector associated with an invariant optimal partition must majorize or be
majorized by the vectors associated with all other feasible partitions (see section 2
for formal definitions). For bounded-shape maximization problems, we explicitly con-
struct an invariant consecutive optimal partition when the ranking of the coordinates
of the lower bounds on the part-sizes is consistent with that of the upper bounds and,
in addition, the θi’s have the uniform sign; further, we demonstrate that if either of
these two conditions is dropped, an invariant optimal partition need not exist. For
bounded-shape minimization problems, we explicitly construct an invariant solution
when all the θi’s are 1, that is, when the vector associated with a partition is the
shape of the partition; further, we show via an example that this restriction cannot
be relaxed. Our proof for minimization problems first identifies a vector which is
majorized by all vectors that satisfy prescribed lower and upper bounds and have a
prescribed coordinate-sum. We then show that when the bounds and the prescribed
coordinate-sum are integers, the majorized vector can be rounded up/down to an in-
teger vector that is majorized by all corresponding integer vectors. Results of Veinott
[7] concern the construction of majorized vectors in a more general context of network
flows, and his proofs depend on yet unpublished results in [8]. The proofs we derive
herein are self-contained and simpler.

2. Preliminaries. Throughout, we let n be a positive integer and N ≡ {1, . . . , n}.
A partition (of N) is an ordered collection of sets π = (π1, . . . , πp), where π1, . . . , πp

are disjoint nonempty subsets of N whose union is N . In this case we refer to p as
the size of π and to the sets π1, . . . , πp as the parts of π. Also, if the number of
elements in the parts of the partition π = (π1, . . . , πp) are n1, . . . , np, respectively, we
refer to (n1, . . . , np) as the shape of π; of course, in this case

∑p
j=1 nj = |N | = n. We

sometimes refer to p-partitions or to (n1, . . . , np)-partitions as partitions of size p or of
shape (n1, . . . , np), respectively. A partition is called consecutive if its parts consist of
consecutive integers, that is, if there is an enumeration of its parts, say, πj1 , . . . , πjp ,
such that for t = 1, . . . , p and corresponding positive integers nj1 , . . . , njp , πjt ={∑t−1

s=1 njs + 1, . . . ,
∑t

s=1 njs

}
.

We assume that each element i in the given partitioned set N is associated with
a real number θi and, without loss of generality,

θ1 ≤ θ2 ≤ · · · ≤ θn.(2.1)

We denote by θ the vector (θ1, . . . , θn) ∈ Rn. Also, for a subset S ⊆ {1, . . . , n} we
define the S-summation scalar θS by θS ≡

∑
i∈S θi. For a p-partition π = (π1, . . . , πp)

we define the π-summation-vector θπ by θπ ≡ (θπ1 , . . . , θπp) ∈ Rp.

Throughout this paper we let p be a fixed positive integer. Given a real-valued
function F over a set Π of p-partitions, we consider the problem of maximizing F over
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Π. The problem is called sum-partitioning if there is a function f :Rp → R such that

F (π) = f(θπ) for each p-partition π.(2.2)

We refer to single-shape, bounded-shape and constrained-shape problems as partition-
ing problems with Π as the set of partitions with a prescribed shape, with a shape that
satisfies the prescribed lower and upper bound and with a shape in a prescribed set,
respectively. For constrained-shape problems the set of partitions is defined through
a set Γ of positive integer p-vectors with the coordinate-sum n. For bounded-shape
problems, Γ is defined by two positive integer p-vectors L and U satisfying L ≤ U
and

∑p
j=1 Lj ≤ |N | ≤

∑p
j=1 Uj ; we then write Γ(L,U) for Γ and Π(L,U) for the cor-

responding set of partitions. Finally, for single-shape problems, Γ is defined by a
single positive integer p-vector (n1, . . . , np) satisfying

∑p
j=1 nj = |N |; we then write

Γ(n1,... ,np) for Γ and Π(n1,... ,np) for the corresponding set of partitions.
For a vector x ∈ Rn and k = 1, . . . , n, let x[k] be the kth largest coordinate of x.

We say that a vector a ∈ Rp majorizes a vector b ∈ Rp, written a � b, if

k∑
i=1

a[i] ≥
k∑

i=1

b[i] for all k = 1, . . . , p(2.3)

and

p∑
i=1

a[i] =

p∑
i=1

b[i];(2.4)

we note that (2.3) and (2.4) are, respectively, equivalent to

max
|I|=k

∑
i∈I

ai ≥ max
|I|=k

∑
i∈I

bi for all k = 1, . . . , p(2.3′)

and

p∑
i=1

ai =

p∑
i=1

bi.(2.4′)

We say that a strictly majorizes b if a majorizes b but does not majorize a.
A real-valued function f on a subset B of Rp is called Schur convex if f(a) ≥ f(b)

for all a, b ∈ B satisfying a � b, that is, if f is order-preserving with respect to the
partial order majorization. The function f is called strictly Schur convex if it is
Schur convex and f(a) > f(b) for all a, b ∈ B for which a strictly majorizes b.
For example, a real-valued function f on Rp with f(x) =

∑p
j=1 g(xj), where g is a

(strictly) convex real-valued function on R, is known to be (strictly) Schur convex
(see [6]); such functions are called separable (strictly) Schur convex. We say that f is
(strictly) Schur concave if -f is (strictly) Schur convex.

We say that a p-vector z is a majorizing vector in a finite set Λ ⊆ Rp if z ∈ Λ and
z majorizes every vector in Λ; we say that z is a minorizing vector in Λ if z ∈ Λ and z
is majorized by every vector in Λ. Since majorization is a partial order that does not
provide comparisons for all pairs of vectors, majorizing and minorizing vectors need
not exist.

For j = 1, . . . , p − 1, let f (j) be the real-valued function on Rp with f (j)(x) =
max{I⊆{1,... ,p}:|I|=j}

∑
u∈I xu for each x ∈ Rp (these functions are convex as the
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maximum of linear functions). The characterization of majorization through (2.3′)–
(2.4′) shows that a finite set Λ ⊆ Rp contains a majorizing/minorizing vector if and
only if the functions f (1), . . . , f (p−1) are simultaneously maximized/minimized over
Λ and, in addition, all vectors in Λ have a common coordinate-sum.

3. Maximization problems with f Schur convex. In this section we focus
on maximization problems where the function f is Schur convex.

Let Π be a set of partitions. We say that a partition π∗ is shape-majorizing in
Π if π∗ ∈ Π and the shape of π∗ majorizes the shape of every other partition in Π;
when Π is defined as the set of partitions with its shape in a prescribed set Γ, π∗ is
shape-majorizing if and only if its shape is a majorizing vector in Γ. The next result
shows that if Γ has a majorizing vector, a shape-majorizing partition exists.

Proposition 3.1. Suppose Γ is a set of positive integer p-vectors with coordinate-
sum n and Π is the set of partitions with its shape in Γ. If (n1, . . . , np) is a majorizing
vector in Γ, then there exists a consecutive shape-majorizing partition in Π.

Proof. The conclusion of the lemma follows from the existence of consecutive par-
titions with any prescribed shape (in fact, the consecutive partitions with prescribed
shape are in one-to-one correspondence with the permutations over {1, . . . , p}).

We say that θ is sign-uniform if it is either nonpositive or nonnegative. The next
result shows that this condition together with the assumptions of Proposition 3.1
facilitate a uniform solution for sum-partitioning problems under all Schur convex
functions f . This is accomplished by first determining a majorizing shape and then
assigning the elements to parts greedily (where greedily has different meanings for the
case where θ ≤ 0 and for the case where θ ≥ 0).

Theorem 3.2. Suppose f is Schur convex, Γ is a set of positive integer p-vectors
with the coordinate-sum n, (n1, . . . , np) is a majorizing vector in Γ with n1 ≤ · · · ≤ np,
and Π is the (constrained-shape) set of partitions with its shape in Γ.

(i) If θ ≤ 0, then the (consecutive) p-partition π− with π−
j =

{
n −

∑j
u=1 nu +

1, . . . , n−
∑j−1

u=1 nu

}
for j = 1, . . . , p is in Π and maximizes F (.) over Π.

(ii) If θ ≥ 0, then the (consecutive) p-partition π+ with π+
j =

{∑j−1
u=1 nu +

1, . . . ,
∑j

u=1 nu

}
for j = 1, . . . , p is in Π and maximizes F (.) over Π.

Further, if f is strictly Schur convex, the inequalities of (2.1) hold strictly, and the
θi’s are nonzero, then π− and π+ are, respectively, the only optimal partitions.

Proof. We first consider the case where θ ≥ 0. Since the shape of π+ is
(n1, . . . , np) ∈ Γ, then π+ is shape-majorizing in Π. Also, from n1 ≤ · · · ≤ np

we have that |π+
1 | ≤ · · · ≤ |π+

p |. These properties of π+ ensure that for each π ∈ Π,
j ∈ {1, . . . , p} and enumeration u1, . . . , up of the elements 1, . . . , p,

j∑
s=1

∣∣πus

∣∣ ≤ max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

∣∣πu

∣∣ ≤ max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

∣∣π+
u

∣∣
=

p∑
u=p−j+1

∣∣π+
u

∣∣ =

p∑
u=p−j+1

nu.(3.1)

We conclude from (3.1), (2.1), the nonnegativity of the θi’s, and the definition of π+

that

j∑
s=1

(θπ)us =
∑

i∈πu1∪···∪πuj

θi ≤
n∑

i=n1+···+np−j+1

θi =

p∑
u=p−j+1

(θπ+)u,(3.2)
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with equality holding when j = p. Since π+ is in Π, it also satisfies (3.2). Applying
(3.2) to π+ and to π, we conclude that

max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

(θπ)u ≤
n∑

i=n1+···+np−j+1

θi = max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

(θπ+)u(3.3)

with equality holding when j = p. Thus, θπ+ majorizes θπ and, therefore, the Schur
convexity of f implies that F (π+) = f(θπ+) ≥ f(θπ) = F (π).

Next, assume that θ ≤ 0. Since the shape of π− is (n1, . . . , np) ∈ Γ, π− is also
shape-majorizing in Π. Also, from n1 ≤ · · · ≤ np we have that |π−

1 | ≤ · · · ≤ |π−
p |.

These properties of π− ensure that for each π ∈ Π, j ∈ {1, . . . , p} and enumeration
u1, . . . , up of the elements 1, . . . , p,

p∑
s=j+1

∣∣πus

∣∣ ≤ max
{I⊆{1,... ,p}:|I|=p−j}

∑
u∈I

∣∣πu

∣∣ ≤ max
{I⊆{1,... ,p}:|I|=p−j}

∑
u∈I

∣∣π−
u

∣∣
=

p∑
u=j+1

∣∣π−
u

∣∣ =

p∑
u=j+1

nu,(3.4)

and, therefore,

j∑
s=1

∣∣πus

∣∣ = n−
p∑

s=j+1

∣∣πus

∣∣ ≥ n−
p∑

u=j+1

∣∣π−
u

∣∣ =

j∑
u=1

nu.(3.5)

From (2.1), (3.5), the nonpositivity of the θi’s, and the definition of π−, we see that

j∑
s=1

(θπ)us =
∑

i∈πu1∪···∪πuj

θi ≤
n∑

i=n−(n1+···+nj)+1

θi =

j∑
u=1

(θπ−)u,(3.6)

with equality holding when j = p. Since π− is in Π(n1,... ,np), it also satisfies (3.6).
Applying (3.6) to π− and to π, we conclude that

max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

(θπ)u ≤
n∑

i=n−(n1+···+nj)+1

θi = max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

(θπ−)u(3.7)

with equality holding when j = p. Thus, θπ− majorizes θπ and, therefore, the Schur
convexity of f implies that F (π−) = f(θπ−) ≥ f(θπ) = F (π).

Finally, if the inequalities of (2.1) hold strictly and the θi’s are nonzero, then
for each π �= π+, (3.4) implies that (3.5) holds as a strict inequality for at least one
j; thus, θπ+ strictly majorizes θπ. Consequently, if f is strictly Schur convex, we
have that F (π+) = f(θπ+) > f(θπ) = F (π). A similar argument shows that if the
inequalities of (2.1) hold strictly, the θi’s are nonzero, and f is strictly Schur convex,
then F (π−) = f(θπ−) > f(θπ) = F (π).

Solution of constrained-shape partitioning problems with f Schur con-
vex, sign-uniform θ, and given majorizing shape. Let Γ be a set of positive
integer p-vectors with coordinate-sum n and let (n1, . . . , np) be a majorizing vector
in Γ with n1 ≤ · · · ≤ np. Also, assume the θ1, . . . , θn are given and satisfy (2.1). Of
course, if either the θi’s and/or the nu’s are not ranked a priori, one can sort them
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and renumber indices in time O[n(lg n)] and/or O[p(lg p)], respectively. Once the
indices are renumbered, Theorem 3.2 provides an explicit solution of the partitioning
problem when either θ ≥ 0 or θ ≤ 0; only the partial sums of the nj ’s are needed, and
these can be determined with p additions and the associated vector can be determined
with, at most, n additions.

Next we explain how the “expensive” sorting of the θi’s can be reduced. Suppose a
sorting of n1, . . . , np is executed if needed (requiring time O[p(lg p)] comparisons), and
an index-enumeration j1, . . . , jp satisfying nj1 ≤ nj2 ≤ · · · ≤ njp becomes available.
It is then not necessary to fully sort θ1, . . . , θn in order to determine the optimal
partition; all that is needed is to determine the set of nj1-smallest coordinates of
θ, the next nj2-smallest coordinates, and so on. This block-sorting can be executed
with O(pn) comparisons [5], yielding an improved complexity bound of O(pn). If
the data is given with (2.1) in force, Theorem 3.2 provides an explicit solution of
the partitioning problem requiring only the sorting of n1, . . . , np; so, in this case the
problem is solvable in time O[p(lg p)].

Theorem 3.2 yields an explicit solution to partitioning problems when a majorizing
shape within the set of allowable shapes Γ is available. Such a shape is trivially
available when Γ contains a single shape, e.g., when either

∑p
j=1 Lj = n or

∑p
j=1 Uj =

n. Next we obtain a sufficient condition for the existence of a majorizing shape in
nondegenerate bounded-shape problems; further, under this condition the majorizing
shape is easily computable.

Lemma 3.3. Let L and U be positive integer p-vectors satisfying L ≤ U and∑p
j=1 Lj < n <

∑p
j=1 Uj. Then there exists an index j ∈ {1, . . . , p} with

∑j
u=1 Lu +∑p

u=j+1 Uu =
∑p

u=1 Uu−
∑j

u=1(Uu−Lu) ≤ n; further, if j∗ is the first such index and

µ∗ ≡ n−
∑j∗−1

u=1 Lu−
∑p

u=j∗+1 Uu, then (n∗
1, . . . , n

∗
p) ≡ (L1, . . . , Lj∗−1, µ

∗, Uj∗+1, . . . ,

Up) ∈ Γ(L,U), and

k∑
u=1

n∗
u = max

{
k∑

u=1

Lu, n−
p∑

u=k+1

Uu

}
for k = 1, . . . , p.(3.8)

Moreover, if

L1 ≤ L2 ≤ · · · ≤ Lp(3.9)

and

U1 ≤ U2 ≤ · · · ≤ Up,(3.10)

then n∗
1 ≤ · · · ≤ n∗

p and (n∗
1, . . . , n

∗
p) majorizes every vector in Γ(L,U).

Proof. The existence of an index j ∈ {1, . . . , p} with
∑j

u=1 Lu +
∑p

u=j+1 Uu =∑p
u=1 Uu −

∑j
u=1(Uu − Lu) ≤ n is immediate from the fact that

∑p
u=1 Uu > n and∑p

u=1 Uu−
∑p

u=1(Uu−Lu) =
∑p

u=1 Lu < n. With j∗ as the first such index and with
the definition of µ∗ and (n∗

1, . . . , n
∗
p) as in the statement of the lemma, we clearly

have that Lj∗ ≤ µ∗ < Uj∗ and (n∗
1, . . . , n

∗
p) ∈ Γ(L,U). Also, from the definition of j∗

and n∗
j ’s we have that

k∑
u=1

n∗
u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k∑
u=1

Lu > n−
p∑

u=k+1

Uu if k < j∗,

n−
p∑

u=k+1

u∗
u ≥

k∑
u=1

Lu if k ≥ j∗.



518 FRANK K. HWANG AND URIEL G. ROTHBLUM

When either k < j∗ or k ≥ j∗, we have that (3.8) holds.
Next, assume that (3.9) and (3.10) hold. To verify that the coordinates of

(n∗
1, . . . , n

∗
p) are nondecreasing, observe that if t < j∗, we have n∗

t = Lt ≤ Lt+1 ≤
n∗
t+1, and if t ≥ j∗, we have n∗

t ≤ Ut ≤ Ut+1 = n∗
t+1. Next, let I be a sub-

set of {1, . . . , p} and let (n1, . . . , np) be a vector in Γ(L,U). The complement of I
within {1, . . . , p} will be denoted Ic. Since

∑
u∈I nu ≤

∑
u∈I Uu and n−

∑
u∈I nu =∑

u∈Ic nu ≥
∑

u∈Ic Lu, we have that

∑
u∈I

nu ≤ min

{
n−

∑
u∈Ic

Lu,
∑
u∈I

Uu

}
≤ min

⎧⎨⎩n−
p−|I|∑
u=1

Lu,

p∑
u=p−|I|+1

Uu

⎫⎬⎭ ,(3.11)

where (3.9)–(3.10) are used for the second inequality in (3.11). Also, for each j =
1, . . . , p− 1, we get from (3.8) (with k = p− j) that

p∑
u=p−j+1

n∗
u = n−

p−j∑
u=1

n∗
u = n− max

⎧⎨⎩
p−j∑
u=1

Lu, n−
p∑

u=p−j+1

Uu

⎫⎬⎭(3.12)

= min

⎧⎨⎩n−
p−j∑
u=1

Lu,

p∑
u=p−j+1

Uu

⎫⎬⎭ .

Since (n∗
1, . . . , n

∗
p) ∈ Γ(L,U), (3.11) applies to (n∗

1, . . . , n
∗
p). It follows from (3.11)

applied to (n1, . . . , np) and to (n∗
1, . . . , n

∗
p) and from (3.12) that, for j = 1, . . . , p− 1,

max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

nu ≤ min

⎧⎨⎩n−
p−j∑
u=1

Lu,

p∑
u=p−j+1

Uu

⎫⎬⎭ =

p∑
u=p−j+1

n∗
u

= max
{I⊆{1,... ,p}:|I|=j}

∑
u∈I

n∗
u,

verifying that (n∗
1, . . . , n

∗
p) majorizes (n1, . . . , np).

Next we state two immediate conclusions from Theorem 3.2 and Lemma 3.3.
Theorem 3.4. Suppose f is Schur convex and L and U are positive integer p-

vectors satisfying L ≤ U ,
∑p

j=1 Lj < n <
∑p

j=1 Uj, (3.9), and (3.10). Let (n∗
1, . . . , n

∗
p)

be as in Lemma 3.3.
(i) If θ ≤ 0, then the (consecutive) p-partition π− with π−

j =
{
n −

∑j
u=1 n

∗
u +

1, . . . , n−
∑j−1

u=1 n
∗
u

}
for j = 1, . . . , p is in Π(L,U) and maximizes F (.) over Π(L,U).

(ii) If θ ≥ 0, then the (consecutive) p-partition π+ with π+
j =

{∑j−1
u=1 n

∗
u +

1, . . . ,
∑j

u=1 n
∗
u

}
for j = 1, . . . , p is in Π(L,U) and maximizes F (.) over Π(L,U).

Further, if f is strictly Schur convex, the inequalities of (2.1) hold strictly, and
the θi’s are nonzero, then π− and π+ are, respectively, the only optimal partitions.

Under the assumptions of Theorem 3.4, the solution method discussed follow-
ing Theorem 3.2 applies; further, Lemma 3.3 shows that the computation of the
majorizing-shape vector (n∗

1, . . . , n
∗
p) is available with O(p) arithmetic operations.

We say that two vectors, L and U , in Rp are consistent if there exists a per-
mutation ({u1}, . . . , {up}) such that the vectors

(
Lu1 , . . . , Lup

)
and

(
Uu1 , . . . , Uup

)
satisfy (3.9)–(3.10). Corollary 3.4 implies that when f is Schur convex, L and U are
consistent positive integer p-vectors satisfying L ≤ U and

∑p
j=1 Lj < n <

∑p
j=1 Uj ,
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and θ is sign-uniform, there exists a majorizing vector in Γ(L,U) and a (consecutive,
shape-majorizing) partition in Π(L,U) which is optimal uniformly under all Schur
convex functions f . Further, such a partition is easily computable by first (jointly)
sorting the Lu’s and Uu’s and then selecting either of the two partitions constructed
in Theorem 3.2.

Two important cases for which the assumptions of Lemma 3.3 and Theorem 3.4
apply are as follows:

(i) single-shape problem, where the coordinates of a single prescribed shape, say,
(n1, . . . , np), can be ranked and permuted to satisfy the monotonicity assumption
(3.9)–(3.10) with L = U = (n1, . . . , np), and

(ii) uniform bounded shape problem, where Lu’s and Uu’s are, respectively, in-
dependent of u.

The next two examples demonstrate, respectively, that neither the consistency of
L and U nor the sign-uniformity of θ can be removed from Corollary 3.5.

Example I. Suppose p = 3, n = 9, L1 = 1, L2 = L3 = 2, U1 = 5, U2 = U3 = 4,
and θi = 1 for i = 1, . . . , 9. With Π ≡ Π(L,U), maxπ∈Π maxu(θπ)u = 5, and
the maximum is realized by exactly the partitions with shape (5, 2, 2). However,
maxπ∈Π maxu,v[(θπ)u + (θπ)v] = 8, and the maximum is realized by exactly the parti-
tions with shape (1, 4, 4). Thus, there is no shape-majorizing partition in Π(L,U). It
is easily noted that Γ(L,U) does not have a vector which majorizes all other vectors in
the set.

To see that no partition is optimal uniformly under all (separable) Schur convex
functions f , let f1 and f2 be the (separable, strictly Schur convex) functions with

f1(x) =
∑3

u=1 |xu|3 and f2(x) =
∑3

u=1 |xu − 4|3. The shapes in Γ(L,U) are (5, 2, 2),
(4, 3, 2), (4, 2, 3), (3, 4, 2), (3, 3, 3), (3, 2, 4), (2, 4, 3), (2, 3, 4), and (1, 4, 4); the val-
ues of these vectors under (f1, f2) are, respectively, (141, 17), (99, 9), (99, 9), (99, 9),
(81, 3), (99, 9), (99, 9), (99, 9), and (129, 27). So, the optimal partitions with the ob-
jective defined by f1 and f2 are, respectively, those with shape (5, 2, 2) and those with
shape (1, 4, 4).

Example II. Suppose p = 3, n = 6, nj = j for j = 1, 2, 3, θi = −1 for i = 1, 2, 3,
and θi = 1 for i = 4, 5, 6. With Π ≡ Π(1,2,3), maxπ∈Π maxu(θπ)u = 3, and the
maximum is realized by the partitions with π3 = {4, 5, 6} and only by those. However,
maxπ∈Π maxu,v[(θπ)u + (θπ)v] = 3, and the maximum is realized by the partition
with π3 = {1, 2, 3} and only by them. Thus, there is no partition π′ in Π with θπ′

majorizing each of the vectors associated with a partition π in Π. To see that no
partition is optimal uniformly under all Schur convex functions f , let f1 and f2 be the
(separable, strictly Schur convex) functions with f1(x) =

∑3
u=1 |xu + 3|3 and f2(x) =∑3

u=1 |xu − 3|3; the optimal partitions with f1 and f2 are, respectively, precisely the
partitions π with π3 = {4, 5, 6} and those with π3 = {1, 2, 3}.

4. Minimization problems with f Schur convex. In this section we focus
on minimization problems where the function f is Schur convex. The main result
of this section can be derived from more general results of Veinott [6, Theorem 2,
p. 554] which depend on (yet unpublished) results of [8]; the proofs provided herein
are self-contained and more elementary.

Let Π be a set of partitions. We say that a partition π∗ is shape-minorizing in Π
if π∗ ∈ Π and the shape of π∗ is majorized by the shape of every other partition in Π;
when Π is defined as the set of partitions with its shape in a prescribed set Γ, π∗ is
shape-minorizing if and only if its shape is a minorizing vector in Γ. The next result
shows that if Γ has a minorizing vector, a shape-minorizing partition exists.
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Proposition 4.1. Suppose Γ is a set of positive integer p-vectors with a coordinate-
sum n and Π is the set of partitions with its shape in Γ. If (n1, . . . , np) is a minorizing
vector in Γ, then there exists a consecutive shape-minorizing partition in Π.

Proof. As for Proposition 3.1, the conclusion follows from the existence of con-
secutive partitions with any prescribed shape.

The next result is in the spirit of Theorem 3.2 with minimization replacing
maximization—it provides conditions for the existence of a uniform solution to con-
strained-shape partitioning problems under the assumptions of Proposition 4.1. But
here, more restrictive conditions than sign-uniformity of θ are required.

Theorem 4.2. Suppose that θi = 1 for each i (that is, the objective function is a
function of the shape of a partition). Then any shape-minorizing partition is optimal
(minimizing) uniformly under all Schur convex functions f .

Proof. The assumptions of the theorem imply that for each partition π, θπ is the
shape of π, and the conclusion of the theorem follows from the definition of Schur
convexity.

The next example demonstrates that sign-uniformity of θ is not sufficient for
the set of vectors associated with partitions having a prescribed shape to contain
a minorizing vector, nor is it sufficient for the existence of a uniformly minimizing
partition under all Schur convex functions. So, in general, the conclusions of Theorem
3.2 do not generalize when minorization replaces majorization. It is noted that the
example concerns a single-shape problem.

Example III. Let n = 11, p = 3, n1 = 2, n2 = 4, n3 = 5, θi = 1 for i = 1, 2, 3, 4,
θi = 2 for i = 5, 6, 7, 8, and θi = 6 for i = 9, 10, 11. Let X be the set of positive integer
3-vectors with coordinate-sum 30. All vectors associated with feasible partitions are
in X. Now, x1 ≡ (10, 10, 10) is majorized by all vectors in X and x2 ≡ (11, 10, 9) is
majorized by all vectors in X except for x1. But neither x1 nor x2 is realizable by a
feasible partition because neither 9 nor 10 nor 11 is the sum of two elements among
{1, 2, 6}. Next we observe that x3 = (11, 11, 8) and x4 = (12, 9, 9) are majorized by
all vectors in X\

{
x1, x2, x3, x4

}
, but neither majorizes the other. Representing parts

of partitions by the multiset of the θi’s, we observe that (11, 11, 8) is realizable by
the partition π3 = ({5, 9}, {1, 6, 7, 10}, {2, 3, 4, 8, 11}) and (12, 9, 9) is realizable by the
partition π4 = ({10, 11}, {1, 2, 3, 9}, {4, 5, 6, 7, 8}).

For t > 0, let ft : R3 → R be given by ft(x) =
∑3

j=1 |xj−10−t|3 for each x ∈ R3.
These functions are separable and strictly Schur convex; further, for all sufficiently
small positive t, ft(x

3) > ft(x
4), and the reverse inequality holds for all sufficiently

large negative t. Since every vector in X\{x1, x2, x3, x4} majorizes either x3 or x4,
the Schur convexity of the ft’s implies that π4 is optimal for all sufficiently small
positive t, and π3 is optimal for all sufficiently large negative t.

We next show that every set of bounded shapes contains a minorizing shape,
without the restriction concerning the consistency of the lower bound and the upper
bound. Of course, Example III demonstrates that shape-minorization does not yield
uniform optimality as does shape-majorization with sign-uniform θ. Our first step
considers noninteger vectors.

Theorem 4.3. Let L and U be p-vectors satisfying L ≤ U and
∑p

j=1 Lj < n <∑p
j=1 Uj, respectively. For every real β > 0 define x(β) as the p-vector with

x(β)j ≡

⎧⎪⎨⎪⎩
Lj if β ≤ Lj ,

β if Lj < β < Uj ,

Uj if β ≥ Uj .

(4.1)
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Then x(.) is nondecreasing and continuous, and {x(β) ∈ Rp :
∑p

j=1 x(β)j = n}
contains a single vector, say, x∗, which is majorized by every vector in {x ∈ Rp : L ≤
x ≤ U and

∑p
j=1 xj = n}.

Proof. The fact that x(.) is nondecreasing and continuous is immediate from
(4.1). Further, since

∑p
j=1 x(β)j =

∑p
j=1 Lj < n for β ≤ minj Lj , and

∑p
j=1 x(β)j =∑p

j=1 Uj > n for β ≥ maxj Uj , continuity arguments assure that
∑p

j=1 x(β)j = n for

some minj Lj < β < maxj Uj . Since x(.) is nondecreasing,
∑p

j=1 x(β)j =
∑p

j=1 x(β′)j
if and only if x(β) = x(β′). So, {x(β) ∈ Rp :

∑p
j=1 x(β)j = n} contains a single

element, say, x∗. We note that {β ∈ R : x(β) = x∗} is a nonempty closed interval
which is nondegenerate when {j = 1, . . . , p : Lj < x∗

j < Uj} = ∅}.
Let N− ≡ {j = 1, . . . , p : x∗

j = Lj}, N0 ≡ {j = 1, . . . , p : Lj < x∗
j < Uj},

N+ = {j = 1, . . . , p : x∗
j = Uj > Lj}, v− ≡ |N−|, v0 ≡ |N0|, and v+ ≡ |N+|. Of

course, v− +v0 +v+ = p. Select β∗ such that x(β∗) = x∗(β∗ is unique when N0 �= ∅).
We then have that x∗

j = Lj ≥ β∗ for j ∈ N−, x∗
j = β∗ for j ∈ N0, and x∗

j = Uj ≤ β∗

for j ∈ N+. It follows that by possibly permuting indices, we can assume that x∗’s
coordinates are nonincreasing, all elements in N− precede all elements in N0, and
all elements in N0 precede all elements in N+; in particular, N− = {1, . . . , v−},
N0 = {v− + 1, . . . , v− + v0}, and N+ = {v− + v0 + 1, . . . , p}.

Let X ≡ {x ∈ Rp : L ≤ x ≤ U and
∑p

j=1 xj = n}. Also, for k = 1, . . . , p, let

W k ≡ {w ∈ Rp : 0 ≤ w ≤ 1 and
∑p

j=1 wj = k} (with 1 representing the vector

(1, . . . , 1)T in Rp), and let hk : X → R with hk(x) for x in X being the sum of the k
largest coordinates of x. We observe that the functions hk have representations

hk(x) =

k∑
u=1

x[u] = max
[I]=k

∑
u∈I

xu = max
w∈Wk

k∑
u=1

wuxu = max
w∈Wk

wTx.(4.2)

The claim that x∗ ∈ X is majorized by all vectors x in X means that x∗ minimizes
each hk over X. We consider three ranges for k.

1 ≤ k ≤ v−: In this case for each x ∈ X,

hk(x
∗) =

k∑
u=1

x∗
[u] =

k∑
u=1

x∗
u =

k∑
u=1

Lu ≤
k∑

u=1

xu ≤
k∑

u=1

x[u] = hk(x).(4.3)

p− v+ ≤ k ≤ p: In this case for each x ∈ X,

hk(x
∗) =

k∑
u=1

x∗
[u] =

k∑
u=1

x∗
u = n−

p∑
u=k+1

x∗
u = n−

p∑
u=k+1

Uu(4.4)

≤
p∑

u=1

xu −
p∑

u=k+1

xu ≤
k∑

u=1

xu ≤
k∑

u=1

x[u] = hk(x).

v−k < p− v+: We will construct a vector w∗ in W k that satisfies

wTx∗ ≤ (w∗)Tx∗ ≤ (w∗)Tx for each x ∈ X and w ∈ W k.(4.5)

It will then follow from (4.2) that for every x ∈ X, hk(x
∗) = maxw∈Wk(w)Tx∗ =

(w∗)Tx∗ ≤ (w∗)Tx ≤ hk(x). (In fact, a variant of the classic minmax theorem of
game theory ensures that the existence of such a vector w∗ is necessary and sufficient
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for x∗ to minimize hk over X.) Specifically, let ω ≡ (k − v−)/v0, and let w∗ be the
p-vector with

w∗
u ≡

⎧⎪⎨⎪⎩
1 for u = 1, . . . , v−,

ω for u = v− + 1, . . . , v− + v0,

0 for u = v− + v0 + 1, . . . , p.

(4.6)

Since v− < k < p− v+ = v− + v0, we have that v0 = p− v− − v+ > 0 and 0 < ω < 1;
in particular, w∗ ∈ W k.

For z ∈ Rp and j = 0, 1, . . . , p, let z̄j =
∑j

u=1 zu; in particular, x̄p = n and
w̄p = k for each x ∈ X and w ∈ W k. Further,

w∗Tx =

p∑
u=1

w∗
uxu =

p∑
u=1

w∗
u(x̄u − x̄u−1) =

p−1∑
u=1

(w∗
u − w∗

u+1)x̄u + w∗
pn for each x ∈ X

(4.7)

and

wTx∗ =

p∑
u=1

wux
∗
u =

p∑
u=1

(w̄u − w̄u−1)x
∗
u =

p−1∑
u=1

w̄u(x∗
u − x∗

u+1) + kx∗
u for each w ∈ W.

(4.8)

Applying (4.7) to x∗ and to arbitrary x ∈ X, we observe that

(w∗)Tx∗ − (w∗)Tx =

p−1∑
u=1

(w∗
u − w∗

u+1)(x̄
∗
u − x̄u)(4.9)

= (1 − ω)(x̄∗
v− − x̄v−) + ω(x̄∗

v−+v0
− x̄v−+v0

)

(the cases where v− = 0 and/or v+ = 0 require special attention). From (4.3) with
k = v−, we have that x̄∗

v− ≤ x̄v− , and from (4.4) with k = v− + v0 = p− v+, we have

that x̄∗
v−+v0

≤ x̄v−+v0
; since 0 ≤ ω ≤ 1, we conclude from (4.9) that (w∗)Tx∗ ≤ w∗Tx,

establishing the right-hand side inequalities of (4.5). Next, by applying (4.8) to w∗

and to arbitrary w ∈ W k, we observe that

w∗Tx∗ − wTx∗ =

p−1∑
u=1

(w̄∗
u − w̄u)(x∗

u − x∗
u+1)(4.10)

=

v−∑
u=1

(u− w̄u)(x∗
u − x∗

u+1) +

v−+v−−1∑
u=v−+1

(k − w̄u)(β∗ − β∗)

+

p∑
u=v−+v0

(k − w̄u)(x∗
u − x∗

u+1)

(here again, the cases where v− = 0 and/or v+ = 0 require special attention). Since
w̄u ≤ u and w̄u ≤ k for each w ∈ W k and u = 1, . . . , p and since x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

p,

we conclude from (4.10) that (w∗)Tx∗ ≥ wTx∗ for every w ∈ W k, completing the
proof of (4.5).

In the next result, we use the notation ‖ ‖∞ for the 1∞ norm in Rp defined for
x ∈ Rp by ‖x‖∞ = maxu∈{1,... ,p} xu.
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Theorem 4.4. Let L and U be positive integer p-vectors satisfying L ≤ U and∑p
j=1 Lj < n <

∑p
j=1 Uj, and let x∗ be as in Theorem 4.3. Then there exists an

integer p-vector z∗ with ‖z∗ − x∗‖∞ < 1, and each such vector is majorized by every
integer vector in

{
x ∈ Rp : L ≤ x ≤ U and

∑p
j=1 xj = n

}
.

Proof. The conclusion of this theorem is trivial when x∗ is integral, so assume
that this is not the case. Let N−, N0, N+, v−, v0, and v+ be as in the proof of Theorem
4.3, and as in that proof assume that x∗’s coordinates are nonincreasing, all elements
in N− precede all elements in N0, and all elements in N0 precede all elements in N+;
in particular, N− = {1, . . . , v−}, N0 = {v− + 1, . . . , v− + v0}, and N+ = {v− + v0 +
1, . . . , p}. The assertion that x∗ is not integral means that N0 �= ∅ and the unique
β∗ with x(β∗) = x∗ is not integral.

Let X ≡ {x ∈ Rp : L ≤ x ≤ U and
∑p

j=1 xj = n}, let 
β∗� be the largest
integer less than β∗, and let �β∗ ≡ 
β∗� + 1. The integrality of L and U ensures
that Lu ≤ 
β∗� < β∗ < �β∗ ≤ Uu for u ∈ N0. Further, we observe that v0β

∗ =
n−

∑
u∈N−

Lu−
∑

u∈N+
Uu is an integer and v0
β∗� < v0β

∗ < v0�β∗, implying that

µ ≡ v0β
∗ − v0
β∗� is an integer satisfying 1 ≤ µ < v0 and µ�β∗ + (v0 − µ)
β∗� =

v0
β∗�+µ(�β∗− 
β∗�) = v0
β∗�+µ = v0β
∗. It follows that the p-vector z∗ with z∗u

for u = 1, . . . , p given by

z∗u ≡

⎧⎪⎨⎪⎩
x∗
u if u ∈ N− ∪N0,

�β∗ if u = v− + 1, . . . , v− + µ,


β∗� if u = v− + µ + 1, . . . , v− + v0

(4.11)

is integral, is in X, and satisfies ‖z∗ − x∗‖∞ < 1. We will show that z∗ is majorized
by any integer vector z in X by showing that hk(z) ≥ hk(z

∗) for k = 1, . . . , p, where
hk(.) is the function assigning to each p-vector the sum of its k largest coordinates
(see the proof of Theorem 4.3).

Let z be an integer vector in X. For u ∈ N−, Lu ≥ β∗, and the integrality of
Lu implies that Lu ≥ �β∗. Similarly, for u ∈ N+, Uu ≤ β∗, and the integrality
of Uu implies that Uu ≤ 
β∗�. Consequently, z∗’s coordinates are nonincreasing

and, therefore, hk(z
∗) =

∑k
j=1 z

∗
[j] =

∑k
j=1 z

∗
j for k = 1, . . . , p. From Theorem 4.3,

hk(z) ≥ hk(x
∗) = hk(z

∗) for 1 ≤ k ≤ v− and for v0+v+ ≤ k ≤ p. Further, as Theorem
4.3 ensures that hv−+1(z) ≥ hv−+1(x

∗) = hv−(x∗) + β∗, the integrality of hv−+1(z)
and hv−(x∗) implies that hv−+1(z) ≥ hv−(x∗) + �β∗ = hv−+1(z

∗). To prepare for an
inductive argument, assume that hk(z) ≥ hk(z

∗) and hk+1(z) < hk+1(z
∗) for some

v− +1 ≤ k < v0 +v+−1. Then hk(z
∗)+z∗k+1 = hk+1(z

∗) > hk+1(z) = hk(z)+z[k+1],
implying that z[k+1] < hk(z

∗) + z∗k+1 − hk(z) ≤ z∗k+1 ≤ �β∗. Since z[k+1] and �β∗
are integral, we conclude that z[k+1] ≤ �β∗− 1 = 
β∗� and, therefore, z[j] ≤ 
β∗� for
j = k+2, . . . , v− + vo (recall that the coordinates of z∗ are nonincreasing). It follows
that

hv−+v0(z) = hk+1(z) +

v−+v0∑
u=k+2

z[u] < hk+1(z
∗) + (v− + v0 − k − 1)
β∗�

=

k+1∑
u=1

z∗u + (v− + v0 − k − 1)
β∗� ≤
v−+v0∑
u=1

z∗u = hv−+v0
(x∗).

This inequality contradicts the conclusion of Theorem 4.3, asserting that x∗ is ma-
jorized by z, and thereby completes an inductive proof that hk(z) ≥ hk(z

∗) for
k ∈ {v− + 1, . . . , v0 + v+}.
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We finally observe that an integer vector z is in X and satisfies ‖z − x∗‖∞ < 1
if and only if zu = x∗

u for u ∈ N− ∪ N+ (as each such x∗
u is integral), it has exactly

µ of the v0 coordinates zu indexed by u ∈ N0 equal �β∗, and it has the remaining
v0 − µ coordinates indexed by u ∈ N0 equal 
β∗�. It follows that for each such
z, a coordinate permutation of z∗ exists, implying that hk(z) = hk(z

∗) for each
k = 1, . . . , p; in particular, such z, like z∗, is majorized by all integer vectors in
X.
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MATROIDS INDUCED BY PACKING SUBGRAPHS∗
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Abstract. This paper is concerned with the classification of families of graphs T with the
following property: For any graph G, the subsets of vertices of G that can be saturated by packing
copies of graphs from T form a collection of independent sets of a matroid. From this point of view,
we present a characterization of so-called EHP-families of graphs (i.e., families consisting of K2,
hypomatchable graphs, and propellers). The main result is the following: For a matroid-inducing
EHP-family T , we characterize connected graphs H such that the family T ∪ {H} is also matroid-
inducing.
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1. Introduction. Let G = (V (G), E(G)) be a graph. A matching of G can be
viewed as a set of vertex disjoint subgraphs of G, each isomorphic to K2. A natural
generalization is a set of vertex disjoint subgraphs of G, each a member of a family F
of subgraphs of G. This generalization is called an [F ]-packing of G. (We use brackets
in this notation to avoid confusion with a more special generalization, which will be
defined further.)

Let us introduce the following terminology, which derives from matching theory:
An [F ]-packing Q covers a vertex v ∈ V (G) if one of the subgraphs included in Q
contains v. Otherwise Q skips v. An [F ]-packing saturates a set of vertices X ⊆ V (G)
if it covers every member of X. For an [F ]-packing Q, V (Q) denotes the set of all
vertices covered by Q. An [F ]-packing Q of G is maximal if there is no [F ]-packing
Q′ of G with V (Q′) � V (Q) and is perfect if it covers all vertices of G. A graph G
is [F ]-saturable if it admits a perfect [F ]-packing and is non-[F ]-saturable if it has no
perfect [F ]-packing. The [F ]-packing problem in G consists of finding an [F ]-packing
of G saturating a set of maximum cardinality.

A special case of [F ]-packing appears when F consists of all subgraphs of G
isomorphic to members of a fixed family T of graphs. In this special case, “T ” will
be used instead of “[F ]” throughout the notation described above.

The [F ]-packing problem has been extensively studied from many points of view.
The most important are the cases when the [F ]-packing problem can be solved in
polynomial time (see section 2 for examples). A common feature proved for many
of the polynomially solvable cases is that the sets of vertices saturated by some [F ]-
packing form a collection of independent sets of a matroid.

Let X be a set and let M be a nonempty hereditary system of subsets of X (i.e.,
if A ∈ M and A′ ⊆ A, then A′ ∈ M). The maximal sets of M (under set inclusion)
are called bases. The pair (X,M) is called a matroid if the set B of its bases satisfies
the exchange axiom:

(EA) ∀B,B′ ∈ B;∀x ∈ B \B′;∃y ∈ B′ \B : (B′ \ {y}) ∪ {x} ∈ B.
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If M = (X,M) is a matroid, then X is called the ground set of M , and the
subsets of X contained in M are called the independent sets of M . The exchange
axiom implies the fact that all bases of a matroid have the same cardinality.

If G is a graph and F a family of its subgraphs, then we denote by M(G, [F ]) the
family of all subsets of V (G) that can be saturated by some [F ]-packing. If F consists
of all subgraphs of G isomorphic to members of a family T of graphs, then M(G, T )
stands for M(G, [F ]). This paper is concerned with the classification of families T of
connected graphs such that M(G, T ) is a collection of independent sets of a matroid
in every graph G. A family T with this property is called matroid-inducing.

1.1. Notation and basic notions. For two graphs H,H ′, H ′ ⊆ H denotes
that H ′ is a subgraph of H. If x ∈ V (H), then H \ x is the graph obtained from H
by deleting the vertex x. If D ⊆ V (H), then H \ D is the graph obtained from H
by deleting every vertex x ∈ D. For a graph H, the number of vertices of H will be
denoted by |H|.

Let H be a connected graph and let u, v ∈ V (H). The distance from u to v,
denoted by dist(u, v), is the minimum number of edges on a path from u to v. The
distance between two subgraphs of H and between a vertex and a subgraph are defined
analogously.

A graph H is hypomatchable if it has no perfect matching but for every x ∈ V (H),
H \ x admits a perfect matching. A single vertex is considered hypomatchable. A
fact that we will use is that hypomatchable graphs do not contain vertices of degree
one.

A k-star Sk is a complete bipartite graph K1,k, i.e., the graph with k+1 vertices
c, v1, . . . , vk and k edges cv1, . . . , cvk. The vertex c is called the center and k is the
index of the star.

2. History and results. The basic polynomially solvable cases of the [F ]-
packing problem in which M(G, [F ]) is a matroid are the following.

(E) Matching (edge-packing) [3, 4]. F consists of all edges of G.

(EH) Packing by edges and a set of hypomatchable graphs [1, 2, 5]. F consists of
all edges of G and some hypomatchable subgraphs of G.

(S) Packing by sequential sets of stars [7]. For some integer r, F consists of all
subgraphs isomorphic to a star Si, 1 ≤ i ≤ r.

In [8, 9], Loebl and Poljak studied the following case of the [F ]-packing problem.

(EHP) Packing by edges, hypomatchable graphs, and propellers. F consists of all
edges of G, some hypomatchable subgraphs of G, and a family R � F of subgraphs
of G named propellers. Let us now introduce the notion of propeller.

A connected graph P is a k-propeller (k ≥ 1 is the index of P ) if it has a vertex
c, called the center, such that P \ c consists of k + 1 components D0, . . . , Dk, where
|D0| = 1 and every Di is hypomatchable. Note that every (k+1)-star is a k-propeller.

A propeller is called rooted if it has one chosen vertex r of degree one, called the
root. We denote a rooted propeller P with root r by (P, r). If P has more vertices of
degree one (like a star), then there are more possibilities of choosing the root, and the
corresponding rooted propellers are considered to be distinct. Since hypomatchable
graphs have no vertices of degree one, the root r must be a neighbor of the center
c. The edge rc is called the stick of (P, r). Let D0, . . . , Dk be the components of
P \ c. Without loss of generality we may suppose that D0 = {r}. The remaining
components D1, . . . , Dk are called the blades of (P, r). We denote the set of all blades
of (P, r) by D(P, r).
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A family R of rooted propellers that are subgraphs of a graph G is called G-closed
if it satisfies the following three axioms.

Heredity. If (H, r) ∈ R and (H ′, r) are rooted propellers with the same stick and
D(H ′, r) ⊆ D(H, r), then (H ′, r) ∈ R.

Stick exchange. If (H, r) ∈ R is a rooted propeller with stick cr and r′ is a vertex
of G \H adjacent (in G) to c, then (H \ r) ∪ cr′ rooted in r′ belongs to R.

Blade exchange. Let (H, r), (H ′, r) ∈ R be rooted propellers with the same stick
rc and D(H ′, r) � D(H, r). Then for any blade D of (H, r), disjoint to all blades of
(H ′, r), there is some blade D′ ∈ D(H ′, r) \ D(H, r) such that the rooted propeller
(H ′′, r) with stick rc and blades (D(H ′, r) \D′) ∪D belongs to R.

Note that the Blade exchange axiom does not specify which edges connect the
centers of the propeller with their blades. Hence there may be more than one rooted
propeller with stick rc and blades (D(H ′, r′) \ D′) ∪ D that belong to R. However,
each such propeller is in R if R is G-closed (by Heredity).

A family of graphs containing only edges, hypomatchable graphs, and propellers is
called an EHP-family. The result of Loebl and Poljak concerning the (EHP) problem
is summarized in the following theorem.

Theorem 2.1. Let G be a graph and let F = E(G) ∪ H ∪ R be an EHP-family
of its subgraphs, where H is a family of hypomatchable graphs and R is a G-closed
family of rooted propellers. Then the [F ]-packing problem can be solved in polynomial
time and M(G, [F ]) is a matroid.

Let us observe that a sequential family of stars induces a closed family of propellers
in every graph G. Hence the (EHP) case contains all of (E), (EH), and (S).

Note that (E) and (S) also concern the more special T -packing problem: In (E),
T = {K2}, and in (S), T = {S1, . . . , Sr} for some integer r. In both of these cases
the T -packing problem can be solved in polynomial time in any graph G, and T is a
matroid-inducing family.

In [8, 10], Loebl and Poljak studied the following case of the T -packing problem.

(E+1) Packing by edges and copies of a single graph. T consists of K2 and a
fixed graph H. The complexity of this case was fully characterized in [10] and the
matroid-inducing property of T in [8]. The two results show that in this case the
T -packing problem is polynomially solvable if and only if T is a matroid-inducing
family (otherwise it is NP-complete). The characterization of the matroid-inducing
property of T in this case is given by the following theorem.

Theorem 2.2. Let H be a connected graph. Then {K2, H} is a matroid-inducing
family if and only if H is perfectly matchable, hypomatchable, or a 1-propeller.

The above result may also be viewed as follows: It is a characterization of graphs
H that can be added to the matroid-inducing EHP-family {K2} such that {K2}∪{H}
is also a matroid-inducing family. The interesting property is that the resulting family
is always an EHP-family. In the author’s Master’s thesis [6], this result was extended
to the following.

(S+1) Packing by a sequential set of stars and copies of a single graph. T consists
of a sequential family S = {S1, S2, . . . , Sn} of stars and of a fixed graph H. The
characterization of the matroid-inducing property of T in this case is given by the
following theorem.

Theorem 2.3. Let S = {S1, . . . , Sk}, k > 1, be a family of stars and let H be a
connected graph. Then T = S ∪ {H} is a matroid-inducing family if and only if H is
S-saturable, hypomatchable, or the star Sk+1.

This paper is concerned with matroid-inducing EHP-families T . At first, we will
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reformulate Loebl’s and Poljak’s necessary condition on EHP-families F of subgraphs
of G, guaranteeing that M(G, [F ]) forms a matroid to a necessary condition guar-
anteeing that a general EHP-family T of graphs is matroid-inducing. Moreover, we
will prove that this reformulated condition is sufficient, which is a new result: a full
characterization of the (EHP) case for T -packing. This work will be done in section
3.

The main purpose of this paper is to give a full characterization of individual
graphs H that can be added to a general matroid-inducing EHP-family T , such that
T ∪ {H} is also a matroid-inducing family. We will show that a graph H has this
property if and only if H is T -saturable or T ∪{H} is a matroid-inducing EHP-family,
which shows that the property proved by Loebl and Poljak for the case T = {K2}
holds throughout the whole class of matroid-inducing EHP-families T . The proof of
this fact will be given in section 4.

The results given in this paper are in fact generalizations of the results of Loebl
and Poljak presented in [8]. In many places, we will be able to use proofs and ar-
guments similar to those used in [8]. We will call the reader’s attention to this
correspondence when it occurs.

3. Matroid-inducing EHP-families. In this section, a full characterization of
EHP-families w.r.t. the matroid-inducing property will be presented. Let us start
with a few more notions concerning propellers and families of propellers.

A propeller P ′ ⊇ K2 is a subpropeller of a propeller P with center c if P ′ arises
from P by deleting one or more components of P \ c. Suppose P1, P2 are two disjoint
graphs, such that each Pi is either a propeller with center ci or an edge with one
end-vertex ci. We denote by P1 + P2 the graph that arises from P1, P2 by glueing
vertices c1, c2 into one vertex c, by glueing arbitrary neighbors r1, r2 of c1, c2 with
degree one into one vertex r, and by deleting the multiple edge.

The following claim will be used.
Claim 3.1. The center c of a k-propeller P is the only vertex of P , such that

P \ c has more than one component with no perfect matching.
Proof. P \ c really has k + 1 ≥ 2 such components D0, . . . , Dk (every Di is

hypomatchable). If there exists a vertex x 	= c, such that P \ x has at least two
components with no perfect matching, then x ∈ Dj for some j. Let B be a component
of P \ x that has no perfect matching and does not contain c. Then B is also a
component of Dj \ x, which is a contradiction, because Dj is hypomatchable.

Let L be a graph and let T be a family of graphs. By “[L] ∈ T ” we mean “there
is some L′ ∈ T isomorphic to L.” The following definition mimics the definition of
G-closed family of propellers that are subgraphs of G.

A family R of propellers is called closed if it satisfies the following two axioms.
Heredity. If P ∈ R and P ′ is a subpropeller of P , then [P ′] ∈ R.
Blade exchange. If P, P ′ ∈ R are propellers and P ′ is isomorphic to P1 + P2,

where P1 ∈ R is a 1-propeller and P2 is a subpropeller of P or an edge connecting
the center of P to a vertex of degree one, then there exists a component B of P \ P2

such that [(P \B) + P1] ∈ R.

Let T ′ be a family of graphs. Note that in a T ′-packing, we may avoid the use
of any member of T ′ that has a perfect packing by the remaining members. We say
that T ⊆ T ′ is a sufficient subfamily of T ′ if all graphs from T ′ \ T have perfect
T -packing. The following theorem characterizes matroid-inducing EHP-families.

Theorem 3.1. An EHP-family T of graphs is matroid-inducing if and only if T
is a sufficient subfamily of some EHP-family T ′ = {K2}∪H∪R, where H is a family
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of hypomatchable graphs and R is a closed family of propellers.

Proof. The “if” part of the proof is a simple application of Theorem 2.1. Let T be
a sufficient subfamily of a family T ′ consisting of K2, hypomatchable graphs, and a
closed family of propellers. Let G be an arbitrary graph. We will construct a family F
of subgraphs of G in two steps: In the first step we will insert in F all subgraphs of G
isomorphic to members of T ′ with all possible selections of roots for every propeller. In
the second step we will enlarge F to include every rooted propeller that is a subgraph
of G and has a common center, root, and blades with any of the rooted propellers
added in the first step (the only difference may be in the edges connecting the blades
and the center of the propeller). Obviously M(G, [F ]) = M(G, T ). It can be easily
verified that F satisfies the supposition of Theorem 2.1. Thus M(G, [F ]) = M(G, T )
is a matroid and since G was arbitrary, T is a matroid-inducing family.

We will prove the “only if” part by constructing counterexamples. We want to
prove that if a family T cannot be enlarged by adding T -saturable graphs to a family
T ′ consisting of K2, hypomatchable graphs, and a closed family of propellers, then
there exists a counterexample G such that M(G, T ) is not a matroid.

Let T be a family that cannot be enlarged this way. There are two cases.

(i) T violates Heredity. There exists a propeller P ∈ T such that one of its
subpropellers P ′ is not T -saturable (thus [P ′] 	∈ T , and we cannot add P ′ into T ).

(ii) T violates Blade exchange. There are two propellers P, P ′ ∈ T such that for
some 1-propeller P1 ∈ T , P ′ is isomorphic to P1 +P2, where P2 is a subpropeller of P
or an edge connecting the center of P to a vertex of degree one, and for no component
B of P \ P2, the propeller (P \B) + P1 is T -saturable.

In Lemmas 3.2 and 3.3 we will show counterexamples to both (i) and (ii). For
each case we will construct a counterexample G, such that M(G, T ) is not a matroid
(we will find two bases of different cardinality). That will be the proof of the “only
if” part of Theorem 3.1.

Lemma 3.2 (counterexample for an EHP-family violating Heredity (i)). Let T
be an EHP-family. If there exists a T -saturable propeller P and a non-T -saturable
subpropeller P ′ of P , then T is not matroid-inducing.

Proof. Let P be a T -saturable propeller with center c and P ′ its non-T -saturable
subpropeller. Without loss of generality we may suppose that P is a propeller with
minimum |P | and that P ′ is a k-propeller with maximum k.

With this supposition, for one component D of P \ c, P ′ = P \D. Let r ∈ V (P ′)
be an arbitrary neighbor of c with degree one (such r exists since P ′ is a propeller).
Let us denote by b the number of non-T -saturable components of P ′ \ cr. We know
that b ≥ 1; otherwise the whole P ′ would be T -saturable. Let us observe the following
claim.

Claim 3.2. There is no T \ {P}-packing of P saturating the whole P ′ = P \D.

Proof of Claim 3.2. Let Q be a T \{P}-packing of P saturating P ′ and let B be a
non-T -saturable component of P ′ \cr. Let W ∈ Q be the graph containing the center
c of P ′. It follows that r ∈ W and that W ∩B is not empty and non-T -saturable.

W \ c is a graph with at least two non-T -saturable components. Using Claim 3.1,
we conclude that W is a propeller with center c. Let A be the family of all components
of W \ cr intersecting D and let W ′ be a propeller that arises from W by deleting all
members of A. W ′ is a subpropeller of W and, due to the minimality of P , W ′ has a
perfect T -packing Q′ (if [W ′] ∈ T , then trivially Q′ = {W ′}). Let Q1 be the part of
Q intersecting D \W . We may construct a perfect T -packing ((Q \ {W}) ∪Q′) \ Q1

of P ′, which is a contradiction.
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Let us construct a counterexample G and prove that M(G, T ) is not a matroid
by introducing two bases of different cardinality. G arises from two copies P1, P2 of
P (vertices of each Pi will be denoted by the index i) by glueing the center c2 of P2

to an arbitrary vertex x1 from the component D1 of P1 \ c1 (see Figure 2(a)).

Consider a base B2 of M(G, T ) containing V (P2). We may construct a T -packing
Q of G saturating V (P2) as follows: Q uses a copy P2 of P , a perfect matching of
D1 \x1, a copy c1r1 of K2, and maximum T -packings of all components of P1 \ (D1 ∪
{r1, c1}). Hence |B2| ≥ |G|−b, where b is the number of non-T -saturable components
of P ′ \ cr (we know that b ≥ 1).

Let B1 be a base containing V (P1). If N is a T -packing corresponding to B1,
then N uses a graph W covering the center c1 of P1. Obviously W \ c1 has at least
b + 1 non-T -saturable components, and so, according to Claim 3.1, W is a propeller
and c1 its center.

If c2 	∈ W , then let L be the graph covering c2 (there exists such a graph since
V (P1) ⊆ B1). We know that c1 is contained in the graph W and thus L∩P1 contains
only vertices from D1. Let us delete L from N and consider the induced T -packing
N ′ of P1. N ′ saturates the whole P1 \D1 and by a cardinality argument N ′ does not
use any copy of P , which is a contradiction by Claim 3.2.

If c2 ∈ W , then every component of W \ c2 intersecting P2 is T -saturable (W is
a propeller with center c1). None of the b+ 1 non-T -saturable components of P2 \ c2
can be saturated by N and thus |B1| ≤ |G| − (b + 1) < |B2|. We have found two
bases of different cardinality and so G is a counterexample showing that T is not a
matroid-inducing family.

We have shown a counterexample for an EHP-family violating Heredity. In the
next lemma we will complete the proof of Theorem 3.1 by introducing a counterex-
ample for an EHP-family violating Blade exchange.

Lemma 3.3 (Counterexample for an EHP-family violating Blade exchange (ii)).
Let T be an EHP-family. Let T fulfill Heredity; i.e., if a propeller R ∈ T , then let all
subpropellers of R be T -saturable.

If there are two propellers P, P ′ ∈ T such that for some 1-propeller P1 ∈ T , P ′

is isomorphic to P1 + P2, where P2 is a subpropeller of P or an edge connecting the
center of P to a vertex of degree one, and for no component B of P \P2, the propeller
(P \B) + P1 is T -saturable, then T is not matroid-inducing.

Proof. Let P, P ′, P1, P2 be the propellers described above. Let us consider the
graph G = P + P1. Note that G is a propeller: let us denote by c its center and by
r the glued-together neighbor of c of degree one (see Figure 2(b)). Without loss of
generality assume that r ∈ V (P2).

Let B1 be a base of M(G, T ) containing V (P ). Then |B1| ≥ |G| − 1, since we
may construct a T -packing of G saturating V (P ) using a copy of P and a maximum
matching of P1 \ cr.

Let B2 be a base containing V (P1)∪V (P2). If |B2| = |G|−1, then the T -packing
Q corresponding to B2 skips exactly one vertex in one component W of P \ P2. If
|B2| = |G|, then let W be an arbitrary component of P \P2. We will prove that G\W
is T -saturable.

Consider the graph L ∈ Q covering the center c of G. L covers the whole edge cr
and so L is a copy of K2 or a propeller with center c.

If L is a copy cr of K2, then every component of G \ (W ∪ {c, r}) is T -saturable.
Thus the whole G \W is T -saturable.

If L is a propeller, then let A be the set of all components of L \ c intersecting
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W . Let L′ be the graph that arises from L by deleting all components from A. L′

is a copy of K2 or a propeller and due to Heredity, L′ has a perfect T -packing Q′.
Denote by Q1 the part of Q intersecting W \L. We may construct a perfect T -packing
((Q \ {L}) ∪Q′) \ Q1 of G \W .

We have proved that G \W is T -saturable. It gives us a contradiction, because
W is a component of P \ P2 and (G \ W ) = (P \ W ) + P1, which has no perfect
T -packing by the assumption. Thus |B2| < |G| − 1 ≤ |B1|, which proves that G is a
counterexample showing that T is not a matroid-inducing family.

4. (EHP+1)-packing. In this section we will introduce a characterization of
the graphs H that can be added to a matroid-inducing EHP-family T such that
T ∪ {H} is a matroid-inducing family. We will prove the following extension of
Theorem 2.2.

Theorem 4.1. Let T be a matroid-inducing EHP-family and let H be a graph.
Then the family T ∪ {H} is matroid-inducing if and only if H is T -saturable or
T ∪ {H} is a matroid-inducing EHP-family.

The “if” part of the theorem is trivial. Moreover, the characterization of matroid-
inducing EHP-families (Theorem 3.1) gives us a partial negative result for adding a
propeller H such that T ∪ {H} is not matroid-inducing.

For proving the “only if” part of the Theorem 4.1, it remains to show that if a
matroid-inducing EHP-family T is enlarged by a graph H that is not hypomatch-
able, T -saturable, or a propeller, then T ∪ {H} is not matroid-inducing. We will
show it at the end of this section by discussing the structure of H and by showing
counterexamples.

Before proving Theorem 4.1, some auxiliary notions and lemmas concerning the
structure of packings will be introduced. This technical work will be done in sections
4.1 and 4.2. The proof of Theorem 4.1 will be given in section 4.3.

4.1. Economical packings. Economical packing is a notion first defined by
Loebl and Poljak in [8] for packing by edges and hypomatchable subgraphs. Econom-
ical packings try to cover as many vertices by copies of K2 as possible. We will define
a similar notion for T -packing by matroid-inducing EHP-families T and prove a short
lemma needed in the proof of Theorem 4.1.

Let T be a matroid-inducing EHP-family. Consider a graph G and a T -packing
Q of G. We denote by V (Q) and E(Q) the set of all vertices and edges of G belonging
to some graph of Q. Thus, GQ = (V (Q), E(Q)) is a subgraph of G whose components
are copies of graphs from T , and conversely, this graph uniquely determines Q.

A vertex v ∈ V (G) is called fixed w.r.t. Q if it is covered by a copy of K2 or by
a center of a propeller in Q. For Q, we define a packing Qh by the following: GQh

is the subgraph of GQ induced by nonfixed vertices. Obviously Qh consists only of
hypomatchable graphs (all hypomatchable graphs in Q and, for each propeller P ∈ Q
with center c, all components of P \ c).

Definition 4.2. We say that a T -packing Q of G is economical if there is no
T -packing Q′ of G such that ∀v ∈ V (G), if degQ(v) = 1, then degQ′(v) = 1, and

(i) V (Q′) � V (Q) and Q′
h ⊆ Qh or

(ii) V (Q′) = V (Q) and Q′
h � Qh.

Note that if a set X ⊆ V (G) is saturable by some T -packing, then there exists
an economical T -packing saturating X. Let Q be a T -packing of G, such that each
propeller used in Q is assumed to be rooted in an arbitrarily selected root (Q is an
arbitrarily rooted T -packing). For Q, we define two packings Qe,Qb by the following:
GQe

is the subgraph of GQ induced by fixed vertices and roots of propellers and GQb
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is the subgraph of GQ induced by vertices covered by hypomatchable graphs and
blades of rooted propellers. Obviously Qe contains only edges (copies of K2 involved
in Q and sticks of propellers from Q) and Qb ⊆ Qh.

Given two rooted packings Q,Q′ we say that C is a component of Q ∪ Q′ if it
is a component of the graph GQe ∪ GQb

∪ GQ′
e
∪ GQ′

b
. Note that the components

of Q ∪ Q′ are not necessarily components of the graph GQ ∪ GQ′ , since they do not
contain the edges connecting the centers and blades of propellers from Q,Q′ (in [8],
where only edges and hypomatchable graphs are used in the packings, these two types
of components are the same). The following lemma (in fact an extension of Theorem
3 from [8] proved by a similar technique) describes the components of Q∪Q′ for two
rooted economical T -packings Q,Q′.

Lemma 4.3. Let T be a matroid-inducing EHP-family and let G be a graph. Let
Q and Q′ be two rooted economical T -packings of G and let C be a component of
Q∪Q′. Then

(i) C contains at most one vertex that is uncovered by Q;
(ii) C contains at most one graph from Qb;
(iii) if C contains exactly one graph from Qb, then Q saturates C.
Proof. Let us call a path P alternating w.r.t. Q if it alternately contains edges

of Qe and E(G) \ E(Q). An alternating path P with end vertices u and v is called
augmenting if {u, v}∩V (Qe) = ∅ and {u, v} ⊆ H for no H ∈ Qb (i.e., the end vertices
of P do not belong to the same hypomatchable graph of Qb). It is easy to see that
an economical packing does not admit an augmenting path.

For a contradiction, let C contain two graphs H1, H2, such that each Hi is either
a single vertex uncovered by Q or a member of Qb. Assume that the distance between
H1, H2 is a minimum. Then C contains a path P , such that P has end vertices in H1

and H2, and P does not contain any edge of a graph from Qb.
Let us denote by j(P ) the maximum number of consecutive edges of a graph from

Q′
b, which do not belong to any graph from Q, involved in P . Let us assume that P

is a path with minimum j(P ).
If j(P ) ≤ 1, then P is an augmenting path w.r.t. Q, which is a contradiction. If P

contains edges of at least two distinct graphs from Q′
b, then P contains an augmenting

path w.r.t. Q′, which is a contradiction. Thus P contains edges of exactly one graph
H ′ ∈ Q′

b.
Let x be the first vertex (in the direction from H1 to H2) adjacent to two con-

secutive edges of H ′ in P that do not belong to Q. Note that x ∈ V (Qe); otherwise
the beginning of P would be an augmenting path. Let Q′′ be the packing that arises
from Q′ by substituting H ′ with a perfect matching of H ′ \x. Let P ′ be the (unique)
path starting in x by the (unique) edge from Qe and alternating w.r.t. both Q and
Q′′. P ′ starts in x; denote by z the other end vertex. If z ∈ H1, then j(P ) is not
a minimum; otherwise we may find an augmenting path w.r.t. Q or Q′, which is a
contradiction.

4.2. Structural lemma. Let H be a graph. For a vertex x ∈ V (H), we will
denote by Hx the graph that arises from H by adding a new vertex xa and a new
edge xxa.

For a matroid-inducing EHP-family T , k(T ) denotes the maximum index of a star
included in T . Note that if k(T ) ≥ 2 (T contains the star S2), then all hypomatchable
graphs are T -saturable. Hence all hypomatchable graphs and propellers different from
stars may be avoided in every T -packing.

If T is a family of graphs and H is a graph, then we will denote by µT (H)
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the maximum number of vertices of H saturated by some T -packing of H. If T is a
matroid-inducing family, then it follows that every maximal T -packing of H saturates
exactly µT (H) vertices.

Lemma 4.4. Let T be a matroid-inducing EHP-family. Let H be a graph that is
neither T -saturable nor hypomatchable. Then there exists a vertex x ∈ V (H), such
that µT (Hx) ≤ |Hx| − 2.

Proof. We will prove this lemma in two steps: In the first step we will find a
vertex x ∈ V (H) and an economical T -packing Q of Hx with |V (Q)| ≤ |Hx| − 2. In
the second step we will prove that Q has to be maximal w.r.t. Hx. Because T is
matroid-inducing, we will have µT (Hx) = |V (Q)| ≤ |Hx| − 2.

(i) Let N be an economical maximal T -packing of H. Because H is not T -
saturable, there exists a vertex w ∈ V (H) \ V (N ). We will color w red. Let v be a
neighbor of w. Obviously N covers v by a copy of K2 or by a center of a propeller.

Consider the graph Hv. If N is economical w.r.t. Hv, then we set x = v and
Q = N and we are finished with the first part of the proof.

If N is not economical w.r.t. Hv, then there exists a T -packing N ′ of Hv with
(o) ∀v ∈ V (H): if degN (v) = 1, then degN ′(v) = 1, and
(i) V (N ′) � V (N ) and N ′

h ⊆ Nh or
(ii) V (N ′) = V (N ) and N ′

h � Nh.

If va 	∈ V (N ′), then N ′ is a T -packing of H, proving that N is not economical
w.r.t. H, which is a contradiction. Therefore va ∈ V (N ′).

If the star S2 	∈ T , then every propeller from T has a unique vertex of degree one.
Hence N ,N ′ may be unambiguously viewed as rooted T -packings. Note that due to
(o), V (Ne) ⊆ V (N ′

e). Let J be the (unique) maximal alternating path starting in va
by the edge vav and alternately containing edges of N ′

e and Ne. Since V (Ne) ⊆ V (N ′
e),

J has an odd number of edges. Let z be the last vertex of J . We know that z is
uncovered by N or covered by Nb. If z 	= w, then by substituting the first edge vav in
J by the edge wv we get an augmenting path w.r.t. N in H, which is a contradiction.
Therefore, the last vertex of J is w.

On the other hand, if S2 ∈ T , then we may assume that N ,N ′ consist of stars only.
In this case, consider a sequence of edges J of maximal possible length starting in va
by the edge vav and alternately containing edges of N ′\N and edges of N \N ′ leading
to vertices of degree one. Note that the edges of N ′ \ N are uniquely determined by
the property (o). Let z be the last vertex of J . Due to (o), J cannot have an even
number of edges. Thus J has an odd number of edges and z is either uncovered by N
or a member of Nb or a center of a star Sj , 1 ≤ j < k(T ), in N with all edges covered
by N ′ or already in J . If the last possibility appears, then we may construct a new
T -packing of H contradicting the maximality of N by swapping edges and nonedges
of N along (J \{vav})∪{wv}. Otherwise, similarly as above, we conclude that z = w.
Without loss of generality, assume that J is a path (cycles in J may be skipped).

In both cases we have found an odd cycle C in H. C consists of the edge wv and
the path J \ va. We can conclude that none of the edges of C belongs to a propeller
from N (N would not be economical w.r.t. H). Thus C contains only copies of K2

from N and edges uncovered by N . Let us color all vertices of C red. Note that for
every red vertex y there exists an economical maximal T -packing N y of H skipping
y and covering all other red vertices by copies of K2.

Let us take a red vertex w′ that has a nonred neighbor v′. Let Nw′
be an

economical maximal T -packing of H skipping w′ and covering all red vertices by
copies of K2. As above, either we will find that Nw′

is economical also w.r.t. Hv′ , or
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we will find an odd cycle C ′ containing v′ and w′ and consisting of copies of K2 from
Nw′

and edges uncovered by Nw′
. In the latter case let us again color all vertices of

C ′ red and observe that (still) for every red vertex y there is an economical maximum
T -packing N y of H skipping y and covering all other red vertices by copies of K2.

Continuing analogously, we cannot finish with all vertices colored red. Then H
would be hypomatchable (for every [red] vertex there would be a T -packing skipping
it and covering all other [red] vertices by copies of K2). Hence, in the ith step we will

find a red vertex w(i), its nonred neighbor v(i), and a T -packing Nw(i)

of H, which

is economical w.r.t. Hv(i) and skips w(i) and the newly added vertex v
(i)
a . Let us set

x = v(i) and Q = Nw(i)

. The first step of the proof is finished.

(ii) We have found a vertex x ∈ V (H) and an economical maximal T -packing Q
of H, which is economical also w.r.t. Hx and skips at least the newly added vertex
xa and one more neighbor u of x. If Q is not maximal w.r.t. Hx, then there is a
T -packing L′ of Hx with V (L′) � V (Q). Let L be an economical T -packing of Hx

covering the same set of vertices as L′. If xa 	∈ V (L), then L proves that Q is not
maximal w.r.t. H, which is a contradiction. Thus L covers xa. Assume L and Q
are arbitrarily rooted. Let B be the component of L ∪ Q containing xa. According
to Lemma 4.3, B does not contain any other vertex that is uncovered by Q. In
particular, u 	∈ V (B). Let D be the component containing u. We know that D \ u is
saturated by Q and that GQ ∩D does not contain any graph from Qb. Let Q′ be a
T -packing that arises from L by replacing the edge xxa by xu, by replacing all graphs
of L intersecting D with graphs (edges) of Qe intersecting D, and by substituting the
newly constructed graphs with their perfect T -packings where necessary. It may be
simply observed that Q′ is a correctly defined T -packing of H with V (Q′) ⊇ V (Q)
and so Q is not maximal w.r.t. H, which is a contradiction.

Thus Q has to be maximal w.r.t. Hx. Because Q skips at least two vertices of
Hx, Lemma 4.4 is proved.

4.3. Proof of the negative part of Theorem 4.1. Let T be a matroid-
inducing EHP-family and let H be a graph that is neither T -saturable nor hypo-
matchable nor a propeller. To prove Theorem 4.1 we need to show that T ∪ {H}
is not a matroid-inducing family. We will proceed by discussing the structure of H
and introducing counterexamples. For each type of a bad graph H we will find a
counterexample G, such that M(G, T ∪ {H}) is not a matroid. Moreover, we will
always find two bases of different cardinality. Let us introduce an auxiliary claim
about bases, analogous to the claim introduced on page 344 in [8].

Claim 4.1. Let H be a graph and let x ∈ V (H) be a vertex with less than k(T )
neighbors of degree one. Let G = Hx and let Bx

2 be a base of M(G, T ∪ {H}) such that
x, xa ∈ Bx

2 , and for each w ∈ V (Hx) with jw > 0 neighbors of degree one, there are
n = min(jw, k(T )) vertices y1, . . . , yn ∈ V (Hx) of degree one, such that wyi ∈ E(H)
and yi ∈ Bx

2 for each i.

If Q is a T ∪{H}-packing of G corresponding to Bx
2 , then Q uses no copy of H.

Proof of Claim 4.1. Assume Q uses a copy H ′ of H. As |H ′| ≤ |Bx
2 | ≤ |H|+1, we

have Bx
2 = V (H ′). If the vertex x has h neighbors of degree one in H (0 < h < k(T )),

then we get a contradiction, because H ′ would have more vertices with h+1 neighbors
of degree one than H.

If x has no neighbors of degree one, then let us denote by c(H) the set of all vertices
of H that have neighbors of degree one. Let dst(H) =

∑
u,v∈c(H)(1+dist(u, v)), where

dist(u, v) is the distance between u and v. We get dst(H ′) > dst(H), which is again
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a contradiction.

Let us start by discussing the structure of H: According to Lemma 4.4 we know
that if H is neither T -saturable nor hypomatchable, then there exists a vertex x ∈
V (H), such that µT (Hx) ≤ |Hx| − 2. Let us denote by A(H) the set of all such
vertices of H. There are several cases.

Case 1 (analogous to Case 1 of [8]). There exists a vertex a ∈ A(H) with fewer
than k(T ) neighbors of degree one.

Let G = Ha (see Figure 2(c)). Let B1 be a base of M(G, T ∪ {H}) containing
V (H). We know that |B1| ≥ |G| − 1 using a copy of H. Let Ba

2 be the base defined
in Claim 4.1. By this claim, Ba

2 uses no copy of H and thus every (T ∪ {H})-
packing corresponding to Ba

2 is in fact a T -packing. Because a ∈ A(H), we have
|Ba

2 | ≤ |Ha| − 2 < |B1|, and so G is a counterexample with two bases of different
cardinality.

If Case 1 does not occur, then every vertex from A(H) has at least k(T ) neighbors
of degree one. Let us denote the set of all such neighbors by B(H). On the other
hand, the following claim also holds.

Claim 4.2. If a ∈ V (H) has k ≥ k(T ) neighbors of degree one, then a ∈ A(H).
Proof of Claim 4.2. Let B be the set of k ≥ k(T ) neighbors of a of degree one

in H. If a 	∈ A(H), then µT (Ha) ≥ |Ha| − 1. Let Q be a maximal T -packing of Ha

covering all vertices from B. We know that Q skips aa; otherwise Sk+1 ∈ T . Hence
Q saturates H, which is a contradiction.

Let us follow the discussion and introduce other cases.
Case 2 (analogous to Case 2 of [8]). µT (H \ b) ≤ |H| − 3 for some b ∈ B(H).

Denote by a the unique neighbor of b in H. Consider the graph Hb (vertex ba and
edge bba were added to H). Let Q be a maximal T -packing of Hb covering ba.

If Q covers the edge bba by a copy of K2, then |V (Q)| = |Hb|−2, and so b ∈ A(H).
Since b has no neighbors of degree one, we may use Case 1.

If S2 ∈ T and Q covers ba by a copy abba of S2, then Q skips all of the k(T )−1 ≥ 1
neighbors of a with degree one different from b. Moreover, we may observe that the
number of vertices skipped by Q is strictly greater than 1; otherwise H is T -saturable.
Hence |V (Q)| ≤ |Hb| − 2 and so b ∈ A(H), which leads to Case 1.

It remains to inspect maximal T -packings of Hb that cover bba by a 1-propeller
different from S2. Without loss of generality we may suppose that S2 	∈ T (otherwise
the use of propellers different from stars could be eliminated). Let Q be a maximal T -
packing of Hb covering bba by a 1-propeller P 	= S2. We know that |V (Q)| ≥ |Hb|−1;
otherwise we can use Case 1. Let N be a T -packing of H that arises from Q by
substituting P with a perfect matching of P \ ba. Obviously |V (N )| ≥ |H| − 1, and
because H is not T -saturable, N is maximal w.r.t. H and |V (N )| = |H| − 1.

Let d 	= b be an arbitrary vertex adjacent in P to a. We may observe that d
has no neighbor of degree one in H. Such a vertex d′ could not be in P , because
hypomatchable graphs do not contain vertices of degree one, but we could easily
enlarge V (Q) by d′, which is a contradiction with the maximality of Q. Consider the
graph Hd. N is a T -packing of Hd skipping two vertices. We will show that N is
maximal w.r.t. Hd and so d ∈ A(H).

If N is not maximal w.r.t. Hd, then there exists a T -packing L of Hd with
V (L) � V (N ). If da 	∈ V (L), then L proves that N is not maximal w.r.t. H,
which is a contradiction. So d, da ∈ V (L), and because |V (N )| = |H| − 1, we get
|V (L)| ≥ |Hd| − 1. Let us pay attention to the edge ab: L must cover the edge
ab by a copy of K2 or by a propeller R with d 	∈ V (R). We will construct a new
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z

N 1 N 2 N t –1 N t

Fig. 1. Case 3: Decomposition of H.

T -packing L′: L′ arises from L by replacing the edges dad and ab with the edge ad
and by substituting the new graph covering a with its perfect T -packing if necessary.
It can be simply verified that L′ is a correctly defined T -packing skipping b with
|V (L′)| ≥ |H| − 2, which contradicts the assumption of Case 2.

We have shown that N is maximal w.r.t. Hd. Since |V (N )| = |Hd| − 2 and T
is a matroid-inducing family, we get d ∈ A(H). Because d has no neighbor of degree
one in H, we may use Case 1. This completes Case 2.

Case 3 (analogous to Case 3 of [8]). µT (H \ b) = |H| − 2 for every b ∈ B(H).
Let t be the maximum integer such that H can be decomposed as in Figure 1, where
z ∈ B(H) and

⋃t
i=s(Ni) is not T -saturable for any s = 1, . . . , t. Let us construct

a counterexample G such that M(G, T ∪ {H}) is not a matroid: G arises from two
copies H1, H2 of H (vertices of each Hi are indexed by i) by glueing the vertex z2 of
H2 to the unique neighbor c1 of z1 in H1. (The construction from Case 3 of [8] was
used; see Figure 2(d).)

Let B1 be a base of M(G, T ∪{H}) containing V (H1). Then |B1| ≥ |G|−1 using
a copy H1 of H and a maximum T -packing of H2 \ z2. Let B2 be a base containing
V (H2). Assume that |B2| = |B1|. Because neither H2 nor H2 \ z2 is T -saturable,
we have to use a copy H ′ of H with H ′ ∩ H2 	= ∅. Denote T2 = H ′ ∩ H2. Let
(z2, N1, . . . , Nt) be the decomposition of H2 as in Figure 1. Denote N ′

i = Ni ∩ T2.
Because H2 \ T2 must be T -saturable, T2 has to intersect every Ni, and so N ′

i 	= ∅,
i = 1, . . . , t. Moreover,

⋃t
i=s(N

′
i) is not T -saturable for any s = 1, . . . , t (in particular,

T2 =
⋃t

i=1(N
′
i) is not T -saturable).

By a cardinality argument H ′ contains the vertex x = z2 = c1. Denote T1 =
H ′ ∩H1. If x has k(T ) neighbors r1, . . . , rk of degree one in T1, then x ∈ A(H ′) and
(r1, T1 \r1, N ′

1, . . . , N
′
t) is a decomposition of H ′ into t+1 parts. Because r1 ∈ B(H ′),

by the assumption of Case 3, H ′ \ r1 = (T1 \ r1) ∪
⋃t

1(N
′
i) is not T -saturable and we

get a contradiction with the maximality of t.

If x has less than k(T ) neighbors of degree one in T1, then without loss of gener-
ality assume that H ′ does not contain z1. Thus (H1 \ z1) \H ′ has to be T -saturable
and so H ′ ∩ (H1 \ {z1, x}) is non-T -saturable. Hence µT (H ′ \ x) = |H ′| − 3. The
graph T1 = H ′ ∩H1 is in this case also non-T -saturable since µ(H1 \ z1) = |H1| − 2.
We will prove that x ∈ A(H ′) and then, because x has less then k(T ) neighbors of
degree one in H ′, we will use Case 1.

For a contradiction, let x 	∈ A(H ′). Then there exists a maximal T -packing Q
of H ′

x with |V (Q)| ≥ |H ′
x| − 1. The added vertex xa ∈ V (Q); otherwise H ′ is T -

saturable. If Q covers the new edge xxa by a copy of K2, then either T1 or T2 is
T -saturable, which is a contradiction. If Q covers the new edge xxa by a propeller P ,
then by Heredity of T , one of the graphs T1, T2, T1 \ x, T2 \ x is T -saturable, which
is a contradiction. This completes Case 3.
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Case 4. µT (H) = |H| − 1, and there exists a vertex a ∈ A(H) and a component
D of H \ a that is saturated by every maximal T -packing of H. Note that in this
case H \D cannot be saturated by any T -packing of H; otherwise a base containing
V (H\D) would lead to a contradiction. Because all vertices from A(H) have neighbors
of degree one, there must exist a vertex d ∈ D \ A(H). Thus µT (Hd) ≥ |Hd| − 1.
Assume that the distance between a, d is maximum possible. Let us construct a graph
G such that M(G, T ∪ {H}) is not a matroid: G arises from two copies H1, H2 of H
(vertices of each Hi are indexed by i) and one new vertex r0 by adding the edge r0d1

and edges a2x1 for every x1 ∈ V (H1) such that x1d1 ∈ E(H1) (see Figure 2(e)). Let
us find two bases of M(G, T ∪ {H}) with different cardinality.

Let B2 be a base containing V (H2). Then |B2| ≥ |G|− 1 using two copies H1, H2

of H (vertex r0 will remain uncovered). Let B1 be a base containing V (H1) ∪ {r0}.
Since H1 \ D1 is not saturated by any T -packing of H1, B1 has to use a copy H ′

of H intersecting H1 \D1 in a nonempty and non-T -saturable subgraph. Obviously
a1 ∈ V (H ′), and so all k(T ) neighbors of a1 with degree one from H1 are in V (H ′).
According to Claim 4.2, a1 ∈ A(H ′). Denote T1 = H ′∩(H1\D1). We know that every
maximal T -packing of H ′ skips exactly one vertex. The skipped vertex is always in T1;
otherwise there exists a T -packing of H1 saturating H1 \D1, which is a contradiction.
So H ′ \ T1 is saturated by every maximum T -packing of H ′.

If H ′ does not intersect H2, then by a cardinality argument d1 ∈ V (H ′). Thus
r0 ∈ V (H ′) and there has to be a vertex y ∈ V (H1)\V (H ′). Note that the degree of y
in H1 must be 1; otherwise, similarly as in Claim 4.1, dst(H ′) > dst(H). Vertex y has
to be covered by a graph containing the edge ya2, and so y has to be a neighbor of d1.
If µT (H1,y) ≥ |H1,y| − 1, then we have a contradiction with the supposed maximality
of the distance between a, d. Thus µT (H1,y) ≤ |H1,y| − 2 and so y ∈ A(H1). Because
y has no neighbors of degree one in H1, we may use Case 1.

If H ′ intersects H2, then a2 ∈ V (H ′). If |B1| = |B2| ≥ |G| − 1, then H ′ \ a2 must
have a non-T -saturable component B ⊆ H2 \ a2. Let Q be a maximal T -packing of
H ′. We know that Q saturates all the vertices of H ′ \ T1. Hence Q saturates B and
so there is a graph L ∈ Q covering a2 and intersecting B in a nonempty subgraph.
If |L ∩B| > 1, then L ∩B is a part of a hypomatchable subgraph or a propeller and
there exists a vertex w ∈ L ∩ B such that µT (H ′ \ w) ≥ |H ′ \ w| − 1. Therefore,
µT (H ′

w) ≥ |H ′
w| − 1, which contradicts the supposed maximality of the distance

between a and d. Thus L∩B = {v} (a single vertex). The vertex v has no neighbors
of degree one in H ′ (these could not be covered by Q). If µT (H ′

v) ≥ |H ′
v| − 1, then

v contradicts the supposed maximality of the distance between a and d. Otherwise
v ∈ A(H ′), and because v has no neighbors of degree one, we may use Case 1. We
have proved that |B1| 	= |B2|, which proves that T ∪ {H} is not a matroid-inducing
family. This is the end of Case 4.

Case 5. µT (H) = |H| − 1, and there are vertices b ∈ B(H) and x ∈ V (H), such
that µT (H \ b) = |H| − 1 and µT (H \ x) = |H| − 2.

Let a ∈ A(H) be the (unique) neighbor of b. We know that x 	= a; otherwise
H is T -saturable. The counterexample graph G is constructed as follows: G arises
from two copies H1, H2 of H (vertices of each Hi are denoted by the index i) by
glueing the vertex a2 to x1 (see Figure 2(f)). Let B2 be a base containing V (H2).
|B2| ≥ |G| − 1 using a copy of H and a maximal T -packing of H1 \ x1. Let B1 be a
base containing V (H1) and let N be a T ∪ {H}-packing associated with B1. Because
neither H1 nor H1 \ a2 is T -saturable, N has to use a copy H ′ of H intersecting
H1 \ a1 in a nonempty and non-T -saturable subgraph. By a cardinality argument,
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Fig. 2. Summary of counterexamples.

a2 ∈ V (H ′). If H ′ does not contain all the neighbors of a2 from B(H2), then without
loss of generality N skips b2. If |B1| ≥ |G| − 1, then V (N ) = V (G \ b2). Let Q be
a maximal T -packing of H ′. We know that Q skips exactly one vertex of H ′, and so
either H ′ ∩H1 \ a2 or H ′ ∩H2 \ a2 is saturated by Q. By Heredity, one of the graphs
H1, H2, H1 \ a2, H2 \ a2b2 is T -saturable, which is a contradiction.

If H ′ contains all the neighbors of a2(= x1) from B(H2), then a2 ∈ A(H ′). Note
that every T -packing of H ′ skips exactly one vertex in H ′ ∩ (H1 \ x1); otherwise H1

or H1 \ x1 is T -saturable by Heredity. Thus H ′ ∩ (H2 \ a2) 	= ∅ is saturated by every
maximal T -packing of H ′ and we may use Case 4. This completes Case 5.

Case 6 (analogous to Case 4 of [8]). There are two vertices a, a′ ∈ A(H), such
that if b ∈ B(H) is a neighbor of a or a′, then H \ b is T -saturable. If L is a graph
and Q is its T -packing, then we call the size of |V (L) \ V (Q)| the defect of Q. The
defect of L is the defect of a maximum T -packing of L. Let b, b′ ∈ B(H) be neighbors
of a, a′, respectively. Let us denote by m the defect of H \ {a, b, a′, b′}, and by n, n′

the defects of H \ {a, b} and H \ {a′, b′}, respectively.

At first assume that m < n+n′, and let us construct a counterexample graph G:
G arises from three copies H0, H1, H2 of H (vertices of each Hi are indexed by i) by
glueing vertices a0 to a1, b0 to b1, a

′
0 to a′2, and b′0 to b′2 (and deleting the multiple

edges). For each i ∈ {1, 2} we will denote Ii = Hi \H0. (The construction from Case
4 of [8] was used; see Figure 2(g).)

Let B1 be a base containing V (H1) ∪ V (H2). Then |B1| ≥ |G| −m. Let B2 be a
base containing V (H0). Because H0 is not T -saturable, B2 has to use a copy H ′ of
H intersecting H0. If H ′ = H0, then |B2| = |G| − (n + n′) < |G| −m ≤ |B1|, which
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proves that T is not matroid-inducing.

If H ′ 	= H0, then |H ′ ∩ I1| ≥ 1 or |H ′ ∩ I2| ≥ 1. Without loss of generality let
|H ′ ∩ I1| ≥ 1. Note that H ′ has to cover all neighbors of a0 of degree one in H0,
and so according to Claim 4.2, a0 ∈ A(H ′). If there does not exist a T -packing of
H ′ saturating H ′ ∩ H0, then H ′ ∩ I1 is saturated by every maximum T -packing of
H ′. Because H ′ ∩ I1 contains one or more components of H ′ \ a0 and a0 ∈ A(H ′),
we can use Case 4. If there exists a T -packing of H ′ saturating H ′ ∩ H0, then by
Heredity of T , H ′ ∩H0 is T -saturable. Hence H0 \H ′ is not T -saturable and B2 has
to use another copy H ′′ of H with |H ′′ ∩H2| > 0, |H ′′ ∩H0| > 0, and (H ′′ ∩H0) not
T -saturable. Similarly as above, a′0 ∈ A(H ′′). It follows that H ′′ ∩ H2 is saturated
by every maximum T -packing of H ′′, and so we may use Case 4.

It remains to prove that m ≥ n+n′ does not occur: If Case 5 does not hold, then
for every x ∈ V (H), the defect of H\x is either 0 or at least 2. Note that if the defect is
at least 2, then x is covered by an edge or by a center of a propeller in each maximal T -
packing of H. Let Q be an economical maximal T -packing covering both ab and a′b′.
Assuming that K2 is a “0-propeller,” the vertices a, a′ have to be covered by centers
of propellers in Q. Let us denote the propellers covering a, a′ by P, P ′, respectively,
and assume that P, P ′ are rooted in b, b′, respectively, and that Q is a T -packing with
minimum sum of indexes of P , P ′. Let Q′ be a T -packing of H constructed from Q by
substituting all blades of the two aforementioned rooted propellers by their maximum
matchings (one vertex in every blade will remain uncovered). It is simple to prove
that Q′ is an economical T -packing of H (generally, every T -packing that arises from
an economical T -packing by substituting some hypomatchable graphs and blades of
propellers by their maximum matchings is economical). Note that there is one more
vertex y 	∈ V (P ) ∪ V (P ′) skipped by Q′: y is the vertex skipped by the original T -
packing Q. If the sum of the indexes of P, P ′ was a minimum, then the defect of Q′

is exactly m, since in this case Q′ induces a maximal T -packing in H \ {a, b, a′, b′}.
Similarly, we will construct two other T -packings N1,N ′

1 of H\{ab} and H\{a′b′},
respectively. N1 and N ′

1 arise from Q by replacing blades of only one rooted propeller
P or P ′, respectively, by their maximum matchings and by skipping the edge ab, a′b′,
respectively. If both N1,N ′

1 are maximal, then obviously m < n + n′.

Let us assume that without loss of generality N1 is not maximal. Let N2 be
an economical maximal T -packing of H \ ab with V (N2) � V (N1). The T -packing
N = N2 ∪ {ab} is an economical T -packing of the whole H. Assume that Q and N
are arbitrarily rooted.

Subcase 1. If y ∈ N , then every vertex skipped by N lies in a component of Q∪N
intersected by P in Q. Let C = {C1, . . . , Ct} be a collection of all such components
and let V (C) denote the set of all vertices in all Ci. We may construct a perfect
T -packing of H by exchanging the graphs of N intersecting V (C)∪{a, b} with graphs
of Q intersecting V (C) ∪ {a, b} (we will use a subpropeller of P ) and by replacing
the newly constructed graphs by their perfect T -packings where necessary, which is a
contradiction.

Subcase 2. If y 	∈ N , then N covers a vertex z covered by a blade of P in Q.
Since Case 5 does not occur, H \ z is T -saturable. Let D be an economical maximal
rooted T -packing of H saturating V (H)\z. We will subsequently modify N and Q to
obtain a contradiction. Throughout the sequence of modifications, we will maintain
the following invariant.

(I) At most one vertex skipped by N (denoted by y) is not covered by a propeller
with center a in Q. If y exists, then z is covered by a propeller with center a in Q.
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In the beginning, (I) is satisfied. There are several situations.

Situation A. If y, z are in the same component C of D ∪N , then by replacing all
graphs (edges) of N in C with the graphs (edges) of D in C, we get Subcase 1.

Situation B. If the component C of D ∪N containing y is intersected by a hypo-
matchable graph in D, then we get a contradiction with the maximality of N2.

Situation C. If the component C of D ∪N containing y is intersected by a blade
B of a rooted propeller (W, r) with center c 	= a in D, then let us focus on the vertex
c. If c is uncovered by N or covered by a hypomatchable graph, by a root or a
blade of a rooted propeller, or by a copy of K2 in N , then we get a contradiction
with the maximality of N2. Thus c is a center of a rooted propeller (W ′, r′) in
N . If D(W ′, r′) ⊆ D(W, r), then we may enlarge N2 to saturate V (C), which is a
contradiction. Otherwise, by Blade exchange there exists a blade B′ ∈ D(W ′, r′) \
D(W, r) such that the graph induced by V (W ′ \ B′) ∪ V (B) is T -saturable. Let
us modify N by replacing W ′ with a perfect T -packing of V (W ′ \ B′) ∪ V (B), by
replacing the graphs of N in C with the graphs of D in C, and by replacing B′ with a
maximum matching of B′ \x1, where x1 ∈ V (B′) is arbitrary. After this modification,
let us newly consider y = x1, observe that (I) is satisfied, and continue our sequence
of modifications according to the current situation.

Situation D. The last situation occurs when the component C of D∪N containing
y is intersected by a blade B of a rooted propeller (W, r) with center a in D. Without
loss of generality we may suppose that y ∈ V (B) and C = B, since N may be simply
modified to satisfy this condition.

If there is a blade Y of P with V (Y ) ∩ V (B) 	= ∅, then let x2 ∈ V (Y ) ∩ V (B)
and let us modify N by replacing the graphs of N in B with a perfect matching of
B \ x2. After this modification we are in Subcase 1.

If B does not intersect any blade of P , then according to Blade exchange, there
is a blade D of P such that the graph induced by V (P \D) ∪ V (B) is T -saturable.
Let us modify Q by replacing the graphs of Q with the graphs of D in the component
of Q ∪ D containing B and by replacing P with a perfect T -packing of the graph
induced by V (P \D)∪V (B) and with a perfect matching of D \x3, where x3 ∈ V (D)
is arbitrarily selected if N saturates D and is the unique vertex of D skipped by N
otherwise.

If N saturates D (this occurs, e.g., when z ∈ V (D)), then this modification leads
to Subcase 1. If N does not saturate V (D), then let us newly consider y = x3 and
observe that (I) is satisfied. Hence we may continue our sequence of modifications
according to the current situation.

For a rooted T -packing L, we denote by D(L) the set of all graphs induced by a
blade and a center of any propeller included in L. The above sequence of modifications
is finite, since in each step the size of one of D(D) \D(Q), D(D) \D(N ) decreases.
We end our sequence in Subcase 1 or by a contradiction with the maximality of N2.
This concludes the proof of Case 6.

It remains to prove that the list of cases is complete. If H is a connected
graph which is neither T -saturable nor hypomatchable, then according to Lemma 4.4,
A(H) 	= ∅. If none of Cases 1, 2, and 3 holds, then there is a vertex b ∈ B(H) such
that H \ b is T -saturable. Because H is not T -saturable, we have µT (H) = |H| − 1.
Let a ∈ A(H) be the (unique) neighbor of b in H. If any of the components of H \ a
is saturated by every maximum T -packing of H, then we can use Case 4. So for
every component of H \a there exists a maximum T -packing of H skipping one of its
vertices. Let us iterate through all the components of H \ a. For every component D
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we will take a maximum T -packing of H skipping one of the vertices x ∈ V (D). We
will color x red and follow the coloring algorithm described informally in the proof of
Lemma 4.4 until all vertices of D are red or until we find a vertex a′ ∈ V (D)∩A(H).
If we finish with all vertices in all components colored red, then every component
of H \ a is hypomatchable and H is a propeller, which was completely addressed in
section 3. Note that this way we can find not only a vertex a′ ∈ A(H), a′ 	= a, but
also a maximal T -packing Q of H skipping exactly one of the neighbors of a′. Let
us observe that for every neighbor b′ ∈ B(H) of a′, Q can be easily changed to a
T -packing skipping exactly b′. We have found two vertices a, a′ ∈ A(H), such that if
b ∈ B(H) is a neighbor of a or a′, then H \ b is T -saturable, which can be solved by
Case 6. This concludes the proof of Theorem 4.1.

5. Conclusion. We have introduced a full characterization of EHP-families of
graphs T such that M(G, T ) is a matroid for every graph G. Moreover, we have fully
characterized the enlargements of matroid-inducing EHP-families by one graph H by
proving that T ∪ {H} is a matroid-inducing family if and only if H is T -saturable or
T ∪ {H} is a matroid-inducing EHP-family.

The paper studies the matroidal aspects of the T -packing problem. Many other
results have been recently extended from matching to packing by EHP-families. The
most important results are those concerning complexity. These were introduced by
Loebl and Poljak in [9] and [10].
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Abstract. Let G be a connected graph with maximum degree k (other than a complete graph
or odd cycle), let W be a precolored set of vertices in G inducing a subgraph F , and let D be the
minimum distance in G between components of F . If the components of F are complete graphs and
D ≥ 8 (for k ≥ 4) or D ≥ 10 (for k = 3), then every proper k-coloring of F extends to a proper
k-coloring of G. If the components of F are single vertices and D ≥ 8, and the vertices outside W
are assigned color lists of size k, then every k-coloring of F extends to a proper coloring of G with
the color on each vertex chosen from its list. These results are sharp.
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1. Introduction. For k ≥ 3, the famous theorem of Brooks [6] states that a
graph with maximum degree k is k-colorable if it does not have Kk+1 as a component.
Our general aim in this paper is to strengthen this result by allowing some vertices
to have arbitrarily specified colors.

Albertson [1] proved that if a set W of vertices in an r-colorable graph is separated
pairwise by distance at least 4, then every coloring of W from a set of r + 1 colors
extends to a proper (r+1)-coloring of W . The result was generalized by letting G[W ]
be a disjoint union of complete graphs with at most j vertices, where G[W ] denotes
the subgraph of G induced by W . If the components of G[W ] are far enough apart,
then every proper (r + 1)-coloring of G[W ] extends to a proper (r + 1)-coloring of
G. Albertson showed that distance 6j − 2 is enough, Kostochka (see [2]) lowered the
threshold to 4j, and Albertson and Moore [2] showed that distance 3j suffices when
j = r.

These results require an extra color; generally a partial coloring of an r-chromatic
graph may not extend to a proper r-coloring, regardless of the distance between the
precolored vertices. Can the extension conclusions be strengthened when more colors
are allowed? With ∆(G) + 1 colors allowed, every partial proper coloring extends,
even in a list coloring sense. That is, if each uncolored vertex has a list of ∆(G) + 1
available colors, then we can extend a partial coloring in an arbitrary vertex order;
when we reach a vertex, there is always a color in its list that has not already been
used on any neighbor. What happens when only ∆(G) colors are allowed?

Theorem 1.1. Let W be a set of vertices in a graph G with ∆(G) ≥ 4 and
K∆(G)+1 �⊆ G. If the components of G[W ] are complete graphs and the distance
between any two such components is at least 8, then every proper ∆(G)-coloring of
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Fig. 1. Failure of list coloring extension.

G[W ] extends to a proper ∆(G)-coloring of G. The same statement holds for ∆(G) =
3 with 10 in place of 8.

We will shortly present examples showing that Theorem 1.1 is sharp, except that
distance 8 suffices when ∆(G) = 3 if the components of G[W ] are isolated vertices (as
guaranteed by Theorem 1.2 below).

In the special case when G has chromatic number ∆(G), Theorem 1.1 provides
an extension theorem using no “extra” colors. As discussed in [3], such results are
rare. Also, in comparison to the earlier result of Kostochka, Theorem 1.1 shows that
with ∆(G) colors, the sizes of the components of G[W ] are irrelevant, and there is a
constant distance that suffices.

Our second result, proved together with the first, is a list version of the theo-
rem when W is an independent set. This result was also proved independently by
Axenovich [4].

Theorem 1.2. Let W be a set of vertices in a graph G with ∆(G) ≥ 3. Let L be
a function that assigns to each vertex a list of ∆(G) available colors. If the distance
between any two vertices of W is at least 8, then every coloring of W chosen from the
lists extends to a proper coloring f of G such that f(v) ∈ L(v) for all v ∈ V (G).

Using the word “list” for the set of colors available for a vertex is standard in this
setting. A function L assigning a list to each vertex is a list assignment for a graph G,
and a proper coloring f such that f(v) ∈ L(v) for all v ∈ V (G) is an L-coloring. Since
L can assign the same list of ∆(G) colors at each vertex, Theorem 1.2 strengthens
the special case of Theorem 1.1 where the components of G[W ] are single vertices.
Since the claim is made for each choice of colors on W , we may view the precoloring
on W as lists of size 1. In discussing lists, it is helpful to use the notation [k] for the
set {1, . . . , k}.

When G[W ] is not an independent set, no list extension theorem is possible. For
k ≥ 2, consider the graph shown in Figure 1. It consists of a path with vertices x1, x2,
x3 in order and a copy of Kk−1 whose vertices are adjacent to x1 and x3. All vertices
have degree k, except that x2 has degree 2. The colors on x1 and x2 are specified as
1 and 2, respectively. Let L(x3) = [k + 1]−{1}, and let L(v) = [k + 1]−{2} for each
v outside {x1, x2, x3}. In a proper extension of the coloring on {x1, x2}, some color j
outside {1, 2} must be used on x3. Since the remaining vertices have list [k+1]−{2},
no color in {1, 2, j} can be used on these vertices, which leaves only k − 2 available
colors in [k + 1] for the copy of Kk−1.
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Fig. 2. Failure of ∆-extension when ∆(G) = 3 and distance is 9.
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Fig. 3. Failure of extension for distance 7.

For ∆(G) = 2, there is no extension theorem with ∆(G) colors, since extendibility
of a coloring of two points on a long path depends on the parity of the distance between
them.

For ∆(G) = 3, the graph in Figure 2 shows that the distance threshold of 10
for the extension theorem with nontrivial cliques is sharp. Here the precolored set
W consists of the three peripheral 2-cliques shown in bold. A proper 3-coloring that
extends this must have the third color on each vertex neighboring the central triangle,
but then the coloring cannot be extended to the center. The distance between two
precolored cliques is 9.

For ∆(G) ≥ 4 in Theorem 1.1 and ∆(G) ≥ 3 in Theorem 1.2, the graph in Figure 3
shows that the distance threshold of 8 is sharp. In the list case, we use the same list
[k] on all vertices of G−W . To construct G, first let H consist of Kk+1 with one edge
deleted and instead a pendant edge attached to one of the deficient vertices. Let G
consist of k disjoint copies of H plus edges making the pendant vertices in the copies
of H into a clique. Let W consist of the vertices of degree k − 1, all given the same
color. Although G has maximum degree k, and the distance between any two vertices
of W is 7, this coloring of W does not extend to a proper k-coloring of G.

The proofs of the upper bounds use many common ideas, so we develop them
together. The general approach is to derive contradictory properties for a minimal
counterexample.

2. Background and preliminaries. A precoloring extension problem can be
modeled as a list coloring problem. The colors on the precolored vertices are removed
from the lists of colors available at their neighbors. If the number of colors available
at a vertex is at least its degree, then this remains true after the precolored vertices
are deleted, because at most one color is lost for each neighbor deleted.
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We use dG(v) or simply d(v) to denote the degree of a vertex v in a graph G (all
our graphs are simple). Also dG(u, v) or d(u, v) denotes the distance between vertices
u and v in G. We extend this notation to vertex subsets: dG(A,B) is the minimum
of the distances in G between a vertex of A and a vertex of B.

A graph G is degree-choosable if it has an L-coloring whenever L is a list assign-
ment with |L(v)| ≥ |d(v)| for all v ∈ V (G). We say that such a list assignment is
supervalent.

Given a supervalent list assignment L for G, Vizing [9] showed that if the size
of some list exceeds the degree of the vertex, or if G is 2-connected and the lists are
not identical, then G has an L-coloring. This and its consequence that a connected
graph having a degree-choosable induced subgraph is also degree-choosable are easy
to prove.

These observations lead to the characterization of degree-choosable graphs by
Erdős, Rubin, and Taylor [7]: A connected graph fails to be degree-choosable if and
only if it is a Gallai tree, which is a connected graph in which every block is a complete
graph or an odd cycle. Furthermore, the lists in a supervalent list assignment not
permitting a proper coloring have a restricted form.

Theorem 2.1 (Borodin [5], Erdős–Rubin–Taylor [7]). If L is a supervalent list
assignment for a connected graph G and there is no L-coloring of G, then

(a) |L(v)| = d(v) for every v ∈ V (G).
(b) G is a Gallai tree.
(c) L(v) = ∪B∈B(v)LB for all v ∈ V (G), where B(v) is the set of blocks containing

v, and for each block B, LB is a set of χ(B) − 1 colors.

A short proof of Theorem 2.1 appears in [8]. Note that each block B is an |LB |-
regular graph, and all vertices of a single block that are not cut-vertices of G have
the same list.

Henceforth let k = ∆(G), and let f denote a precoloring of W . In the setting of
Theorem 1.1, which we call the clique case, f is a proper k-coloring of G[W ] using
the set [k] as colors. In the setting of Theorem 1.2, which we call the list case, the
coloring f is any proper coloring of G[W ]. We discuss both cases together as a list
coloring problem by defining L(v) = [k] for all v ∈ V (G) − W in the clique case.
Hence the “theorem statement” refers to both theorems together. Let NG(v) denote
the neighborhood of a vertex v in a graph G.

Claim 1. Let G be a graph with maximum degree k, precoloring f , lists L, and
precolored set W . If G is a smallest counterexample to the theorem statement, then
the following hold for the graph H defined by H = G−W and the list assignment Lf

on V (H) defined by Lf (v) = L(v) − f(NG(v) ∩W ).

(a) H is connected.
(b) Every component of H is a Gallai tree, and in every block the lists Lf on the

non-cut-vertices are the same and have size equal to vertex degree.
(c) If v ∈ V (H), then dG(v) = k.

Proof. (a) When W is a separating set in G, extension of the coloring to the
various components of G −W is independent, and deleting one does not violate the
hypotheses of the theorem. By the minimality of G, we may therefore assume that H
is connected.

(b) An Lf -coloring for H would permit the extension of the coloring for G, so
there is no Lf -coloring for H. Since |L(v)| = k and we lose at most one color for each
lost neighbor, |Lf (v)| ≥ dH(v) for all v ∈ V (H). Hence Lf is supervalent, and H has
no Lf -coloring, so Theorem 2.1 applies to H and immediately yields the claim.
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(c) For v ∈ V (H),

dH(v) = |Lf (v)| = |L(v) − f(NG(v) ∩W )| ≥ |L(v)| − |NG(v) ∩W |.

Since dG(v) = dH(v) + |NG(v) ∩W |, we obtain dG(v) ≥ |L(v)| = k. Since ∆(G) = k,
equality holds.

Henceforth we maintain the notation (k, f, L,W,H,Lf ) and assumptions (G is
a smallest counterexample) of Claim 1. By the distance requirement, we mean the
hypothesis that the distance between components of G[W ] is at least 8 in general and
is at least 10 when k = 3 and we are in the clique case.

Remarks. The computation in the proof of Claim 1(c) implies that the colors used
on neighbors of v in W are distinct and appear in L(v). By the distance requirement,
NG(v)∩W lies in a single component of G[W ]. In the clique case, |NG(v)∩W | ≤ k−1,
since Kk+1 �⊆ G. In the list case, δ(H) ≥ k − 1, since W consists of isolated vertices.

We next consider the edges joining V (H) and W . A leaf block in a graph H is a
block of H containing at most one cut-vertex of H. For a block B in H, we henceforth
let B′ denote the set of vertices in B that are not cut-vertices of H.

Claim 2. Let B be a leaf block of H in a smallest counterexample G, and let
m = |V (B)|.

(a) The neighbors in W of vertices in B lie in the same component of G[W ]; call
it Q(B).

(b) Every vertex in Q(B) is adjacent to all or none of the set B′ of non-cut-
vertices in B.

(c) B is a complete graph, and Q(B) has exactly k−m+1 vertices with neighbors
in B and at most one vertex with no neighbors in B.

(d) H has more than one block.

Proof. (a) This follows immediately from the distance requirement, since all
vertices of B except possibly one have neighbors in W (by Claim 1(c)), and the
distance between neighbors of adjacent vertices of B is at most 3.

(b) By Claim 1(b), the lists under Lf are the same for all v ∈ B′; let S be this
common list. By Theorem 2.1(a), |S| = dH(v). By part (a), NG(v)∩W lies in a single
component of G[W ], so the colors assigned to its vertices by f are distinct. In the
clique case, L(v) = [k], so arriving at S requires each vertex of B′ to lose the same
colors from its list.

In the list case, |L(v)| = k for v ∈ B′, and Q(B) consists of only one vertex. Also
Kk+1 �⊆ G implies dH(v) < k, so each v ∈ B′ loses one color from its list. Thus the
one vertex of Q(B) is adjacent to all of B′.

(c) If B is a cycle of length at least 5, then by Claim 1(c) and part (a), each
vertex of B′ has two neighbors in B and k− 2 neighbors in Q(B). By part (b), these
neighbors in Q(B) have degree at least k − 3 + 4, since |B′| ≥ 4. This degree would
exceed ∆(G).

Hence B is a complete graph, by Claim 1(b). The vertices of B′ have m − 1
neighbors in H. By Claim 1(c), they have k−m+ 1 neighbors in Q(B). By part (b),
these are always the same k −m + 1 vertices.

These k −m + 1 vertices in Q(B) have k −m neighbors among themselves and
at least m− 1 neighbors in B′, so they have at most one more neighbor in Q(B).

(d) If H has only one block, then the first statement in part (c) makes it a
complete graph, but the second then yields Kk+1 ⊆ G, which is forbidden.
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3. Leaf blocks. We begin with a tool for studying the structure of leaf blocks
of H. As before, B′ is the set of vertices in B that are not cut-vertices of H.

Claim 3. There is no partial extension of f to a partial coloring f ′ that gives the
same color to two neighbors of an uncolored vertex of H.

Proof. Let f ′ be such an extension, and let U be the set of vertices outside W
to which f ′ assigns colors. Note that f ′(u) ∈ Lf (u) is required for all u ∈ U . Let
G′ = G−W − U ; note that G′ is an induced subgraph of H.

For v ∈ V (G′), let Lf ′(v) = L(v)−f(NG(v)∩(W ∪B′)). By the same argument as
for Lf , we have |Lf ′(v)| ≥ dG′(v) for all v ∈ V (G′). Also, if x ∈ V (G′) has neighbors
with the same color under f ′, then |Lf ′(x)| > dG′(x). By Theorem 2.1, G′ then has
an Lf ′ -coloring, which yields an L-coloring of G. Since G has no L-coloring, there is
no such f ′.

When B is a leaf block of H, we let xB denote the cut-vertex of G contained in
B. If B has m vertices, then Claim 2(c) yields |Q(B)| ∈ {k−m+1, k−m+2}. Define
B to have Type j when |Q(B)| = k−m+ j. In the list case, always |Q(B)| = 1, which
requires that m = k and that B ∼= Kk and B has Type 1.

Let Q′(B) denote the set of vertices in Q(B) having neighbors in V (B). If B has
Type 1, then Q′(B) = Q(B), and each vertex of Q(B) may have one neighbor that is
not in B′ ∪ Q(B). If B has Type 2, then vertices of Q′(B) have no such additional
neighbors, and we let wB denote the vertex of Q(B) −Q′(B).

Claim 4. If B is a leaf block of Type 2, then xB has no neighbor in Q(B).

Proof. By Claim 2, B′ ∪Q′(B) is a clique of size k. Since also Q′(B) ⊆ NG(wB),
xB has no neighbor in Q′(B). Finally, since leaf blocks of Type 2 occur only in the
clique case, every extension of f to B′ uses on B′ all the colors not used on Q′(B),
including f(wB). If xB is adjacent to wB , then we have formed a partial extension of
f that is forbidden by Claim 3.

Claim 5. In the clique case, if B is a leaf block of Type 1 and y ∈ NH(xB)−B′,
then y has no neighbor in Q(B).

Proof. Suppose that wy ∈ E(G), where w ∈ Q(B). Since w also has k − 1
neighbors in B′ ∪Q(B), we conclude that xBw /∈ E(G). Since B′ ∪Q(B) is a clique,
we can extend f to B by using on B′ the colors of [k] − f(Q(B)), and then we can
use color f(w) on xB . This partial extension gives the same color to two neighbors of
y, which violates Claim 3. Hence no such edge wy exists.

Claim 6. Let B1 and B2 be distinct leaf blocks in H such that Q(B1) = Q(B2).

(a) If Q′(B1) ∩ Q′(B2) = ∅, then B1 and B2 have Type 2 with k vertices, and
|Q(B1)| = 2.

(b) If Q′(B1) ∩Q′(B2) �= ∅, then B1 and B2 have Type 1 with two vertices, and
|Q(B1)| = k − 1 (also Q′(B1) = Q′(B2) = Q(B1)).

(c) The condition in the hypothesis arises only in the clique case.
(d) There is no third leaf block B3 with Q(B3) = Q(B1).
(e) xB1 �= xB2 .

Proof. (a) By Claim 2(c), each Q(Bi) has at most one vertex not in Q′(Bi), and
it is the only candidate for Q′(B3−i). Since |B′

i∪Q′(Bi)| = k, the sizes are as claimed.

(b) Consider u ∈ Q′(B1) ∩ Q′(B2). For i ∈ {1, 2}, since u ∈ Q′(Bi), there is at
most one neighbor of u outside B′

i ∪ Q′(B − i), and such a neighbor exists in B′
3−i.

Hence Bi has Type 1, and Q′(Bi) = Q(Bi). Also |B′
3−i| = 1, so B3−i has two vertices

and Q(B3−i) = k − 1.

(c) The conclusions above yield |Q(Bi)| > 1, which occurs only in the clique case.
The two possibilities are shown in Figure 4.
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Fig. 4. Leaf blocks B1 and B2 with Q(B1) = Q(B2).

(d) If such a B3 exists and B1 has Type 2, then applying part (a) to the pairs
{B1, B2} and {B1, B3} gives 2k−1 neighbors to wB1

. If B1 has Type 1, then applying
part (b) to these pairs gives k + 1 neighbors to each vertex of Q(B1).

(e) Suppose that xB1 = xB2 . If these blocks have Type 2, then dH(xB) ≥ 2k− 2,
which exceeds k when k > 2. If they have Type 1, then let bi be the unique vertex
of B′

i. Both b1 and b2 have neighborhood Q(B) ∪ {xB}. Since we are in the clique
case, there is only one choice of color when extending f to b1 and b2. Since these both
neighbor xB , Claim 3 implies that no such partial extension exists.

4. Remote blocks. The block-cutpoint graph of a graph H has a vertex for each
block in H and a vertex for each cut-vertex of H, and a cut-vertex v is adjacent to
a block B if v ∈ V (B). The block-cutpoint graph of a connected graph H is a tree,
and its leaves correspond to blocks in H.

We continue to discuss a smallest counterexample G, with notation as defined in
the preceding section. Let T be the block-cutpoint tree of H. We define a remote
block in H to be a block corresponding to a vertex of maximum eccentricity in T . Our
strategy will be to work our way in from a remote block, restricting the structure of
H as we go.

Claim 7. A remote block in H intersects only one other block in H.

Proof. Let B be a remote block in H. If xB lies in two non-remote blocks, then B
is not remote, so at most one block containing xB is non-remote. If at least two blocks
other than B contain xB , then at least one is a remote block C. Since neighbors of
xB in B and C have neighbors in W , the distance requirement yields Q(C) = Q(B).
Now xC = xB contradicts Claim 6(e).

When B is a remote block in H, we let F (B) denote the other block sharing xB .
At this point F (B) may be a complete graph or an odd cycle.

Claim 8. Let B be a remote block in H. If C is a leaf block in H, and dH(xB , xC)
is 1 when B has Type 1 and is at most 3 when B has Type 2, then F (B) ∼= K2, unless
k = 3 and F (B) ∼= K3, as on the left in Figure 5.

Proof. By the distance requirement, Q(B) = Q(C). Now Claim 6 implies that B
and C have the same Type and that this is the clique case. If B and C have Type 2,
then Claim 6(a) yields |V (B)| = k. Hence xB has k − 1 neighbors in B and only one
in F (B), as desired.

Hence we may assume that B and C have Type 1. By Claim 6(b), |V (B)| =
|V (C)| = 2. Since xBxC ∈ E(H), Claim 5 implies that xC has no neighbor in Q(B).
Thus xC has k − 1 neighbors in F (B), so |V (F (B))| ≥ k.
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Fig. 5. Exceptions in Claims 8 and 9 when k = 3.

Claim 6(b) also yields |Q(B)| = k − 1. In addition to k − 2 neighbors within
Q(B), each vertex of Q(B) has neighbors in B′ and C ′. Indeed, one neighbor is
added for each neighbor of xB or xC in F (B) that belongs to a leaf block. Hence
there are no such vertices other than xB and xC . Also, since B is a remote block,
F (B) has at most one vertex belonging to a non-remote block other than F (B). Since
{xB , xC} has at least two additional neighbors when |V (F (B))| ≥ 4, the requirement
of |V (F (B))| ≥ k yields k = 3. In that remaining case, the configuration is as on the
left in Figure 5.

Claim 9. If B is a remote block in H, then F (B) ∼= K2, except that F (B) may
have three vertices as in Figure 5 in the clique case with k = 3.

Proof. In the list case, |Q(B)| = 1, which forces |V (B)| = k. By Claim 2(c),
B ∼= Kk. Hence xB has only one neighbor outside B. This argument applies to all
leaf blocks in the list case, not just the remote ones.

Now consider the clique case. Let y be a vertex of F (B) other than xB . If B has
Type 1, then Claim 5 and the distance requirement imply that y has no neighbors in
W . Since dG(y) = k (by Claim 1(c)), y is a cut-vertex of H. Since B is remote, at
most one vertex of F (B) belongs to a non-remote block other than F (B). Hence if
xB has more than one neighbor in F (B), then Claim 8 implies that in fact it has only
one such neighbor, unless k = 3 and the configuration is as on the left in Figure 5.

Otherwise, B has Type 2. Since dG(y) = k (by Claim 1(c)), and y has at most
one neighbor in Q(B) (namely, wB), we conclude that y is a cut-vertex of H unless
it has k − 1 neighbors in F (B) and is adjacent to wB .

This requires that F (B) ∼= Kk or that k = 3 and F (B) is an odd cycle. In
either case, xB has k − 1 neighbors in F (B) and only one in B, so |V (B)| = 2 and
|Q′(B)| = k− 1 (by Claim 2(c)). Hence wB has at most one neighbor outside Q′(B),
so at most one vertex of F (B) fails to be a cut-vertex. Also, at most one vertex of
F (B) belongs to a non-remote block in H other than F (B). Hence some vertex of
F (B) within distance 2 of xB belongs to a remote block and Claim 8 finishes the
proof, unless k = 3 and F (B) ∼= K3. In that remaining case, we may again have F (B)
with three vertices, as on the right in Figure 5.

The two exceptional configurations in Figure 5 are essentially the same. In the
clique case with k = 3, only the colors 1, 2, 3 can be used. When Q′(B) is precolored,
the common neighbors of these two vertices must have the third color. Thus it does
not matter whether wB in Figure 5 is precolored or not; either way, every extension
uses f(Q′(B)) on {xB , y}, and the third color is forced on the remaining vertex of
F (B). However, in transforming the problem we must avoid decreasing the distance
between components of G[W ]; hence we may assume that the exceptional case occurs
only in Type 1, as on the left in Figure 5.

This exceptional case is in fact the building block and argument used in the
example of Figure 2, showing that distance 9 is not enough for the extension theorem
when k = 3.
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5. Nearly remote blocks. Working in from a remote block B in H, we now
consider the less remote vertex in F (B). Based on Claim 9, we say that F (B) ∼= K2

is the usual case, while F (B) ∼= K3 with k = 3 is the exceptional case, which we may
assume occurs only when B has Type 1.

In both the usual and exceptional cases, let yB denote the unique vertex of F (B)
that is farthest from Q′(B). Also define a branching path to be a path in H whose
edges lie in distinct blocks.

Claim 10. If B is a remote block of H, then H cannot have two leaf blocks
reached from F (B) along branching paths in H that exit yB on different edges and
have length at least 3. The same conclusion holds when the edges leaving yB are in
different blocks and the paths have length at least 2.

Proof. Suppose that the claim fails, and C1 and C2 are two such leaf blocks. If
two blocks of H are joined by a branching path in H of length l, then the distance
between them in the block-cutpoint tree T is 2l. Depending on whether the paths
from F (B) to C1 and C2 depart from yB using edges of the same block B∗ (solid
edges) or different blocks B1 and B2 (dashed edges), the subgraph of T consisting of
the paths among B, C1, and C2 is as shown in Figure 6. For any block of H, the
distance to one of {C1, C2} in T will exceed the distance to B. This contradicts the
remoteness of B, so there is no such pair {C1, C2}. The same argument holds in the
dashed case with paths shorter by one block and cut-vertex.

• • • • •

• • • • • • •

• • • • • • •
B x0 F (B)

B2

B∗

B1

yB

xC2

xC1

C2

C1

Fig. 6. Portion of T involving distant blocks from B.

Claim 11. If B is a remote block of H in the usual case, and C is a leaf block of
H, then dH(B,C) ≥ 4.

Proof. Suppose that dH(B,C) ≤ 3. Since the cut-vertex contained in a leaf block
of H has distance at most 2 from W , the distance requirement yields Q(B) = Q(C).
By Claim 6, this occurs only in the clique case, with B and C occurring as B1 and
B2 in Figure 4. Claim 6(e) implies that dH(B,C) ≥ 1.

If B is Type 1, then Claim 6(b) implies that xB has one neighbor in B and none in
Q(B), and Claim 9 implies that xB has one neighbor in F (B). Hence dG(xB) = 2 < k,
which contradicts Claim 2. We conclude that B and C have Type 2 as on the left in
Figure 4, and the block sharing xC with C is a single edge. (In particular, Type 1 for
such blocks B and C occurs only in the exceptional case.)

Since dG(v) = k for all v ∈ V (H), every vertex in H has a neighbor in W or is a
cut-vertex of H. If we follow a branching path from yB starting in a block incident
to yB , we eventually reach a vertex of a leaf block. Claim 6(d) and the distance
requirement imply that a branching path reaching a leaf block other than B or C
takes at least three steps from yB . By Claim 10, there is at most one such leaf block.
Hence yB has at most one neighbor not in F (B) or along its path to C.

By Claim 9, F (B) ∼= K2. Since dH(B,C) ≥ 1, no leaf block is incident to yB .
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Fig. 7. Exclusion of leaf blocks near a remote block B.

Hence yB has k − 1 neighbors in H other than xB . If k ≥ 4, then we can pick two
of them not along the path to C, which we have just shown cannot occur. Hence we
may assume that k = 3.

If dH(B,C) = 1, then yB = xC . Now H = B ∪F (B)∪C and Q(B) = W and the
precoloring extends. Hence dH(B,C) > 1, and yB lies in no leaf block.

If dH(B,C) = 2, then yB ∈ NH(xB) ∩NH(xC). Since yB has exactly 1 neighbor
in the blocks it shares with each of xB and xC , it has one other neighbor in H, as
shown on the left in Figure 6. In this case, we replace the configuration with the
exceptional case on the left in Figure 5. That is, we delete one vertex from each of
C ′ and B′, make the remaining vertex of each adjacent to all of Q(B), and add the
edge xBxC . In both configurations, the distance from Q(B) to other vertices of W is
the same, and in each case every proper extension of f must give yB the only color
not in f(Q(B)). Hence G is a counterexample if and only if the smaller graph is a
counterexample. By the minimality of G, we may thus exclude the configuration on
the left in Figure 7.

Finally, suppose that dH(B,C) = 3. Now xC is not a neighbor of yB but has
distance 2 from it. If yB lies in two blocks other than F (B), then the one not leading
to C begins a long enough branching path to contradict Claim 10 with C. Hence yB
lies in only one block other than F (B); call it B∗. Since dH(yB) = 3, B∗ is a triangle,
and the vertex z in B∗ that is not on the path to C is a cut-vertex of H, as shown
on the right in Figure 7. In this situation, the coloring can be extended from Q(B)
to put any of the three colors on z. Hence we may delete the vertices in this figure
other than z and its neighbor outside B∗, extend the coloring from W −Q(B) to the
rest of G, and then extend the coloring from Q(B) to agree with it. This excludes
this configuration.

Claim 12. If B is a remote block of H for a minimal counterexample G, then
k = 3 and yB belongs to exactly one block of H other than F (B).

Proof. Let B be a remote block of H for a minimal counterexample G. Together,
Claims 11 and 10 imply in the usual case that yB has at most one neighbor in H
outside F (B) that is a cut-vertex of H. By Claim 9, yB has only one neighbor in
F (B).

In the clique case, if B has Type 1, then Claim 9 implies that xB has k − 1
neighbors in the k-clique B′ ∪ Q(B). Hence only one vertex of Q(B) can have a
neighbor outside B, and it has only one such neighbor. This also holds in the list case
or in the clique case when B has Type 2.

The neighbors of yB outside F (B) that are not cut-vertices must have a neighbor
in Q(B). Hence there is at most one vertex that is of that type or equals yB . We have
shown that yB together with its neighbors outside F (B) includes only two vertices
and that yB belongs to only one block of H other than F (B).

These remarks yield the conclusion that k = 3 in the usual case, but also k = 3
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Fig. 8. List case and clique Type 1 usual case when k = 3.
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in the exceptional case.

When B is a remote block of H in the remaining case (k = 3), we let B∗ denote
the block of H other than F (B) that contains yB .

Claim 13. There is no minimal counterexample G.

Proof. Otherwise, Claim 12 yields k = 3. Let B be a remote block of H.

For the list case and for the usual clique case with B having Type 1, there are two
remaining configurations, depending on whether the one vertex of Q(B) is adjacent
to yB or to a vertex of B∗ other than yB . These configurations appear in Figure 8,
where the additional vertices z, a, and b forming block Z are defined.

By the distance requirement, a and b have no neighbors in W ; hence they are
cut-vertices of H. Since dG(a,Q(B)) ≤ 4, the distance requirement for k = 3 implies
that every leaf block reached from a via a branching path along the block other than
Z has distance at least 4 from a in G (it may be two steps more to W ). The same
is true of leaf blocks reached from b. These leaf blocks have distance at least 9 from
Z in T , and the path P joining them in T passes through Z. On the other hand,
dT (B,Z) ≤ 8 via a path reaching P at Z. This contradicts the remoteness of B, so
these cases do not occur. (This argument is not valid when the distance threshold is
only 8.)

The usual clique case with B having Type 2 is very similar to that above. We
merely relabel the picture as in Figure 9. We have |Q(B)| = 2. Let w be the neighbor
of xB in Q(B), and let v be the nonneighbor of x. We have v adjacent to yB or to
a neighbor of yB in B∗. Since again dG(a,Q(B)) ≤ 4, the previous argument still
works.

We have reduced the problem to the exceptional clique case with B having Type 1.
Expanding the picture on the left in Figure 5 yields the configuration shown in Fig-
ure 10; it is a relabeling of those on the right in Figures 8 and 9. The argument
mirrors those in the earlier cases. Note that Q(B) is now one step farther from a
and b, so the constraint from the distance requirement is weaker. However, B is now
one step closer to a and b, so the remoteness argument is strengthened by the same
amount that it is weakened. Again we contradict the remoteness of B.
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Abstract. Recently, D. Corneil found a simple 3-sweep lexicographic breadth first search
(LexBFS) algorithm for the recognition of proper interval graphs. We point out how to modify
Corneil’s algorithm to make it a certifying algorithm, and then describe a similar certifying 3-sweep
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graphs, and so we have a certifying algorithm for that class as well. All our algorithms run in time
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1. Background. A graph H is an interval graph if there is a family F of intervals
Iv, v ∈ V (H), on the real line such that u, v are adjacent if and only if Iu, Iv intersect.
The family F is called an interval representation of H. If F can be chosen so that
no interval contains another, then H is called a proper interval graph and F is called
a proper interval representation of H. Similarly, a graph is a circular arc graph if
there is a family F of arcs Av, v ∈ V (H), on a circle so that u, v are adjacent if
and only if Au, Av intersect. In this case F is called a circular arc representation of
H. If F can be chosen so that no arc contains another, then H is called a proper
circular arc graph and F is called a proper circular arc representation of H. Clearly,
every interval graph is a circular arc graph and every proper interval graph is a proper
circular arc graph. A well-known theorem of Wegner [35] asserts that a graph G is
a proper interval graph if and only if it does not contain, as an induced subgraph, a
cycle of length at least four, or a claw, a net, or a tent, depicted in Figure 1.1. Since
the algorithm we are about to present will identify for each graph G either a proper
interval representation or an induced claw, net, tent, or cycle of length at least four,
our results in this paper imply Wegner’s characterization.

Let H be a bipartite graph with bipartition (X,Y ). Then H is called an interval
bigraph if there is a family F of intervals Iv, v ∈ (X ∪ Y ), such that, for all x ∈ X
and y ∈ Y , x, y are adjacent in H if and only if Ix, Iy intersect. The family F is
called an interval representation for the bipartite graph H. Note that two intervals
Iu, Iv with both u, v ∈ X or with both u, v ∈ Y may or may not intersect. As above,
H is called a proper interval bigraph if F can be chosen so that no interval contains

∗Received by the editors June 21, 2003; accepted for publication (in revised form) March 23, 2004;
published electronically February 25, 2005.

http://www.siam.org/journals/sidma/18-3/43025.html
†School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 (pavol@

cs.sfu.ca).
‡Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria, B.C.,

Canada V8W 3P4 (jing@math.uvic.ca).

554



CERTIFYING LexBFS ALGORITHMS 555

Fig. 1.1. The claw, net, and tent.

another. Circular arc bigraphs and proper circular arc bigraph are defined analogously.
It is again easy to see that every interval bigraph is a circular arc bigraph and every
proper interval bigraph is a proper circular arc bigraph. We have shown in [17] that
a bipartite graph G is a proper interval bigraph if and only if it does not contain, as
an induced subgraph, a cycle of length at least six, or a bipartite claw, net, or tent,
depicted in Figure 1.2. Since the algorithm we will present identifies for each bipartite
graph G either a proper interval bigraph representation or an induced bipartite claw,
net, or cycle of length at least six, we will obtain another proof of our characterization.

Fig. 1.2. The bipartite claw, net, and tent.

There are surprising connections between interval bigraphs and circular arc graphs,
and between proper interval bigraphs and proper circular arc graphs. We have shown
in [17] that interval bigraphs are precisely those bipartite graphs whose complements
are circular arc graphs with a circular arc representation in which no two arcs cover
the whole circle. The situation is even simpler for graphs that admit inclusion-free
representations: We have shown in [17] that the class of proper interval bigraphs is
precisely the class of bipartite graphs whose complements are proper circular arc graphs.

In fact we have shown in [17] that the class of proper interval bigraphs is also the
(better known) class of bipartite permutation graphs. This result relates the class of
proper interval bigraphs to all the other classes of graphs known to be equal to the
class of bipartite permutation graphs, including bipartite asteroidal-triple free graphs,
bipartite trapezoid graphs, and bipartite cocomparability graphs [3, 4, 17, 19, 27, 29,
36]. Thus proper interval bigraphs appear to be an important class of graphs.

We also remark here that proper interval bigraphs are the same class as unit interval
bigraphs; i.e., they always admit representation in which all intervals have length one.
This easily follows from the analogous fact about proper interval graphs [25]. Note that
proper circular arc graphs are not necessarily representable by unit circular arcs [29].

Recently, Corneil [7] found a very simple linear time algorithm for recognizing
proper interval graphs. (Earlier algorithms for recognizing this class of graphs include
[8, 12, 14, 16, 20].) Corneil’s algorithm uses three sweeps of lexicographic breadth first
search (LexBFS) to produce a linear ordering < of the vertices of the input graph
H = (V,E) and to check whether or not the ordering satisfies the following 3-vertex
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condition:

For all x < y < z, xz ∈ E implies xy ∈ E and yz ∈ E.

If the ordering satisfies the 3-vertex condition, then the input graph is a proper
interval graph (cf. below); otherwise it is shown in [7] that H is not a proper interval
graph. (This also follows from our results below.)

The 3-sweep algorithm in [7] uses the following LexBFS algorithm.

Procedure LexBFS(H,u)

Input: a connected graph H = (V,E), and a distinguished vertex u
Output: an ordering of the vertices of H, given by the numbers σ(v)

Begin
label(u) ← |V |
for each vertex v in V − {u} do

label(v) ← Λ (the empty string)
for i ← |V | downto 1 do
begin
pick an unnumbered vertex v with the lexicographically largest label (�)
σ(v) ← |V | + 1 − i (number v by |V | + 1 − i)
for each unnumbered vertex w in N(v) do

append i to label(w)
end

end

The following property P holds for any LexBFS ordering v1, v2, . . . , vn: If j < k < l
and vj is adjacent to vl but not vk, then there exists an i < j such that vi is adjacent
to vk and not vl.

The LexBFS algorithm has been used for the recognition of chordal graphs [26]
and of several other families of graphs defined by having certain vertex orderings
[6, 11, 13, 15]; cf. [1].

We now describe the multisweep LexBFS algorithm. This kind of algorithm has
been pioneered in [2, 5, 7, 9, 22, 28]. A multisweep LexBFS algorithm calls LexBFS
several times; each time is called a sweep. Every sweep, except the first, uses the
ordering(s) produced by the preceding sweep (or sweeps) to break ties occurring in
step (�).

Specifically, having in hand one LexBFS ordering, we proceed as follows.

Procedure LexBFS+(H, τ)
Suppose τ is a LexBFS ordering obtained by a previous sweep. In the current
LexBFS sweep, at step (�), let S be the set of vertices with the lexicographically
largest label. Now v is picked to be the vertex in S that appears last in τ .

In addition to the property P enjoyed by all LexBFS orderings, an ordering τ+

produced by the LexBFS+ algorithm, has the following additional property R: If vk
precedes vl both in τ and in τ+, then there exists a vi that precedes vk in τ+, such
that vi is adjacent to vk and not vl.
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Both algorithms we discuss are variants of the following three-sweep technique.

The 3-Sweep Algorithm

Input: a connected graph H

1. Perform an arbitrary LexBFS, yielding σ.
2. Perform LexBFS+(H,σ), yielding σ+.
3. Perform LexBFS+(H,σ+), yielding σ++.

Corneil [7] showed that if H is a proper interval graph, then σ++ satisfies the
3-vertex condition. The 3-sweep algorithm can be implemented to run in linear time,
i.e., time O(m+n) (where m and n are, respectively, the number of edges and vertices
of the input graph). It is also easy to test in linear time whether or not σ++ satisfies
the 3-vertex condition. When the algorithm finds an ordering satisfying the 3-vertex
condition, a representation by an inclusion-free family of intervals can be found in time
O(m + n) (cf. Proposition 2.1) and authenticated also in time O(m + n) (cf. [18]).

We shall make an addition to the algorithm so that if the input graph does not satisfy
the 3-vertex condition, the algorithm actually finds either an induced cycle of length
at least four or an induced claw, net, or tent, from Figure 1.1. The entire algorithm
will run in time O(m+ n). Authenticating the certificates of nonrepresentability, i.e.,
the induced cycle, claw, net, or tent, can be accomplished in time O(n), as in [18].

Algorithms which provide a certificate with each of their answers have been of
interest since LexBFS was first used, in [26]. Recently, there has been renewed interest
in finding certifying algorithms [18, 23, 34]. Since the first version of this paper, we have
learned [10] that another O(m+n) LexBFS-based certifying algorithm for recognizing
proper interval graphs has independently been found in [24].

A graph G is chordal if it does not contain an induced cycle of length at least four,
or, equivalently [26], if it admits an ordering without configuration C in Figure 2.1;
such an ordering is called a perfect elimination ordering. The algorithm from [26, 32, 33]
produces, in time O(m+n), either a perfect elimination ordering, certifying the graph
is chordal, or an induced cycle of length at least four, certifying the graph is not chordal.

We also adapt Corneil’s approach to recognizing proper interval bigraphs. (Earlier
algorithms for recognizing this class of graphs include [5, 30, 31].) Our algorithm
will again produce a certificate for each of its answers. Specifically, we show that the
vertex ordering of a bipartite graph produced by the 3-sweep algorithm either satisfies
the “weak 3-vertex condition” (defined at the beginning of section 3), or the input
graph is not a proper interval bigraph. The algorithm certifies the first possibility by
presenting a proper interval bigraph representation, which can be authenticated in time
O(m+n), and certifies the second possibility by presenting an induced cycle of length
at least six or an induced forbidden subgraph from Figure 1.2, which can be authen-
ticated in timeO(n). The entire algorithm can be implemented to run in timeO(m+n).

Our algorithms assume that the input graph H is connected, and in the case of
proper interval bigraphs we also assume that H is bipartite. If necessary, we may
perform a check, before the algorithms are invoked, that the input graph H satisfies
these assumptions. The test can also be done in time O(m + n) and may, in fact, be
part of the first LexBFS sweep.

2. Proper interval graphs. If a vertex ordering v1, v2, . . . , vn of a graph H
satisfies the 3-vertex condition, then we can obtain a proper interval representation of
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H as follows [12].
For each i = 1, 2, . . . , n, let U(i) be the greatest subscript such that vU(i) is either

adjacent or equal to vi. To each vertex vi, we associate the interval Ii = [i, U(i)+1− 1
i ].

Proposition 2.1 (see [12]). If the ordering v1, v2, . . . , vn of the vertices of a graph
H satisfies the 3-vertex condition, then the family Ii, i = 1, 2, . . . , n, is a proper interval
representation of H.

Figure 2.1 demonstrates the three different ways the 3-vertex condition can be
violated.

(C)

ba b c a cb a c

(A) (B)

Fig. 2.1. The violations of the 3-vertex condition.

We define the level �σ(x) of a vertex x in an ordering σ to be the length of a
shortest path from x to the first vertex of σ. For simplicity, we shall write �(x) for
�σ(x), �+(x) for �σ+(x), and �++(x) for �σ++(x). If x precedes y in σ (respectively, σ+

and σ++), we write x < y (respectively, x <+ y and x <++ y). Since all our orderings
are obtained by breadth first search, the levels are nondecreasing; moreover, the levels
can be computed during the LexBFS procedures. Thus, if A or B occurs, either the
levels of a, b, c are all the same, or the levels of a and c differ by one, and the level
of b is equal to one of them. Let us call B1 the case of B in which the level of b is
different from the level of c, and B2 the case of B in which the levels of b and c are
the same. (In B2 the level of a can be the same as b or one smaller.) Note that in A
and in B2 there are always two nonadjacent vertices of the same level. Also note that
an ordering has C if and only if it is not a perfect elimination ordering, and a LexBFS
ordering is a perfect elimination ordering if and only if the graph is chordal [26]. Thus
if one LexBFS ordering does not have C, then none do.

Here is our certifying 3-sweep algorithm.

The 3-Sweep Certifying Algorithm for the Recognition of Proper In-
terval Graphs

Input: a connected graph H

1. Perform an arbitrary LexBFS, yielding an ordering σ.
2. Test σ for occurrence of C. If C occurs, output an induced cycle of length

at least four, obtained using the algorithm of [33].
3. Perform LexBFS+(H,σ), yielding an ordering σ+.
4. Test σ+ for occurrence of A or B2. If A or B2 occurs, output a forbidden

subgraph from Figure 1.1, obtained using Proposition 2.3.
5. Perform LexBFS+(H,σ+), yielding an ordering σ++.
6. Test σ++ for occurrence of B. If B1 occurs, output a claw obtained using

Proposition 2.6. IfB2 occurs, output a forbidden subgraph obtained using
Proposition 2.3.

7. Output a proper interval representation of H, obtained from σ++ using
Proposition 2.1.
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When H is not chordal, we will find in the first sweep an occurrence of C, and
halt with a certificate which is an induced cycle of length at least four. Otherwise, the
graph H is chordal, and hence we shall not find an occurrence of C in any LexBFS
ordering.

We shall use the following observation.
Lemma 2.2. Let τ be a breadth first ordering of the vertices of H. Then A or B2

occurs in τ if and only if there exist two nonadjacent vertices of the same level.
Proof. If a <τ b <τ c form a B2, then b, c are two nonadjacent vertices of the same

level. If a <τ b <τ c form an A, then either a and b are nonadjacent vertices of the
same level or b and c are nonadjacent vertices of the same level.

Conversely, suppose that x, y with x <τ y are two nonadjacent vertices of level k.
Then k ≥ 1 and any neighbor of y of level k − 1 together with x, y forms either an A
or a B2 in τ .

When an occurrence of A or B2 is detected, the following proposition explains how
to find a forbidden claw, net, or tent from Figure 1.1.

Proposition 2.3. Suppose that H is a chordal graph. If A or B2 occurs in σ+ or
σ++, then H contains a claw, net, or tent.

Proof. It suffices to prove the statement for σ+ (as σ++ = (σ+)+). Suppose that
A or B2 occurs in σ+. Then by Lemma 2.2 we obtain two nonadjacent vertices x and
y of the same level. Let �+(x) = �+(y) = k. Since H is a chordal graph, no C occurs
in σ. This implies k ≥ 2. Indeed, if k = 1, then the vertex z of level zero, which is first
in σ+, was last in σ, and is adjacent to both x and y. Thus σ contains a C formed by
x < y < z or y < x < z, depending whether x < y or y < x, a contradiction.

Suppose first that x and y have a common neighbor x′ of level k−1. Then x, y, x′,
and any neighbor of x′ of level k− 2 induce a claw. Otherwise, let x′, y′ be vertices of
level k − 1, which are neighbors of x, y, respectively. Since x and y have no common
neighbor of level k − 1, we must have x′ �= y′, and x′y, xy′ must not be edges. If x′

and y′ are nonadjacent, then we consider x′ and y′ in place of x and y. So we assume
that x′ and y′ are adjacent and proceed as follows.

If x′ and y′ do not have a common neighbor of level k − 2, then x, x′, y′ together
with any neighbor of x′ of level k − 2 induce a claw. Suppose that x′ and y′ have
a common neighbor z of level k − 2. If k ≥ 3, then x, y, x′, y′, z together with any
neighbor of z of level k − 3 induce a net. Thus assume that k = 2.

Consider the ordering σ. Since H is a chordal graph, σ does not contain C from
Figure 2.1. Note that z is the first vertex of σ+ and therefore the last vertex of σ.
Suppose (without loss of generality) that y′ precedes x′ in σ. Recall that we write <
for the order of vertices in σ; thus we have y′ < x′ < z. Since C does not occur in
σ, we must have x′ < x (or else x, x′, y′ would yield a C). Now z is adjacent to y′,
which is not adjacent to x, and yet x < z in σ. Since σ is a LexBFS ordering, there
exists a vertex x′′ with x′′ < y′, which is adjacent to x but not to z. The absence of C
implies that x′′ is adjacent to both x′ and y′. If x′′ is not adjacent to y, then x′′, y, y,′ , z
induce a claw. On the other hand, if x′′ is adjacent to y, then x′′, x, x′, z, y, y′ induce a
tent.

It remains to explain how to handle occurrences of B1. We shall use the following
lemma.

Lemma 2.4. Suppose that σ+ contains neither A nor B2. If �+(x) < �+(y), then
y <++ x.

Proof. Suppose to the contrary that x <++ y. Let k = �+(y); we may assume
that, among all vertices of level smaller than k in σ+, x is the first vertex in the
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ordering σ++. Clearly x is not the last vertex in σ+, and hence not the first vertex
in σ++. Since x <+ y as well as x <++ y, there exists, by the property R, a vertex
x′ with x′ <++ x, which is adjacent to x but not to y. The choice of x implies that
�+(x′) ≥ k > �+(x). The fact that x′ is adjacent to x implies that �+(x′) = k. Thus
we have two nonadjacent vertices x′ and y of level k in σ+. By Lemma 2.2, A or B2

occurs in σ+, in contradiction to the hypothesis.
Proposition 2.5. Suppose that H is chordal and σ+ contains neither A nor B2.

Then σ++ does not contain A.
Proof. Suppose that σ++ contains A with a <++ b <++ c. Since σ+ does not

contain A or B2, vertices of the same level in σ+ are pairwise adjacent, according to
Lemma 2.2. Thus �+(a) �= �+(b) and �+(b) �= �+(c). By Lemma 2.4, �+(a) > �+(b) >
�+(c). So levels of a and c differ by at least two, which is impossible as a and c are
adjacent.

Thecrucialpropertyof thethree-sweepalgorithmiscaptured inthenextproposition.
Proposition 2.6. Suppose that H is chordal and that σ+ contains neither A

nor B2. If B1 occurs in σ++, then H contains a claw.
Proof. Assume that σ++ has B1 with a <++ b <++ c and �++(a) = �++(b) =

�++(c) − 1. Then b and c are not adjacent. Since A or B2 do not occur in σ+,
�+(b) �= �+(c) by Lemma 2.2. According to Lemma 2.4 and the fact that b <++ c, we
have �+(b) > �+(c) and in particular c <+ b. Since H is chordal, a <+ b, as otherwise
c <+ b <+ a would form a C. Since a <+ b as well as a <++ b, property R implies that
there exists a vertex c′ with c′ <++ a which is adjacent to a but not to b. The vertex c′

cannot be adjacent to c either, as otherwise c′ <++ b <++ c form an A, contradicting
Proposition 2.5. Therefore a, b, c′, c induce a claw.

The following two examples show that the test forB in the orderingσ++ is necessary:
for the graph in Figure 2.2, σ++ contains a B2 with a, c, e (and a, b, c, e induce a claw),
and for the graph in Figure 2.3, σ++ contains a B1 with f, e, c (and f, e, c, h induce a
claw).

f

a

b c ed

Fig. 2.2. σ : a b c d e f ; σ+ : f e d a c b; σ++ : b a c d e f.

h

a

b

c

d

e

f

g

Fig. 2.3. σ : d h g f e b c a; σ+ : a c b f e d h g; σ++ : g h d f e b c a.
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Theorem 2.7. The 3-sweep certifying algorithm for the recognition of proper
interval graphs is correct and can be implemented in time O(m + n) (including the
certification step).

Proof. We test for C in σ; hence neither σ+ nor σ++ will have C. We test for A
or B2 in σ+; hence σ++ cannot have A either by Proposition 2.5. Thus testing for B
in step 6 is sufficient. This proves that σ++ in step 7 satisfies the 3-vertex condition,
and hence the algorithm is correct.

We now address the implementation and the complexity of the algorithm. There
are three tests the algorithm performs: a search for C in step 2, a search for A or B2

in step 4, and a search for B in step 6.
The search for C is given in [32], and the algorithm which uses C to produce an

induced cycle of length at least four, given in [33], is proved to be O(m + n) in that
paper.

The search for A or B2 in step 4 can be performed using the characterization
in Lemma 2.2. In fact, we are searching for two nonadjacent vertices on the same
level. It is a simple exercise to accomplish this in time O(m+ n). If such vertices are
found, we need to identify a forbidden induced subgraph: We have written the proof
of Proposition 2.3 in such a way that it can be implemented as an O(n) algorithm to
actually construct an induced claw, net, or tent.

The search forB in step 6 can be done by searching forA orB, since Proposition 2.5
shows that A cannot occur at this point. Recall that for any ordering τ of vertices
v1, v2, . . . , vn, we have definedU(i) to be the greatest subscript j such that vi is adjacent
or equal to vj . We now similarly define L(i) to be the smallest subscript k such that
vi is adjacent or equal to vk. Finally, let dL(i) denote the number of neighbors vk of vi
with k < i. Given τ , these parameters can easily be computed in time O(m + n); in
fact, if τ is a LexBFS ordering they can be computed during the LexBFS procedure.
To detect an A or B, we need to check only whether or not dL(i) = i−L(i) for every i.
To actually identify a B, once an i with dL(i) < i−L(i) is detected, it suffices to test
at most dL(i) vertices with subscripts between i and L(i) − 1 before a subscript j is
found, such that vjvi is not an edge, and hence vi, vj , vL(i) form B. (Thus we can do all
this in time O(n).) If we have found a B2, we proceed as above using Proposition 2.3.
If a B1 is found, Proposition 2.6 implies that a claw must exist and suggests how to find
it in time O(n). If no claw, net, or tent have been found, then the 3-vertex condition
is satisfied, and the representation explained at the beginning section is computed in
time O(m + n).

Thus the entire algorithm, including the certification stage, can be implemented
in time O(m + n).

By computing an additional parameter, dU (i), the number of neighbors vj of vi
with j > i, we can actually also search for A or B2 in time O(n), rather than using
our simpler search of order O(m+ n) explained above. (The details are similar to the
search for A or B discussed in the proof.) Hence, after the three LexBFS searches have
been performed and the parameters U(i), L(i), dU (i), dL(i) are computed, and after
the testing for C has concluded and the possible nonchordality of H is certified by
finding an induced cycle of length at least four (these two tasks are not needed if the
given graph is known to be chordal), we have to test only for A,B and find either a
forbidden subgraph or a proper interval representation; all these remaining tasks can
be performed in time O(n).

As noted earlier, a certificate of representability (an inclusion-free family of intervals
whose intersection graph is the given graph) can be authenticated in time O(m + n),
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as in [18]. A certificate of nonrepresentability (an induced cycle of length greater than
three, claw, net, or tent) can be authenticated in time O(n); cf. [18].

3. Properintervalbigraphs. Inthis sectionweconsideronlyconnectedbipartite
graphs H = (V,E). The 3-sweep certifying algorithm in section 2 may be modified to
recognize proper interval bigraphs. We shall use the same notion of level as before.
Note that, as H is bipartite, each level must be an independent set.

It follows from [17] that a bipartite graph H is a proper interval bigraph if and
only if the vertices can be ordered satisfying the following weak 3-vertex condition:

For all x < y < z, xz ∈ E implies either xy ∈ E or yz ∈ E.

(Note that x and z are in different color classes of the bipartite graph H, and hence
y can only be adjacent to one of them.)

When H is not a proper interval bigraph, our algorithm will find a violation (of
the weak 3-vertex condition) in the vertex ordering produced by the second or the
third sweep. Using the violation, an induced cycle of length at least six, or an induced
bipartite claw, net, or tent from Figure 1.2, will be found in H.

When H is a proper interval bigraph, the vertex ordering of H produced by the
third sweep will be shown to satisfy the weak 3-vertex condition, and a proper interval
bigraph representation of H will be obtained.

Suppose that τ is a breadth first ordering v1, v2, . . . , vn of the vertices of H. This
means, in particular, that the vertices of any one level appear consecutively in τ .
As noted above, they form an independent set, and they have only neighbors on the
previous level and on the next level. These simple facts are useful to keep in mind
when reading the proofs in this section.

For each i = 1, 2, . . . , n, let U(i), u′(i), R(i) be defined as follows:
• U(i) is the greatest subscript such that vU(i) is either adjacent or equal to vi.
• u′(i) is the greatest subscript such that vu′(i) is adjacent to vi (note that u′(i)

can be smaller than i).
• R(i) = U(i), except when U(i) = i and U(u′(i)) > i, in which case R(i) =
U(u′(i)).

Proposition 3.1. Suppose that the vertex ordering v1, v2, . . . , vn of H satisfies
the weak 3-vertex condition. Let Ii = [i, R(i) + 1− 1

i ] be the interval associated with vi
for each i = 1, 2, . . . , n. Then the family Ii, i = 1, 2, . . . , n, is a proper interval bigraph
representation of H.

Proof. It follows immediately from the definitions that i ≤ U(i) ≤ R(i) for each
i = 1, 2, . . . , n. Suppose that vi, vk with i < k are adjacent. Then k ≤ U(i) ≤ R(i) and
Ii and Ik intersect as they both contain the point k. Conversely, suppose that Ii and
Ik intersect and that vi and vk are not in the same color class of H. Assume without
loss of generality that i < k. Then we must have k ≤ R(i). If R(i) = U(i), then, by
the definition of R(i) and the fact that i < k ≤ R(i), vi is adjacent to vR(i). (Thus
vk and vR(i) are in the same color class of H.) The weak 3-vertex condition implies
that vi is adjacent to vk. If R(i) �= U(i), then by the definitions of U(i), u′(i), R(i) we
must have R(i) = U(u′(i)) > i = U(i) > u′(i). Since vu′(i) is adjacent to both vi and
vU(u′(i)) = vR(i), vi and vR(i) are of the same level. Thus vi should be of the same level
as vk because i < k < R(i). But this contradicts the assumption that vi and vk are
not in the same color class of H.

It remains to show that no interval in the family contains another. In view of the
definition of the intervals, it suffices to show that R(i) ≤ R(k) for all 1 ≤ i < k ≤ n.
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If R(i) ≤ k, then R(i) ≤ k ≤ R(k) and it is true. So assume that k < R(i). Suppose
that R(i) = U(i). Then vi is adjacent to vU(i) = vR(i). If vk is in the same color class
as vi, then the weak 3-vertex condition implies that vk is adjacent to vU(i). Hence
R(k) ≥ U(k) ≥ U(i) = R(i). If vk is not in the same color class as vi, then vk is
adjacent to vi by the weak 3-vertex condition (as i < k < R(i) = U(i) and vi is adjacent
to vU(i) = vR(i)). Either U(k) = k, in which case we must have R(k) = U(u′(k)) ≥
U(i) = R(i), or U(k) ≥ U(i) = R(i), in which case R(k) = U(k) ≥ U(i) = R(i).
Suppose that R(i) �= U(i). This can only happen when U(i) = i > u′(i). By definition
R(i) = U(u′(i)). Since u′(i) < i < k < R(i) = U(u′(i)) and vu′(i) is adjacent to
both vi and vR(i), the three vertices vi, vk, vR(i) are all of the same level, and hence
are in the same color class. If U(k) ≥ R(i), then R(k) = U(k) ≥ R(i). Otherwise
U(k) = k > u′(i) = u′(k) and we have R(k) = U(u′(k)) = U(u′(i)) = R(i). This
completes the proof.

Since the input graph is bipartite, there are essentially only two ways the weak
3-vertex condition can be violated. We illustrate these violations in Figure 3.1. In the
first violation the colors of b and c are the same, while the color of a is different. In
the second violation, the colors of a and b are the same, and the color of c is different.
(The figures show the colors as particular choices of black and white, but they could
be the opposite colors as well; in other words, D can have a white and b and c black,
and similarly for E.)

a
(E)

b c a b c
(D)

Fig. 3.1. The two possible violations of the weak 3-vertex condition.

Note that in D the vertices b, c have the same level (and a has level one lower),
while in E the vertices a, b have the same level (and c has level one higher).

In Figure 3.2, we shall distinguish two important cases of D and E, which are
parts of two 4-vertex configurations.

(D*)

a b c z cbaw
(E*)

Fig. 3.2.

A triple D = (a, b, c) will be called D1 if there exists a vertex z such that (a, b, c, z)
is a quadruple D∗ as illustrated in Figure 3.2, and will be called D2 otherwise. A
triple E = (a, b, c) will be called E1 if there exists a vertex w such that (w, a, b, c) is a
quadruple E∗, as illustrated in Figure 3.2, and will be called E2 otherwise.
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The 3-Sweep Certifying Algorithm for the Recognition of Proper In-
terval Bigraphs

Input: a connected bipartite graph H

1. Perform an arbitrary LexBFS, yielding σ.
2. Perform LexBFS+(H,σ), yielding σ+.
3. Test σ+ for occurrence of D or E1. If D or E1 occurs, obtain an induced

cycleof lengthat least sixoran induced forbiddensubgraph fromFigure1.2,
using Lemma 3.3 and Proposition 3.4.

4. Perform LexBFS+(H,σ+), yielding σ++.
5. Test σ++ for occurrence of D or E1. If D or E1 occurs, obtain a forbidden

subgraph from Figure 1.2, using Proposition 3.4.
6. Output a proper interval bigraph representation of H, obtained from σ++

using Proposition 3.1.

Let x and y be of level k in a LexBFS ordering τ of H. Recall that any neighbor
of x or of y is of level k − 1 or k + 1 in τ . We use Nk−1(x) (respectively, Nk+1(x)) to
denote the set of all neighbors of x of level k−1 (respectively, k+1), all with respect to
τ . We say that x and y are consistent, with respect to τ , if all the following properties
are satisfied:

• either Nk−1(x) ⊆ Nk−1(y) or Nk−1(x) ⊇ Nk−1(y);
• either Nk+1(x) ⊆ Nk+1(y) or Nk+1(x) ⊇ Nk+1(y);
• if Nk−1(x) ⊂ Nk−1(y), then Nk+1(x) ⊇ Nk+1(y);
• if Nk−1(x) ⊃ Nk−1(y), then Nk+1(x) ⊆ Nk+1(y).

Otherwise, we say that x and y are inconsistent.
Lemma 3.2. Let τ be any LexBFS ordering of the vertices of H. Then D or E1

occurs in τ if and only if τ has two inconsistent vertices.
Proof. A LexBFS ordering τ containing D or E1 must have two inconsistent

vertices. Indeed, if E1 occurs, then Nk−1(a) �⊆ Nk−1(b) and Nk+1(a) �⊆ Nk+1(b), so a
and b are inconsistent. On the other hand, if D occurs, then a is adjacent to c but not
to b—hence the property P of the LexBFS ordering guarantees that there is a vertex
x <τ a adjacent to b but not to c. Since the levels of both a and x are one less than
the level of b and c, the vertices b and c are inconsistent.

Conversely, suppose that x and y of level k (for some k) are inconsistent. There
are, up to symmetry, two reasons this can happen: First, x and y can have neighbors
x′ and y′, respectively, on level k − 1, such that x is not adjacent to y′ and y is not
adjacent to x′. In this case either x′ <τ y <τ x or y′ <τ x <τ y form a D. Second, x
has neighbors x′ of level k − 1 and x′′ of level k + 1, which are not adjacent to y. In
this case, either x′ <τ y <τ x form a D, or x′ <τ x <τ y <τ x′′ form an E1.

Lemma 3.3. Suppose that τ is a LexBFS ordering of H. If τ contains D∗ with
a < b < c < z, then H contains an induced cycle of length at least six.

Proof. Set �(a) = k. Then �(b) = �(c) = k + 1 and �(z) = k + 2. Since b < c
and a ∈ Nk(c) − Nk(b), there is a vertex x ∈ Nk(b) − Nk(c). If there is a vertex
v ∈ Nk−1(a) ∩ Nk−1(x), then vaczbxv is an induced cycle of length six. Otherwise
there exist vertices e ∈ Nk−1(a) − Nk−1(x) and f ∈ Nk−1(x) − Nk−1(a). If e and f



CERTIFYING LexBFS ALGORITHMS 565

have a common neighbor of level k−2, then we obtain an induced cycle of length eight;
otherwise each of e and f has a neighbor of level k − 2 which is not a neighbor of the
other. Continuing this way, we will obtain an induced cycle of length at least six.

It follows from [21] that, conversely, if H contains an induced cycle of length at
least six, then any LexBFS ordering of H contains an occurrence of D∗, and hence of
D1. In other words, H contains no induced cycles of length at least six (i.e., is chordal
bipartite) if and only if D1 does not occur in any LexBFS of H. Thus if one LexBFS
ordering does not have D1, then none do.

Proposition 3.4. If σ+ or σ++ contains D or E1, then H contains an induced
cycle of length at least six or an induced bipartite claw, net, or tent from Figure 1.2.

Proof. It will again suffice to prove the proposition for σ+. Thus assume that
σ+ contains two inconsistent vertices x, y; note that inconsistent vertices have, by
definition, the same level. Thus, let �+(x) = �+(y) = k. (The neighborhoods Nj(v) in
this proof are all taken with respect to σ+.)

In view of Lemma 3.3, it will suffice to show that either D∗ occurs in σ or in σ+ or
H contains an induced bipartite claw, net, or tent, from Figure 1.2. We will frequently
appeal to the following lemma.

Lemma 3.5. Let τ be a LexBFS ordering of H. Suppose that a and b are distinct
vertices of level k (for some k) with a common neighbor c of level k + 1 in τ . Then a
and b also have a common neighbor of level k − 1, or there is a D∗ in τ .

Proof. Assume without loss of generality a <τ b. Let d be a neighbor of b of level
k − 1 in τ . Either d is a neighbor of a, and hence a common neighbor of a and b, or
d <τ a <τ b <τ c form a D∗ in τ .

We now continue with the proof of Proposition 3.4. The two essentially different
reasons for σ+ to have inconsistent vertices x and y are taken up in the two following
cases.

Case 1. Suppose that Nk+1(x) �⊆ Nk+1(y) and Nk+1(x) �⊇ Nk+1(y).
If Nk−1(x) �⊆ Nk−1(y) and Nk−1(x) �⊇ Nk−1(y), then any pair of vertices from

Nk−1(x) − Nk−1(y) and Nk−1(y) − Nk−1(x), respectively, are inconsistent and we
consider them in place of x and y. So assume that either Nk−1(x) ⊆ Nk−1(y) or
Nk−1(x) ⊇ Nk−1(y). This implies that Nk−1(x) ∩ Nk−1(y) �= ∅, since Nk−1(x) �= ∅
and Nk−1(y) �= ∅.

Let z ∈ Nk−1(x)∩Nk−1(y), x
′ ∈ Nk+1(x)−Nk+1(y), and y′ ∈ Nk+1(y)−Nk+1(x).

If k ≥ 3, let w ∈ Nk−2(z) and v ∈ Nk−3(w). Then we obtain a bipartite claw in H
induced by v, w, z, x, y, x′, y′. So assume k ≤ 2.

If k = 1, then consider the ordering σ. Since z is the first vertex in σ+, it is the
last vertex of σ. Assume without loss of generality that x <+ y. Then we must have
y < x. Clearly, x and y are of the same level in σ. If x′ < y, then x′ < y < x < z form
D∗. Therefore x′ > y, and hence x′ is of the same level in σ as z.

Since y < x′ < z and y is adjacent to z but not to x′, there exists by the property P
a vertex x′′ < y adjacent to x′ but not to z. Furthermore, x′′ is not adjacent to y′

or else we would have a six-cycle induced by x, x′, x′′, y′, y, z. Note that the level of
x′′ in σ is the same as the level of x (and y). By Lemma 3.5, either D∗ occurs in σ,
or x and y have a common neighbor u of level �(x) − 1. If u is not adjacent to x′′,
then u < x′′ < x < x′ form D∗. So assume that u is adjacent to x′′. If u is not the
first vertex of σ, then we obtain a bipartite tent induced by z, x, y, x′, x′′, u and any
neighbor of u of level smaller than u in σ. So assume that u is the first vertex of σ.
This implies that y′ can only be of the same level as z in σ and thus x < y′ < z. Since
x is adjacent to z but not to y′, there exists, again by the property P, a vertex y′′ < x
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adjacent to y′ but not to z. We must have y′′ �= x′′, since x′′ is not adjacent to y′ (as
noted above). Thus we obtain the bipartite tent in H induced by z, x, y, u, y′, y′′, x′′.

Now assume k = 2. Let w be the first vertex in σ+. Then w is the last vertex in σ
and we again consider the ordering σ. Suppose that x and y are both of the same level
�(z) − 1. By Lemma 3.5 either D∗ occurs in σ, or x and y have a common neighbor
z′ of level �(x) − 1 and we obtain a bipartite net induced by w, z, x, y, x′, y′, z′.

So x and y are either of the same level as w or of different levels in σ. First assume
that x and y are of the same level as w in σ. Then x′, y′ are of the same level as z in
σ, smaller than the level of x, y, w. Let z′ be any neighbor of z, of level smaller than
z in σ. If z′ is adjacent to both x′ and y′, then we obtain a bipartite tent induced by
z′, x′, y′, z, x, y, w. Otherwise, z′ is not adjacent to x′ or to y′; say it is not adjacent
to x′. If x′ < z, then z′ < x′ < z < x form D∗. So assume z < x′. By Lemma 3.5, z
and x′ must have a common neighbor z′′ of level �(z) − 1 = �(z′). Note that z′ and
z′′ are distinct and have a common neighbor z. Applying the lemma once more, we
obtain common neighbor z′′′ of z′ and z′′ and therefore a bipartite tent induced by
w, x, x′, z, z′, z′′, z′′′.

Assume now that x and y are of different levels in σ. Since both x, y are adjacent
to z, one is of level �(z) − 1 and the other is of level �(z) + 1. Assume without loss
of generality that �(x) − 1 = �(z) = �(y) + 1. Thus x′ and z are of the same level
and have a common neighbor x in σ. By the lemma, either D∗ occurs or x′ and z
have a common neighbor x′′ of level �(z)− 1. Now y and x′′ are of the same level and
have a common neighbor z. Hence, by the lemma, either D∗ occurs or y, or x′′ have
a common neighbor x′′′ of level �(y) − 1 and we obtain a bipartite tent induced by
w, x, x′, x′′x′′′, y, z.

Case 2. Suppose that Nk−1(x) ⊃ Nk−1(y) and Nk+1(x) ⊃ Nk+1(y).
Let x′ ∈ Nk−1(x) − Nk−1(y) and x′′ ∈ Nk+1(x) − Nk+1(y). Since Nk−1(x) ⊃

Nk−1(y), we must have x <+ y, by property P. Let z ∈ Nk−1(y). Then z ∈ Nk−1(x)
as Nk−1(x) ⊃ Nk−1(y). Thus x′ and z are of the same level in σ+ and have a common
neighbor x of level �+(x′) + 1. By the lemma, either D∗ occurs or x′ and z have a
common neighbor w of level k− 2 in σ+. Thus we must have k ≥ 2. If k ≥ 3, then we
obtain a bipartite net in H induced by w, x′, z, x, y, x′′ and any neighbor of w of level
k − 3. So assume k = 2.

Consider again the ordering σ. Since w is the first vertex in σ+, it is the last vertex
in σ. Thus z, x′ are of the same level in σ.

Suppose that x is of level smaller than z in σ. If y is of the same level as w, then
there must be a vertex u < x′ adjacent to y but not to w (as y < w), by the property P.
If u is adjacent to x, then we obtain the bipartite tent induced by u, x, x′, x′′, z, y, w.
So assume that u is not adjacent to x. If u < z, then x < u < z < y form D∗ in σ.
Hence z < u < x′. By the lemma, either D∗ occurs in σ, or z and u have a common
neighbor v of level �(z) − 1. Thus v and x are of the same level and have a common
neighbor z. Again by the lemma, either D∗ occurs in σ, or v and x have a common
neighbor v′ of level �(v) − 1. We obtain a bipartite tent induced by v′, v, x, z, u, y, w.
Thus let y be not of the same level as w, and hence of the same level as x in σ. By the
lemma, either D∗ occurs in σ, or x and y have a common neighbor u′ of level �(x)− 1
and we obtain a bipartite tent induced by u′, x, x′, x′′, z, y, w.

Therefore assume that x is of level greater than z in σ, i.e., of the same level as w.
Thus x′′ and z both adjacent to x are of the same level. By the lemma, either D∗ occurs
in σ, or x′′ and z have a common neighbor z′ of level �(z)− 1. If z′ is not adjacent to
x′, then we obtain a bipartite tent induced by y, z′, x′′, z, x′, x, w. So assume that z′
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is adjacent to x′.
Suppose that y is of the same level as w in σ. Since y < w and x′ is adjacent to

w but not to y, there exists, by the property P, a vertex y′ < x′ which is adjacent
to y but not to w. If y′ is adjacent to z′, then we obtain a bipartite tent induced by
y′, z′, y, z, x′′, x, w. So y′ is not adjacent to z′. This implies in particular that y′ > z,
or else z′ < y′ < z < y form a D∗ in σ. By the lemma, either D∗ occurs in σ, or z
and y′ have a common neighbor y′′ of level �(z) − 1. Note that y′′ and z′ are distinct
(as z′ is not adjacent to y′), of the same level, and both adjacent to z. Once more, by
the lemma, either D∗ occurs in σ, or z′ and y′′ have a common neighbor y′′′ of level
smaller than �(z′)− 1, and we obtain a bipartite tent induced by y′′′, z′, y′′, z, y′, y, w.

Finally, if y is not of the same level as w in σ, and thus of the same level as z′,
then, again by the lemma, either D∗ occurs in σ, or y and z′ must have a common
neighbor z′′ of level �(y) − 1, and we obtain a bipartite tent induced by z′′, z′, y,
z, x′′, x, w.

We now make the following observation which will be useful in the next proposition.
Lemma 3.6. Suppose that σ+ contains neither D nor E1. If �+(x) ≤ �+(y) − 2,

or if �+(x) = �+(y) and x has a neighbor of level �+(x) − 1 nonadjacent to y, then
y <++ x.

Proof. We first note that under both assumptions we must have x <+ y. Indeed,
this is obvious if �+(x) ≤ �+(y)− 2. On the other hand, if �+(x) = �+(y), then y <+ x
would only be possible, by property P, if another vertex of level �+(x)−1 was a neighbor
of y and nonadjacent to x. This implies that the vertices x and y are inconsistent and
contradicts the fact that σ+ contains neither D nor E1.

Now suppose to the contrary that x <++ y. We may assume that, among vertices
v such that �+(v) ≤ �+(y)−2, or �+(v) = �+(y) and v has a neighbor of level �+(v)−1
nonadjacent to y, the vertex x comes first in the ordering σ++.

Sincex <+ y andx <++ y, property R implies that there must be a vertexx′ <++ x
which is adjacent to x but not to y. We claim that x′ cannot be the first vertex of σ++,
i.e., that x′ cannot be the last vertex of σ+. In fact, we must have �+(x′) < �+(y): This
is clear if �+(x) ≤ �+(y) − 2, since x′ is adjacent to x. If �+(x) = �+(y), and x′′ is a
neighbor of x of level �+(x)− 1 nonadjacent to y, then we cannot have �+(y) < �+(x′),
since this would mean that x′′ <+ x <+ y <+ x′ form an E∗. (Note that x′ and y
have different colors, and hence cannot be of the same level.)

Consider a shortest path Q from x′ to the first vertex of σ++ (which is the last
vertex of σ+). Thus Q contains only one vertex from each level of σ++, up to the level
of x′, which is smaller than the level of x and of y. In particular, y is not adjacent to
any vertex of the path Q. On the other hand, since �+(x′) < �+(y), the path Q must
contain a pair of adjacent vertices w and u with �+(w) = �+(y) = �+(u) + 1. This
contradicts the choice of x, since w comes before x in σ++, �+(w) = �+(y), and w has
a neighbor u of level �+(w) − 1 which is not adjacent to y.

The crucial property of the third sweep is captured in the following result.
Proposition 3.7. Suppose that σ+ does not contain D or E1. Then σ++ does

not contain E2.
Proof. Suppose to the contrary that x <++ y <++ z form E2. Since x is adjacent

to z, we must have �++(x) = �++(y). Let w be any neighbor of x of level �++(x)− 1.
By the definition ofE2, w is also a neighbor of y. Note thatw and z have the same color,
as they are both adjacent to x. Hence either |�+(w) − �+(z)| ≥ 2 or �+(w) = �+(z).
Since w <++ z, by Lemma 3.6, either �+(z) ≤ �+(w) − 2, or �+(w) = �+(z) and w
does not have a neighbor of level �+(w) − 1 nonadjacent to z.
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Suppose first that �+(z) ≤ �+(w) − 2. Since x is a common neighbor of w and z,
we must have �+(w) − 1 = �+(x) = �+(z) + 1. Since y is adjacent to w, the level of
y in σ+ is �+(w) + 1 ≥ �+(x) + 2 or �+(w) − 1 = �+(x). In either case, Lemma 3.6
implies that y <++ x, which contradicts our assumption that x <++ y.

Thus suppose that �+(w) = �+(z) andw does not have a neighbor of level �+(w)−1
nonadjacent to z. Since y is a neighbor of w but not of z, the level of y in σ+ can
only be �+(w) + 1. Now consider the vertex x which is a common neighbor of w and
z. The level of x in σ+ is �+(w)− 1 ≤ �+(y)− 2 or �+(w) + 1 = �+(y). In either case
we again have, by Lemma 3.6, that y <++ x, which again contradicts our assumption
that x <++ y.

Theorem 3.8. The 3-sweep certifying algorithm for the recognition of proper
interval bigraphs is correct and can be implemented to run in time O(m+n) (including
the certification step).

Proof. The correctness of the algorithm follows from Lemma 3.3 and Propositions
3.4 and 3.7.

To test for the occurrences ofD orE1 in σ+ and σ++ we shall compute the following
parameters for each vertex vi and each of the LexBFS orderings σ+ and σ++:

• u(i), the greatest subscript j such that vj is of the same level as vi;
• l(i), the smallest subscript k such that vk is of the same level as vi;
• U(i), the greatest subscript j such that vj is adjacent to or of the same level

as vi;
• L(i), the smallest subscript k such that vk is adjacent to or of the same level

as vi;
• dU (i), the number of neighbors vj of vi with j > i;
• dL(i), the number of neighbors vk of vi with k < i;
• x(i), the greatest subscript j such that vj is of the same level as vi and

dL(j) = dL(i);
• dx(i), the number of neighbors vk with x(L(i)) < k ≤ u(L(i)).

It is easy to compute all these parameters in time O(m + n).
It is easy to see that dU (i) ≤ U(i)−u(i) for all i = 1, 2, . . . , n and that a D exists if

and only if dU (i) < U(i)−u(i) for some i. (Such a vertex vi is not adjacent to some vj
with u(i) < j < U(i) and vi, vj , vU(i) form a D.) Thus to test for occurrence of D, we
check whether dU (i) = U(i) − u(i) for each i = 1, 2, . . . , n. If dU (i) < U(i) − u(i) for
some i, then we detect D by checking at most dU (i) vertices with subscripts between
u(i) + 1 and U(i) − 1. Clearly this can be done in time O(n).

Suppose that no D is detected; that is, dU (i) = U(i)−u(i) for each i = 1, 2, . . . , n.
Then we proceed to test for occurrence of E1. Observe that the absence of D implies
that if vp and vq with p < q are two vertices of the same level, then dL(p) ≥ dL(q).
Hence there exists an E1 with third vertex vi if and only if some vertex vk with
x(L(i)) < k ≤ u(L(i)) is nonadjacent to vi. This can be checked by testing whether
or not dx(i) = u(L(i))− x(L(i)). If the equality does not hold for some i, we can find,
in time O(n), a vertex vk and a vertex w, which, together with vL(i) and vi, form E1.

When D or E1 is detected, Lemma 3.3 and Proposition 3.4 show how to find an
induced cycle of length at least six or an induced forbidden subgraph from Figure 1.2.
It is easy to see that the proofs of Proposition 3.4 represent algorithms that can be
implemented to run in time O(n) and that the proof of Lemma 3.3 represents an
algorithm that can be implemented to run in time O(m + n). Therefore the overall
complexity of the algorithm is O(m + n).

We again remark that except for the lexicographic searches, the computation of
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the various parameters itemized above, and the computation implicit in the proof of
Lemma 3.3 (not needed if the graph is known to be chordal bipartite), the remaining
tasks can be performed in time O(n).

We note in passing that we have avoided checking for D1 alone, and at present
there is no O(m + n) algorithm known for finding (or deciding the existence of) an
ordering without D1 (i.e., without D∗).

When the algorithm finds an ordering satisfying the weak 3-vertex condition, a
representation by an inclusion-free family of intervals can be found in time O(m+ n)
(Proposition 3.1) and authenticated also in time O(m+n) (cf. [18]). When it finds an
induced cycle of length at least six or induced bipartite claw, net, or tent, these can
be authenticated in time O(n), as in [18].

We thank the referees for their insightful suggestions.
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ON THE CO-P3-STRUCTURE OF PERFECT GRAPHS∗
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Abstract. Let F be a family of graphs. Two graphs G1 = (V1, E1), G2 = (V2, E2) are said
to have the same F-structure if there is a bijection f : V1 → V2 such that a subset S induces a
graph belonging to F in G1 if and only if its image f(S) induces a graph belonging to F in G2. We
characterize those graphs which have the same {P3, P 3}-structure, or the same {K3,K3}-structure.
This characterization shows that graph H is perfect if and only if it has the {P3, P 3}-structure of
some perfect graph G. In proving the main result, we need and prove the following result, which is
of independent interest: If a graph J is claw-free and co-claw-free, then either (i) J has at most nine
vertices, or (ii) every component of J is a path or a hole, or (iii) every component of J is a path or
a hole.
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1. Introduction. Let F be a family of graphs. Two graphs G1 = (V1, E1), G2 =
(V2, E2) are said to have the same F-structure if there is a bijection f : V1 → V2 such
that a subset S induces a graph belonging to F in G1 if and only if its image f(S)
induces a graph belonging to F in G2. In [4], Chvátal discussed the F-structure
when F = {P4} in the context of perfect graph theory. A graph G is perfect if
for each induced subgraph H of G, the chromatic number of H equals the number
of vertices in a largest clique of H. A conjecture of Berge, which was proved by
Lovász [10], states that a graph is perfect if and only if its complement is. This result
is nowadays known as the Perfect Graph Theorem (PGT). Berge [1] also made a
stronger conjecture stating that a graph is perfect if and only if it does not contain as
an induced subgraph the odd chordless cycle on at least five vertices or its complement.
This conjecture was known as the Strong Perfect Graph Conjecture (SPGC). Graphs
satisfying the hypothesis of the SPGC are called Berge graphs. Recently, Chudnovsky
et al. [3] announced a proof of the SPGC. This result is now known as the Strong
Perfect Graph Theorem (SPGT).

Chvátal [4] conjectured that a graph H is perfect if and only if it has the P4-
structure of some perfect graph G. This was first proved by Reed [12], and is now
a consequence of [3]. Further research into F-structures also centered around its
relationship to the SPGC [7], [8], [9].

In this paper, we prove two theorems of this nature. Let Kt (respectively, Pt)
denote the clique (respectively, induced path) on t vertices.

Theorem 1. A graph H is perfect if and only if it has the {K3,K3}-structure of
a perfect graph G.

Theorem 2. A graph H is perfect if and only if it has the {P3, P 3}-structure of
a perfect graph G.
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It is easy to see that two graphs have the same {K3,K3}-structure if and only
if they have the same {P3, P 3}-structure. Thus, Theorems 1 and 2 are equivalent.
Furthermore, it is a tedious but routine matter to show that graphs with the {P3, P 3}-
structure of a Berge graph are Berge. Thus, our two theorems are implied by the
SPGT. These two theorems were proved before the proof of the SPGC was announced
and the original motivation was that they might be a step towards a proof of the
SPGC. We feel they are still interesting because (a) they might help in finding a
shorter proof of the SPGC, and (b) we prove the following result of independent
interest. A triangle is the clique on three vertices. A claw is the graph with vertices
a, b, c, d and edges ab, ac, ad.

Theorem 3. If a graph J and its complement J are claw-free, then either (i) J
has at most nine vertices, or (ii) J and J are triangle-free.

In section 2, we will discuss background results needed to prove Theorems 2 and
3, the proofs of which will be given in section 3.

2. Definitions and background. Before proving Theorem 2, we need to in-
troduce some definitions and background results. Let G be a graph. Let S be a set
of vertices of G. G[S] will denote the subgraph of G induced by S (for simplicity, we
will write G[a, b, . . .] for G[{a, b, . . .}]). Let x be a vertex of G. Then NG(x) denotes
the set of vertices adjacent to x in G. If xy ∈ E(G), then we say that x sees y in G,
otherwise we say that x misses y in G. We use v1v2 . . . vk to denote the chordless
path with vertices v1, v2, . . . , vk and edges vivi+1 for i = 1, 2, . . . , k − 1. A hole is a
chordless cycle with at least four vertices. Two vertices x, y are antitwins of G if every
vertex z, different from x and y, sees x or y but not both. Note that x, y are antitwins
in G if and only if they are antitwins in G. Two nonempty sets A,B of vertices of G
are a homogeneous pair if (i) A or B has at least two vertices, (ii) there are at least
two vertices outside A ∪ B, and (iii) for any vertex x outside A ∪ B, if x sees some
vertex in A (respectively, B) then it sees all vertices of A (respectively, B). If A,B
are a homogeneous pair in G, then they are a homogeneous pair in G.

A graph is minimal imperfect if it is not perfect but each of its proper induced
subgraphs is. The PGT implies that a graph is minimal imperfect if and only if its
complement is. We will rely on the following two results on minimal imperfect graphs.

Olariu [11] proved that

a minimal imperfect graph cannot contain antitwins.(1)

Chvátal and Sbihi [5] proved that

a minimal imperfect graph cannot contain a homogeneous pair.(2)

If two graphs have the same {P3, P 3}-structure, then we will say that they have
the same co-P3-structure. If F is a graph, then co-F denotes the complement of
F . For example, the cotriangle is the complement of a triangle. The pyramid is
the graph obtained from taking a triangle with vertices a, b, c and a cotriangle with
vertices x, y, z and adding edges xa, xb, yb, yc, za, zb; such a pyramid will be referred
to as P (a, b, c, x, y, z). A graph is elementary [6] if its edges can be colored by two
colors in such a way that each edge receives a color and there is no monochromatic P3.
Pyramids and copyramids, claws, odd holes, and odd antiholes are not elementary.

3. The proofs. We are going to prove a theorem stronger than Theorem 2.
Theorem 4. If two graphs G and H have the same co-P3-structure and H is not

isomorphic to G or G, then either (i) both G and H have antitwins or a homogeneous
pair, or (ii) G and H have at most nine vertices.
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The key to Theorem 4 is Theorem 3.
Proof of Theorem 3. Let J be a claw-free, co-claw-free graph. Suppose that both

(i) and (ii) fail. Thus, J contains a triangle K, and a cotriangle S. Let K = {a, b, c}
and S = {x, y, z}.

Note that

every vertex u of J −K must see at least one vertex of K,(3)

for otherwise there is a coclaw induced by K and u.
Suppose that K ∩ S = ∅. We claim that

there cannot be a vertex of S that sees at least two vertices of K and

another vertex of S that misses at least two vertices of K.(4)

Suppose x sees vertices a, b of K, and without loss of generality, y misses at least two
vertices of K. If y misses a, b then {a, b, x, y} is a coclaw in J . So, without loss of
generality we may assume y misses a and c. Now, y sees b (by (3)), and x misses c
(for otherwise {a, c, x, y} is a coclaw). Now, {b, x, y, c} is a claw. So (4) holds. Next,
we prove that

there cannot be a vertex of S that sees three vertices of K.(5)

Suppose x sees all three vertices of K. Then (4) implies that y sees (at least) two
vertices, say a, b, of K. Both a and b must miss z, for otherwise there is a claw with
vertices x, y, z and a or b. Now, there is a coclaw with z, a, b, x. So (5) holds. Next,
we prove that

if some vertex of S sees two vertices of K, then K ∪ S induces a pyramid.(6)

If some vertex of S sees two vertices of K, then, by (3), (4), and (5), every vertex
of S sees exactly two vertices of K. If two vertices, say x, y, of S see the same two
vertices, say a, b, of K, then a and b miss z (for otherwise, there is a claw with S and
a or b), a contradiction to (4). It is now easy to see that K ∪ S induces a pyramid.
Next, we prove that

if K ∪ S induces a pyramid, then J contains a claw or coclaw.(7)

By assumption, J has a vertex t outside the pyramid P (a, b, c, x, y, z). Vertex t cannot
be adjacent to all vertices in S, for otherwise {t, x, y, z} induces a claw. We may
assume that t misses x.

Suppose t sees a. Then t sees z (for otherwise {a, x, t, z} is a claw) and c (for
otherwise {a, x, t, c} is a claw). But now {x, t, z, c} is a coclaw.

So t misses a, and by symmetry t misses b. But then {t, x, a, b} induces a coclaw.
We have proved (7).

By (6) and (7), we may assume that no vertex of S sees two vertices of K. It
follows from (3) that every vertex of S sees exactly one vertex of K. If some two
vertices, say x, y, of S see the same vertex, say a, in K, then there is a claw (induced
by {a, x, y, b}). Now, it is easy to see that K ∪ S induces a copyramid. By (7), J
contains a claw or coclaw. Thus,

J cannot contain a triangle that is disjoint from a cotriangle.(8)
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Consider a vertex a that is the intersection of a triangle K = {a, b, c} and a
cotriangle S. Let N be the set of neighbors of a, and M be the set of nonneighbors
of a (different from a). By (8), M has no cotriangle. Also, M has no triangle, for
otherwise this triangle and a form a coclaw. Thus M has at most five vertices (this
is a well-known case of Ramsey’s theorem).

Suppose M has five vertices. Then M is the C5. Enumerate the vertices of the
C5 as v1, v2, . . . , v5 in the cyclic order. By (3), each vi sees b, or c, or both. We
may suppose v1 sees b. Then b has to miss v3 and v4, for otherwise {b, a, v1, v3} or
{b, a, v1, v4} induces a claw. Now (3) implies that c sees v3 and v4, and therefore, c
misses v1, for otherwise {c, a, v3, v1} induces a claw. But then {v1, c, v3, v4} induces
a coclaw. (This argument actually implies that M is P4-free.)

So, M has at most four vertices. A similar argument applied to J shows that N
has at most four vertices.

Corollary 5. If a graph J is claw-free and co-claw-free, then either (i) J has
at most nine vertices, or (ii) every component of J is a path or a hole, or (iii) every
component of J is a path or a hole.

Proof of Corollary 5. By Theorem 3, we may assume that J is triangle-free.
Consider a component C of J . If C contains a hole F of length at least 4, then
F = C, for otherwise some vertex in C − F has a neighbor in F and it follows that
C contains a claw. Thus C must be a tree and therefore a path since J is claw-
free.

Proof of Theorem 4. Let G and H be two graphs with the same co-P3-structure.
We may assume that G and H are defined on the same vertex-set in such a way that
for any set X of vertices, X induces a P3 or co-P3 in G if and only if X does so in
H. We may suppose H is not isomorphic to G or G. A pair (x, y) of vertices will be
called variant if x sees y in H but misses it in G, or vice versa. We may assume that

H contains a variant pair (x, y),(9)

for otherwise H is isomorphic to G or to G, a contradiction. A pair of vertices is
invariant if it is not variant. By the variant graph J , we mean a graph whose vertices
are those of G and in which a pair of vertices is joined by an edge if and only if they
are a variant pair. We say that J is the variant graph for G and H. We can two-color
the edges of J so that xy is colored 1 if xy is an edge of G, and 2 if xy is an edge of
H. We say that a set is bad if it induces a P3 or co-P3 in H but does not do so in G,
or vice versa. The fact that G and H have the same co-P3-structure implies that J
contains no monochromatic P3 (such a P3 would be bad); thus

J is elementary.(10)

It is easy to see that

an elementary graph is bipartite if and only if it is triangle-free.(11)

Since J is the variant graph for G and H, J is elementary. Thus J is claw-free and
co-claw-free. By Corollary 5, we may assume that each component of J is a path or
a hole. Since J is elementary,

each component of J is a path or an even cycle.(12)

Observation 1. Let ab be an edge of J and let x be a vertex with xa, xb �∈ E(J).
Then, in H and G, x sees exactly one vertex of {a, b}.
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Proof of Observation 1. In G and in H, x cannot see, or miss, both a and b, for
otherwise the set {a, b, x} is bad. So, in G and in H, x sees exactly one vertex in
{a, b}.

We know there is a component with at least two vertices. We will prove that
if J has a component, different from a C4,

with at least two vertices, then H has antitwins.(13)

Consider a component K of J with at least two vertices. Since K is a path or a
cycle, we can enumerate the vertices of K as v1, v2, . . . , vt such that vivi+1 ∈ E(J)
for i = 1, 2, . . . t − 1, and if K is a cycle, then v1vt ∈ E(J). We may assume that
v1v2 ∈ E(H) (for otherwise, we can replace H by H and G by G in the following
argument. Note that antitwins of H are antitwins of H). It follows that vivi+1 ∈ E(H)
if and only if i is odd. We are going to show that if K is not a C4, then either {v1, v2}
or {v2, v3} is a pair of antitwins of H.

Suppose K is not a C4 but {v1, v2} is not a pair of antitwins of H. Then, in
H there is a vertex u seeing, or missing, both vertices v1 and v2. Observation 1
implies u = v3 or vtv1 ∈ E(J) and u = vt. Without loss of generality, we may
assume u = v3. In H, since v3 misses v2, v3 misses v1. Now, in H, v4 sees v2, for
otherwise, {v2, v3} is a pair of antitwins by Observation 1. The same observation, with
a = v1, b = v2, x = v4 implies v4v1 �∈ E(H). But then the observation is contradicted
with a = v3, b = v4, x = v1. We have established (13).

Suppose some component K of J is a C4. Then it is easy to see that H has
a homogeneous pair (with A = {v1, v3}, B = {v2, v4}) whenever J has at least six
vertices, and if J has five vertices, then (ii) holds. Theorem 4 is proved.

Now, we prove Theorem 2.
Proof of Theorem 2. Let G and H be two graphs with the same co-P3-structure.

Suppose G is perfect but H is not. Every imperfect graph contains a minimal imper-
fect graph. So we may assume H is minimal imperfect. By Theorem 4, (1), (2), and
the perfect graph theorem, H has at most nine vertices.

It is a tedious but routine matter to verify that all graphs on at most nine vertices
with the co-P3-structure of a perfect graph are Berge (indeed, one can show easily
that graphs with the co-P3-structure of Berge graphs are Berge but this is much more
than is needed here). It is well known and easy to prove that Berge graphs with at
most nine vertices are perfect.

Note added in proof. After this paper was written, we learned that a slightly
weaker version of Corollary 5 was previously proved by A. Brandstädt and S. Mahfud
[2]. They proved that if G is claw-free and co-claw-free, then G or G is a chordless
path or cycle, or G has a homogeneous set, or G has at most nine vertices.
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576 CHÍNH T. HOÀNG AND BRUCE REED
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1. Multicolored edge partitions in complete graphs. Basic terminology
and notation on graph theory is found in [4]. A coloring of edges of a graph is proper
if, whenever two edges have one vertex in common, they carry different colors. A graph
with colored edges is called multicolored if no two of its edges have the same color.
Two subgraphs are edge disjoint if they do not share common edges. Two graphs with
colored edges are isomorphic if there exists a bijection σ between the sets of vertices
and a bijection η between the sets of colors such that (i, j) is an edge of color c if and
only if (σ(i), σ(j)) is an edge of color η(c). Denote by Ks the complete graph on s
vertices. A connected graph with m vertices and m edges is called a unicycle; such a
graph necessarily consists of a spanning tree plus another edge. An example of such a
graph is a (Hamiltonian) cycle. We investigate the possibility of producing a proper
edge-coloring of Ks such that its edges can be partitioned into either edge-disjoint
isomorphic multicolored unicycles (this requires s odd) or isomorphic multicolored
spanning trees (s even). When this is possible, we obtain what we call a multicolored
cycle (or tree) parallelism of Ks. Such a partition of the edges of Ks can be viewed
as a parallelism as defined in [8] with an additional restriction due to color.

When no coloring is involved, it is well known, and a classical result of Euler,
that the edges of K2n can be partitioned into isomorphic spanning trees (paths, for
example). Each of these spanning trees can easily be made multicolored, but the
resulting edge coloring usually fails to be proper. Indeed, it is easy to verify that
the sole proper coloring of K6 does not admit a partition into multicolored spanning
(trees which are) paths. In addition, there exists a proper coloring of K8 that does not
admit even a single multicolored spanning path; see [7]. Euler also decomposed K2n+1

into n edge-disjoint Hamiltonian cycles. In this paper, these results are extended to
properly colored complete graphs by showing that edge-disjoint partitions into iso-
morphic multicolored spanning trees (or Hamiltonian cycles) exist for infinite families
of complete graphs. The generating function of the multicolored spanning trees in
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any edge colored graph can be expressed as a sum of formal determinants; cf. [2] and
[3]. These results have been used in constructing edge partitions into multicolored
spanning tress for complete graphs on a small number of vertices. Algorithms for
finding multicolored spanning trees are also discussed in [5]. An application of par-
allelisms of complete designs to population genetics data is found in [1]. Parallelisms
are also useful in partitioning consecutive positive integers into sets of equal size with
equal power sums; cf. [12]. Discussions of colored matchings and design parallelisms
to parallel computing appear in [11].

2. Construction of multicolored edge partitions. Our main result is the
following.

Theorem.

(a) For p(> 2) prime there exists a proper edge coloring of Kp that admits a
partition of edges into multicolored Hamiltonian cycles.

(b) For n = 6, or n = 2m, m ≥ 3, or n = 5 · 2m, m ≥ 1, there exists a proper edge
coloring of Kn that admits a partition of edges into isomorphic multicolored spanning
trees.

Proof. Part (a). Label the vertices of Kp by 1, 2, . . . , p and treat them as elements
of the finite field with p elements in any subsequent arithmetic. Label p is the identity

element for addition. Produce a p× (p−1)
2 array E, the (i, j)th entry of which is the

edge (i, i + j) of Kp. Using the fact that p is a prime, it is easy to check that the
columns of E represent edge-disjoint Hamiltonian cycles that partition the edges of
Kp. Denote also colors by 1, 2, . . . , p and use the same arithmetic as above. Define
an array C whose (i, j)th entry is color i+ (j− 1)(p+1

2 ). Color the edge in the (i, j)th
entry of E with the color found in the (i, j)th entry of C. Fixing a column index it
is easy to see that the Hamiltonian cycle in that column is multicolored. We thus
conclude that all Hamiltonian cycles that appear as columns in E are multicolored.
It remains to verify that the edge-coloring of Kp so obtained is proper. By the cyclic
nature of the construction, it suffices to check that vertex 1 is adjacent with edges
carrying distinct colors. Indeed, vertex 1 is adjacent with edges of all colors except
color p+1

2 .
Part (b). Starting with a multicolored tree parallelism for K2m, it suffices to

prove that we can obtain a multicolored tree parallelism for K4m. To complete the
proof we simply iterate the process. Take a copy of the multicolored tree parallelism
for K2m and call it L. Take another copy of the multicolored tree parallelism for K2m,
on a disjoint set of vertices from those of L but using the same set of colors, and call
it R. The graph having L∪R as vertices, with edges connecting any vertex of L with
any vertex of R, is called B. It is apparent that we have thus constructed a graph
K4m on the vertex set L ∪ R. Edges of B are still to be colored. Color the edges of
B in accordance with a pair of orthogonal Latin squares. For a definition and basic
properties of orthogonal Latin squares the reader is referred to [9, p. 366]. It is well
known that a pair of orthogonal Latin squares on n symbols exists for all n �= 2, 6; see
[6]. The rows of the Latin squares are indexed by the vertices of L, and the columns
by the vertices of R. Colors used are disjoint from those used on the edges of L and
R. Entries in the first Latin square represent the assignment of colors to the edges.
We have thus completed an edge coloring of K4m. It is a proper coloring, since it is
proper within L and R by assumption, and the distribution of colors in accordance
with the entries of the first Latin square ensures that edges emanating from each
vertex carry all possible colors. We now describe the spanning tree decomposition
that produces a multicolored tree parallelism for K4m. In general, denote by s(M)
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the set of multicolored spanning trees present in the multicolored tree parallelism of
complete graph M. Let B(i) be the set of edges of B associated with positions in
which symbol i occurs in the second of the orthogonal Latin squares; 1 ≤ i ≤ 2m.
Consider any bijection α between the set of symbols in the second Latin square and
the set s(L) ∪ s(R). The set s(L ∪R) is now described as follows:

s(L ∪R) = {B(i) ∪ Tα(i) : 1 ≤ i ≤ 2m}.

Elements of s(L ∪ R) are spanning trees of L ∪ R. Any one of them consists of a
spanning tree of L (or R) appended with a set of pendant edges B(i) for some i. They
are therefore isomorphic as uncolored trees. By construction it is evident that they
are multicolored. It follows that they are isomorphic multicolored spanning trees.
Moreover, they are edge disjoint. The only possible overlap may occur among the
edges in B. But the orthogonality of the Latin squares ensures that an edge occurs in
precisely one such spanning tree.

To complete the proof we exhibit multicolored tree parallelisms K6, K8, and K10.
Rows represent colors and columns represent isomorphic multicolored spanning trees.
In the case of K6 we have

12 35 46
23 16 45
34 15 26
56 24 13
36 25 14

.

A partition for K8 is

18 34 56 27
17 36 28 45
16 38 47 25
26 15 48 37
23 14 58 67
46 78 35 12
57 24 13 68

.

A proper coloring of K10 appears below:

12 34 90 56 78
24 13 69 57 80
60 58 14 79 23
37 89 15 40 26
49 25 70 38 16
50 46 28 17 39
67 30 18 29 45
68 19 47 20 35
59 27 36 48 10

.

3. Study of small complete graphs and conjectures. For complete graphs
with a small number of vertices parallelisms of isomorphic multicolored spanning
trees (or unicyclic subgraphs) exist for any proper edge-coloring. An outcome of this
study, interesting to us, is that there is a sole isomorphism type of spanning tree that
affords such a partition in the case of n = 6, all six nonequivalent proper colorings for
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n = 8, and many nonequivalent proper colorings on 10 vertices. For 6 and 8 vertices
it reduces to the Dynkin diagram associated with the special root systems E6 and
E8; see [10, p. 326]. In general, the spanning tree in question is obtained from the
Dynkin diagram of E6 by appending a path of an appropriate length to exactly one
vertex of degree one that is joined to a vertex of degree two. When m vertices are
involved, we call this type of spanning tree Em. We believe that an edge-partition of
K2n into multicolored spanning trees of type E2n is possible for any proper coloring
of K2n (n > 2). For an odd number of vertices it seems likely that a partition into
multicolored Hamiltonian cycles is possible for any proper coloring of such complete
graphs. Considering the very large number of nonequivalent colorings of Kn for large
n, we prefer to conjecture as follows.

Conjecture. (a) Any proper coloring of the edges of a complete graph on an
odd number of vertices allows a partition of the edges into multicolored isomorphic
unicyclic subgraphs.

(b) Any proper coloring of the edges of a complete graph on an even number of
(more than four) vertices allows a partition of the edges into multicolored isomorphic
spanning trees.
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Abstract. The detachment of vertex is the inverse operation of merging vertices s1, . . . , st
into s. We speak about {d1, . . . , dt}-detachment if, for the detached graph G′, the new degrees are
specified as dG′ (s1) = d1, . . . , dG′ (st) = dt. We call a detachment k-feasible if dG′ (X) ≥ k whenever
X separates two vertices of V (G) − s. In our main theorem, we give a necessary and sufficient
condition for the existence of a k-feasible {d1, . . . , dt}-detachment of vertex s. This theorem also
holds for graphs containing 3-vertex hyperedges disjoint from s. From special cases of the theorem,
we get a characterization of those graphs whose edge-connectivity can be augmented to k by adding
γ edges and p 3-vertex hyperedges. We give a new proof for the theorem of Nash-Williams that
characterizes the existence of a simultaneous detachment of the vertices of a given graph such that
the resulting graph is k-edge-connected.
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1. Introduction. Throughout this paper, by “a graph,” we mean an undirected,
not necessarily simple graph (loops and multiple edges are allowed).

We denote the set of vertices and edges of hypergraph G by V (G) and E(G),
respectively. The notation “⊂” means proper inclusion, and instead of X ∪ {s} or
X \ {s} we simply write X + s or X − s. Γ(s) denotes the set of neighbors of s,
where each neighbor v is represented with multiplicity d(s, v). Thus when we speak
about some neighbors of s we do not necessarily mean that they are different. For
X ⊂ V (G), let G[X] be the graph induced by X, and define G − s := G[V (G) − s]
(s ∈ V ). X ⊆ V (G) covers vertex v if v ∈ X and separates vertices a and b if it covers
exactly one of them. A cut of G is a proper subset X of V , and d : 2V (G) → N is the
degree function, where d(X) is the number of edges whose endvertices are separated
by X:

λ(a, b) := min{d(X) : X separates a and b},

λ(G) := min{d(X) : ∅ �= X ⊂ V (G)}.

A cut X with d(X) = λ(G) is a mincut of G.
Two cuts X and Y on the ground set V are intersecting if none of the sets X−Y ,

Y −X, and X ∩ Y are empty. If, in addition, V − (X ∪ Y ) �= ∅, then they are called
crossing.

Definition 1.1. Suppose that d1, . . . , dt are positive integers, and that there is
no loop incident to s and d(s) =

∑t
i=1 di. A {d1, . . . , dt}-detachment of s ∈ V (G) is
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the following operation: we delete vertex s and the edges incident to s, and connect
new vertices s1, . . . , st to the neighbors of s by new edges such that, for the resulted
graph G′, dG′(si) = di and dG′(z) = dG(z) if z ∈ Γ(s). In other words, a detachment
is the inverse operation of merging vertices si with degree di into vertex s.

Obviously, there is a natural one-to-one correspondence between the edges of G
and of G′. We call {d1, . . . , dt} the degree specification of the detachment. If there is
a k ∈ N such that λG′(x, y) ≥ k for x, y ∈ V (G)−s, then the detachment is k-feasible.
A graph H is the detachment of G if H can be obtained by detaching certain vertices
of G, one after the other. If g : V (G) → N is a function and we detach each vertex v
into g(v) vertices, then we obtain a g-detachment of G.

Lovász’s edge-splitting theorem [3] asserts that a k-feasible {2, d(s) − 2} detach-
ment exists whenever d(s) is even, k ≥ 2, and g is k-edge-connected in V − s. Using
this result, Frank [1] gave a short proof for the theorem of Watanabe and Nakamura
that characterizes those graphs that may become k-edge-connected after adding a
certain number of new edges.

If an arbitrary degree specification is imposed on s, then making a k-feasible
detachment at s is not always possible. In section 3, our main theorem characterizes
the existence of a k-feasible detachment for a given degree specification, generalizing
the above-mentioned theorem of Lovász. It turns out that the general case can be
reduced to the case where {d1, . . . , dt−1, dt} = {3, . . . , 3, d(s) − 3(t− 1)}.

In the proof of our main theorem, we have to introduce hyperedges. That is why
our theorem is about 2-3-graphs, i.e., hypergraphs with edges of size two or three. It
is straightforward to generalize the theoretic definitions of the graph above to 2-3-
graphs. By definition, a 3-edge contributes to the degree of a cut X by 1 if two of its
vertices are separated by X. In the definition of the detachment we demand that no
3-edge is incident to the vertex s.

In section 4, we apply our main theorem to generalize the theorem of Watanabe
and Nakamura. We also give a new proof for the theorem of Nash-Williams [5] that
characterizes those graphs for which the k-edge-connectivity property can be preserved
by a g-detachment for a given g.

Before stating our main theorem, we summarize some properties of the degree
function of 2-3-graphs.

2. The degree function. The degree function of a 2-3-graph is symmetric and
submodular, i.e.,

d(X) = d(V (G) −X) and

d(X) + d(Y ) ≥ d(X ∩ Y ) + d(X ∪ Y ) (for all X,Y ⊂ V (G)).

There is also a useful inequality for three sets for the degree function of a 2-3-graph:

d(X) + d(Y ) + d(Z) ≥ d(X ∩ Y ∩ Z) + d(X − (Y ∪ Z))

+ d(Y − (Z ∪X))(2.1)

+ d(Z − (X ∪ Y ))

+ 2d(X,Y, Z),

where d(X,Y, Z) denotes the number of edges (of size two) between X ∩ Y ∩ Z and
V − (X ∪ Y ∪ Z). The following inequality is for two sets:

d(X) + d(Y ) ≥ d(X − Y ) + d(Y −X) + 2d(X,Y ) (X,Y ⊆ V (G)).(2.2)
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Here, d(X,Y ) stands for the number of 2-edges connecting X ∩ Y to V − (X ∪ Y ).
These well-known inequalities can be checked by enumerating the contribution of the
different types of edges and 3-edges to the left and right sides of the inequality. The
following lemma shows that 3-edges and vertices of degree 3 are interchangeable.

Lemma 2.1. Let s be a vertex of degree 3 of a 2-3-graph G and a, b, and c are
the three neighbors of s. Let G′ be the 2-3-graph obtained from G by deleting vertex s
together with edges as, bs, cs and by adding the 3-edge abc. Then

λG(x, y) = λG′(x, y)

for every x, y ∈ G− s.
Proof. It is enough to prove that for any x − y-cut C in G or in G′, there is an

x− y-cut C ′ such that the degree of C ′ is not more than the degree of C in the other
2-3-graph. By symmetry, we may assume that |C ∩ {a, b, c}| ≤ 1. It is easy to check
that C ′ := C − s suffices.

3. The main theorem. The main result of this paper is the following.
Theorem 3.1. Given a 2-3-graph G = (V,E) with a specified vertex s ∈ V

and a degree specification {d1, . . . , dt}, (di ≥ 2,
∑t

i=1 di = d(s)) for s. Assume
λG(x, y) ≥ k ≥ 2 for every pair of vertices x, y ∈ V − s and that there is no loop
or 3-edge incident to s. Then there exists a k-feasible {d1, . . . , dt}-detachment of s if
and only if

λ(G− s) ≥ k −
t∑

i=1

⌊
di
2

⌋
.(3.1)

Proof. We prove the necessity first. Assume that G′ is obtained by a k-feasible
detachment from G and that the vertex s is split into vertices si (1 ≤ i ≤ t) with
d(si) = di. Take an arbitrary cut X of G − s and define the set S by S := {si :
dG′(X, si) >

di

2 }. Now

k ≤ dG′(X ∪ S) ≤ dG−s(X) +

t∑
i=1

⌊
di
2

⌋
.

Hence λ(G− s) ≥ k −
∑t

i=1

⌊
di

2

⌋
.

We prove the sufficiency in case of certain degree specifications. Then we deduce
the general theorem.

Case 1. d(s) ≥ 4, and the degree specification is {2, d(s) − 2}.
In this case, condition (3.1) is the consequence of the k-edge-connectivity as-

sumption, hence it holds automatically. We apply the following theorem of Mader
from [4].

Theorem 3.2. Given a graph G = (V,E) and a specified vertex s ∈ V with
d(s) �= 3, no cutting edge is incident to s. Then there exists a {2, d(s)−2}-detachment
at s such that for the resulted graph G′

λG(x, y) = λG′(x, y)

for every x, y ∈ V − s.
By Lemma 2.1, we can exchange each 3-edge e = αβγ into new edges seα, seβ,

and seγ, where se is a new vertex. By Lemma 2.1, this does not change λ(a, b)
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(a, b ∈ V (G)). Now take the {2, d(s) − 2}-detachment provided by Theorem 3.2.
Change the 3-stars back into 3-edges and we are done.

Let us point out that Case 1 contains Lovász’s edge-splitting theorem in [3]. In
the appendix, there is a self-contained proof for Case 1.

It is easy to check that we do not change the connectivity between vertices of
V − s if, for vertex s1 of degree 2, we replace edges s1u and s1v by edge uv. Then we
can apply Case 1 again on s2. Iterating this justifies the following.

Case 2. d(s) ≥ 2q + 2, and the degree specification is {2, . . . , 2, d(s)− 2q}, where
s is split into q + 1 new vertices.

Case 3. d(s) ≥ 3p+ 2, and the degree specification is {3, . . . , 3, d(s)− 3p}, where
p + 1 is the number of the new vertices.

We may assume that d(s) ≥ 6 since d(s) = 5 is covered by Case 1. We use
induction on p. If p = 0, then there is nothing to prove. Assume that for (p0 − 1) the

theorem is proved. We verify it for p0. For brevity, let ∆ := �d(s)−p0

2 �.
By the induction hypothesis, λ(G − s) ≥ k − ∆ holds. If there is a k-feasible

{3, . . . , 3, d(s) − 3p0}-detachment, then we can carry out the detachment by making
two successive detachments. The first one is a k-feasible {3, d(s) − 3}-detachment of
s. Next we apply the induction hypothesis for the resulting 2-3-graph and for the new
vertex s2 of degree d(s) − 3.

Let us change the vertex s1 and the three edges incident to it to the 3-edge defined
by Γ(s1). By Lemma 2.1, the k-edge-connectivity between the vertices of G − s is
maintained after this operation.

Now we make a k-feasible {3, . . . , 3, d(s)− 3p0}-detachment of s2 in the resulting
2-3-graph G′ into p0 vertices. Changing back the previously introduced 3-edge, the
obtained detachment is k-feasible by Lemma 2.1.

By the induction hypothesis, the latter k-feasible detachment exists if and only if

λ(G′ − s2) ≥ k −
⌊

(d(s) − 3) − (p0 − 1)

2

⌋
= k − ∆ + 1.(3.2)

Let us suppose that λ(G − s) = k − ∆. Then the first detachment must satisfy two
conditions:

• it is k-feasible and
• the addition of the 3-edge induced by the three neighbors of s1 increases the

edge-connectivity of G− s.
From now on, any three neighbors of s will be referred to as a triad. The vertices

of the triad are the corresponding neighbors of s.
Consider the following family of inclusionwise minimal mincuts of G− s:

B = {B : B ⊂ V − s, dG−s(B) = k − ∆, � ∃A ⊂ B : dG−s(A) = k − ∆} .

Proposition 3.3. The elements of B are disjoint and |B| = 2 or |B| = 3.
Proof. The disjointness of the elements of B and |B| ≥ 2 follows from submodu-

larity. From the disjointness we get d(s) ≥
∑

Bi∈B d(Bi, s) ≥ |B|∆, and by

4∆ ≥ 4

(
d(s) − p0

2

)
− 2 = d(s) + (d(s) − 2p0 − 2) ≥ d(s) + p0 > d(s)

we conclude that |B| ≤ 3.
Obviously, the {3, d(s) − 3}-detachment satisfies (3.2) if and only if the 3-edge

induced by the neighbors of the new vertex s2 contributes to the degree of each mincut
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X of G− s. In other words, this means that both X and X contain some neighbor of
s2. Since both a mincut X and its complement contain an element of B, the important
triads are those that have a vertex in every element of B. We say that such triads are
transversal.

If λ(G − s) > k − ∆, then |B| = 0, and thus there exists no transversal triad.
For the sake of the unified approach, we choose two arbitrary disjoint sets B1 and B2

such that d(Bi, s) ≥ 1 (i = 1, 2) and d(B1 ∪ B2, s) ≥ 2∆, and define B := {B1, B2}.
This can always be done unless |Γ(s)| = 1. But then λ(G− s) ≥ k holds trivially, and
any detachment with the given degree specification is k-feasible.

To finish the proof, we have to find a transversal triad that induces a k-feasible
detachment. First, we study k-feasible {3, d(s) − 3}-detachments.

Lemma 3.4. Suppose that the {3, d(s)− 3}-detachment induced by triad T is not
feasible. Then either

• at least two vertices of T are covered by a set Y ⊂ V − s with dG(Y ) = k or
• all three vertices of T are covered by a set Y ⊂ V − s with k + 1 ≤ dG(Y ) ≤
k + 2.

Proof. By infeasibility, there is a cut X of G′ separating two vertices of V −s with
dG′(X) < k. By taking the complement if necessary, we can assume that s1 ∈ X.
Then s2 �∈ X; otherwise dG(X − s1 − s2 + s) = dG′(X) < k is a contradiction. If no
vertex of T is in X − s1, then it is easy to see that dG′(X) = dG′(X − s1) + 3, so
k > dG′(X) = dG′(X − s1) + 3 = dG(X − s1) + 3 ≥ k + 3, a contradiction. Similarly,
if |(X − s1) ∩ T | = 1, then k > dG′(X) = dG′(X − s1) + 1 = dG(X − s1) + 1 ≥ k + 1.

If X−s1 contains exactly two neighbors of s1 in X−s1, then, from k > dG′(X) =
dG′(X − s1) − 1 = dG(X − s1) − 1 ≥ k − 1, we get k = dG(X − s1).

The remaining case is that all the 3 neighbors are in X − s1. It means that k >
dG′(X) = dG′(X−s1)−3 = dG(X−s1)−3 ≥ k−3, thus k+2 ≥ dG(X−s1) ≥ k.

Define

K = {X : X ⊂ V − s, dG(X) = k} .

We call a triad legal if no pair of its vertices are covered by a member of K. If no
k-feasible detachment exists, then it follows from Lemma 3.4 that each transversal
legal triad is covered by a set L with k + 2 ≥ dG(L) ≥ k + 1.

In what follows, we focus on transversal legal triads. Let L be a family of different
sets on the ground-set V − s such that, for every transversal legal triad T , there is a
set X of L with T ⊆ X and k+ 1 ≤ dG(X) ≤ k+ 2. Choose L so that |L| is minimal.

Remark. At this point it is not obvious that a transversal legal triad exists but
this will follow from the proof.

Lemma 3.5. If L ∈ L and K ∈ K and d(L ∩K, s) ≥ 1, then K ⊂ L.
Proof. Obviously, L �⊆ K from the definition of L. If K �⊂ L, then from inequality

(2.2) we get

(k + 2) + k ≥ dG(L) + dG(K) ≥ dG(L−K) + dG(K − L) + 2d(K ∩ L, s) ≥ k + k + 2.

Thus dG(K) = dG(L − K) = k. This contradicts the legality of the transversal
triad inside L because two of the vertices of this triad must be covered by K or by
L−K.

If |B| = 3, then

d(s) ≥
∑
Bi∈B

d(Bi, s) ≥ 3

⌊
d(s) − p0

2

⌋
≥ 3

(
d(s) − p0

2

)
− 3

2
≥ d(s) − 1

2
,
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and since �d(s)−p0

2 � is integer, we get d(Bi, s) = ∆. Therefore dG(Bi) = dG−s(Bi) +
d(Bi, s) = (k−∆)+∆ = k, and thus Bi ∈ K (∀Bi ∈ B). It follows from submodularity
that the maximal elements of K are disjoint. Each of them contains at most ∆
neighbors of s, therefore the elements of B are contained in different maximal elements
of K. Thus every transversal triad is legal. By Lemma 3.5, there is a set X ∈ L
that contains all the elements of B, i.e., d(X, s) ≥

∑3
i=1 d(Bi, s) = 3∆ > ∆ + 2, a

contradiction.
The remaining case is B = {B1, B2}.
Lemma 3.6. If X,Y ∈ L, then d(X ∩ Y, s) ≤ 2.
Proof. From dG(X) ≤ k + 2 and dG(Y ) ≤ k + 2, inequality (2.2) gives that

2 ≥ d(X,Y ) ≥ d(X ∩ Y, s). (Here we used that X �⊂ Y since |L| is minimal.)
We shall construct legal transversal triads by choosing the corresponding vertices

one by one. Let a ∈ B1 be a neighbor of s. Since the maximal elements of K
are disjoint and each of them contains at most ∆ neighbors of s, there must exist a
neighbor b ∈ B2 of s outside the element of K that might cover vertex a. Two maximal
elements of K can contain at most 2∆ neighbors of s. Hence there is a vertex c such
that {a, b, c} is a legal triad and is also transversal due to a and b.

If we cannot choose c from B1 ∪ B2, then there exist two sets a ∈ K1 ∈ K and
b ∈ K2 ∈ K such that (B1 ∪ B2) ∩ Γ(s) ⊆ K1 ∪ K2. But then, set X of L covering
legal transversal triad {a, b, c} contains the sets K1 and K2 by Lemma 3.5. Thus
there are too many edges from s to X because d(X, s) ≥ d(K1 ∪ K2 ∪ {c}, s) ≥
d(B1 ∪B2 ∪ {c}, s) ≥ 2∆ + 1 > ∆ + 2, a contradiction.

By interchanging the notation, if necessary, we may assume that a ∈ B1 and
b, c ∈ B2. Since d(X, s) ≤ ∆ + 2 and d(s) − (∆ + 2) ≥ 2, there exist d, e ∈ Γ(s) such
that d, e �∈ X.

We claim that d �= e. Otherwise d(d, s) ≥ 2. Moreover, {a, b, d} and {a, c, d} are
legal transversal triads by the usual argument. Consider the sets of L that cover them
and the set X. By Lemma 3.6, {a, b, d} and {a, c, d} have no common covering set.
So we have two sets Y1 and Y2 with d(Y1 ∩ Y2, s) ≥ d(a, s) + d(d, s) ≥ 1 + 2 = 3. This
contradicts Lemma 3.6.

Let us choose the members X, Y , and Z of L that correspond to legal transversal
triads {a, b, c}, {a, b, d}, and {a, b, e}, respectively.

(If these three sets are not different, say, if Y = Z, then instead of X, Y , and Z
we choose members X, U , W of L that correspond to legal transversal triads {a, b, c},
{a, c, d}, and {a, c, e}, respectively. Obviously, X �= U and X �= W . Moreover,
U �= W , since U = W would contradict Lemma 3.6 by d(U∩Y, s) ≥ 3, since {a, d, e} ⊆
U ∩ Y .)

It is clear from Lemma 3.6 that c ∈ X − (Y ∪ Z), d ∈ Y − (Z ∪ X), and e ∈
Z − (X ∪ Y ). dG(X ∩ Y ∩ Z) �= k since {a, b, c} is legal.

From (2.1) we get

(k + 2) + (k + 2) + (k + 2) ≥ dG(X) + dG(Y ) + dG(Z)

≥ dG(

a,b∈︷ ︸︸ ︷
X ∩ Y ∩ Z) + dG(

c∈︷ ︸︸ ︷
X − (Y ∪ Z)) + dG(

d∈︷ ︸︸ ︷
Y − (Z ∪X)) + dG(

e∈︷ ︸︸ ︷
Z − (X ∪ Y ))

+ 2d(X,Y, Z) ≥ (k + 1) + k + k + k + 4

since a, b ∈ X ∩ Y ∩ Z and s ∈ V − (X ∪ Y ∪ Z). From this it follows that k ≤ 1.
The general case. The degree of specification is {d1, . . . , dt}, and di is odd for

1 ≤ i ≤ p and di is even for p + 1 ≤ i ≤ t.



DETACHMENT IN GRAPHS PRESERVING EDGE-CONNECTIVITY 587

The condition is λ(G − s) ≥ k − �d(s)−p
2 �. By Case 3, there exists a k-feasible

{3, . . . , 3, d(s) − 3p}-detachment of s into p + 1 vertices. Change the new vertices
of degree 3 into 3-edges. Perform a {2, . . . , 2}-detachment of the new vertex of de-
gree d(s) − 3p and change the 3-edges back to 3-stars. By this, we get a k-feasible
{2, . . . , 2, 3, . . . , 3}-detachment of the original 2-3-graph, where the number of new
vertices of degree 3 is p. Merge at most one vertex of degree 3 with some others of
degree 2 to get a vertex of degree d1. By repeating this operation, we construct a
k-feasible {d1, . . . , dt}-detachment of the original 2-3-graph.

One may ask for a necessary and sufficient condition for the existence of a de-
tachment which preserves also the local edge-connectivities.

Conjecture 3.7. Given a graph G = (V,E) with a specified vertex s ∈ V and
a degree specification {d1, . . . , dt} (di ≥ 2,

∑t
i=1 di = d(s)) for s. Assume there is no

loop or cut-edge incident to s. Then there exists a {d1, . . . , dt}-detachment of s such
that λG(x, y) = λG′(x, y) (x, y ∈ V − s) if and only if

λG−s(x, y) ≥ λG(x, y) −
∑
i

⌊
di
2

⌋
(x, y ∈ V − s).

Remark. Conjecture 3.7 is true. Motivated by this paper, a generalized form of
this conjecture was proved by Jordán and Szigeti [2].

4. Applications. In this section, we apply Theorem 3.1 to deduce some well-
known theorems whose standard proofs are based on Lovász’s edge-splitting theorem
[3]. The equivalent form of Lovász’s theorem follows.

Theorem 4.1. G = (V,E) is a given multigraph, k ≥ 2, and m : V → N is
a function. There is a graph H = (V, F ) such that dH(v) = m(v)(∀v ∈ V ) and
G + H = (V,E ∪ F ) is k-edge-connected if and only if

(i) m(V ) is even,
(ii) m(X) ≥ k−dG(X) for any proper subset X of V , where m(X) :=

∑
x∈X m(x).

A generalization of Theorem 4.1 is the following.
Theorem 4.2. G = (V,E) is 2-3-graph, k ≥ 2, and m : V → N is a function.

There is a 2-3-graph H = (V, F ) such that dH(v) = m(v)(∀v ∈ V ), F contains exactly
p 3-edges, and G + H = (V,E ∪ F ) is k-edge-connected if and only if

(i) 3p ≤ m(V ),
(ii) m(V ) − 3p is even,
(iii) m(X) ≥ k − dG(X) for any nonempty proper subset of V ,

(iv) λ(G) ≥ k − �m(V )−p
2 �.

Proof. Conditions (i) and (ii) are necessary, because the total degree requirement
of the 3-edges is not more than m(V ) and the requirement of the edges (of size 2) is
even. (iii) is also needed since the edges of H increase the degree of every set to k.
Condition (iv) is equivalent to the inequality |F | ≥ k − λ(G).

To prove the sufficiency we add to the 2-3-graph an extra vertex s (s �∈ V ) and
m(v) new edges between s and v for every vertex v ∈ V . By (iii) and (iv), Theorem
3.1 can be applied; i.e., there is a k-feasible {2, . . . , 2, 3, . . . , 3}-detachment of s such
that the number of new vertices of degree 3 is exactly p. Now the neighbors of each
si are the endvertices of an edge of H.

Watanabe and Nakamura [6] gave a characterization of the graphs that can be
made k-edge-connected by adding γ edges. We prove the extension of this result along
the lines of Frank’s proof in [1].

A family of sets {X1, . . . , Xr} is a subpartition of V if ∅ �= Xi ⊂ V (1 ≤ i ≤ r)
and Xi ∩Xj = ∅ (i �= j).
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Theorem 4.3. The 2-3-graph G = (V,E) can be made k-edge-connected by
adding γ edges and p 3-edges if and only if

(i) λ(G) ≥ k − (γ + p) and
(ii) 2γ + 3p ≥

∑
i(k − d(Xi)) holds for every subpartition {X1, . . . , Xr} of V .

Proof. If the required augmentation exists, then conditions (i) and (ii) follow from
the facts that the addition of an edge can increase the edge-connectivity by at most
one and an edge (of size 2) or a 3-edge can contribute to the degree of at most 2 or 3
disjoint sets having degree less than k.

Let m : V → N be a function such that m(V ) is minimal and k − d(X) ≤ m(X)
for every set ∅ �= X ⊂ V .

Lemma 4.4. m(V ) ≤ 2γ + 3p.
Proof. We call a set ∅ �= X ⊂ V critical if k − d(X) = m(X). If m(v) > 0, then

v is in a critical set. Let Yv be the minimal critical set containing v. We claim that
the maximal elements of {Yv : v ∈ V } are disjoint. Indirectly, let Yv and Yu be two
maximal sets intersecting each other. Then

m(Yu) + m(Yv) = k − d(Yu) + k − d(Yv) ≤ k − d(Yu − Yv) + k − d(Yv − Yu)

≤ m(Yu − Yv) + m(Yv − Yu) = m(Yu) + m(Yv) − 2m(Yu ∩ Yv)

≤ m(Yu) + m(Yv).

The above inequalities are equalities, hence m(Yu ∩ Yv) = 0. Further, the sets
Yu − Yv and Yv − Yu are critical and cannot be minimal covering sets of vertex u and
v, respectively.

Let {Xi} be the subpartition of the maximal members of {Yv : v ∈ V }. From
condition (ii), it follows that

m(V ) =
∑
i

m(Xi) =
∑
i

(k − d(Xi)) ≤ 2γ + 3p.

If m(V ) < 2γ + 3p, then increase m(v) at some vertex v so that m(V ) is equal to

2γ+3p. Now γ+p = �m(V )−p
2 �, thus the conditions of Theorem 4.2 are satisfied.

The next theorem is valid for graphs that may contain loops. If there are loops
at vertex s, then each loop increases the degree of s by 2. We also demand that after
the detachment at s, any edge that comes from a loop must connect two new vertices
or must remain in the loop.

Theorem 4.5 (see Nash-Williams [5]). Let G = (V,E) be a multigraph, |V | ≥ 2,

k ≥ 2, g : V → N be a function, and ζv = {ζ1
v , . . . , ζ

g(v)
v } be a degree specification for

each v ∈ V . Then there is a k-edge-connected g-detachment of G if and only if
(i) G is k-edge-connected,
(ii) d(v) ≥ k · g(v),
(iii) if k is odd, then none of the following conditions are true:

(a) there is a cut-vertex s in G such that d(s) = 2k, g(s) = 2,
(b) |V | = 2, d(v) = 2k, and g(v) = 2 (∀v ∈ V ), and there is no loop in G.

Moreover, there is a k-edge-connected g-detachment of G with degree specification
ζ if, in addition to the previous conditions, (ii)′ is satisfied as follows:

(ii)′ ζiv ≥ k (v ∈ V, 1 ≤ i ≤ g(v)).
Proof. If there is such a detachment, then (i) and (ii)–(ii)′ must hold, since a

detachment does not increase the edge-connectivity and every vertex has degree at
least k in a k-edge-connected graph. By Theorem 3.1, there is no k-edge-connected
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g-detachment if (iii)(a) is true. If (iii)(b) holds, then, by detaching only one vertex,
(iii)(a) holds for the resulting graph. Thus the detachment cannot be completed.

In order to prove the sufficiency, we use induction on the number of vertices v for
which g(v) ≥ 2. We detach the vertices one by one. Our purpose is to detach only
one vertex, maintaining conditions (i)–(iii).

Case 1. k is odd, and there is a vertex s ∈ V such that there is no loop at s and
d(s) = 2k, g(s) = 2.

We show a {k, k}-detachment of s into vertices s1, s2 such that the resulting
graph satisfies conditions (i)–(iii).

Perform a k-feasible {k, k}-detachment of s that exists by Theorem 3.1. This
implies that any cut of the resulting graph G′ has degree at least k if it separates
two vertices of V (G′)− s1 − s2. The other cuts or their complements are the subsets
of {s1, s2}, and since d(s1) = d(s2) = k, they also have degree at least k, and thus
condition (i) is satisfied.

Assume that the detachment of s creates a cut-vertex s∗ for which d(s∗) = 2k
and g(s∗) = 2. Since G′ is k-edge-connected, G′ − s∗ has exactly two components
induced by subsets A and B of V . By (iii), s∗ was not a cut-vertex in G, therefore
s1 and s2 are in different components. We may assume that s1 ∈ A and s2 ∈ B.
The subgraphs G′[A + s∗] and G′[B + s∗] are k-edge-connected because all of their
cuts that do contain s∗ have the same degree as in G′. By (iii)(b), we may assume
that |A| ≥ 2 and s1 has a neighbor a ∈ A. (If both A and B consist of only one
vertex, then, by condition (iii), there must exist a loop, for example, at s1, but this
contradicts the condition of Case 1.) By k-edge-connectivity, there are k edge disjoint
paths in G′[A + s∗] connecting s1 and a. Since a path contains 0 or 2 edges incident
to s∗, and dG′[A+s∗](s

∗) = k and k is odd, there are at least k −
⌊
k
2

⌋
≥ 2 paths that

are disjoint from s∗. We modify the detachment. Delete edge e = s1a and another
one, f = s2b, and add new edges e∗ = s2a and f∗ = s1b (see Figure 4.1). We claim
that the constructed graph G∗

(a) satisfies the degree specification at s1 and s2,
(b) is k-edge-connected, and
(c) does not contain a cut-vertex z such that d(z) = 2k and g(z) = 2.

e

A

s

B

s1 s2

A

s

e   f

B

s1 s2

G’

f

a ab b

P Q

G

*

**

*

*

Fig. 4.1. The graphs G′ and G∗.

Claim (a) follows directly from the construction.
We verify (b). By the above argument, there is a path P in G∗[A] connecting

s1 and a. By the k-edge-connectivity of G′[B + s∗], the subgraph G′[B + s∗] − f =
G∗[B + s∗] contains a path Q connecting s2 and b that may contain vertex s∗.
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Let X be an arbitrary cut of G∗. A ∪B + s∗ = V (G∗), thus X separates A + s∗

or B + s∗. Accordingly

dG∗(X) ≥ dG∗[A+s∗]∪(e∗+Q+f∗)(X ∩ V (G∗[A + s∗] ∪ (e∗ + Q + f∗)))

≥ dG′[A+s∗](X ∩ (A + s∗)) ≥ k

or the analogous inequality with B and P instead of A and Q holds, since G′[A+ s∗]
and G′[B + s∗] are k-edge-connected.

Suppose that there is a cut-vertex z ∈ G∗ such that dG∗(z) = 2k and g(z) = 2.
The circle defined by the edges e∗, f∗ and by the paths P and Q shows that s1 and
s2 are in the same component of G∗ − z. (Here we used the fact that s∗ �∈ P .) By
merging s1 and s2 into one vertex, it turns out that z is a cut-vertex of G, and this
is forbidden by (iii)(a).

Case 2. k is even, or no loopless vertex s exists with d(s) = 2k and g(s) = 2.
Let z be a vertex with g(z) ≥ 2. If no degree specification is imposed on z, then

choose one that satisfies (ii)′.
Suppose that z has no loops. Since we are not discussing Case 1, k −

∑g(z)
i=1 �

ζi
z

2 �≤0,

and therefore there is a k-feasible {ζ1
z , . . . , ζ

g(z)
z }-detachment of z resulting in graph

G′ by Theorem 3.1. Then, for every cut X separating two vertices of V (G′) − z1 −
· · ·− zg(z), inequality dG′(X) ≥ k holds. The other cuts or their complements are the
subsets of {z1, . . . , zg(z)}, and thus, by (ii)′ and by the absence of loops, these cuts
have degree at least k as well. Consequently G′ satisfies condition (i). Conditions (ii)
and (ii)′ hold trivially for the induced degree specification. Property (iii) is also valid
since there is no vertex s ∈ V (G) with d(s) = 2k and g(s) = 2.

In the remaining cases we suppose that z has h loops.
If 2h ≥ k, then we subdivide each loop with a vertex and merge these vertices

into new vertex q. The resulting graph Gq is k-edge-connected. (i) implies that
d(V − z, z) ≥ k. From this and from (ii)–(ii)′ and by a parity argument, we get that

k −
∑g(z)

i=1 �
ζi
z

2 � ≤ 0. We make a k-feasible {ζ1
z , . . . , ζ

g(z)
z }-detachment of Gq at z, and

after this, we perform a {2, . . . , 2}-detachment at vertex q. This can be done because
the original and the resulting graphs are clearly k-edge-connected, and we can apply
Theorem 3.1 for them. Obviously, the final graph satisfies conditions (i)–(iii).

If 2h < k, then delete the loops incident to z, and define new degree specification

{ζ∗1z , . . . , ζ
∗g(z)
z } for the resulting graph G∗, with ζ∗iz := ζiz−h for i = 1, 2 and ζ∗iz := ζiz

for i > 2. It is enough to construct a k-feasible detachment with respect to the new
specification because connecting vertices z1 and z2 with h edges yields a k-feasible

{ζ1
z , . . . , ζ

g(z)
z }-detachment at z.

If g(z) ≥ 4, then k−
∑g(z)

i=1 �
ζ∗i
z

2 � ≤ 0 holds, and there is a k-feasible {ζ∗1z , . . . , ζ
∗g(z)
z }-

detachment of z in G∗ by Theorem 3.1.

If g(z) = 3 and k −
∑3

i=1�
ζ∗i
z

2 � ≤ 0, then we have a k-feasible {ζ∗1z , ζ∗2z , ζ∗3z }-
detachment of G∗ by Theorem 3.1. If k−

∑3
i=1�

ζ∗i
z

2 � > 0, then, from dG∗(V −z, z) ≥ k
and from (ii)–(ii)′, k is odd, ζ∗1z + ζ∗2z = k + 1, ζ∗3z = k, and 2h = k − 1. Since ζ∗3z
is even, we can make a k-feasible {ζ∗1z + ζ∗2z , ζ∗3z }-detachment of G∗ that reduces this
case to g(z) = 2. If ζ∗1z or ζ∗2z is even, then Theorem 3.1 gives us the corresponding
detachment. If both ζ∗1z and ζ∗2z are odd, then we add a loop to vertex z and divide the
loop with vertex q. In the resulting graph, there is a k-feasible {2, . . . , 2}-detachment
of z by the successive use of Theorem 3.2. Merging some new vertices, we get a k-
feasible {ζ∗1z + 1, ζ∗2z + 1}-detachment of z. Connecting z1 and z2 with the missing
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h − 1 edges, we obtain a k-feasible {ζ1
z , ζ

2
z}-detachment of z. It follows from the

constructions that the graphs obtained above satisfy conditions (i)–(iii).

5. Appendix. We present a self-contained proof for Case 1 of Theorem 3.1.
Assume that every {2, d(s)− 2}-detachment is infeasible. Hence, for every x, y ∈

Γ(s), there is a set x, y ∈ U ⊂ V − s with dG(U) ≤ k + 1. For x ∈ Γ(s), let
Hx = {Ux

1 , . . . , U
x
lx
} be a family of sets with a minimum number of elements such

that Γ(s) ⊆ Ux
1 ∪ · · · ∪ Ux

lx
, x ∈ Ux

i , and dG(Ux
i ) ≤ k + 1 (1 ≤ i ≤ lx).

Suppose that a is a neighbor of s with la ≥ 3. Fix different sets X,Y, Z of Ha. X
cannot be omitted from Ha, so there is a neighbor of s that is covered by X but not
by Y or Z. Similarly we find that Y − (Z ∪X) �= ∅ and Z − (X ∪ Y ) �= ∅. We apply
inequality (2.1) for 2-3-graph G:

dG(X) + dG(Y ) + dG(Z) ≥ dG(X ∩ Y ∩ Z) + dG(X − (Y ∪ Z))

+ dG(Y − (Z ∪X)) + dG(Z − (X ∪ Y ))

+ 2d(X,Y, Z).

Each term on the left is at most k+1 and the first four terms on the right are at least
k, and the last is at least 2 due to the edge sa. Hence, k ≤ 1, a contradiction.

Hence, lx ≤ 2 for every x ∈ Γ(s). Inequality

dG(Ux
i ) − 1 ≤ k ≤ dG(Ux

i + s) = dG(Ux
i ) − 2d(Ux

i , s) + d(s)

implies that d(Ux
i , s) ≤ �d(s)

2 �. Thus, one Ux
i cannot contain all neighbors of s,

that is, lx = 2 for every x ∈ Γ(s). Since x ∈ Ux
1 ∩ Ux

2 , it follows that d(s) is odd,

d(Ux
i , s) = �d(s)

2 �, dG−s(U
x
i ) = k − �d(s)

2 �, dG(Ux
i ) = k + 1, and d(Ux

1 ∩ Ux
2 , s) = 1

(∀x ∈ Γ(s)).
From these equalities and from inequality (2.2), we get that dG(Ux

1 − Ux
2 ) =

dG(Ux
2 −Ux

1 ) = k. Consider an element X of H that covers a vertex y ∈ Γ(s)∪ (Ux
1 −

Ux
2 ) and a vertex z ∈ Γ(s) ∪ (Ux

2 − Ux
1 ). Since d(X, s) = �d(s)

2 �, there exists a vertex
w ∈ Γ(s) ∩ ((Ux

1 − Ux
2 ) ∪ (Ux

2 − Ux
1 ) −X). We may assume that w ∈ Ux

1 − Ux
2 .

Apply inequality (2.2) to X (that has degree k + 1) and to Ux
1 − Ux

2 (that has
degree k). Since edge sy connects V − (X ∪ (Ux

1 − Ux
2 )) and X ∩ (Ux

1 − Ux
2 ), we gain

the contradiction (k + 1) + k ≥ k + k + 2.
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Abstract. We study 4-restricted min-wise independent sets of permutations. In particular, we
prove that the groups PGL(2, q) (for any prime power q) and PGL(3, q) (for any odd prime power
q), permuting points of the projective line and the projective plane over the field Fq , respectively,
satisfy this property. We also show that (1) for any 4-restricted min-wise independent set G ⊆ Sn, its
cardinality is at least 2n− 2, and (2) for any sufficiently large n, there exists a 4-restricted min-wise
independent set G ⊆ Sn of size n3 + o(n3). The last two results improve previous bounds found by
Itoh, Takei, and Tarui.
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1. Introduction. Motivated by the problem of indexing Web documents, Broder
et al. [3] introduced the notion of min-wise independent permutations. They served
as a useful tool in detecting identical or almost identical documents. This notion also
has some important theoretical applications, e.g., to derandomization [4, 16].

Let us recall the main definitions from [3]. Throughout this paper Ω denotes a
finite set with some linear order < on it and SΩ denotes the symmetric group, i.e.,
the group of all permutations on Ω. For any finite set X, we denote its cardinality by
|X|. If |Ω| = n, then there is the natural isomorphism of ordered sets between Ω and
{1, 2, . . . , n} with the usual order on it. Sometimes we shall identify these sets and
SΩ will be identified with the group Sn of all permutations on {1, 2, . . . , n}.

Definition 1.1. A (multi)set G contained in SΩ is called k-restricted min-
wise independent if, for all X ⊆ Ω with 1 ≤ |X| ≤ k and for any x ∈ X, when a
permutation π is chosen uniformly at random from G, we have

PrG(min{π(X)} = π(x)) =
1

|X| .(1.1)

Here π(X) denotes the set {π(y) : y ∈ X}.
As usual, the uniform distribution on a multiset means that the probability of

choosing any element is proportional to its multiplicity. One may regard this as a
very special case of nonuniform distributions. Sometimes it is useful to consider an
arbitrary distribution on G.

Definition 1.2. We say that G ⊆ SΩ is biased k-restricted min-wise independent
if, for all X ⊆ Ω with 1 ≤ |X| ≤ k and for any x ∈ X, relation (1.1) holds when a
permutation π is chosen from G at random with some biased distribution µ.

Other variations of these notions, including approximate min-wise independence,
are also possible. For details, see [3]. We just mention that approximate families are
very useful in practical applications.
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One may regard min-wise independence as a weak analogue of k-wise indepen-
dence. The latter notion has a lot of applications, e.g., in derandomization [13]. It
turns out that in some cases min-wise independence may suffice [4, 16].

One of the main problems is to find exact and efficient constructions of min-
wise independent sets of reasonable size, say, polynomial with respect to n. Broder
et al. [3] proved (nonconstructively) the existence of only biased k-restricted min-wise
independent sets of size O(nk). Later, in the case of the uniform distribution, an
explicit construction of such sets of size O(nke2k) was suggested by Itoh, Takei, and
Tarui [10].

It is easy to show that SΩ is |Ω|-restricted min-wise independent and that the
alternating group AΩ is at least (|Ω| − 2)-restricted min-wise independent. Naturally,
we can ask whether not only a subset but also a subgroup of SΩ different from the
whole symmetric group and its alternating subgroup can be k-restricted min-wise
independent. Note that a similar question about nontrivial k-wise independent groups
has, in general, a negative answer. More precisely, the property of k-wise independence
is even stronger than k-transitivity. Recall that a group G acting on Ω is called k-
transitive if, for any two k-tuples x1, . . . , xk and y1, . . . , yk such that xi �= xj and
yi �= yj for i �= j, there is some element g ∈ G satisfying the condition g(xi) = yi,
i = 1, . . . , k. Using the classification of finite simple groups, it is possible to show
that, for k ≥ 6, any finite k-transitive group must coincide either with a symmetric
group or with an alternating group. Moreover, with the exception of the symmetric
and alternating groups, the only finite 4- and 5-transitive groups are the Mathieu
groups M11, M12, M23, and M24; see [5, Thm. 4.4] or [6, Chap. 7, sect. 3] and the
references therein.

The problem of finding 2-restricted min-wise independent sets or groups of the
smallest size is trivial. For instance, one can take only two permutations: the identical
one and the permutation (1, n)(2, n − 1) . . . , which reverses the order. An explicit
example of 3-restricted min-wise independent groups appeared, e.g., in [16]. In this
paper we present the first construction of “small” subgroups of SΩ that are 4-restricted
min-wise independent. However, even in the first nontrivial cases with k = 3, 4, the
question whether these examples are optimal remains open.

For any prime power q, let Fq be the finite field with q elements and let P
d(Fq)

be the projective space of dimension d over Fq. In our examples the set Ω will be
the projective line P

1(Fq) or the projective plane P
2(Fq), and the groups will be the

projective linear groups PGL(2, q) and PGL(3, q), respectively. Note that the natural
action of PGL(2, q) on the projective line is 3-transitive and the action of PGL(3, q) on
the projective plane is only 2-transitive. In section 4 we prove the following theorems.

Theorem 1.3. Let Ω = P
1(Fq) and G = PGL(2, q). Then G is 4-restricted

min-wise independent with respect to any linear order on Ω.

Theorem 1.4. Let Ω = P
2(Fq) and G = PGL(3, q), where q is odd. Then there

exists a linear order on Ω such that G is 4-restricted min-wise independent with respect
to this order.

Remark 1. The required order will be described explicitly. Moreover, it can be
effectively computed in time polynomial in n. This is important from the practical
point of view, e.g., in applications to derandomization; see [16].

Several related open questions are stated at the end of section 4.

The action of PGL(2, q) on the projective line can be described by the trans-
formations z �→ (az + b)/(cz + d). Let us mention that the linear transformations
z �→ az + b (mod p) and their connections with min-wise independence were stud-
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ied in [2]. Although, in general, the linear transformations are not exactly min-wise
independent, they still can be used in practice; see [2, 3].

Note that |PGL(2, q)| = q(q2 − 1) and |P1(Fq)| = q + 1. Thus, Theorem 1.3 pro-
vides examples of 4-restricted min-wise independent sets of the smallest size known
today; compare with the result of Itoh, Takei, and Tarui [10] cited above. In Theo-
rem 1.3 the size of the set Ω is q + 1 for a prime power q. In section 5 we provide an
explicit way of constructing “small” 4-restricted min-wise independent sets for almost
all n.

Theorem 1.5. For any sufficiently large n, there exists a 4-restricted min-wise
independent subset of Sn of cardinality n3 + o(n3).

Itoh, Takei, and Tarui [10] gave the first nontrivial lower bound for the size of a
k-restricted min-wise independent set for k ≥ 3. Namely, they proved that for such
a set G of permutations on n symbols, |G| ≥ n− 1. In section 6 we slightly improve
their result.

Theorem 1.6. Let n ≥ 4 and G ⊆ Sn be a biased 4-restricted min-wise indepen-
dent set of permutations on {1, . . . , n}. Then |G| ≥ 2n− 2.

Remark 2. One may expect better estimates for larger values of k. Exploring
similar ideas, Norin [14] proved that the cardinality of any biased k-restricted min-
wise independent set is at least

(
n−1

�(k−1)/2�
)
. However, for k = 4, Theorem 1.6 provides

a better bound.1

2. Some auxiliary results. Here we present some results that are very useful in
checking whether a given group of permutations is k-restricted min-wise independent.
It should be noted that Lemma 2.2 also appeared in [7].

Lemma 2.1. Let Ω be a finite linearly ordered set. Given a subgroup G of SΩ and
a set X ⊆ Ω, consider the set stabilizer

G{X} = {σ ∈ G : σ(X) = X}.

Let Γ ⊆ X be an orbit of G{X}. Then, with respect to the uniform distribution on G
and the above order, the probabilities

PrG(min{π(X)} = π(x))

are one and the same for any x ∈ Γ.

Proof. Let us fix some linear order on Ω. Write X = {x1, . . . , xk} for some k and
fix x ∈ Γ. Let T be a left transversal for G{X} in G and

T (Γ) = {τ ∈ T : min τ(X) ∈ τ(Γ)}.

Take τ ∈ T and put yi = τ(xi), i = 1, . . . , k. Choose j such that yj is the smallest
among all yi’s with respect to the given order. Clearly, for σ ∈ G{X}, we have that
τσ(x) = min τσ(X) if and only if σ(x) = xj . If τ /∈ T (Γ), then xj /∈ Γ, and no
such σ exists. For τ ∈ T (Γ), the number of required σ’s is |G{X}|/|Γ| since by our

1During a revision of this paper, the author found that Itoh, Takei, and Tarui announced (Pro-
ceedings of the 35th ACM Symposium on Theory of Computing, 2003) further improvements of
Norin’s result for even values of k. For example, for k = 4, the announced bound coincides with that
given in Theorem 1.6.
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assumptions G{X} is transitive on Γ. Therefore,

|{π ∈ G : minπ(X) = π(x)}| =
∑
τ∈T

|{σ ∈ G{X} : min τσ(X) = τσ(x)}|

=
∑

τ∈T (Γ)

|{σ ∈ G{X} : min τσ(X) = τσ(x)}|

=
∑

τ∈T (Γ)

|G{X}|
|Γ| =

|T (Γ)| · |G{X}|
|Γ| .(2.1)

Clearly, the right-hand fraction does not depend on a particular choice of x ∈ Γ.
Lemma 2.2. Under the hypothesis of Lemma 2.1 assume also that G{X} acts

transitively on X. Then (1.1) holds for any x ∈ X.
Proof. In this case, Γ coincides with X and T (Γ) with T . Since |T | = |G|/|G{X}|,

the right-hand side of (2.1) becomes |G|/|X|.
Lemma 2.3. Under the hypothesis of Lemma 2.1 assume that the set X splits into

several G{X}-orbits, say, Γ1, . . . ,Γs, where s > 1. If (1.1) holds for all x ∈ X \ Γ1,
then it also holds for any x ∈ Γ1.

Proof. Our assumption, together with (2.1), implies that

|T (Γi)| · |G{X}|
|Γi|

=
|G|
|X| for i = 2, . . . , s.(2.2)

On the other hand

|Γ1| + |Γ2| + · · · + |Γs| = |X|

and

|T (Γ1)| + |T (Γ2)| + · · · + |T (Γs)| = |T | =
|G|

|G{X}|
.

It is easy to show that (2.2) is also true for i = 1. Together with (2.1), this proves
the claim.

3. The action of PGL(d + 1, q) on the points of P
d(Fq). We start this

section by recalling some facts about the group G = PGL(d + 1, q) and its action
on the points of P

d(Fq). These facts can also be found in many standard textbooks,
like [1, Chap. 3] and [11, Chap. 3]. Note that most of the statements below remain
true for an arbitrary field instead of Fq. In what follows we consider only configu-
rations of pairwise distinct points. However, two different configurations considered
simultaneously may have a nonempty intersection.

Definition 3.1. We say that N points A1, . . . , AN ∈ P
d(Fq) are collinear if their

projective hull 〈Ai : 1 ≤ i ≤ N〉 is a projective line.
Definition 3.2. A set of points A1, . . . , AN ∈ P

d(Fq) is called generic if, for any
m ≤ min{N, d + 1} and for all subsets S ⊆ {1, . . . , N} with |S| = m, the (projective)
dimension of the projective hull 〈Ai : i ∈ S〉 equals m− 1.

In particular, any two distinct points in P
d(Fq), as well as any three distinct points

on the projective line, form a generic set. A triple on the projective plane is generic if
and only if these points are not collinear. Four distinct points on the projective plane
are generic if and only if any three of them are not collinear. There are two types of
nongeneric quadruples on the projective plane:
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• four collinear points;
• three points on one line with the fourth point not on this line.

Let us consider some (ordered) configuration of points in the projective space
P
d(Fq). To apply Lemma 2.2 we need a description of the orbit of this configuration

under the action of PGL(d + 1, q).
The following lemma gives the answer for all generic sets of cardinality d + 2,

where d is the dimension of the projective space. For the proof, see, e.g., [11, Chap. 3,
sect. 8, Thm. 8].

Lemma 3.3. Let A1, . . . , Ad+2 and A′
1, . . . , A

′
d+2 be two generic sets of points

in P
d(F). There exists a unique σ ∈ PGL(d + 1, q) such that σ(Ai) = A′

i for all
i = 1, . . . , d + 2.

Let X be a generic set of cardinality d + 2. Since any permutation of X is again
a generic set, it follows from Lemma 3.3 that the set stabilizer PGL(d+ 1, q){X} acts
on X transitively. Together with Lemma 2.2 this implies the following corollary.

Corollary 3.4. Let G = PGL(d + 1, q) and Ω = P
d(Fq). If X is a generic set

of cardinality d + 2 and x ∈ X, then, for any linear order on Ω, relation (1.1) holds
with respect to the uniform distribution on G.

Now we describe the orbits of quadruples of collinear points. Let A, B, C, D be
four distinct collinear points in P

d(Fq). There are vectors a,b ∈ F
d+1
q such that

a ∈ A, b ∈ B, a + b ∈ C.

Moreover, a and b are determined up to a common scalar multiple. In addition, there
is a unique s ∈ Fq \ {0, 1} such that

a + sb ∈ D.

It depends only on the quadruple, but not on the choice of a and b above. This s
is called the cross ratio of the ordered quadruple A, B, C, D (e.g., see [1, Chap. 3,
sect. 4] or [11, Chap. 3]). We denote it by [A,B,C,D]. The cross ratio remains
invariant under the action of PGL(d + 1, q).

Lemma 3.5. Let (A,B,C,D) and (A′, B′, C ′, D′) be two quadruples of distinct
collinear points on P

d(Fq). Then [A,B,C,D] = [A′, B′, C ′, D′] if and only if there
exists σ ∈ PGL(d + 1, q) such that

σ(A) = A′, σ(B) = B′, σ(C) = C ′, σ(D) = D′.

For the proof see, e.g., [1, sect. III.4, Thm. 1b].
The cross ratio satisfies the following partial symmetry relations.
Lemma 3.6. If A, B, C, D are four distinct collinear points in P

d(Fq), then

[A,B,C,D] = [B,A,D,C] = [C,D,A,B] = [D,C,B,A] .

The reader can find the proof for this lemma in [1, Chap. 3, sect. 4] or in [11,
Chap. 3].

Using Lemmas 3.5 and 3.6, we conclude that for any four distinct collinear points
A, B, C, D, the ordered quadruples

(A,B,C,D) , (B,A,D,C) , (C,D,A,B) , (D,C,B,A)

lie in one and the same orbit under the action of G = PGL(d + 1, q). In particular,
for X = {A,B,C,D}, the set stabilizer G{X} acts on X transitively. Combining with
Lemma 2.2 we get the following corollary.
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Corollary 3.7. Let G = PGL(d + 1, q) and Ω = P
d(Fq). If X is a set of four

collinear points in Ω, then, with respect to the uniform distribution on G and any
linear order on Ω, relation (1.1) holds for any x ∈ X.

To complete this section, we describe the orbits of nongeneric noncollinear quadru-
ples on the projective plane. This description is also known. However, it is rather
difficult to find its proof in the literature. Thus, for the sake of completeness, we give
a proof of the following lemma.

Lemma 3.8. Let (A,B,C,D) and (A′, B′, C ′, D′) be two quadruples of distinct
points on P

2(Fq) such that
• A, B, C are collinear and D does not belong to their projective hull;
• A′, B′, C ′ are collinear and D′ does not belong to their projective hull.

Then there are exactly q − 1 automorphisms σ ∈ PGL(3, q) such that

σ(A) = A′, σ(B) = B′, σ(C) = C ′, σ(D) = D′.

Proof. Let us fix a, b, d and a′, b′, d′ in F
3
q such that

a ∈ A, b ∈ B, a + b ∈ C, d ∈ D,
a′ ∈ A′, b′ ∈ B′, a′ + b′ ∈ C ′, d′ ∈ D′.

Note that a, b, d and a′, b′, d′ are the bases of F
3
q. Any required σ is induced by

some linear automorphism g ∈ GL(3, q) such that

g(a) = ua′, g(b) = vb′, g(d) = wd′, g(a + b) = y(a′ + b′)

for some u, v, w, y ∈ Fq\{0}. In particular, these relations imply that u = v = y. Each
choice of u and w uniquely determines g. Hence there are (q−1)2 such g’s. Since any
projectivity σ ∈ PGL(3, q) is induced exactly by q−1 different linear automorphisms,
there are q − 1 required σ’s.

4. Proofs of Theorems 1.3 and 1.4. Now we are able to prove two main
theorems of this paper.

Proof of Theorem 1.3. If |X| = 4, then (1.1) follows from Corollary 3.7. If |X| = 3,
then (1.1) follows from Corollary 3.4. Since any two points A, B can be extended to
a generic triple, Lemma 3.3 implies the existence of some σ ∈ PGL(2, q) that maps
A to B and B to A. Therefore, by Lemma 2.2 we have (1.1) in the case |X| = 2.
Finally, if |X| = 1, then (1.1) holds trivially.

As we saw in Theorem 1.3, the group PGL(2, q) is 4-restricted min-wise indepen-
dent for any order on the projective line. In general let the group G = PGL(d+ 1, q)
act on the points of the space Ω = P

d(Fq) and let n = |Pd(Fq)|. Different linear
orders on Ω give rise to different embeddings of PGL(d + 1, q) into Sn. But from the
algebraic point of view, these subgroups are similar since they are conjugate in Sn.
However, as the following examples show, PGL(d+ 1, q) with d > 1 may be min-wise
independent for one order and may not be for another.

Condition (1.1) can be restated in a purely combinatorial way. For instance, if
X = {A,B,C,D}, where A, B, C are collinear, and D /∈ 〈A,B,C〉 and x = D,
then (1.1) becomes the following: exactly one-fourth of all configurations (A,B,C,D)
described in Lemma 3.8 satisfies the additional property D = min{A,B,C,D}.

Example 1. Let q = 2. Consider the following order on P
2(F2): (1 : 0 : 0) <

(1 : 1 : 0) < (1 : 0 : 1) < (1 : 1 : 1) < (0 : 1 : 0) < (0 : 1 : 1) < (0 : 0 : 1). There
are 168 = 4 · 42 ways to choose an ordered quadruple (A,B,C,D) such that A, B,
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C lie on one projective line and D does not belong to this line. By Lemma 3.8, any
such configuration can be mapped (with one and the same probability) onto another.
However, there are 48 configurations of the above type such that, with respect to this
order, D is less than A, B, and C. Namely, they are

((0 : 0 : 1), (0 : 1 : 1), (0 : 1 : 0), (1 : 0 : 0)),

((0 : 0 : 1), (0 : 1 : 1), (0 : 1 : 0), (1 : 1 : 0)),

((0 : 0 : 1), (0 : 1 : 1), (0 : 1 : 0), (1 : 0 : 1)),

((0 : 0 : 1), (0 : 1 : 1), (0 : 1 : 0), (1 : 1 : 1)),

((0 : 0 : 1), (1 : 1 : 1), (1 : 1 : 0), (1 : 0 : 0)),

((0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 0), (1 : 0 : 0)),

((0 : 1 : 0), (1 : 1 : 1), (1 : 0 : 1), (1 : 0 : 0)),

((0 : 1 : 0), (1 : 1 : 1), (1 : 0 : 1), (1 : 1 : 0)),

and all obtained from them by permuting A, B, C.
Similarly, if we revert the order, there are only 36 such configurations with D =

min{A,B,C,D}. Hence, for both these orders, PGL(3, 2) is not 4-restricted min-wise
independent.

Example 2. Again take q = 2 and arrange the points of the projective plane as
follows: (1 : 0 : 0) < (1 : 1 : 0) < (1 : 0 : 1) < (0 : 0 : 1) < (0 : 1 : 0) < (0 : 1 : 1) < (1 :
1 : 1). A direct computation based on Lemmas 3.8 and 3.3 shows that, with respect
to this order, the group PGL(3, 2) is 4-restricted min-wise independent.

Example 3. Let q = 3. Consider the following order on P
2(F3): (1 : 0 : 0) < (1 :

0 : 1) < (1 : 0 : 2) < (1 : 1 : 0) < (1 : 1 : 1) < (1 : 1 : 2) < (1 : 2 : 0) < (1 : 2 : 1) <
(1 : 2 : 2) < (0 : 1 : 0) < (0 : 1 : 1) < (0 : 1 : 2) < (0 : 0 : 1). There are 2808 = 4 · 702
ordered quadruples (A,B,C,D) such that A,B,C lie on one projective line while D
does not belong to this line. However, for the given order, D is the smallest among
A, B, C, D only in 648 cases. Similarly, for the reverse order, there are 756 such
configurations with D = min{A,B,C,D}. Hence, for both these orders, PGL(3, 3) is
not 4-restricted min-wise independent.

Proof of Theorem 1.4. The case |X| = 1 is again trivial. If either |X| = 2 or
|X| = 3 and the three points of X are not collinear, then X can be extended to a
generic quadruple. It follows from Lemma 3.3 that any permutation of X is induced
by some σ ∈ PGL(3, q){X}. Hence PGL(3, q){X} acts transitively on X and (1.1)
follows from Lemma 2.2. If |X| = 3 and the points of X are collinear, then we take a
point D which does not belong to their projective hull. By Lemma 3.8 there is some
σ ∈ PGL(3, q) that fixes D and acts on X as a given permutation. Thus, PGL(3, q){X}
is again transitive on X and we can apply Lemma 2.2. If |X| = 4 and X is generic,
then (1.1) follows from Corollary 3.4. If |X| = 4 and the four points are collinear,
then we deduce (1.1) from Corollary 3.7. Moreover, in all the cases above, (1.1) holds
for any order on Ω.

The only remaining case is when X consists of four noncollinear points, say, x1,
x2, x3, and x4, such that the first three are collinear. It is the most difficult case, and
the above examples show that not every order on Ω will suit us.

First, we define an order. There is a natural correspondence between linear orders
on P

2(Fq) and bijective maps from P
2(Fq) onto {1, 2, . . . , 1 + q + q2}. It will be

convenient to identify such an order and the corresponding map.
Let ω be any bijection from Fq onto {1, 2, . . . , q}. Consider the following ordering
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ψ of P
2(Fq):

ψ(1, a1, a2) = ω(a2) + q(ω(a1) − 1) if ω(a1) ≤
q + 1

2
,

ψ(0, 0, 1) =
q2 + q

2
+ 1,

ψ(1, a1, a2) = ω(a2) + q(ω(a1) − 1) + 1 if ω(a1) ≥
q + 3

2
,

ψ(0, 1, a) = ω(a) + q2 + 1.

Now we prove that this order is suitable. There are two G{X}-orbits in X, namely,
{x1, x2, x3} and {x4}. By Lemma 2.3 it is sufficient to check that (1.1) is true for
x = x4. Then it will be satisfied for x = x1, x2, or x3 automatically. By Lemma 3.8
it is sufficient to count the number of ordered quadruples (A,B,C,D) such that A,
B, C are collinear, but four points in common are not collinear, and D is less than
A, B, and C with respect to the order defined above.

The projective plane P
2(Fq) contains q2 + q + 1 lines. We split them into three

disjoint families as follows. For u, v ∈ Fq, we define the lines

L1 = 〈(0 : 1 : 0), (0 : 0 : 1)〉 = {(0 : 1 : a) : a ∈ Fq} ∪ {(0 : 0 : 1)},
L2(u) = 〈(1 : u : 0), (0 : 0 : 1)〉 = {(1 : u : a) : a ∈ Fq} ∪ {(0 : 0 : 1)},

L3(u, v) = 〈(1 : 0 : u), (0 : 1 : v)〉 = {(1 : a : u + va) : a ∈ Fq} ∪ {(0 : 1 : v)}.

Each family will be considered separately. For any line L in P
2(Fq), we define

N(L) as the number of ordered quadruples (A,B,C,D) such that L = 〈A,B,C〉, D ∈
P

2(Fq) \ L, and ψ(D) = min{ψ(A), ψ(B), ψ(C), ψ(D)}. In addition, let N1 = N(L1),
N2 =

∑
u N(L2(u)), and N3 =

∑
u,v N(L3(u, v)).

Case 1. 〈A,B,C〉 = L1. There are q(q − 1)(q − 2) ordered triples (A,B,C)
with (0, 0, 1) /∈ {A,B,C}. In this case one can choose D from q2 points, namely,
D = (1 : s : t), where s, t ∈ Fq. On the other hand, there are 3q(q−1) triples (A,B,C)

such that (0 : 0 : 1) ∈ {A,B,C}. In this case there are only q(q+1)
2 possibilities for D:

D = (1 : s : t), where ω(s) ≤ q+1
2 and t ∈ Fq. Thus,

N1 =
q2(q − 1)(2q2 − q + 3)

2
.(4.1)

Case 2. 〈A,B,C〉 = L2(u). As above, there are q(q − 1)(q − 2) triples (A,B,C)
with (0 : 0 : 1) /∈ {A,B,C}. In each case D can be chosen from q · (ω(u) − 1) points,
namely, D = (1 : s : t), where ω(s) < ω(u) and t ∈ Fq. In addition, there are 3q(q−1)
triples (A,B,C) such that (0 : 0 : 1) ∈ {A,B,C}. For these triples, D is one of
q · min(ω(u) − 1, q+1

2 ) points (1 : s : t), where ω(s) ≤ min(ω(s) − 1, q+1
2 ) and t ∈ Fq.

Thus, N(L2(u)) = q2(q− 1)(q− 2)(ω(u)− 1)+3q2(q− 1) ·min(ω(u)− 1, q+1
2 ). Taking

into account that ω(u) ranges over 1, . . . , q when u ranges over Fq, we have

N2 =
q2(q − 1)2(4q2 + q + 9)

8
.(4.2)

Case 3. 〈A,B,C〉 = L3(u, v). There are two kinds of triples {A,B,C} here. The
first type is

{A,B,C} = {(1 : a : u + va), (1 : b : u + vb), (1 : c : u + vc)}
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for some a, b, and c ∈ Fq. Without loss of generality, we may assume that ω(a) <
ω(b) < ω(c), so that for each set {a, b, c} there are six different ordered triples
(A,B,C). The second type is

{A,B,C} = {(1 : a : u + va), (1 : b : u + vb), (0 : 1 : v)}.

Again, we assume that ω(a) < ω(b), so that there are six ordered triples (A,B,C).
For both types of triples, there are the following possibilities for D:

• D = (1 : s : t), where ω(s) < ω(a) and t �= u + vs (the latter condition says
that D /∈ 〈A,B,C〉);

• D = (1 : a : t), where ω(t) < ω(u + va);
• D = (0 : 0 : 1), provided ω(a) ≥ (q + 3)/2.

Therefore,

N3(u, v) = 6(q − 1)
∑
a

∑
b

ω(b)>ω(a)

∑
c

ω(c)>ω(b)

(ω(a) − 1)

+ 6
∑
a

∑
b

ω(b)>ω(a)

∑
c

ω(c)>ω(b)

(ω(u + va) − 1))

+ 6
∑
a

ω(a)≥(q+3)/2

∑
b

ω(b)>ω(a)

∑
c

ω(c)>ω(b)

1

+ 6(q − 1)
∑
a

∑
b

ω(b)>ω(a)

(ω(a) − 1)

+ 6
∑
a

∑
b

ω(b)>ω(a)

(ω(u + va) − 1))

+ 6
∑
a

ω(a)≥(q+3)/2

∑
b

ω(b)>ω(a)

1

=
(q + 1)(q − 1)(2q3 − 6q2 + 5q − 3)

8

+ 3
∑
a

(q − ω(a))(q − ω(a) + 1)(ω(u + va) − 1).

To evaluate N3, we sum N3(u, v) over all u and v. For any fixed v and a, if u ranges
over Fq, then w = u + va also ranges over Fq. Thus, we can change the order of
summation:

3
∑
v

∑
u

∑
a

(q − ω(a))(q − ω(a) + 1)(ω(u + va) − 1)

= 3
∑
v

∑
a

∑
u

(q − ω(a))(q − ω(a) + 1)(ω(u + va) − 1)

= 3
∑
v

∑
a

∑
w

(q − ω(a))(q − ω(a) + 1)(ω(w) − 1)

=
(q + 1)q3(q − 1)2

2
.
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Therefore,

N3 =
(q + 1)q2(q − 1)(2q3 − 2q2 + q − 3)

8
.(4.3)

Adding (4.1)–(4.3) together, we obtain that N1 + N2 + N3 = (q7 + q6 − q4 − q3)/4,
which is one-fourth of the total amount of noncollinear quadruples (A,B,C,D) such
that A, B, and C are collinear. This completes the proof.

We complete this section with some open questions. For reasons of simplicity, we
proved Theorem 1.4 for odd prime powers q. Example 2 shows, however, that one
may expect similar results for finite fields of characteristic 2.

Let ≤ be a linear order on P
2(Fq) and ≤∗ be the reverse order, i.e., A ≤∗ B

if and only if B ≤ A. Consider ordered quadruples (A,B,C,D) such that A,B,C
are collinear but D is not on the same line. One can check or deduce directly from
Lemma 3.8 that the total number of such configurations is q3(q−1)(q+1)(q2 +q+1).
Let N≤ be the number of such quadruples with D = min(A,B,C,D). As we could

see in Examples 1 and 3 above, N≤ may differ from q3(q−1)(q+1)(q2+q+1)
4 . However, in

these examples,

N≤ + N≤∗ =
q3(q − 1)(q + 1)(q2 + q + 1)

2
.(4.4)

This relation was also checked for some other orders on P
2(F2) and P

2(F3). It also
holds for orders which occur in the proof of Theorem 1.4. This supports the following
conjecture.

Conjecture 1. For any linear order on P
2(Fq), relation (4.4) holds.

Finally, one can ask whether, for some linear order on Ω = P
k−2(Fq), where

k > 4, the group G = PGL(k − 1, q) is k-restricted min-wise independent. This
question seems to be very difficult. In particular, one must consider each orbit under
the action of G. Thus, we need some parameterization for nongeneric k-tuples, e.g.,
for k-tuples lying on one line as a special case. The action of PGL(2, q) on the set
of k-tuples of points on the projective line P

1(Fp) has attracted special interest. We
mention a recent result [12, Thm. C].

5. 4-restricted min-wise independent sets for almost all n. Given a k-
restricted min-wise independent set F ⊆ Sm for some m, we can produce in a standard
way min-wise independent subsets in Sn, where n ≤ m (for instance, see [16]). Namely,
consider the following “projection” from Sm onto Sn. Take any π ∈ Sm and consider
{π(1), . . . , π(n)}, which is a linearly ordered set. Thus, there is the (unique) map φ
from this set to {1, . . . , n}, which preserves the order. Define π′ ∈ Sn by π′(i) = φπ(i),
i = 1, . . . , n. Alternatively, π′ can be defined as

π′(i) = |{1, 2, . . . , π(i)} ∩ {π(1), π(2), . . . , π(n)}|.

Lemma 5.1. Given a k-restricted min-wise independent set F ⊆ Sm, let F ′ be
the image of F under the projection described above. Then the (multi)set F ′ is also
k-restricted min-wise independent.

Proof. For any x, y ∈ {1, . . . , n} and any π ∈ Sm, we have π′(x) < π′(y) if and
only if π(x) < π(y). Therefore, for any X ⊆ {1, 2, . . . , n}, min{π′(X)} = π′(x) if and
only if min{π(X)} = π(x). Consequently,

PrF ′(min{π(X)} = π(x)) = PrF (min{π(X)} = π(x)).
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Unfortunately, different permutations may give one and the same projection.
Thus, in general, F ′ will be a multiset only. If we want to find a min-wise inde-
pendent set F ′, then we must take more care. In particular, the restriction of the
above projection on F must be injective.

Example 4. For a prime p, consider an embedding of PGL(2, p) into Sp+1 induced
by the following order on the projective line:

1̄ < 2̄ < · · · < p̄− 1̄ < p̄ < ∞.

Let σ1 = id and σ2 ∈ PGL(2, p) be the transformation that maps z to z + 1. As π1

and π2 ∈ Sp+1, we take permutations induced by σ1 and σ2, respectively, i.e., π1 = id
and π2 = (12 · · · p) is a cycle of length p. Then, for any n ≤ p − 1, both π′

1 and π′
2

become the identity in Sn.
First, we describe briefly our construction of “small” 4-restricted min-wise inde-

pendent sets for almost all n. Given an n, we find a prime p > n and take G ⊆ Sp+1,
which is an image of PGL(2, p) induced by the above order on the projective line (see
Example 4). Then we explicitly construct π ∈ Sp+1 such that πG is still 4-restricted
min-wise independent and the projection from πG into Sn is injective provided the
difference p− n is small enough (more precisely, p− n = O(nθ) for some θ < 1).

The following lemma shows that multiplication by a given permutation on the
right preserves restricted min-wise independence.

Lemma 5.2. For any k-restricted min-wise independent set G ⊆ SΩ and for any
π ∈ SΩ, the set

Gπ = {σ ∈ Sn : ∃τ ∈ G such that σ = τπ}

is also k-restricted min-wise independent.
Proof. Let X = {x1, . . . , xj} ⊆ Ω, where j ≤ k, and let x ∈ X. Put Y = {π(x1),

. . . , yj = π(xj)} and y = π(x) ∈ Y . Since G is k-restricted min-wise independent,
we have

PrGπ(min{σ(X)} = σ(x)) = PrG(min{τ(Y )} = τ(y)) =
1

|Y | =
1

|X| .

In contrast with the previous lemma, multiplication by a given permutation on
the left in general may not preserve min-wise independence. However, it still preserves
it in the following special case.

Lemma 5.3. Let G be an image of PGL(2, q) embedded into Sq+1 using the
natural action of PGL(2, q) on P

1(Fq). For any permutation π ∈ Sq+1, the set

πG = {σ ∈ Sn : ∃τ ∈ G such that σ = πτ}

is 4-restricted min-wise independent.
Proof. By Theorem 1.3, the corresponding embedding of PGL(2, q) into Sq+1 is

4-restricted min-wise independent for any linear order on Ω = P
1(Fq). Changing the

order on Ω leads to a conjugate embedding of PGL(2, q) into Sq+1. Therefore, πGπ−1

is also 4-restricted min-wise independent. Applying Lemma 5.2 to πGπ−1 and π we
complete the proof.

Proof of Theorem 1.5. It is known that there exist θ < 1 and n0(θ) such that, for
any integer n > n0(θ), the interval (n, n + nθ] contains at least one prime number.
For example, one may take θ = 11/20+ ε for any positive ε; see [8, 9]. For a historical
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review of results of this type and current records, see also [15, Chap. 4]. Therefore,
for any sufficiently large n, we can find a prime p > n such that

n > 32d(�log2 d� + 1)3, where d = p + 1 − n.(5.1)

We define G as the embedding of PGL(2, p) into Sp+1, induced by the same order
on P

1(Fp) as in Example 4. In particular, |G| = p(p+1)(p−1) = n3 + o(n3). In what
follows we identify projectivities with the corresponding permutations.

Now we describe a permutation π. Let pi, i = 1, 2, . . . , denote the ith prime
number. Take r = �log2 d� + 1. Consider the following increasing sequence:

a4d(i−1)+j = jpi + 4d

i−1∑
u=1

pu, i = 1, . . . , r, j = 1, . . . , 4d.

In particular, if i = 1, then the last sum vanishes and we have

aj = jp1 = 2j for j = 1, . . . , 4d.

In other words, we arrange numbers in r groups, each group contains 4d elements,
and within the ith group the difference between consecutive elements is pi. Thus, our
sequence begins with

2, 4, . . . , 8d− 2, 8d, 8d + 3, . . . , 20d− 3, 20d, 20d + 5, . . . .

Note that a4dr = 4d(p1 + · · · + pr) ≤ 4drpr. Using the rather rough bound pr ≤ 2r2,
we conclude that elements of our sequence are bounded by a = 8dr3. By (5.1),
p+1− a > a. We define π as the following product of nonintersecting transpositions:

π =
4dr∏
s=1

(as, p + 2 − as).

Now take τ , σ ∈ G and assume that (πτ)′ = (πσ)′. Our aim is to show that this
assumption implies τ = σ. Put

ts = [(πτ)′]−1(s) = [(πσ)′]−1(s), s = 1, 2 . . . , n.

In particular, {t1, t2, . . . , tn} = {1, 2, . . . , n} and

(πτ)′(t1) < (πτ)′(t2) < · · · < (πτ)′(tn),

(πσ)′(t1) < (πσ)′(t2) < · · · < (πσ)′(tn).

By the definition of the projection,

πτ(t1) < πτ(t2) < · · · < πτ(tn),

πσ(t1) < πσ(t2) < · · · < πσ(tn).

Therefore,

a + 1 ≤ πτ(ta+1) < πτ(ta+2) < · · · < πτ(tn−a) ≤ p + 1 − a,

a + 1 ≤ πσ(ta+1) < πσ(ta+2) < · · · < πσ(tn−a) ≤ p + 1 − a.

Since π acts trivially on {a + 1, a + 2, . . . , p + 1 − a}, we conclude that

a + 1 ≤ τ(ta+1) < τ(ta+2) < · · · < τ(tn−a) ≤ p + 1 − a,(5.2)

a + 1 ≤ σ(ta+1) < σ(ta+2) < · · · < σ(tn−a) ≤ p + 1 − a.(5.3)

Now we claim that there exists an s such that
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(i) s, s + 1, s + 2 ∈ {a + 1, a + 2, . . . , n− a};
(ii) τ(ts+2) = τ(ts+1) + 1 = τ(ts) + 2;
(iii) σ(ts+2) = σ(ts+1) + 1 = σ(ts) + 2.

Let s ∈ {a + 1, . . . , n − a − 2}. If τ(ts+1) > τ(ts) + 1, then we have by (5.2) that
τ(ts)+1 = τ(t) for some t /∈ {ta+1, ta+2, . . . , tn−a}. Note that p+1−2a−(n−2a) = d.
Therefore, again by (5.2), the interval [a+1, p+1−a] contains at most d integers not
of the form τ(ts), s = a+1, a+2, . . . , n−a. Hence, the inequality τ(ts+1) > τ(ts)+1
may hold for at most d values of s. Reasoning in the same way, we deduce from (5.2)
or (5.3) that each of the inequalities τ(ts+2) > τ(ts+1) + 1, σ(ts+1) > σ(ts) + 1, and
σ(ts+2) > σ(ts+1)+1 holds for at most d values of s. Consequently, there are at most
4d values of s such that either (ii) or (iii) fails. On the other hand, by (5.1) and the
choice of a, we have that

|{a + 1, a + 2, . . . , n− a− 2}| = n− 2a− 2 > 16dr3 − 2 > 4d.

Thus, a required s exists.
Put u1 = τ(ts), u2 = σ(ts). Without loss of generality we may assume that

u1 ≥ u2; otherwise we change the role of τ and σ. Since any projectivity on a line is
determined by images of any three points and τσ−1(u2) = u1, τσ

−1(u2 +1) = u1 +1,
and τσ−1(u2+2) = u1+2, we have that τσ−1 is induced by the shift z �→ z+(u1−u2)
(mod p). Hence τ(z) = σ(z) + (u1 − u2) (mod p).

On the other hand, τ(ts) ≤ p + 1 − n + s and σ(ts) ≥ s by (5.2) and (5.3),
respectively. Therefore, 0 ≤ u1 − u2 = τ(ts) − σ(ts) ≤ p + 1 − n = d.

Assume that u1 �= u2. By the choice of r, we have p1p2 · · · pr ≥ 2r > d. Hence,
there exists at least one prime pi which does not divide u1−u2. Note that there are at
most d = p+1−n numbers h such that σ−1(h) /∈ {1, 2, . . . , n}. Consequently, among
d + 2 numbers a4d(i−1)+j , j = 1, 2, . . . , d + 2, there are at least two numbers, say, av
and aw, such that both b1 = σ−1(av) and b2 = σ−1(aw) belong to {1, 2, . . . , n}. Since
τ(bi) = σ(bi)+u1−u2, we have a4d(i−1)+1 ≤ σ(bi) ≤ τ(bi) ≤ σ(bi)+d ≤ a4d(i−1)+d+2+
d ≤ a4d(i−1)+4d. In particular, τ(b1) = av + u1 − u2 and τ(b2) = aw + u1 − u2 do not
coincide with any aj , since the numbers a4d(i−1)+1, . . . ,a4d(i−1)+4d form an arithmetic
progression with the difference equal to pi. But in that case, πτ(b1) < πτ(b2) if and
only if πσ(b2) < πσ(b1), a contradiction with the assumption (πτ)′ = (πσ)′. Hence
u1 = u2 and τ = σ. This completes the proof.

6. Lower bounds. Consider a biased 4-restricted min-wise independent set G ⊆
Sn. For any distinct integers i, j, and l taken from {1, . . . , n}, we can evaluate the
probability that π(i) < π(j) < π(l). Namely,

PrG(π(i) < π(j) < π(l)) = PrG(π(j) < π(l)) − PrG(min(π(i), π(j), π(l)) = π(j))

=
1

2
− 1

3
=

1

6
.(6.1)

Moreover, the same is true if G is only 3-restricted min-wise independent.
Let i, j, l, and m be four distinct integers taken from {1, . . . , n} and

pijlm = PrG(π(i) < π(j) < π(l) < π(m)).

In contrast with (6.1) we are not able to find pijlm exactly. However, there are some
relations between them.

Lemma 6.1. If G is biased 4-restricted min-wise independent, then, for any
distinct i, j, l, and m, we have pijlm + pijml = 1

12 and pijlm = pjiml.
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Proof. We start from the first relation:

pijlm + pijml = PrG(min(π(j), π(l), π(m)) = π(j))

−PrG(min(π(i), π(j), π(l), π(m)) = π(j))

=
1

3
− 1

4
=

1

12
.

Now, applying the obtained relation to (i, l, j,m) and applying (6.1) to (i,m, l), we
have

pijlm − pjiml = PrG(min{π(i), π(j), π(l), π(m)} = π(i))

− PrG(π(i) < π(m) < π(l)) − (piljm + pilmj) =
1

4
− 1

6
− 1

12
= 0,

which completes the proof.
Proof of Theorem 1.6. Let a = (a1, a2, a3, a4, a5, a6) be a complex vector whose

coordinates will be specified later. For any j = 3, . . . , n, define random variables
V a
j : G → C as follows:

V a
j (π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1 if π(1) < π(2) < π(j),
a2 if π(1) < π(j) < π(2),
a3 if π(2) < π(1) < π(j),
a4 if π(2) < π(j) < π(1),
a5 if π(j) < π(1) < π(2),
a6 if π(j) < π(2) < π(1).

By Lemma 6.1, we have, for any i, j (2 < i �= j ≤ n),

p12ij = 1
24 + αij , p12ji = 1

24 − αij , p21ij = 1
24 − αij , p21ji = 1

24 + αij ,

p1i2j = 1
24 + βij , p1ij2 = 1

24 − βij , pi12j = 1
24 − βij , pi1j2 = 1

24 + βij ,

p1j2i = 1
24 + γij , p1ji2 = 1

24 − γij , pj12i = 1
24 − γij , pj1i2 = 1

24 + γij ,

p2i1j = 1
24 + δij , p2ij1 = 1

24 − δij , pi21j = 1
24 − δij , pi2j1 = 1

24 + δij ,

p2j1i = 1
24 + εij , p2ji1 = 1

24 − εij , pj21i = 1
24 − εij , pj2i1 = 1

24 + εij ,

pij12 = 1
24 + ζij , pij21 = 1

24 − ζij , pji12 = 1
24 − ζij , pji21 = 1

24 + ζij

for some parameters αij , βij , γij , δij , εij , ζij . A direct computation shows that

E(V a
j V b

j ) =
a1b1 + a2b2 + a3b3 + a4b4 + a5b5 + a6b6

6
(6.2)

and, for i �= j,

E(V a
i V b

j ) =
1

24
{(a1 + a2)(b1 + b2) + (a1 + a5)(b1 + b5) + (a2 + a5)(b2 + b5)

+(a3 + a4)(b3 + b4) + (a3 + a6)(b3 + b6) + (a4 + a6)(b4 + b6)}
+βij(a2 − a5)(b1 − b2) + γij(a1 − a2)(b2 − b5)

+δij(a4 − a6)(b3 − b4) + εij(a3 − a4)(b4 − b6).(6.3)

From now on, we restrict ourselves to vectors a and b that satisfy an additional
requirement a2 = a5, a4 = a6, b2 = b5, and b4 = b6. In this case, extra terms in (6.3)
depending on βij , γij , δij , and εij vanish and E(V a

i V b
j ) becomes

E(V a
i V b

j ) =
1

12
{(a1 + a2)(b1 + b2) + 2a2b2 + (a3 + a4)(b3 + b4) + 2a4b4}.(6.4)
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The set L(G) of all complex-valued random variables on G has the natural struc-
ture of a complex vector space. The dimension of this space is exactly |G|. Therefore,
the cardinality of any linearly independent subset of L(G) gives a lower bound for |G|.
Thus, to prove the claim of the theorem it is sufficient to find 2n − 2 random vari-
ables V a

j which are linearly independent over C. We assert that the random variables

V
(1)
j = V

(1,0,0,0,0,0)
j , V

(3)
j = V

(0,0,1,0,0,0)
j , V (2) = V

(0,1,0,0,1,0)
3 , V (4) = V

(0,0,0,1,0,1)
3 ,

where j = 3, . . . , n, are linearly independent. Let

S =

n∑
j=3

c
(1)
j V

(1)
j + c(2)V (2) +

n∑
j=3

c
(3)
j V

(3)
j + c(4)V (4)

and assume that

S = 0.(6.5)

Let Y =
∑n

i=3 V
(n−3,−n+1,0,0,−n+1,0)
i . A direct computation based on (6.2), (6.4)

shows that

E(SY ) = −c(2)
(n + 1)(n− 2)

6
.

Since n ≥ 4, assumption (6.5) implies c(2) = 0. By a similar reasoning, c(4) = 0 since,

for Z =
∑n

i=3 V
(0,0,n−3,−n+1,0,−n+1)
i , we have

E(SZ) = −c(4)
(n + 1)(n− 2)

6
.

In addition,

E(SV
(1,−1,0,0,−1,0)
j ) =

{
1
6c

(1)
j − 1

6c
(2) if j �= 3,

1
6c

(1)
j − 1

3c
(2) if j = 3,

E(SV
(0,0,1,−1,0,−1)
j ) =

{
1
6c

(3)
j − 1

6c
(4) if j �= 3,

1
6c

(3)
j − 1

3c
(4) if j = 3.

Since c(2) = c(4) = 0, assumption (6.5) implies c
(1)
j = c

(3)
j = 0. Hence, the above

family of random variables is linearly independent. This completes the proof.

Remark 3. Let us note that

V
(1,0,0,0,0,0)
j + V

(0,1,0,0,1,0)
j =

{
1 if π(1) < π(2),
0 if π(2) < π(1),

V
(0,0,1,0,0,0)
j + V

(0,0,0,1,0,1)
j =

{
0 if π(1) < π(2),
1 if π(2) < π(1),

i.e., both of these sums do not depend on j. Therefore, for any vector a that satisfies
additional requirements a2 = a5, a4 = a6, the random variable V a

j can be expressed

as linear combination of V
(1)
j , V

(1)
3 , V (2), V

(3)
j , V

(3)
3 , and V (4). In particular, the

dimension of the space spanned by all such V a
j ’s is exactly 2n− 2.
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[12] A. López and E. Nart, Classification of Goppa codes of genus zero, J. Reine Angew. Math.,
517 (1999), pp. 131–144.

[13] M. Luby and A. Wigderson, Pairwise Independence and Derandomization, Technical Report
TR-95-035, International Computer Science Institute, 1995.

[14] S. Norin, A polynomial lower bound for the size of k-min-wise independent set of permutations,
Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 277 (2001), pp. 104–
116 (in Russian). English translation: J. Math. Sci. (N.Y.), 118 (2003), pp. 4994–5000.

[15] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1995.
[16] M. A. Vsemirnov, E. A. Hirsch, E. Y. Dantsin, and S. V. Ivanov, Algorithms for SAT

and upper bounds for their complexity, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat.
Inst. Steklov. (POMI), 277 (2001), pp. 14–46 (in Russian). English translation: J. Math.
Sci. (N.Y.), 118 (2003), pp. 4948–4962; also available as ECCC technical report via
ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2001/TR01-012/index.html.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 608–625
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APPROXIMATION ALGORITHMS

FOR THE METRIC LABELING PROBLEM∗
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Abstract. We consider approximation algorithms for the metric labeling problem. This prob-
lem was introduced in a paper by Kleinberg and Tardos [J. ACM, 49 (2002), pp. 616–630] and
captures many classification problems that arise in computer vision and related fields. They gave
an O(log k log log k) approximation for the general case, where k is the number of labels, and a 2-
approximation for the uniform metric case. (In fact, the bound for general metrics can be improved
to O(log k) by the work of Fakcheroenphol, Rao, and Talwar [Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, 2003, pp. 448–455].) Subsequently, Gupta and Tardos [Pro-
ceedings of the 32nd Annual ACM Symposium on the Theory of Computing, 2000, pp. 652–658] gave
a 4-approximation for the truncated linear metric, a metric motivated by practical applications to
image restoration and visual correspondence. In this paper we introduce an integer programming
formulation and show that the integrality gap of its linear relaxation either matches or improves the
ratios known for several cases of the metric labeling problem studied until now, providing a unified
approach to solving them. In particular, we show that the integrality gap of our linear programming
(LP) formulation is bounded by O(log k) for a general k-point metric and 2 for the uniform metric,
thus matching the known ratios. We also develop an algorithm based on our LP formulation that
achieves a ratio of 2 +

√
2 � 3.414 for the truncated linear metric improving the earlier known ratio

of 4. Our algorithm uses the fact that the integrality gap of the LP formulation is 1 on a linear
metric.

Key words. metric labeling, linear program, approximation algorithm, truncated linear metric
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1. Introduction. Motivated by certain classification problems that arise in com-
puter vision and related fields, Kleinberg and Tardos introduced the metric labeling
problem [26]. In a typical classification problem, one wishes to assign labels to a set
of objects so as to optimize some measure of the quality of the labeling. The metric
labeling problem captures a broad range of classification problems where the quality
of a labeling depends on the pairwise relations between the underlying set of objects.
More precisely, the task is to classify a set V of n objects by assigning to each object
a label from a set L of labels. The pairwise relationships between the objects are
represented by a weighted graph G = (V,E), where w(u, v) represents the strength
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of the relationship between u and v. The objective is to find a labeling, a function
f : V → L, that maps objects to labels, where the cost of f , denoted by Q(f), has
two components.

• For each u ∈ V , there is a nonnegative assignment cost c(u, i) to label u with
i. This cost reflects the relative likelihood of assigning labels to u.

• For each pair of objects u and v, the edge weight w(u, v) measures the
strength of their relationship. This models the assumption that strongly related
objects should be assigned labels that are close. This is modeled in the objective
function by the term w(u, v) · d(f(u), f(v)), where d(·, ·) is a distance function on the
labels L.
Thus

Q(f) =
∑
u∈V

c(u, f(u)) +
∑

(u,v)∈E

w(u, v) · d(f(u), f(v)),

and the goal is to find a labeling of minimum cost. In the metric labeling problem,
the distance function d is assumed to be a metric. We remark that if the distance
function d is allowed to be arbitrary, the graph coloring problem can be reduced to
the labeling problem.

A prototypical application of the metric labeling problem is the image restoration
problem in computer vision [4, 5, 6]. In the image restoration problem, the goal is
to take an image corrupted by noise and restore it to its “true” version. The image
consists of pixels and these are the objects in the classification problem. Each pixel has
an integer intensity value associated with it that is possibly corrupted and we would
like to restore it to its true value. Thus the labels correspond to intensity values,
and the goal is to assign a new intensity to each pixel. Further, neighboring pixels
are assumed to be close to each other, since intensities typically change smoothly.
Thus, neighboring pixels have an edge between them with a positive weight (assume
a uniform value for concreteness). The original or observed intensities are assumed
to be close to true values.1 The assignment cost is some positive cost associated with
changing the intensity from its original value to a new value; the larger the change,
the larger the cost. To see how the cost function models the restoration, consider a
pixel corrupted by noise as a result of which its observed intensity is very different
from its neighboring pixels. By changing the corrupted pixel’s intensity we incur a
cost of relabeling, but that can be offset by the edge cost saved by being closer to
its neighbors. The assignment costs weigh the labeling in favor of the original values
since most of the intensities are likely to be correct (see also the footnote).

The metric labeling problem naturally arises in other applications in image pro-
cessing and computer vision. Researchers in these fields have developed a variety
of good heuristics that use classical combinatorial optimization techniques, such as
network flow and local search [4, 21, 32, 17, 14, 12].

Kleinberg and Tardos [26] formalized the metric labeling problem and its con-
nections to Markov random fields and other classification problems. (See [26] for a

1This assumption is based on the connection of the labeling problem to the theory of Markov
random fields (MRFs) [27]. In this theory, the observed data or labeling of the objects is assumed
to be obtained from a true labeling by adding independent random noise. The idea is to decide the
most probable labeling given the observed data. An MRF can be defined by a graph on the objects
with edges indicating dependencies between objects. Under the assumption that the probability
distribution of an object’s label depends only on its neighbors’ labels, and if the MRF satisfies two
standard assumptions of homogeneity and pairwise interactions, the labeling problem can be restated
as the problem of finding a labeling f that maximizes the a posteriori probability Pr [f |f ′], where
f ′ is the observed labeling. See [26] for more details on the connection of metric labeling to MRFs.
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thorough description of the various connections.) Metric labeling also has rich con-
nections to some well-known problems in combinatorial optimization. It is related
to the quadratic assignment problem, an extensively studied problem in operations
research. A special case of metric labeling is the 0-extension problem, studied by
Karzanov [24, 25]. There are no assignment costs in this problem; however, the graph
contains a set of terminals, t1, . . . , tk, where the label of terminal ti is fixed in advance
to i and the nonterminals are free to be assigned to any of the labels. The 0-extension
problem generalizes the well-studied multiway cut problem [13, 7, 23]. Karzanov
[24, 25] showed that certain special cases (special metrics) of the 0-extension problem
can be solved optimally in polynomial time. Another special case of the metric label-
ing problem is the task assignment problem in distributed computing [28]. Here, tasks
of a modular program need to be assigned to the processors of a distributed system,
while balancing between task execution cost and intertask communication cost.

Kleinberg and Tardos [26] obtained an O(log k log log k) approximation for the
general metric labeling problem, where k denotes the number of labels in L, and
a 2-approximation for the uniform metric. The approximation for general metrics
improves to O(log k) by a recent result of Fakcheroenphol, Rao, and Talwar [16].
Metric labeling is Max-SNP hard; this follows from the Max-SNP hardness of the
multiway cut problem which is a special case. Given the rich connections of this
problem to other well-studied optimization problems and a variety of applications, a
natural interesting question is to determine the approximability of the general problem
as well as of the important special cases that arise in practice.

The truncated linear metric. Gupta and Tardos [18] considered the metric label-
ing problem for the truncated linear metric, a special case motivated by its direct
applications to two problems in computer vision, namely, image restoration and vi-
sual correspondence. We briefly describe the application of this metric to the image
restoration problem discussed earlier; see [18] for more details. Consider the case
of gray scale images where the intensities are integer values. Our earlier description
assumed that intensities of neighboring pixels should be similar since the image is
typically smooth. This motivates a linear-like metric on the labels where the distance
between two intensities i and j is |i− j|. However, at object boundaries (here we are
referring to objects in the image) sharp changes in intensities happen. Thus, for the
metric to be robust, neighboring pixels that are actually at object boundaries (and
hence naturally differ in their intensities by large amounts) should not be penalized
by arbitrarily large quantities. This motivated Gupta and Tardos to consider a trun-
cated linear metric, where the distance between two intensities i and j is given by
d(i, j) = min(M, |i− j|). Thus, the penalty is truncated at M ; this is a natural (and
nonuniform) metric for the problem at hand. A very similar reasoning applies to the
visual correspondence problem, where the objective is to compare two images of the
same scene for disparity. The labels here correspond to depth of the point in the
image from the camera. For the truncated linear metric a 4-approximation algorithm
was given in [18] using local search. The local moves in the algorithm make use of
the flow network used in [4, 21], which gives an optimal solution to the linear metric
case in polynomial time.

For the image restoration application, other distance functions have also been
studied. In particular, the quadratic distance function d(i, j) = |i− j|2 and its trun-
cated version d(i, j) = min{M, |i − j|2} have been considered (see [27] and [22]).
Unfortunately, neither of these distance functions is a metric, and hence the algo-
rithms for metric labeling problem cannot be used. However, as we discuss shortly,
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we are able to provide nontrivial approximation ratios for them.

Results. In this paper we address the problem of obtaining improved approxima-
tion guarantees for the metric labeling problem. Kleinberg and Tardos [26] pointed
out the difficulty of the general case as having to do with the absence of a “natural”
integer programming (IP) formulation for the problem. They give an IP formulation
for tree metrics and use Bartal’s probabilistic tree approximations [2, 3] to reduce the
problem with an arbitrary metric to that with a tree metric. In this work we give a
natural IP formulation for the general problem. An advantage of our formulation is
that it is applicable even to distance functions that are not metrics, for example, the
quadratic distance function mentioned above. We substantiate the strength of this
formulation by deriving both known results and new results using its linear relaxation.
In particular, we show the following results on the integrality gap of our formulation:

• O(log k) for general metrics and a factor 2 for the uniform metric,
• 1 for the linear metric and distances on the line defined by convex functions

(not necessarily metrics),
• 2 +

√
2 � 3.414 for the truncated linear metric, and

• O(
√
M) for the truncated quadratic distance function.

The integrality gaps we show for our formulation either match or improve on the best
previous approximation ratios for most of the cases known to us. (In addition to the
above, we can also show that if G is a tree the integrality gap is 1.) Our formulation
allows us to present these results in a unified fashion. In the process we improve the
4 approximation of Gupta and Tardos [18] for the important case of the truncated
linear metric. We also show a reduction from the case with arbitrary assignment costs
c(u, i) to the case where c(u, i) ∈ {0,∞} for all u and i. The reduction preserves the
graph G and the optimal solution but increases the size of the label space from k
labels to nk labels. We also describe an alternative reduction of Chuzhoy [10] that
preserves the label space but alters the graph to one with n+nk vertices. We believe
that our results and techniques are a positive step toward obtaining improved bounds
for both the general metric labeling problem and interesting special cases.

Calinescu, Karloff, and Rabani [8] considered approximation algorithms for the
0-extension problem. They considered a linear programming (LP) formulation (which
they called the metric relaxation) originally studied by Karzanov [24], where they as-
sociated a length function with every edge of the graph and required that (i) the
distance between terminals ti and tj , for 1 ≤ i, j ≤ k, is at least d(i, j), and (ii) the
length function is a semimetric. We note that their formulation does not apply to
the general metric labeling problem. They obtained an O(log k)-approximation algo-
rithm for the 0-extension problem using this formulation and an O(1)-approximation
for planar graphs. Our LP formulation, when specialized to the 0-extension problem,
induces a feasible solution for the metric relaxation formulation, by defining the length
of an edge to be its transshipment cost (see section 2). It is not hard to verify that
this length function is a semimetric. Calinescu, Karloff, and Rabani [8] also showed
a gap of Ω(

√
log k) on the integrality ratio of their formulation. Their lower bound

proof does not seem to carry over in any straightforward way to our formulation. We
note that the metric relaxation formulation optimizes over the set of all semimet-
rics, while our formulation optimizes only over a subset of the semimetrics. Whether
our formulation is strictly stronger than the metric relaxation of [8] is an interesting
open problem.

Outline. Section 2 describes our LP formulation for the general metric labeling
problem. In section 3, we analyze our formulation for uniform and linear metrics.
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Building on our rounding scheme for the linear metric, we design and analyze a
rounding procedure for the truncated linear metric in section 4. In section 5, we
study the general metric labeling problem and show that the integrality gap of our
formulation is bounded by O(log k). We also describe here a transformation that
essentially eliminates the role of the label cost assignment function.

2. The LP formulation. We present a new linear integer programming for-
mulation of the metric labeling problem. Let x(u, i) be a {0, 1}-variable indicating
that vertex u is labeled i. Let x(u, i, v, j) be a {0, 1}-variable indicating that for edge
(u, v) ∈ E, vertex u is labeled i and vertex v is labeled j. See Figure 2.1 for the
formulation.

Constraints (2.1) simply express that each vertex must receive some label. Con-
straints (2.2) force consistency in the edge variables: if x(u, i) = 1 and x(v, j) = 1,
they force x(u, i, v, j) to be 1. Constraints (2.3) express the fact that (u, i, v, j) and
(v, j, u, i) refer to the same edge; the redundancy helps in notation. We obtain a linear
relaxation of the above program by allowing the variables x(u, i) and x(u, i, v, j) to
take any nonnegative value. We note that equality in (2.2) is important for the linear
relaxation.

With each edge (u, v) ∈ E we associate a complete bipartite graph H(u, v). The
vertices of H(u, v) are {u1, . . . , uk} and {v1, . . . , vk}, i.e., they represent all possible
labelings of u and v. There is an edge (ui, vj) connecting the pair of vertices ui

and vj , 1 ≤ i, j ≤ k. In what follows, we refer to the edges of H(u, v) as links to
distinguish them from the edges of G. Suppose that the value of the variables x(u, i)
for all u and i has been determined. For an edge (u, v) ∈ E, we can interpret the
variables x(u, i, v, j) from a flow perspective. The contribution of edge (u, v) ∈ E to
the objective function of the linear program is the cost of the optimal transshipment
of flow between {u1, . . . , uk} and {v1, . . . , vk}, where (i) the supply of ui is x(u, i) and
the demand of vj is x(v, j) for 0 ≤ i, j ≤ k; (ii) the cost of shipping a unit flow from
ui to vj is d(i, j). (The choice of the supply side and the demand side is arbitrary.)

For the rest of the paper, the quantity dLP (u, v) refers to the LP distance between
u and v and is defined to be the transshipment cost

∑
i,j d(i, j) · x(u, i, v, j). The LP

(I) min
∑
u∈V

k∑
i=1

c(u, i) · x(u, i) +
∑

(u,v)∈E

w(u, v)

k∑
i=1

k∑
j=1

d(i, j) · x(u, i, v, j)

subject to

k∑
i=1

x(u, i) = 1 ∀ v ∈ V(2.1)

k∑
j=1

x(u, i, v, j) − x(u, i) = 0 ∀ u ∈ V , (u, v) ∈ E, i ∈ 1, . . . , k,(2.2)

x(u, i, v, j) − x(v, j, u, i) = 0 ∀ u, v ∈ V , i, j ∈ 1, . . . , k,(2.3)

x(u, i) ∈ {0, 1} ∀ u ∈ V , i ∈ 1, . . . , k,(2.4)

x(u, i, v, j) ∈ {0, 1} ∀ (u, v) ∈ E, i, j ∈ 1, . . . , k.(2.5)

Fig. 2.1. IP formulation.
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distance derived from an optimal (fractional) solution to (I) induces a metric on the
graph, since for any v1, v2, v3 ∈ V , the transshipment cost from v1 to v2 cannot be
more than the sum of the transshipment costs from v2 to v3 and from v3 to v1. The
transshipment problem between two distributions was introduced by Monge [29] and is
also referred to as the Monge–Kantorovich mass transference problem and has several
applications [31]. In the image processing literature [33, 30] this metric has also been
referred to as the earth mover’s metric.

A solution to the formulation has an interesting geometric interpretation. It
defines an embedding of the graph into a k-dimensional simplex, where the distance
between points in the simplex is defined by the earth mover’s metric on the labels. Our
formulation specializes to that of Kleinberg and Tardos [26] for the uniform metric
case which in turn specializes to that of Călinescu, Karloff, and Rabani [7] for the
multiway cut problem where the distance between points in the embedding is simply
their �1 distance.

3. Uniform metrics and linear metrics. We now analyze the performance
of our linear programming formulation on two natural special cases, namely, uniform
metrics and linear metrics. Kleinberg and Tardos [26] showed a 2-approximation for
the uniform metric case. Their approach is based on rounding the solution of a linear
program formulated specifically for uniform metrics. We will show that our linear
programming formulation dominates the one in [26] and thus also has an integrality
gap of at most 2. For the case of linear metrics, Boykov, Veksler, and Zabih [4]
and Ishikawa and Geiger [21] obtained exact algorithms by reducing the problem to
a minimum {s, t}-cut computation. We show here that on linear metrics, our linear
programming formulation gives an exact algorithm as well. Our analysis for the linear
metric case plays an important role in the algorithm for the truncated linear metric
case.

3.1. The uniform metric case. Kleinberg and Tardos [26] formulated a lin-
ear program, denoted (KT), for the uniform metric and gave the following iterative
algorithm for rounding a solution to it. Initially, no vertex is labeled. Each iteration
consists of the following steps: (i) choose a label uniformly at random from 1, . . . , k
(say, a label i); (ii) choose a real threshold θ uniformly at random from [0, 1]; (iii) for
all unlabeled vertices u ∈ V , u is labeled i if θ ≤ x(u, i). The algorithm terminates
when all vertices are labeled. Kleinberg and Tardos [26] showed that the expected cost
of a labeling obtained by this algorithm is at most twice the cost of the LP solution.

(KT) min
∑
v∈V

k∑
i=1

c(u, i) · x(u, i) +
∑

(u,v)∈E

w(u, v) · 1

2

k∑
i=1

|x(u, i) − x(v, i)|

subject to

k∑
i=1

x(u, i) = 1 ∀ u ∈ V,

x(u, i) ≥ 0 ∀ u ∈ V and i ∈ 1, . . . , k.

We show that applying the rounding algorithm to an optimal solution obtained
from linear program (I) yields the same approximation factor. Let x̄ be a solution to
(I). Note that for both (I) and (KT) the variables x(u, i) completely determine the
cost. We will show that cost of (KT) on x̄ is smaller than that of (I). Both linear
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programs (I) and (KT) coincide regarding the labeling cost. Consider edge (u, v) ∈ E.
We show that the contribution of (u, v) to the objective function of (I) is at least as
large as the contribution to the objective function of (KT).

1

2
·

k∑
i=1

|x̄(u, i) − x̄(v, i)| =
1

2
·

k∑
i=1

∣∣∣∣∣∣
k∑

j=1

x̄(u, i, v, j) −
k∑

j=1

x̄(v, i, u, j)

∣∣∣∣∣∣
≤ 1

2
·

k∑
i=1

∣∣∣∣∣∣
k∑

j=1, j �=i

x̄(u, i, v, j) +

k∑
j=1, j �=i

x̄(v, i, u, j)

∣∣∣∣∣∣
=

1

2
·

k∑
i=1

k∑
j=1, j �=i

2 · x̄(u, i, v, j)

=

k∑
i=1

k∑
j=1

d(i, j) · x̄(u, i, v, j).

The penultimate equality in the above set of equations is true since x̄(u, i, v, j) =
x̄(v, j, u, i). The final equality follows from the fact that d(i, i) = 0 and d(i, j) =
1, i 	= j. The last term is the contribution of (u, v) to the objective function of (I).
We note that the example used in [26] to show that the integrality gap of (KT) is at
least 2 − 1/k can be used to show the same gap for (I) as well.

3.2. The line metric case. We now turn to the case of a linear metric and
show that the value of an integral optimal solution is equal to the value of a fractional
optimal solution of the LP (I). Without loss of generality, we can assume that the
labels of the metric are integers 1, 2, . . . , k. If the label set contains nonconsecutive
integers, we can add all the “missing” intermediate integers to the label set and set
the cost of assigning them to every vertex to be infinite. In fact, the rounding can be
generalized to the case where the labels are arbitrary points on the real line without
any difficulty.

Rounding procedure. Let x̄ be an optimal fractional solution to the linear program.
We round the fractional solution as follows. Let θ be a real threshold chosen uniformly
at random from [0, 1]. For all i, 1 ≤ i ≤ k, let

α(u, i) =
i∑

j=1

x̄(u, j).

Each vertex u ∈ V is labeled by the unique label i that satisfies α(u, i − 1) < θ ≤
α(u, i). Clearly all vertices are labeled since α(u, k) = 1.

Analysis. We analyze the expected cost of the assignment produced by the round-
ing procedure. For each vertex u ∈ V , let L(u) be a random variable whose value is
the label assigned to u by the rounding procedure. It can be readily verified that the
probability that L(u) = i is equal to x̄(u, i). This means that the expected labeling

cost of vertex v is equal to
∑k

i=1 x̄(u, i) · c(u, i), which is precisely the assignment cost
of u in the linear program (with respect to solution x̄). We now fix our attention on
the expected cost of the edges.

Lemma 3.1. Consider edge (u, v) ∈ E. Then,

E [d((L(u), L(v))] =

k∑
i=1

|α(u, i) − α(v, i)|.
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Proof. For the sake of the analysis we define auxiliary binary random vari-
able Z1, . . . , Zk−1 as follows. The variable Zi is 1 if min{L(u), L(v)} ≤ i and
max{L(u), L(v)} > i, and is 0 otherwise. In other words Zi is 1 if i is in the in-
terval defined by L(u) and L(v). It is easy to see that

d(L(u), L(v)) =
k−1∑
i=1

Zi.

Therefore E [d(L(u), L(v))] =
∑k−1

i=1 E [Zi]. We claim that

E [Zi] = Pr [Zi = 1] = |α(u, i) − α(v, i)|.

The lemma easily follows from this claim. To prove the claim, assume without loss of
generality (w.l.o.g.) that α(u, i) ≥ α(v, i). If θ < α(v, i), it is clear that L(u), L(v) ≤ i,
and if θ > α(u, i), then L(u), L(v) > i: in both cases Zi = 0. If θ ∈ (α(v, i), α(u, i)],
then L(u) ≤ i and L(v) > i, which implies that Zi = 1. Thus Pr [Zi = 1] is exactly
|α(u, i) − α(v, i)|.

We now estimate the contribution of an edge (u, v) ∈ E to the objective function
of the linear program. As indicated in section 2, the contribution is equal to the cost
of the optimal transshipment cost of the flow in the complete bipartite graph H(u, v)
between {u1, . . . , uk} and {v1, . . . , vk}, where the supply of ui is x̄(u, i) and the
demand of vj is x̄(v, j) for 1 ≤ i, j ≤ k. Recall that dLP (u, v) =

∑
i,j d(i, j)·x̄(u, i, v, j).

Lemma 3.2. For the line metric

dLP (u, v) ≥
k∑

i=1

|α(u, i) − α(v, i)|.

Proof. The crucial observation in the case of a linear metric is that flow can be
uncrossed. Let i ≤ i′ and j ≤ j′. Suppose that ε amount of flow is sent from ui to vj′

and from ui′ to vj . Then, uncrossing the flow, i.e., sending ε amount of flow from ui

to vj and from ui′ to vj′ will not increase the cost of the transshipment. This means
that the amount of flow sent from {u1, . . . , ui} to {v1, . . . , vi} for all i, 1 ≤ i ≤ k,
is precisely min{α(u, i), α(v, i)}. Therefore, |α(v, i) − α(u, i)| amount of flow is sent
“outside” the label set 1, 2, . . . , i and can be charged one unit of cost (with respect
to i). Applying this argument to all values of i, 1 ≤ i ≤ k, we get that the cost

of the optimal transshipment of flow is precisely
∑k

i=1 |α(u, i) − α(v, i)|. The lemma
follows.

Hence, together with Lemma 3.1, we get that the expected cost of edge (u, v) ∈ E
after the rounding is no more than its contribution to the objective function of the
linear program.

The uncrossing of flow in the proof of Lemma 3.2 relies on the Monge property
of the distances induced by points on a line. Hoffman [20], in his classical paper,
pointed out that the Monge property can be exploited for transportation and related
problems.

Theorem 3.3. The integrality gap of LP (I) for the line metric is 1.

3.3. Distance functions on the line defined by convex functions. We now
consider distance functions on the labels 1, . . . , k on the integer line defined by strictly
convex functions, that is, d(i, j) = f(|i − j|), where f is convex and nondecreasing.
Notice that such distance functions do not satisfy the metric property, since d is a
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metric if and only if f is concave and increasing. Our motivation for studying these
metrics comes from the quadratic function d(i, j) = |i − j|2, which is of particular
interest in the image restoration application [22, 27] described earlier. We note that
for the special case where the assignment cost is also a convex function (of the label),
efficient algorithms are given by [19]. We can show the following.

Theorem 3.4. For any distance function on the line defined by a convex function,
the integrality gap of LP (I) is 1.

We sketch the proof, since it is similar to the linear case. Consider a feasible
solution x̄ to the LP. For any edge (u, v), if f is convex, the optimal cost transshipment
flow in H(u, v) is noncrossing. Further, for the rounding that we described for the
linear case, if the flow is noncrossing, Pr [L(u) = i ∧ L(v) = j] = x̄(u, i, v, j). The
theorem follows from this last fact trivially. Ishikawa and Geiger [22] showed that
the flow graph construction for the line metric can be extended for convex functions
to obtain an optimal solution. The advantage of our approach is that the solution is
obtained from a general formulation. This allows us to extend the ideas to obtain the
first nontrivial approximation for the truncated quadratic distance function.

4. Improved approximation for the truncated line metric. In this section
we use LP (I) to give a (2+

√
2)-approximation algorithm for the truncated line metric

case. This improves the 4-approximation provided in [18]. We prefer to view the
metric graph as a line with the truncation to M being implicit. This allows us to
use, with appropriate modifications, ideas from section 3.2. We round the fractional
solution x̄ once again using only the values x̄(u, i). Let M ′ ≥ M be an integer
parameter that we will fix later. We repeat the following iteration until all vertices
are assigned a label:

• Pick an integer � uniformly at random in [−M ′ +2, k]. Let I� be the interval
[�, � + M ′ − 1].

• Pick a real threshold θ uniformly at random from [0, 1].
• Let u be an unassigned vertex. If there is a label i ∈ I� such that

i−1∑
j=�

x̄(u, j) < θ ≤
i∑

j=�

x̄(u, j),

we assign i to u. Otherwise u is unassigned in this iteration.
The above algorithm generalizes the rounding algorithms for the uniform and line
metrics in a natural way. Once the index � is picked, the rounding is similar to that
of the line metric in the interval I�. The difference is that a vertex might not get a
label in an iteration. If two vertices u and v get separated in an iteration, that is,
only one of them gets assigned, our analysis will assume that their distance is M .
This is similar to the analysis in [26] for the uniform metric case. Our improvement
comes from a careful analysis of the algorithm that treats links differently, based on
whether their distance is linear or truncated. The analysis guides the choice of M ′ to
obtain the best guarantee.

Let L(u) and L(v) be random variables that indicate the labels that get assigned
to u and v by the algorithm.

Lemma 4.1. In any given iteration, the probability of an unassigned vertex u
getting a label i in that iteration is exactly x̄(u, i)·M ′/(k+M ′−1). The probability of u
getting assigned in the iteration is M ′/(k+M ′−1). Therefore Pr [L(u) = i] = x̄(u, i).

Proof. If � is picked in the first step of an iteration, the probability of assigning
i to u is exactly x̄(u, i), if i ∈ I�, and zero otherwise. The number of intervals that
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contain i is M ′, and hence the probability of u getting i in an iteration is simply
x̄(u, i) ·M ′/(k + M ′ − 1).

It also follows from Lemma 4.1 that with high probability all vertices are assigned
in O(k log n) iterations. The following lemma bounds the expected distance between
L(u) and L(v) as a function of M ′. Recall dLP (u, v) =

∑
i,j d(i, j) · x̄(u, i, v, j).

Lemma 4.2. The expected distance between L(u) and L(v) satisfies the following
inequality:

E [d(L(u), L(v))] ≤
(

2 + max

{
2M

M ′ ,
M ′

M

})
dLP (u, v).

Theorem 4.3. There is a randomized (2 +
√

2)-approximation algorithm for the
metric labeling problem when the metric is truncated linear.

Proof. We note that the algorithm and the analysis easily generalizes to the case
when M ′ is a real number. We choose M ′ =

√
2M and the theorem follows from

Lemmas 4.1 and 4.2.
The algorithm that we described can be derandomized using the method of con-

ditional probabilities. The proof uses standard ideas, and hence we omit it.
For the rest of the section, we restrict our attention to one particular edge (u, v) ∈

E(G). We analyze the effect of the rounding on the expected distance with the goal
of proving Lemma 4.2. To analyze the process, we consider an iteration before which
neither u or v is assigned. If, in the current iteration, only one of u or v is assigned
a label, that is, they are separated, we will pay a distance of M . If both of them
are assigned, then we pay a certain distance based on their labels in the interval.
The main quantity of interest is the expected distance between the labels of u and v
in a single iteration conditioned under the event that both of them are assigned in
this iteration. Recall that a link refers to the edges in the complete bipartite graph
H(u, v).

Given an interval I� = [�, � + M ′ − 1], we partition the interesting links for I�
into three categories, internal, left crossing, and right crossing. The internal links
denoted by int(I�) are all the links (u, i, v, j) with i, j ∈ I�; the left crossing links
denoted by lcross(I�) are those with min{i, j} < � and max{i, j} ∈ I�; and the right
crossing links denoted by rcross(I�) are those with min{i, j} ∈ I� and max{i, j} >
� + M ′ − 1. It is clear that no link is both left and right crossing. Let cross(I�)
denote lcross(I�)∪rcross(I�). See Figure 4.1 for an example. It is easy to see that
e is not relevant to I� if i, j /∈ I�.

We set up some notation that we use for the rest of this section. For a link
e = (u, i, v, j) let dlin(e) = |i − j| and d(e) = d(i, j) = min(M,dlin(e)) be the linear
distance and truncated linear distance, respectively, between i and j. The quantity
x̄e is compact notation for x̄(u, i, v, j). Consider a link e that crosses the interval I�
and let i be the label of e that is internal to I�. We denote by d�(e) the quantity
(� + M ′ − 1 − i), the linear distance from i to the right end of the interval. The
quantity x̄(u, I�) refers to

∑
i∈I�

x̄(u, i), the flow of u assigned by the LP to labels
in I�.

Lemma 4.4. The probability of u and v being separated given that � was chosen
in the first step of the iteration is at most

∑
e∈cross(I�)

x̄e.

Proof. The probability of separation is exactly |x̄(u, I�) − x̄(v, I�)|, which can
easily be seen to be upper bounded by

∑
e∈cross(I�)

x̄e.
Lemma 4.5. For two vertices u and v, unlabeled before an iteration, let p� be

the expected distance between them, conditioned on the event that � was chosen in the
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l

right crossing linksleft crossing link

internal links

u

v

I

Fig. 4.1. Illustration of interesting links for I�.

first step of the iteration and both were assigned a label in I�. Then

p� ≤
∑

e∈cross(I�)

d�(e)x̄e +
∑

e∈int(I�)

dlin(e)x̄e.

We provide some intuition before giving the formal proof. Once � is fixed, the
rounding is exactly the same as that for the line metric when restricted to the interval
I�. From Lemma 3.1 we know the exact expected cost of the rounding. However, we
do not have an equivalent of Lemma 3.2 to bound the LP cost, because I� is only a
subinterval of the full line and also because of the truncation. The main difficulty
is with links that belong to cross(I�). By charging each of the crossing links e, an
amount equal to d�(e) (instead of d(e) that LP paid), we are able to pay for the
expected cost of rounding. In other words, we charge the interesting links of I� to
pay for the optimal linear metric transshipment flow induced by the fractional values
x̄(u, i) and x̄(v, i), i ∈ I�, when restricted to I�.

Proof. Fix an � and w.l.o.g. assume that x̄(u, I�) ≥ x̄(v, I�). With probability
q = x̄(v, I�), both u and v get labels from I�. We analyze the expected distance
conditioned on this event. Once the interval I� is fixed, the rounding is very similar
to that of the linear metric case. For 0 ≤ i < M ′ let α(u, i) =

∑j+i
j=� x̄(u, j). The

quantity α(u, i) sums the amount of flow of u in the first i + 1 labels of the interval
I�. In the following analysis we assume that distances within I� are linear and ignore
truncation. This can only hurt us. Following the reasoning in Lemma 3.1, the expected

distance between u and v is equal to
∑M ′−1

i=0 |min{q, α(u, i)}−α(v, i)|, which we upper

bound by
∑M ′−1

i=0 |α(u, i) − α(v, i)|. We claim that

M ′−1∑
i=0

|α(u, i) − α(v, i)| ≤
∑

e∈cross(I�)

d�(e)x̄e +
∑

e∈int(I�)

dlin(e)x̄e.

To prove this claim, we consider each link e ∈ cross(I�)∪ int(I�) and sum its contri-
bution to the terms qi = |α(u, i) − α(v, i)|, 0 ≤ i < M ′. Let e = (u, a, v, b) ∈ int(I�).
It is clear that e contributes exactly x̄e to qi if a ≤ i and b > i or if a > i and b ≤ i.
Otherwise its contribution is 0. Therefore, the overall contribution of e to

∑
qi is

x̄e|a− b| = x̄edlin(e).
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Now suppose e = (u, a, v, b) ∈ lcross(I�). Assume w.l.o.g. that a ≥ � and b < �;
the other case is similar. Link e will contribute x̄e to α(u, i) for a− � ≤ i < M ′ and
contributes 0 to α(v, i) for 0 ≤ i < M ′ since b is outside the interval I�. Therefore,
the contribution of e to qi is x̄e for a − � ≤ i < M ′ and 0 otherwise. The overall
contribution of e to

∑
qi is x̄e|� + M ′ − 1 − a| = d�(e)x̄e. A similar argument holds

for the case when e ∈ rcross(I�).
Proof of Lemma 4.2. For a given iteration before which neither u nor v has a

label, let Pr [u ∧ v], Pr [u⊕ v], and Pr [u ∨ v] denote the probabilities that u and v
are both assigned, exactly one of them is assigned, and at least one of them is assigned,
respectively. We upper bound the quantity E [d(L(u), L(v))] as follows. If u and v
are separated in some iteration, we upper bound their resulting distance by M . Using
this simplification, E [d(L(u), L(v))] is bounded by the quantity below:

Pr [u⊕ v] ·M + Pr [u ∧ v] · E [d(L(u), L(v))|u ∧ v]

Pr [u ∨ v]
.

We upper bound the above expression as follows:
• We lower bound Pr [u ∨ v] by Pr [u], which by Lemma 4.1 is equal to M ′/(k+

M ′ − 1).
• We upper bound Pr [u⊕ v] by 1

k+M ′−1

∑
�

∑
e∈cross(I�)

x̄e using Lemma 4.4.
• By the definition of p� in Lemma 4.5 we get the following:

Pr [u ∧ v]E [d(L(u), L(v))|u ∧ v] =
1

k + M ′ − 1

∑
�

p�.

Putting all these together and using Lemma 4.5 to bound p�,

E [d(L(u), L(v))] ≤ 1

M ′

∑
�

⎛⎝ ∑
e∈cross(I�)

(M + d�(e))x̄e +
∑

e∈int(I�)

dlin(e)x̄e

⎞⎠
≤ 1

M ′

∑
e

x̄e

⎛⎝ ∑
cross(I�)�e

(M + d�(e)) +
∑

int(I�)�e

dlin(e)

⎞⎠ .

Lemma 4.6 shows that∑
cross(I�)�e

(M + d�(e)) +
∑

int(I�)�e

dlin(e) ≤
(
2M ′ + max{2M, (M ′)2/M}

)
d(e).

It follows that

E [d(L(u), L(v))] ≤ 1

M ′
(
2M ′ + max{2M, (M ′)2/M}

)∑
e

x̄ed(e)

≤ (2 + max{2M/M ′,M ′/M}) · dLP (u, v).

This finishes the proof.
Lemma 4.6. Let e = (u, i, v, j) be a link. Then∑
cross(I�)�e

(M + d�(e)) +
∑

int(I�)�e

dlin(e) ≤
(
2M ′ + max

{
2M, (M ′)2/M

})
d(e).

Proof. Let d̄(e) =
∑

cross(I�)�e(M + d�(e)) +
∑

int(I�)�e dlin(e). We evaluate d̄(e)

separately for three different types of links based on their lengths. Recall that M ′ ≥ M
and hence d(e) ≤ M ≤ M ′ for all links e. Let e correspond to the link (u, i, v, j) in
H(u, v) and w.l.o.g. assume that i ≤ j; the other case is similar. Also recall that
dlin(e) = |i− j|.
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• dlin(e) ≥ M ′. In this case it is clear that e is not an internal edge for any I�;
hence

∑
int(I�)�e dlin(e) = 0. Also d(e) = M . Therefore

d̄(e) =
∑

cross(I�)�e

(M + d�(e))

=
∑

lcross(I�)�e

(M + d�(e)) +
∑

rcross(I�)�e

(M + d�(e))

=

j∑
�=j−M ′+1

(M + M ′ + �− 1 − i) +

i∑
�=i−M ′+1

(M + M ′ + �− 1 − i)

≤ M ′(2M + M ′)

= M ′(2 + M ′/M)M = M ′(2 + M ′/M)d(e).

• dlin(e) < M . In this case d(e) = dlin(e).

d̄(e) =
∑

cross(I�)�e

(M + d�(e)) +
∑

int(I�)�e

dlin(e)

=
∑

lcross(I�)�e

(M + d�(e)) +
∑

rcross(I�)�e

(M + d�(e))

+
∑

int(I�)�e

dlin(e)

=

j∑
�=i+1

(M + M ′ + �− 1 − i) +

j−M ′∑
�=i−M ′+1

(M + M ′ + �− 1 − i)

+

i∑
�=j−M ′+1

dlin(e)

≤ (2M ′ + 2M − dlin(e))dlin(e)

≤ (2M ′ + 2M)dlin(e)

= M ′(2 + 2M/M ′)d(e).

• M ≤ dlin(e) < M ′. In this case d(e) = M .

d̄(e) =
∑

lcross(I�)�e

(M + d�(e)) +
∑

rcross(I�)�e

(M + d�(e)) +
∑

int(I�)�e

dlin(e)

=

j∑
�=i+1

(M + M ′ + �− 1 − i) +

j−M ′∑
�=i−M ′+1

(M + M ′ + �− 1 − i)

+

i∑
�=j−M ′+1

dlin(e)

= (2M ′ + 2M − dlin(e))dlin(e)

≤ M ′(2M + M ′)

= M ′(2 + M ′/M)d(e).
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4.1. The truncated quadratic distance on the line. Consider the label
space 1, 2, . . . , k on the line where the distance function d(i, j) = min{M, |i − j|2}.
This is the truncated version of the quadratic distance. We note that the quadratic
distance is not a metric. However, as mentioned earlier, this distance function arises in
image processing applications. In subsection 3.3 we showed that our LP formulation
gives an optimal solution for the quadratic distance on the line. For the truncated
version of this distance we can use the algorithm from section 4. By choosing M ′ =√
M we can show the following theorem.

Theorem 4.7. The integrality gap of LP (I) for the truncated quadratic distance
is O(

√
M).

5. General metrics.

5.1. Integrality gap on general metrics. We now show that the integrality
gap of the LP formulation is O(log k) on general metrics. This gives an alternative
way to obtain the result of Kleinberg and Tardos [26]. The latter algorithm uses the
approach of first approximating the given metric probabilistically by a hierarchically
well-separated tree (HST) metric [2] and then using an LP formulation to solve the
problem on tree metrics. The Kleinberg–Tardos LP formulation has only an O(1)
integrality gap on HST metrics. Since any arbitrary k-point metric can be probabilis-
tically approximated by an HST metric with an O(log k) distortion [16], their result
follows. In contrast, our approach is based on directly using our LP formulation on
the given general metric. As a first step, we use the LP solution to identify a de-
terministic HST metric approximation of the given metric such that the cost of our
fractional solution on this HST metric is at most O(log k) times the LP cost on the
original metric. This first step is done by using the following proposition from [16].
A weaker version was shown earlier in [9, 3] with a bound of O(log k log log k).

Proposition 5.1. Let d be an arbitrary k-point metric and let α be a nonnegative
function defined over all pairs of points in the metric. Then d can be deterministically
approximated by an HST metric dT such that∑

i,j

α(i, j) · dT (i, j) ≤ O(log k)
∑
i,j

α(i, j) · d(i, j).

Given an optimal solution x̄ to our LP formulation, we apply Proposition 5.1
with the weight function α(i, j) =

∑
(u,v)∈E w(u, v) · x̄(u, i, v, j) for 1 ≤ i, j ≤ k.

Thus, α(i, j) is the fractional weight of edges between i and j. Let dT denote the
resulting HST metric. Since we are changing only the metric on the labels and not
the assignments provided by the LP, the fractional solution is a feasible solution for
this new metric and has cost at most O(log k) · C∗, where C∗ is the optimal LP cost
for the original metric. Thus, if we can now round our fractional solution on dT by
introducing only a constant factor increase in the solution cost, we will obtain an
O(log k)-approximation algorithm. We prove this by showing that on any tree metric,
our LP formulation is at least as strong as the Kleinberg–Tardos LP formulation (for
tree metrics).

Given an edge weighted tree that defines the metric on the labels, we root the
tree at some arbitrary vertex. Let Ta denote the subtree hanging off a vertex a in
the rooted tree and let T denote the set of all such trees. For any tree T ∈ T we
denote by �(T ) the length of the edge leaving the root of T to its parent. Let xT (u)
be compact notation for

∑
i∈T x(u, i), the fractional assignment of the LP to labels
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in the subtree T . With this notation the LP formulation in [26] is as follows:

(KT) min
∑
v∈V

k∑
i=1

c(u, i) · x(u, i) +
∑

(u,v)∈E

w(u, v)
∑
T∈T

�(T ) · |xT (u) − xT (v)|

subject to

k∑
i=1

x(u, i) = 1 ∀ u ∈ V,

x(u, i) ≥ 0 ∀ u ∈ V and i ∈ 1, . . . , k.

Let x̄ be a solution to our formulation (I). As we remarked in section 3.1, for both
(I) and (KT) above, the values x̄(u, i) completely determine the cost. We will show
that cost of (KT) on x̄ is smaller than that of (I). Both linear programs (I) and (KT)
coincide regarding the labeling cost. For each edge (u, v) ∈ E we will show that LP
distance for (u, v) is smaller in (I) than (KT). This is based on the following claim.

Claim 5.2. For any feasible solution x̄ of (I),∑
T∈T

�(T ) · |x̄T (u) − x̄T (v)| ≤
∑
i,j

d(i, j) · x̄(u, i, v, j).

The proof of the above claim is straightforward and simply relies on the fact
that the distance between two vertices in a tree metric is defined by the unique path
between them. We omit the details. We obtain the following theorem from the above
discussion.

Theorem 5.3. The integrality gap of LP (I) on a k-point metric is O(log k).

5.2. Reduction to zero-infinity assignment costs. We now describe a trans-
formation for the general problem that essentially allows us to eliminate the label
assignment cost function. This transformation reduces an instance with arbitrary
label assignment cost function c to one where each label assignment cost is either 0
or ∞. We refer to an instance of this latter type as a zero-infinity instance. Our
transformation exactly preserves the cost of any feasible solution but in the process
increases the number of labels by a factor of n. This provides some evidence that
the label cost assignment function does not play a strong role in determining the
approximability threshold of the metric labeling problem. In particular, existence of
a constant factor approximation algorithm for zero-infinity instances would imply a
constant factor approximation algorithm for general instances as well.

From an instance I = 〈c, d, w, L,G(V,E)〉 of the general problem, we create an
instance of the zero-infinity variant I ′ = 〈c′, d′, w, L′, G(V,E)〉 as follows. We define
a new label set L′ = {iu | i ∈ L and u ∈ V }, i.e., we make a copy of L for each vertex
in G. The new label cost assignment function is given by c′(u, iv) = 0 if v = u and ∞
otherwise. Thus, each vertex has its own copy of the original label set, and any finite
cost solution to I ′ would assign each vertex a label from its own private copy.

Let Wu =
∑

(u,v)∈E w(u, v) for any vertex u ∈ V . The new distance metric on

L′ is defined in terms of the original distance metric as well as the original label cost
assignment function. For i 	= j or u 	= v,

d′(iu, jv) = d(i, j) +
c(u, i)

Wu
+

c(v, j)

Wv
,
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and d′(iu, iu) = 0. It can be verified that d′ is indeed a metric and that any solution
to instance I can be mapped to a solution to instance I ′, and vice versa, in a cost-
preserving manner. The proof of the following theorem follows in a straightforward
manner from the above construction.

Theorem 5.4. If there exists a f(n, k)-approximation algorithm for zero-infinity
instances of the metric labeling problem, then there exists a f(n, nk)-approximation
algorithm for general instances.

In fact, there is an even simpler reduction to zero-infinity instances, conveyed to
us by Chuzhoy [10], which does not change the input metric but changes the graph
in a very simple way. For each vertex v and label j such that c(v, j) > 0, add a new
vertex zvj to the graph for which

c(zvj , �) =

{
∞ if � = j,
0 if � 	= j.

A new edge (v, zvj) is added to the graph. Let � 	= j be the label that minimizes
d(j, �) such that d(j, �) > 0. The weight of the edge (v, zvj) is set to

w(v, zvj) =
c(v, j)

d(j, �)
.

Set c(v, j) = 0 for 1 ≤ j ≤ k. We now obtain a new instance of the metric labeling
problem by the above transformation. Note that the metric has not been altered. It
is not hard to verify that this reduction preserves the value of an optimal solution
and that an r-approximation to the new instance also yields an r-approximation to
the original instance. Hence the following theorem is obtained.

Theorem 5.5 (see Chuzhoy [10]). If there is a f(n, k)-approximation algorithm
for zero-infinity instances of metric labeling, then there is a f(n+nk, k)-approximation
algorithm for general instances.

6. Conclusions. As mentioned in section 1, our LP formulation has integrality
gap 1 when G is a tree. We give a brief sketch of the idea. Consider an edge (u, v)
in G where u is a leaf connected to v. If v is assigned a label i in some solution,
then it is easy to see that an optimal assignment to u is to assign it a label j, where
c(u, j) + w(u, v)d(i, j) = mink(c(u, k) + w(u, v)d(i, k)). Hence the assignment to u is
completely fixed by the assignment to v. We can eliminate u from G and incorporate
the cost of u in the assignment cost of v as follows: set c′(v, i) = c(v, i)+mink(c(u, k)+
w(u, v)d(i, k)). This transformation can be repeated until there is only one node left
and the optimal solution then is trivial. The same argument above can be used to
show optimality of our LP formulation for trees. We leave the details to the reader.

Chuzhoy and Naor [11] recently obtained an Ω(
√

log k)-factor hardness of ap-
proximation for the metric labeling problem. The 0-extension problem generalizes
the multiway cut problem and is a special case of the metric labeling problem. As
mentioned earlier, Calinescu, Karloff, and Rabani [8] established an Ω(

√
log k) lower

bound on the integrality gap of the metric relaxation for the 0-extension problem.
Fakcheroenphol et al. [15] improved the upper bound on the integrality gap of the
metric relaxation to O(log k/ log log k). It is worthwhile to study the integrality gap
of our formulation for this restricted problem. See [1] for results in this direction.

The truncated quadratic distance function is of particular interest to applications
in computer vision. Although this distance function does not form a metric, it is
quite possible that a constant factor approximation is achievable. Here, too, our
formulation might be of use in developing improved algorithms.
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Abstract. Maintaining a monotonic labeling of an ordered list during the insertion of n items
requires Ω(n logn) individual relabelings, in the worst case, if the number of usable labels is only
polynomial in n. This follows from a lower bound for a new problem, prefix bucketing.
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1. Introduction. The online list-labeling problem can be viewed as one of linear
density control. A sequence of n distinct items from some dense, linearly ordered set,
such as the real numbers, is received one at a time, in no predictable order. Using
“labels” from some discrete linearly ordered set of adequate but limited cardinality,
the problem is to maintain an assignment of labels to the items received so far, so that
the labels are ordered in the same way as the items they label. To make room for the
next item received, it might be necessary to change the labels assigned to some of the
items previously received. The cost is the total number of labelings and relabelings
performed.

There are practical applications of online list labeling to the design of efficient data
structures and algorithms. List labeling has been an especially fruitful approach to
the order maintenance problem [Di82, Ts84, DS87, DZ90]. This problem involves the
insertion and deletion of items into a linear list and response to online queries on the
relative order of items currently in the list. A low-cost online list-labeling algorithm
provides an efficient solution (or sometimes a component of an even more efficient
solution) to the order maintenance problem, provided its computational overhead is
also low. For further discussion of this and other specific applications, see the earlier
papers by Dietz and his collaborators [Di82, DS87, DZ90]. In addition, it seems
likely that our problem and related problems of dynamic density control will prove
fundamental to the spatially structured maintenance in bounded media of changing
data, such as text and pictures on a computer screen [Zh93].

When the total number of labels is large enough, it is possible to avoid completely
any need to relabel. The algorithm is simply to assign to each arriving item a label
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closest to midway through the range of unused labels that would work. In particular,
if the total number of labels is at least 2n − 1, then there always will be at least one
label in the needed range. (By induction on i ≤ n, in fact, there will be at least
2n+1−i − 1 labels that would work for the ith item received.) But if the total number
of labels is any less, then some relabeling will be required in the worst case (by a
similar induction).

When the number of labels is merely at least n1+ε for some ε > 0, it is possible to
limit the worst-case cost for online labeling of n items to O(n log n) [Di82, Ts84, DS87].
Although the analyses are subtle, the best of the algorithms are both simple and fast,
and hence practically useful. In this paper we show that the upper bound is tight
and in fact that Ω(n log n) relabelings are required even for an algorithm that is
complicated and slow.

Our proof is a surprising adaptation of a lower-bound approach sketched by Dietz
and Zhang [DZ90]. That approach seemed to be a dead end that addressed only
strategies that satisfy the following “smoothness” property: The list items relabeled
before each insertion form a contiguous neighborhood of the list position specified
for the new item, and the new labels are as widely and equally spaced as possible.
Although no good nonsmooth algorithms have been proposed or analyzed, it has
seemed difficult to rule them out. (This is the usual sort of lower-bound predicament.)
The key to our adaptation is to imagine appropriate dynamic “recalibrations” of the
label space, in terms of which the arbitrary strategy does look fairly smooth.

To facilitate the elaboration and adaptation of the earlier argument, we formu-
late and separately attack variants of a previously unstated combinatorial “bucketing
problem” that really lies at the heart of the argument. In the unordered bucketing
problem, the challenge is to cheaply insert n items, one at a time, into k buckets. The
cost of each insertion is the number of items (including the new one) in the bucket
chosen for that insertion. The optimum total cost for the task as described so far is
clearly Ω(n2/k), but we allow an additional operation: Between insertions, we can
redistribute the contents within any subset of the buckets, at a cost equal to the total
number of items in those buckets. Now O(n log n) is an upper bound on the required
cost, by a well-known strategy,1 provided k is Ω(log n). On the other hand, we prove
in section 3 that Ω(n log n/ log k) is always a lower bound on the required cost, and
we conjecture that Ω(n log n) is a lower bound when k is O(log n). We show in section
2 that either lower bound leads to a similar lower bound for the problem of primary
interest, the n-item, polynomial-label labeling problem.

The prefix bucketing problem is like the unordered bucketing problem, except with
the constraint that, in terms of some fixed linear order of the buckets, the subset for
each redistribution must be a prefix of the bucket list. (The well-known strategy
already cited1 still works.) Under this constraint, each redistribution may as well
move all items involved into the very last bucket of the chosen prefix. Section 2 shows
that even a lower bound on this bucketing problem leads to a labeling lower bound.
In section 4, we prove the needed lower bound on prefix bucketing.

1The strategy works even for the more restricted “prefix” version of the bucketing problem.
Like the Hennie–Stearns simulation of multiple Turing machine tapes [HS66], it is modeled after
binary counting: Just let the redistributions be forced by an exponentially growing sequence of
bucket-capacity limits, such as the powers of 2. This particular choice would result in a sequence of
involved-prefix lengths

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . .

that correspond to the propagation distances of binary “carries.”
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2. Relation to bucketing. This section is devoted to a proof of the following
relation, which will yield labeling lower bounds when combined with the bucketing
lower bounds of sections 3 and 4.

Theorem 2.1. When the number of labels is O(n1+ε) for some ε > 0, the worst-
case cost for online labeling of n items is at least proportional to the cost for prefix
bucketing of n items into O(log n) buckets.

A relabeling algorithm is normalized if the batch of items it (re)labels on each
insertion, including the newly inserted item, forms a contiguous sublist of the list re-
sulting from the insertion. Since noncontiguous relabelings can safely be deferred until
later, each labeling algorithm can be replaced at no additional cost by a normalized
one.

To prove a lower bound for the labeling problem, we show that each normalized
algorithm (and hence each algorithm of any kind) performs many relabelings when
confronted with some bad-case sequence of insertion requests. That sequence, which
will depend on the particular algorithm, will be determined by an “adversary” strategy
that interacts with the algorithm—each next insertion will be into a gap that the
adversary chooses based on the labeling decisions made by the algorithm in response
to earlier insertion requests.

Intuitively, the most promising strategy for the adversary is to insert the next
item into a gap between items in a part of the label space that is currently “relatively
crowded.” It seems difficult, however, to formulate an appropriate notion of crowd-
edness. Ordinary density, for instance, can vary depending on the size and choice of
neighborhood. A more robust notion of a “dense point” is a gap all of whose neigh-
borhoods (that include at least both the items delimiting the gap) are currently about
as dense as the entire label space. The following general lemma and its corollaries
show that such a dense point always does exist.

Dense-point Lemma. Consider any nonnegative, integrable function f on the
interval [0, 1]. For each (nontrivial) subinterval I, define

ρ(I) =
1

|I|

∫
I

f(x) dx.

Then there is some point x0 ∈ [0, 1] such that ρ(I) ≥ 1
2ρ([0, 1]) holds whenever I

includes x0.
Proof. For the sake of argument, suppose not. Then, for each point x, select

a spoiling interval that includes x and that is open in [0, 1]. (An interval is “open
in [0, 1]” if it is the intersection of [0, 1] itself and an ordinary open interval of real
numbers.) The selected open intervals cover the topologically compact set [0, 1], so
some finite subfamily must do so. If any point lies in three or more intervals of the
subfamily, then keep only the one that reaches farthest left and the one that reaches
farthest right. This leaves a finite family I that covers each point in [0, 1] either once
or twice, but each of whose members I satisfies ρ(I) < 1

2ρ([0, 1]). Therefore,∫
[0,1]

f(x) dx ≤
∑
I∈I

∫
I

f(x) dx =
∑
I∈I

ρ(I)|I|

<
∑
I∈I

1

2
ρ([0, 1])|I| = ρ([0, 1])

∑
I∈I

1

2
|I| ≤ ρ([0, 1]) =

∫
[0,1]

f(x) dx,

a contradiction.
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In our application of the Dense-point Lemma, the intervals I are sets of consec-
utive labels, and the density ρ(I) of such a set should be the fraction of those labels
currently in use as labels of items. We speak of the labels in use as being “populated”
by the items they label.

Dense-point Corollary 1. In each labeling, there is a label such that every
label-space subinterval containing that label is at least half as dense as the entire label
space. (The same applies to either of the two item-through-item gaps that include the
distinguished label, since they themselves are qualifying subintervals.)

Proof. If the total number of labels is m, then consider a function f that is
constantly 1 or 0 on each subinterval ((i− 1)/m, i/m), depending on whether the ith
label is or is not in use, respectively.

Dense-point Corollary 2. In each labeling, there is a populated label in the
middle third of the populated labels (where rounding is in favor of that middle third)
such that every label-space subinterval containing that label is at least one-sixth as
dense as the entire label space.

Proof. Remove the leftmost third and the rightmost third of the items (both
rounded down), and apply Dense-point Corollary 1 to the resulting labeling.

Although dense-point gaps always exist, it does not quite suffice for the adversary
always to insert into just any such gap. For example, if the adversary selects gaps
that satisfy the conclusion of Dense-point Corollary 1 in round-robin fashion for its
insertions, then the algorithm that always assigns a label closest to midway through
the requested gap will be able to maintain an essentially perfect spread without ever
relabeling any items at all. The problem is that this adversary forfeits an opportunity
to use its insertions to selectively increase congestion in a particular locality.

Here is a sketch of how our adversary will take advantage of its opportunity to
create congestion: It will try to keep the relocation of its insertion point “commen-
surate with” the relabeling response by the algorithm. That is, unless it has forced
the algorithm to move many items away from the insertion point, it will continue to
insert into and add congestion to the same neighborhood. To this end, it will actually
maintain an entire nest of k = O(log n) distinct intervals of labels that converge down
to the insertion point, in a way that guarantees that the population of the smallest
enclosing one of the intervals will be proportional to the number of relabelings per-
formed. This will “justify” relocation of the insertion point to any appropriate gap in
that interval, since the relabeling could have reconcentrated the population arbitrarily
within the interval.

In more detail, our adversary maintains a nest of label-space intervals I1 ⊃ I2 ⊃
· · · ⊃ Ik that satisfy the five conditions listed below. For each label interval I,
we denote the number of currently assigned labels and the total number of labels by
pop(I) (for “population”) and area(I), respectively. If I ⊃ I ′, then the difference I−I ′

consists of (at most) a left interval and a right interval; we denote their respective
populations by leftpop(I − I ′) and rightpop(I − I ′).

1. I1 is the whole label space.
2. pop(Ik) = O(1).
3. For every i, area(Ii+1) ≤ area(Ii)/2.
4. For every i, pop(Ii+1) = Ω(pop(Ii)).
5. For every i, leftpop(Ii − Ii+1) = Θ(rightpop(Ii − Ii+1)).

As promised, it follows that k = O(log n) (by conditions 1–3) and that the population
of the smallest one of the intervals that encloses an insertion’s batch of relabelings
is at most some constant times the number of relabelings in the batch (by conditions
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4 and 5, since the algorithm is normalized). Therefore, if we consider the successive
differences, Ii − Ii+1, and the innermost interval, Ik, to be the buckets, and if our
adversary can avoid modifying intervals larger than the smallest one that encloses an
insertion’s batch of relabelings, then the algorithm solves the resulting (prefix) bucket-
ing problem at a total cost that is at most some constant times the number of relabel-
ings it performs. Since the former has to be Ω(n log n/ log k) = Ω(n log n/ log log n),
for example (the lower bound in section 3), so does the latter.

Finally, the following lemma ensures that our adversary can appropriately restore
the invariant conditions after each insertion’s batch of relabelings by the algorithm,
replacing only the intervals reached by the relabelings.

Restoration Lemma. Each sufficiently long and populous interval I has a
subinterval I ′ such that

area(I ′) ≤ area(I)/2,
pop(I ′) = Ω(pop(I)), and
leftpop(I − I ′) = Θ(rightpop(I − I ′)).

Proof. From a dense point in the middle population third of I (provided by Dense-
point Corollary 2), move boundaries leftward and rightward through population at
rates proportional to the total populations in those directions (which can differ by at
most a factor of 2), until half the area is covered. (If this requires a fraction of an
item in either direction, then just stop one label short of that item’s label.)

3. Lower bound for unordered bucketing. This section is devoted to the rel-
atively easy proof of the following lower bound, which we conjecture can be tightened
to Ω(n log n) when k is O(log n).

Theorem 3.1. The cost for unordered bucketing of n items into k buckets is
Ω(n log n/ log k).

The proof is based on the following measure of a configuration’s complexity:

C =
k∑

i=1

ni log ni,

where ni is the number of items in bucket i. (Since limx↓0 x log x = 0, it works well
to define 0 log 0 to be 0.)

Complexity-range Lemma. If n1 + · · ·+nk = n, where each ni is nonnegative,
then

∑
ni log ni lies between n log n and n log n− n log k.

Proof. It is easy to argue that the sum is maximized when some ni equals n, and
minimized when every ni equals n/k.

So C starts out at 0 and finally reaches a value no smaller than

F = n log n− n log k.

We show below, however, that no operation increases C by more than O(log k) times
the cost of the operation. Therefore, the total cost will have to be at least F/ log k =
Ω(n log n/ log k).2

The main operation to consider is the reorganization of k′ ≤ k buckets containing
a total of n′ ≤ n items. By definition, the cost of the operation is n′. And, by the
Complexity-range Lemma again, the increase in C is indeed at most

n′ log k′ ≤ n′ log k = O(n′ log k).

2For bucketing to be nontrivial, n and k have to be at least 2. In that case, log n and log k are
safely positive if we use some logarithmic base strictly between 1 and 2.
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The only other operation is insertion into an n′-item bucket. If n′ = 0, then there
is no change in C, so assume n′ ≥ 1. Then the cost is exactly n′ + 1, and the increase
in C is exactly

(n′ + 1) log(n′ + 1) − n′ log n′

= log(n′ + 1) + n′(log(n′ + 1) − log n′)

= log(n′ + 1) + n′O(1/n′),

which is certainly O((n′ + 1) log k).

4. Tight lower bound for prefix bucketing. This section is devoted to a
proof of the following tight lower bound.

Theorem 4.1. The cost for prefix bucketing of n items into k = O(log n) buckets
is Ω(n log n).

Recall that we need only consider algorithms each of whose redistributions moves
all items involved into the very last bucket of the chosen prefix.

For our proof, it will be convenient to have terminology for the current configu-
ration of (a prefix of) a bucket list and to generalize to allow fractional numbers of
items in a bucket. If k is a positive integer and n is a positive real number, then an
(n, k)-configuration is a list L = (n1, . . . , nk) of k nonnegative real numbers such that∑

ni = n. We regard ni as the (possibly fractional) number of items in bucket i.
For each (n, k)-configuration L = (n1, . . . , nk), we again define

C(L) =
k∑

i=1

ni log ni,

as in the previous section’s proof. The rest would be easy again if we could show
now that no operation increases C by more than some constant times the cost of the
operation. Unfortunately, there are counterexamples: The operation that transforms
the configuration (n/k, . . . , n/k, n/k) to (0, . . . , 0, n), for example, has cost n but
increases C by n log k.

What we can show is weaker but still sufficient: Enough of the operations to
account for most of the total increase in C do satisfy the desired condition. Intuitively,
the sort of counterexample given above cannot be followed soon by similar gains,
because the zeroed positions would have to grow back first. The idea for our proof,
therefore, is to show that the troublesome operations use up some other sort of limited
potential.

To this end, we define a second measure of complexity for each (n, k)-configuration
L = (n1, . . . , nk):

M(L) =
k∑

i=1

ini.

When C makes its best progress (as in our counterexample above), M does even
better (increasing by Ω(nk) in the example). But the potential for M to do better is
limited by the fact that its total growth is not large compared to that of C. It follows
that we can account for most of the increase in C by focusing on operations for which
the increase in M is not very large compared to the increase in C. We will show that
the very worst such cases involve very specific “before” configurations (and of course
very specific “after” configurations, because the redistributions we consider move all
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items to the last bucket involved), for which we can show by relatively straightforward
calculation that the change in C is at most some constant times the number of items
involved (i.e., the cost), as desired.

Now let us follow our plan more carefully. For n and k as in the theorem, let d be a
constant so large that k ≤ d log n. Assuming n is large enough so that d log n ≤ n1/2,
the complexity C starts out at 0 and finally reaches a value

Cfinal ≥ n log n− n log k ≥ 1

2
n log n.

The measure M starts out at 0, grows monotonically, and finally reaches a value

Mfinal ≤ kn ≤ dn log n.

Over all, therefore, the increase in C is at least 1
2d times the increase in M . Consider

the steps (both insertion steps and redistribution steps) on which we have

∆C <
1

4d
∆M,

where ∆C and ∆M are the respective associated increases in C and M on the step.
Such steps can account for at most half the overall change in C. Therefore, we can
restrict attention to the other steps, on each of which we must have

∆M ≤ 4d∆C.

We show that on each such step, regardless of its context, ∆C is at most some
constant times the number of items involved, which is the bucketing cost, and hence
that the total bucketing cost for such steps has to be Ω(n log n). We saw at the end of
section 3 that this fact holds for every insertion step, so we restrict further attention
to the analysis of redistribution steps.

We directly analyze such a redistribution step only when the configuration L of
the involved-bucket prefix is of a special form. (This is where fractional numbers of
items are convenient.) The first sequence of lemmas below, culminating in Lemma
4.4, shows that it is no loss of generality to restrict attention to this form; and the
final lemmas provide the needed estimates involving ∆C and ∆M when L is of this
form. (Because it completely determines the redistribution (all items to the furthest
involved bucket), L does determine both ∆C and ∆M , which we thus denote (∆C)(L)
and (∆M)(L) in those final lemmas.)

Call an (n, k)-configuration L = (n1, . . . , nk) nondecreasing if ni ≤ ni+1 holds for
every i < k, and call it exponential, with ratio a and with k′ initial 0’s, if ni = 0 for
every i ≤ k′ and ni = ani+1 for every i ∈ {k′ + 1, . . . , k − 1}.

Lemma 4.2. For each (n, k)-configuration L that is not nondecreasing, there is a
nondecreasing (n, k)-configuration L′ with C(L′) = C(L) and M(L′) > M(L).

Proof. Reorder the configuration so that it is nondecreasing.
Lemma 4.3. For each nondecreasing (n, k)-configuration L that is not expo-

nential, there is a nondecreasing (n, k)-configuration L′ with C(L′) < C(L) and
M(L′) = M(L).

Proof. First, note that we lose no generality if we assume k = 3. If L =
(n1, . . . , nk) is nondecreasing but not exponential, then there has to be some i ≤ k−2
such that (ni, ni+1, ni+2) is an (ni + ni+1 + ni+2, 3)-configuration with these same
properties. It is clear from the definitions of C and M that the desired conclusion for
(ni, ni+1, ni+2) will yield the conclusion for L, too.
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For k = 3, the idea is to take

L′ = (n1 − x, n2 + 2x, n3 − x)

for some nonzero x. Since L is not exponential and k is only 3, there can be no
initial 0’s. In the case that n1 > (n2/n3)n2, x must satisfy 0 < x < n1, and, in
the case that n1 < (n2/n3)n2, it must satisfy −n2/2 < x < 0. Whatever x is, we
will have M(L′) = M(L). It remains only to show that some eligible x will yield
C(L′) < C(L).

For each prospective x, let C(x) denote the resulting value C(L′). It is enough
to show that

lim
x↓0

C ′(x) < 0 if n1 > (n2/n3)n2

and that

lim
x↑0

C ′(x) > 0 if n1 < (n2/n3)n2.

Expressed more explicitly,

C(x) = f(n1 − x) + f(n2 + 2x) + f(n3 − x),

where f(x) = x log x. It is straightforward to check that the derivative C ′(x) does
satisfy both requirements.

Lemma 4.4. For each (n, k)-configuration L, there is a nondecreasing, exponen-
tial (n, k)-configuration L′ with C(L′) ≤ C(L) and M(L′) ≥ M(L).

Proof. If the given configuration is not nondecreasing, then apply Lemma 4.2 one
time. Then, calling the result L, consider the set L of nondecreasing (n, k)-configu-
rations L′ that satisfy C(L′) ≤ C(L) and M(L′) = M(L). Since C is continuous on
the topologically compact set L, there is some L′ in L that minimizes C. By Lemma
4.3, that (n, k)-configuration must be exponential.

Let Ln,k+k′,a,k′ denote the nondecreasing, exponential (n, k + k′)-configuration
with ratio a and with k′ initial 0’s. Note that, for every k′, (∆C)(Ln,k+k′,a,k′) equals
(∆C)(Ln,k,a,0), and (∆M)(Ln,k+k′,a,k′) equals ∆M(Ln,k,a,0). (The first equality is
trivial, because the two “before” values of C are exactly the same and the two “after”
values of C are exactly the same. In the case of M , however, both the “before” values
and the “after” values do differ, but the differences are the same: nk′ (k′ for each full
item).)

Lemma 4.5. For each n, k, and a,

(∆C)(Ln,k,a,0) =

(
logA− B

A
log a

)
n and

(∆M)(Ln,k,a,0) =

(
B

A
− 1

)
n,

where

A =
k∑

i=1

ai and B =

k∑
i=1

iai.
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Proof. The calculations are exact and easy, each change being to (0, . . . , 0, n)
from (akn/A, . . . , a2n/A, an/A). The increase in M , for example, is

kn−
k∑

i=1

iak+1−in/A = kn−
k∑

i=1

(k + 1 − i)ain/A

= kn− (k + 1)An/A + Bn/A

=

(
B

A
− 1

)
n.

Corollary 4.6. If a < 1, then

(∆C)(Ln,k,a,0) <

(
log

1

1 − a

)
n.

Proof. Use the estimates

A < a/(1 − a), B > a, and a log a < 0.

Corollary 4.7. For each fixed k,

lim
a↑1

(∆C)(Ln,k,a,0)/n = (∆C)(Ln,k,1,0)/n = log k and

lim
a↑1

(∆M)(Ln,k,a,0)

(∆C)(Ln,k,a,0)
=

(∆M)(Ln,k,1,0)

(∆C)(Ln,k,1,0)
=

k − 1

2 log k
.

Lemma 4.8. There exists a pair of thresholds, a0 < 1 and k0, such that, whenever
a0 < a ≤ 1 and k > k0,

(∆M)(Ln,k,a,0)

(∆C)(Ln,k,a,0)
> 4d.

Proof. Choose k0 large, and then choose a0 < 1 large in terms of that k0. The
proof is by induction on k ≥ k0.

The base case, that

(∆M)(Ln,k0,a,0)

(∆C)(Ln,k0,a,0)

exceeds 4d whenever a0 < a ≤ 1, follows from Corollary 4.7. For the induction step,
it is enough to show that

(∆M)(Ln,k+1,a,0) − (∆M)(Ln,k,a,0)

(∆C)(Ln,k+1,a,0) − (∆C)(Ln,k,a,0)

exceeds 4d whenever a0 < a ≤ 1 and k ≥ k0.
In terms of A and B, the goal is for the following to exceed 4d:

E =
[(B + (k + 1)ak+1) − (A + ak+1)] − [B −A]

[(A + ak+1) log(A + ak+1) − (B + (k + 1)ak+1) log a] − [A logA−B log a]

=
kak+1

A log(1 + ak+1/A) + ak+1 log(A + ak+1) − (k + 1)ak+1 log a
.
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Since 0 < a ≤ 1 and k is large, ak+1/A ≤ 1/k is small enough that

loge(1 + ak+1/A) < ak+1/A or

log(1 + ak+1/A) < (log e)ak+1/A,

where e is the base of the natural logarithms. Since A ≤ k and ak+1 ≤ 1, we certainly
have

log(A + ak+1) ≤ log(k + 1).

Substituting these estimates, and canceling ak+1, we get

E >
k

log e + log(k + 1) − (k + 1) log a
.

Since k and a are large, this estimate finally does clearly exceed 4d.

The following corollary is just what we need to complete the proof.

Corollary 4.9. If (n, k)-configuration L satisfies

(∆M)(L)

(∆C)(L)
≤ 4d,

then it also satisfies (∆C)(L) = O(n), where the implicit constant depends on neither
n nor k.

Proof. By Lemma 4.4, since the conditions

C(L′) ≤ C(L) and M(L′) ≥ M(L)

respectively imply

(∆C)(L′) ≥ (∆C)(L) and (∆M)(L′) ≤ (∆M)(L),

it suffices to prove this when L is nondecreasing and exponential, say with ratio a,
and with no initial 0’s.

We deal with three separate cases: a “small” and k arbitrary, a “large” but k
“small,” and a and k both “large.” First, however, we have to specify appropriate
small-large thresholds. Recall the thresholds a0 and k0 from Lemma 4.8. For each
k ≤ k0 (k ≥ 2), the first part of Corollary 4.7 lets us select a threshold ak < 1 such
that

(∆C)(Ln,k,a,0)/n ≤ 1 + log k

holds whenever ak < a ≤ 1. Take amax = max0≤k≤k0
ak. We use amax and k0 as our

small-large thresholds.

Whenever a ≤ amax, Corollary 4.6 yields

(∆C)(L) ≤
(

log
1

1 − a

)
n ≤

(
log

1

1 − amax

)
n = O(n).

Whenever k ≤ k0 and a > amax ≥ ak, we have made sure that
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(∆C)(L) ≤ (1 + log k)n ≤ (1 + log k0)n = O(n).

And, whenever k > k0 and a > amax ≥ a0, Lemma 4.8 ensures that the ratio
(∆M)(L)/(∆C)(L) exceeds 4d.

5. Further discussion. When the number of usable labels is not at least n1+ε

for some ε > 0, the known upper bounds are not as low. With O(n) labels and exactly
n labels, the respective bounds are O(n log2 n) [IKR81] and O(n log3 n) [AL90]. These
bounds seem tight, and it can be shown that they are tight for smooth relabeling
strategies [DZ90, Zh93, DSZ05]; however, we do not yet see how to extend these
results to nonsmooth strategies, for which our Ω(n log n) is still the only known lower
bound. More generally, we would like a tight bound that is some nice function, say
F , of the number n of usable labels, with F (n) = Θ(n log3 n), F (cn) = Θ(n log2 n)
for each particular c > 1 and F (n1+ε) = Θ(n log n) for each particular ε > 0.

When the density of the labels in use grows large, the cost of further labeling
becomes more closely related to an alternative natural cost measure: the number of
labels spanned (rather than the number of items). Many of the same questions can be
asked of this cost measure, and the answers and arguments might be independently
interesting and enlightening. It turns out that the strongest version of the Ω(n log2 n)
lower bound mentioned above (for smooth insertion of n items into a linearly bounded
label space) is most natural in this setting, because then it turns out to hold regardless
of the size of the label space; the lower bound on the standard cost follows as a
corollary [DSZ05].

Even if it turns out that bucketing problems are not as closely related to on-
line labeling for smaller numbers of labels, we would like to see tighter and more
general analyses of their complexity as well. For k = o(log n) buckets, Jingzhong
Zhang has proposed, via personal communication, a prefix-bucketing algorithm of
cost O(n1+1/k(k!)1/k). More careful analysis of his algorithm yields an expression
that may be the exact optimum.

We also suspect that there are related continuous problems worthy of attention.
Such problems, for example, might model the management of snow banks beside a
path being plowed during an ongoing very large snow storm.

Acknowledgments. We thank Jun Tarui, Ioan Macarie, and two anonymous
referees for their criticisms, corrections, and suggestions.

REFERENCES

[AL90] A. Andersson and T. W. Lai, Fast updating of well-balanced trees, in Proceedings of the
2nd Scandinavian Workshop on Algorithm Theory (SWAT ’90), Lecture Notes in Comput.
Sci. 447, Springer-Verlag, Berlin, 1990, pp. 111–121.

[Di82] P. F. Dietz, Maintaining order in a linked list, in Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, ACM, New York, 1982, pp. 122–127.

[DS87] P. F. Dietz and D. D. Sleator, Two algorithms for maintaining order in a list, in Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, ACM, New
York, 1987, pp. 365–372.

[DSZ94] P. F. Dietz, J. I. Seiferas, and J. Zhang, A tight lower bound for on-line monotonic list
labeling, in Proceedings of the 4th Scandinavian Workshop on Algorithm Theory (SWAT
’94), Lecture Notes in Comput. Sci. 824, Springer-Verlag, Berlin, 1994, pp. 131–142.

[DSZ05] P. F. Dietz, J. I. Seiferas, and J. Zhang, Lower Bounds for Smooth List Labeling,
manuscript.

[DZ90] P. F. Dietz and J. Zhang, Lower bounds for monotonic list labeling, in Proceedings of the
2nd Scandinavian Workshop on Algorithm Theory (SWAT ’90), Lecture Notes in Comput.
Sci. 447, Springer-Verlag, Berlin, 1990, pp. 173–180.



LOWER BOUND FOR ONLINE LABELING 637

[HS66] F. C. Hennie and R. E. Stearns, Two-tape simulation of multitape Turing machines, J.
Assoc. Comput. Mach., 13 (1966), pp. 533–546.

[IKR81] A. Itai, A. G. Konheim, and M. Rodeh, A Sparse Table Implementation of Sorted Sets,
Research Report RC 9146, IBM Thomas J. Watson Research Center, Yorktown Heights,
1981.

[Ts84] A. K. Tsakalidis, Maintaining order in a generalized linked list, Acta Inform., 21 (1984),
pp. 101–112.

[Zh93] J. Zhang, Density Control and On-Line Labeling Problems, Tech. Report 481 and Ph.D.
thesis, University of Rochester, Rochester, NY, 1993.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 638–646

BRIDGING SEPARATIONS IN MATROIDS∗

JIM GEELEN† , PETR HLINĚNÝ‡ , AND GEOFF WHITTLE‡

Abstract. Let (X1, X2) be an exact k-separation of a matroid N . If M is a matroid that
contains N as a minor and the k-separation (X1, X2) does not extend to a k-separation in M , then
we say that M bridges the k-separation (X1, X2) in N . One would hope that a minor minimal bridge
for (X1, X2) would not be much larger than N . Unfortunately there are instances in which one can
construct arbitrarily large minor-minimal bridges. We restrict our attention to the class of matroids
representable over a fixed finite field and show that here minor-minimal bridges are bounded in size.
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1. Introduction. Seymour’s Decomposition Theorem [4] states that any regular
matroid can be obtained from graphic matroids, cographic matroids, and copies of
R10 using 1-, 2-, and 3-sums. The main step in the proof of this remarkable theorem
is to prove that

(1) If M is a 3-connected regular matroid that is neither graphic nor cographic,
then M contains a minor isomorphic to R10 or R12.

The matroids R10 and R12 are particular 3-connected regular matroids that are neither
graphic nor cographic. It is easy to handle the regular matroids containing R10.

(2) If M is a 3-connected regular matroid that contains R10 as a minor, then
M = R10.

Somewhat more complicated structures arise when considering R12. Let N be a
matroid with an exact k-separation (X1, X2), and let M be a matroid containing N
as a minor. If there exists a k-separation (Y1, Y2) of M where X1 ⊆ Y1 and X2 ⊆ Y2,
then we say that the k-separation (X1, X2) of N is induced in M . If (X1, X2) is not
induced in M , then we say that M bridges the k-separation (X1, X2) in N .

(3) R12 has a 3-separation (X1, X2) such that |X1|, |X2| = 6. Moreover, if M is a
regular matroid that contains R12 as a minor, then the 3-separation (X1, X2)
of R12 is induced in M .

The proof of (2), and of results like (2), is reduced to an elementary finite case
check by Seymour’s Splitter Theorem [4]. However, there is no satisfactory analogue
of Seymour’s Splitter Theorem that can be applied to prove results like (3). We
are interested in minor-minimal matroids that bridge the k-separation (X1, X2) in
N . Unfortunately, in some cases such matroids are arbitrarily large. Nevertheless,
Seymour [4] and Geelen, Gerards, and Kapoor [1] have shown that such matroids
are highly structured (see Theorem 3.4). The main result of this paper is that when
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we restrict our attention to matroids over a fixed finite field, the situation improves
significantly.

Theorem 1.1. For any finite field F and integer k there exists an integer n such
that if (X1, X2) is an exact k-separation in an F-representable matroid N and M is a
minor-minimal F-representable matroid that bridges the k-separation (X1, X2) in N ,
then |E(M)| ≤ |E(N)| + n.

We actually prove a stronger result, Theorem 7.1, that gives an explicit bound on
n. This reduces the proof of (3) to a finite case check. Of course this is not practical as
the number n is quite large. Nevertheless, we hope to use these results in subsequent
papers to obtain excluded minor characterizations.

For 1- and 2-separations we obtain stronger results that are independent of rep-
resentation. The first of these follows readily from results of Lemos and Oxley [3].

Theorem 1.2. If (X1, X2) is a separation in a matroid N and M is a minor-
minimal matroid that bridges the separation (X1, X2) in N , then |E(M)| ≤ |E(N)|+
2.

Theorem 1.3. If (X1, X2) is an exact 2-separation in a matroid N and M is a
minor-minimal matroid that bridges the 2-separation (X1, X2) in N , then |E(M)| ≤
|E(N)| + 5.

There is no analogue of Theorems 1.2 and 1.3 for 3-separations. Nevertheless,
while there may be arbitrarily large minor-minimal bridging matroids, we can bound
the branch-width of such matroids. (Branch-width is defined in section 8.)

Theorem 1.4. Let (X1, X2) be an exact k-separation in matroid N with branch-
width n. If M is a minor-minimal matroid that bridges the k-separation (X1, X2) in
N , then M has branch-width at most n + k.

Let (M1,M2, . . .) be an infinite sequence of matroids each of which is representable
over the same finite field and each with branch-width at most n. In [2] it is proved
that there exists i < j such that Mi is isomorphic to a minor of Mj . Combining this
with Theorem 1.4, we can obtain a result similar to Theorem 1.1. However, there are
two differences. First, in Theorem 1.1 we keep N as a minor while the other approach
keeps a minor isomorphic to N . More importantly, we obtain an explicit upper-bound
on the size of M , which cannot be done using the methods in [2].

2. Tutte’s Linking Theorem. Let M be a matroid. For any subset A of E(M)
we let

λM (A) := rM (A) + rM (E(M) −A) − rM (E(M));

λM is the connectivity function of M . For sets A,B ⊆ E(M), we have
(i) λM (A) = λM (E(M) −A),
(ii) λM (A) ≤ λM (A ∪ {e}) + 1 for each e ∈ E(M), and
(iii) λM (A) + λM (B) ≥ λM (A ∪B) + λM (A ∩B).

If (X1, X2) is a partition of E(M) such that |X1|, |X2| ≥ k and λM (X1) < k, then
we call (X1, X2) a k-separation of M . If, in addition, λM (X1) = k − 1, then we call
(X1, X2) an exact k-separation of M .

Let N be a minor of M and let (X1, X2) be an exact k-separation of N . We let
κM (X1, X2) = min (λM (A) : X1 ⊆ A ⊆ E(M) − X2). Thus, M bridges (X1, X2)
if and only if κM (X1, X2) ≥ k. Note that if M ′ is a minor of M and X1, X2 ⊆
E(M ′), then κM ′(X1, X2) ≤ κM (X1, X2). The following theorem provides a good
characterization for κ(X1, X2); this theorem is in fact a generalization of Menger’s
theorem.
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Theorem 2.1 (Tutte’s Linking Theorem [5]). Let M be a matroid and let X1, X2

be disjoint subsets of E(M). Then, there exists a minor M ′ of M such that E(M ′) =
X1 ∪X2 and λM ′(X1) = κM (X1, X2).

We obtain the following easy corollary.
Corollary 2.2. Let N be a matroid with an exact k-separation (X1, X2), and

let M be a minor-minimal matroid that bridges the k-separation (X1, X2) in N . For
any e ∈ E(M) − E(N) either

1. κM\e(X1, X2) < k and N is not a minor of M/e, or
2. κM/e(X1, X2) < k and N is not a minor of M\e.

By Corollary 2.2, there exists a unique partition (S, T ) of E(M)−E(N) such that
N = M\S/T . However, any minor can be obtained by contracting an independent
set and deleting a coindependent set.

Corollary 2.3. Let N be a matroid with an exact k-separation (X1, X2), and
let M be a minor-minimal matroid that bridges the k-separation (X1, X2) in N . If
N = M\S/T , then S is coindependent and T is independent.

We also require the following technical lemma.
Lemma 2.4. Let M be a matroid, let (Y1, Y2) be a partition of E(M), and let

X1 ⊆ Y1 and X2 ⊆ Y2. If κM (X1, Y2) = λM (Y2) and κM (Y1, X2) = λM (Y1), then
κM (X1, X2) = λM (Y1).

Proof. Let Y be a set such that λM (Y ) = κM (X1, X2) and X1 ⊆ Y ⊆ E(M)−X2.
By submodularity, we have

κM (X1, X2) = λM (Y )

≥ λM (Y ∩ Y1) + λM (Y ∪ Y1) − λM (Y1)

≥ κM (X1, Y2) + κM (Y1, X2) − λM (Y1)

= λM (Y2) + λM (Y1) − λM (Y1)

= λM (Y2)

≥ κM (X1, X2).

Thus, κM (X1, X2) = λM (Y1), as required.

3. Blocking sequences. In this section we review results from [1], but we use
slightly different notation; similar results are given in [4]. Let N be a minor of a
matroid M , and let X = E(N). Then there exists a coindependent set S and an
independent set T such that N = M\S/T . Therefore, there exists a basis B of M
such that T ⊆ B ⊆ E(M) − S. For any subset Y of E(M), we define

M [Y,B] := M\(E(M) − (Y ∪B))/(B − Y ).

Thus M [Y,B] is the minor of M on ground set Y obtained by contracting only ele-
ments of B and deleting only elements of E(M) −B. In particular, N = M [X,B].

Let (X1, X2) be an exact k-separation in N . A sequence v1, . . . , vp ∈ E(M) is a
blocking sequence for the k-separation (X1, X2) of N , with respect to B, if

1.(a) λM [X∪{v1},B](X1) ≥ k,
(b) λM [X∪{vp},B](X1 ∪ {vp}) ≥ k,
(c) for all i ∈ {1, . . . , p− 1}, we have λM [X∪{vi,vi+1},B](X1 ∪ {vi}) ≥ k, and

2. no proper subsequence of v1, . . . , vp satisfies 1.
If there is a blocking sequence for (X1, X2), then M clearly bridges (X1, X2). The

converse is also true and is proved in [1, Theorem 4.14].
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Theorem 3.1. Let B be a basis of the matroid M , let N = M [X,B], and let
(X1, X2) be an exact k-separation of N . Then, M bridges the k-separation (X1, X2)
in N if and only if there exists a blocking sequence for (X1, X2) with respect to B.

The following propositions give additional properties of blocking sequences; the
first follows easily from the definitions, while the second is proved in [1, Proposi-
tion 4.15].

Proposition 3.2. Let B be a basis of the matroid M , let N = M [X,B], and let
v1, . . . , vp be a blocking sequence, with respect to B, for an exact k-separation (X1, X2)
of N . Now, let i, j ∈ Z, where 0 ≤ i < j − 1 ≤ p; let Y1 ⊆ X1 ∪ {v1, . . . , vi}, where
X1 ∪{vi} ⊆ Y1; and let Y2 ⊆ X2 ∪{vj , . . . , vp}, where X2 ∪{vj} ⊆ Y2. Then, (Y1, Y2)
is an exact k-separation in M [Y1 ∪ Y2, B], and vi+1, . . . , vj−1 is a blocking sequence
for this exact k-separation with respect to B.

Proposition 3.3. Let B be a basis of the matroid M , let N = M [X,B], and let
v1, . . . , vp be a blocking sequence, with respect to B, for an exact k-separation (X1, X2)
of N . Then, the sequence v1, . . . , vp alternates between elements of B and E(M)−B.

In summary, we obtain the following theorem.
Theorem 3.4. Let N be a matroid with an exact k-separation (X1, X2), and let

M be a minor-minimal matroid that bridges the k-separation (X1, X2) of N . Then
there exists a unique partition (S, T ) of E(M)−E(N) such that N = M\S/T . More-
over, there exists an ordering v1, . . . , vp of the elements in E(M) − E(N) that alter-
nates between elements of S and T such that, for each i ∈ {1, . . . , p},

(i) if vi ∈ S, then (X1 ∪ {v1, . . . , vi−1}, X2 ∪ {vi+1, . . . , vp}) is a k-separation in
M\vi, and

(ii) if vi ∈ T , then (X1 ∪ {v1, . . . , vi−1}, X2 ∪ {vi+1, . . . , vp}) is a k-separation in
M/vi.

4. Guts and coguts elements. We let clM (X) denote the closure of the set X
in a matroid M . The coclosure of X, denoted cl∗M (X), is the closure of X in M∗. If
e �∈ X, it is easy to show that e ∈ cl∗M (X) if and only if e �∈ clM (E(M) − (X ∪ {e})).
The following proposition is well known and straightforward.

Proposition 4.1. Let M be a matroid, let X ⊆ E(M), and let e ∈ E(M) −X.
Then

(i) λM/e(X) < λM (X) if and only if e ∈ clM (X) and e is not a loop;
(ii) dually, λM\e(X) < λM (X) if and only if e ∈ cl∗M (X) and e is not a coloop.
Let (X1, X2) be an exact k-separation of M . An element e is in the guts of

(X1, X2) if e ∈ clM (X1 − {e}) and e ∈ clM (X2 − {e}). Similarly, e is in the coguts of
(X1, X2) if e ∈ cl∗M (X1 −{e}) and e ∈ cl∗M (X2 −{e}). Equivalently, e is in the coguts
of (X1, X2) if e �∈ clM (X1 − {e}) and e �∈ clM (X2 − {e}).

The following proposition is also well known.
Proposition 4.2. Let M be a matroid, let (X1, X2) be a partition of E(M), and

let e ∈ X2. Then
(i) λM (X1) < λM (X1 ∪ {e}) if and only if e ∈ clM (X2 − {e}) and e �∈ clM (X1),

and
(ii) λM (X1) = λM (X1 ∪{e}) if and only if e is either in the guts or in the coguts

of (X1, X2).
The following technical lemma is crucial.
Lemma 4.3. Let (X1, X2) be an exact k-separation of a matroid N , and let M be

a minor-minimal matroid bridging the k-separation (X1, X2) of N . Moreover, let B
be a basis of a matroid M such that N = M [X1 ∪X2, B], let v1, . . . , vp be a blocking
sequence for (X1, X2) with respect to B, and let M ′ = M [X1∪X2∪{v2, . . . , vp−1}, B].
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If p ≥ 2k + 2, then there exists i ∈ {2, 3, . . . , p− 1} such that κM ′\vi
(X1, X2) = k − 1

and κM ′/vi
(X1, X2) = k − 1.

Proof. Given disjoint subsets A1, A2 of E(M), we let �M (A1, A2) = rM (A1) +
rM (A2)− rM (A1 ∪A2). Thus, if (A1, A2) is a partition of E(M), then �M (A1, A2) =
λM (A1). Moreover, it is straightforward to see that �M (A1, A2) ≤ κM (A1, A2). We
prove the stronger result that if p ≥ 2(k − �M (X1, X2)) + 2, then there exists i ∈
{2, . . . , p − 1} such that κM ′\vi

(X1, X2) = k − 1 and κM ′/vi
(X1, X2) = k − 1. By

Proposition 3.2 and Lemma 2.4, we may assume that p = 2(k − �M (X1, X2)) + 2.
Note that �M (X1, X2) ≤ k − 1, so p ≥ 4.

By duality, we may assume that v1 ∈ B; thus, by Proposition 3.3, v2 �∈ B and
vp �∈ B. Since N is a minor of M ′\v2, we have κM ′\v2

(X1, X2) = k − 1. Suppose
that κM ′/v2

(X1, X2) < k − 1. Then there exists a (k − 1)-separation (Y1, Y2) of
M ′/v2 such that X1 ⊆ Y1 and X2 ⊆ Y2. Note that λM (Y1 ∪ {v2}) ≤ λM/v2

(Y1) + 1
and κM (X1, X2) = k, so (Y1 ∪ {v2}, Y2) is a k-separation of M ′. Therefore, by the
definition of a blocking sequence, v3 ∈ Y1. Similarly, we see that v4, . . . , vp−1 ∈ Y1.
Thus, Y1 = X1 ∪ {v3, . . . , vp−1} and Y2 = X2.

By Proposition 4.2, v2 ∈ clM ′(X2). Therefore, v2 ∈ clM (X2 ∪ {v1}). Now, by
Proposition 3.2, (X1 ∪ {v1}, X2 ∪ {v3, . . . , vp}) is a k-separation in M\v2. Thus,
by Proposition 4.1, v2 �∈ clM (X1 ∪ {v1}). Similarly, (X1, X2 ∪ {v2, v3, . . . , vp}) is a
k-separation in M/v1. Thus, by Proposition 4.1, v1 ∈ clM (X1). Let X ′

1 = X1 ∪
{v2}, X = X1 ∪ X2, and X ′ = X ∪ {v2}. Since v2 �∈ clM (X1 ∪ {v1}), we have
rM (X ′

1) = rM (X1) + 1 and, since v1 ∈ clM (X1) and v2 ∈ clM (X2 ∪ {v1}), we have
rM (X ′) = rM (X). Hence, �M (X ′

1, X2) > �M (X1, X2). Moreover, by Proposition 3.2,
v3, . . . , vp is a blocking sequence for the k-separation (X ′

1, X2) in M [X ′, B]. Now let
M ′′ = M [X ′ ∪ {v4, . . . , vp−1}, B]. Inductively, we find i ∈ {4, 5, . . . , p− 1} such that
κM ′′\vi

(X ′
1, X2) = k − 1 and κM ′′/vi

(X ′
1, X2) = k − 1. Now, the result follows by

Lemma 2.4.

5. Bridging 1- and 2-separations. In this section we prove Theorems 1.2
and 1.3.

Proof of Theorem 1.2. Let X = E(N), let B be a basis of M such that N =
M [X,B], and let v1, . . . , vp be a blocking sequence for the separation (X1, X2) with
respect to B. Suppose that p ≥ 3, and let M ′ = M [X ∪ {v2}]. By the definition of a
blocking sequence, (X1 ∪ {v2}, X2) and (X1, X2 ∪ {v2}) are both separations of M ′.
Hence, N is a minor of both M ′\v2 and M ′/v2. But then N is a minor of both M\v2

and M/v2. So by Corollary 2.2, we obtain a contradiction.
To prove Theorem 1.3 we require the following key lemma, whose proof we leave

as an exercise.
Lemma 5.1. Let N be a minor of a matroid M , let (X1, X2) be an exact 2-

separation of N , and suppose that λM (X1) = λM (X2) = 1. If N ′ is a minor of M
such that E(N ′) = X1 ∪X2 and λN ′(X1) = 1, then N ′ = N .

Proof of Theorem 1.3. Let X = E(N), let B be a basis of M such that N =
M [X,B], and let v1, . . . , vp be a blocking sequence for the separation (X1, X2) with
respect to B. Suppose that p ≥ 6. By Proposition 3.2, we may assume that p = 6.
Let M ′ = M [X ∪ {v2, v3, v4, v5}, B]. By Lemma 4.3, there exists i ∈ {2, 3, 4, 5} such
that κM ′\vi

(X1, X2) = 1 and κM ′/vi
(X1, X2) = 1. Then, by Tutte’s Linking Theorem

and Lemma 5.1, N is a minor of both M ′\vi and M ′/vi. But then N is a minor of
both M\vi and M/vi, contradicting Corollary 2.2.

6. Bridging larger separations. In this section we give examples showing that
there is no analogue of Theorems 1.2 and 1.3 for 3-separations. The same examples
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also show that there is no analogue of Theorem 1.1 for infinite fields. In particular,
we prove the following proposition.

Proposition 6.1. For any infinite field F and integer n, there exist F-represent-
able matroids N and M such that N has an exact 3-separation (X,Y ), M is a minor-
minimal matroid bridging this separation in N , and |E(M)| ≥ |E(N)| + n.

Let p ≥ n/2 be an integer and let

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 x3 x4 v1 v2 · · · vp−1 vp

x1 0 0 −1 1 0 0 · · · 0 1
x2 0 0 −1 1 0 0 · · · 0 0
y3 1 1 0 1 1 1 · · · 1 1
y4 1 1 1 0 0 0 · · · 0 0
u1 1 0 1 0 α1 0 · · · 0 0

u2 0 0 1 0 α2 α3 0
. . . 0

...
...

...
...

... 0
. . .

. . .
. . .

...
...

...
...

...
... 0

. . .
. . .

. . .
...

up 0 0 1 0 0 · · · 0 α2p−2 α2p−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let U = {u1, . . . , up} and V = {v1, . . . , vp}, and let D = A[U ∪ {y3}, V ∪ {x3}]
(that is, D is the submatrix of A with rows indexed by U ∪{y3} and columns indexed
by V ∪ {x3}). Now, choose α1, . . . , α2p−1 ∈ F so that each subdeterminant of D is
nonzero unless it is identically zero as a polynomial in α1, . . . , α2p−1.

Now, let M be the matroid represented over F by [I|A], let B = U∪{x1, x2, y3, y4},
let X = {x1, x2, x3, x4}, let Y = {y1, y2, y3, y4}, and let N = M [B,X ∪Y ]. Note that
|E(M)| ≥ |E(N)|+n. Also, it is routine to check that (X,Y ) is an exact 3-separation
in N , and that u1, v1, . . . , up, vp is a blocking sequence for (X,Y ) with respect to
B. Thus, M bridges the 3-separation (X,Y ) in N ; it remains to prove that M is
minor-minimal with this property.

Claim. M is a minor-minimal matroid that bridges the 3-separation (X,Y ) of N .
Proof. Suppose, for a contradiction, that there is a proper minor M ′ of M that

bridges the 3-separation (X,Y ) of N . Since M ′ is a minor of M , there exists a basis
B′ of M such that M ′ = M [B′, E(M ′)]. Since N is a minor of M ′, we may assume
without loss of generality that E(N)∩B′ = {x1, x2, y3, y4}. Since u1, v1, . . . , up, vp is
a blocking sequence with respect to B and M ′ is a proper minor of M , we see that
B �= B′. Now, since B′ is a basis of M , A[B − B′, B′ − B] is nonsingular. Note
that B − B′ ⊆ U and B′ − B ⊆ V . By our choice of α1, . . . , α2p−1, we see that
A[(B − B′) ∪ {y3}, (B′ − B) ∪ {x3}] is nonsingular. Hence, (B′ − {y3}) ∪ {x3} is a
basis of M . So, {x1, x2, x3, y4} is a basis of M [B′, E(N)] = N . However, from A we
can see that {x1, x2, x3, y4} is not a basis of M [B,E(N)] = N . This contradiction
completes the proof.

7. Representation over finite fields. The difficulty when we go from 2-
separations to 3-separations is that the analogue of Lemma 5.1 fails. Let N be a
minor of a matroid M , let (X1, X2) be an exact 3-separation of N , and suppose that
λM (X1) = λM (X2) = 2. If N ′ is a minor of M such that E(N ′) = X1 ∪ X2 and
λN ′(X1) = 2, then it need not be the case that N ′ = N . Lemma 5.1 essentially says
that there is a unique way to compose two matroids at given points, but it is well
known that there is no bound on the number of ways to compose two matroids along
given lines. However, over a finite field, lines have bounded length, and hence there
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is a bound on the number of ways to compose two representations along given lines.
Similarly, there is also a bound on the number of ways to compose two representations
on subspaces of any fixed dimension.

Throughout the remainder of this section we let F be a fixed finite field with q
elements and we let V (r,F) denote a vector space over F with rank r. Thus, the
number of points in V (r,F) is qr. We let n(r, q) denote the number of ordered bases
of V (r,F). It is straightforward to see that

n(r, q) = (qr − 1)(qr − q) · · · (qr − qr−1).

Let V1 and V2 be two rank-k subspaces of V (r,F). Then the number of invertible linear
transformations from V1 to V2 is n(k, q). The following theorem is a strengthening of
Theorem 1.1. (Sharper bounds can be obtained by using projective equivalence.)

Theorem 7.1. Let F be a finite field with q elements. If (X1, X2) is an ex-
act k-separation in an F-representable matroid N and M is a minor-minimal F-
representable matroid that bridges the k-separation (X1, X2) in N , then |E(M)| ≤
|E(N)| + (2k + 1)n(k − 1, q).

To make the proof of Theorem 7.1 rigorous, we need to be particular about the
way we define representations. A configuration over F is a set of labelled elements
in the vector space V (r,F), for some integer r, where all labels are distinct, but a
vector may receive more than one label. Two configurations are isomorphic if one
can be obtained from the other by relabelling. Formally, a configuration is a pair
(E,V), where E is a finite set and V = V (r,F), with a function ψ from E to the set
of vectors in V. Let L : V → V be a linear transformation. We let L(E,V) denote
the configuration obtained by applying L to V and relabelling accordingly. That is,
in L(E,V) an element e ∈ E labels the vector L(ψ(e)). If L is invertible, then we call
(E,V) and L(E,V) equivalent.

We associate a matroid M with a configuration (E,V) in the natural way. That
is, E is the ground set of M and for a set X of elements, rM (X) is the rank of X in V.
Thus, a matroid M is representable over a field F if it is induced by a configuration
over F in this way. Note that equivalent configurations represent the same matroid.

The notion of minors extends naturally to configurations. Let (E,V) be a con-
figuration, let D and C be disjoint subsets of E, and let L : V → V be a linear
transformation whose kernel is the subspace spanned by C. We let (E,V)\D/C de-
note the configuration L(E − (D ∪ C),V); we call any such configuration a minor
of (E,V). Obviously, if (E,V) is a representation of M , then (E,V)\D/C is a rep-
resentation of M\D/C. Note that L is not uniquely defined, so (E,V)\D/C is not
uniquely determined by D and C; but all such configurations are equivalent. When
it is necessary to distinguish the particular linear transformation used, we say that L
projects (E,V) onto (E,V)\D/C.

Proof of Theorem 7.1. Let X = E(N), let E = E(M), let B be a basis of M
such that N = M [X,B], and let v1, . . . , vp be a blocking sequence for the separation
(X1, X2) with respect to B. Let n = n(k − 1, q), and suppose that p > n(2k + 1).
By Proposition 3.2, we may assume that p = n(2k + 1) + 1. For i ∈ {0, . . . , n}
let ui = vi(2k+1)+1 and, for i �= 0, let Wi = {v(i−1)(2k+1)+2, . . . , vi(2k+1)}. Thus
({u0},W1, {u1}, . . . ,Wn, {un}) is a partition of {v1, . . . , vp}. Now let E′ = E −
{u0, . . . , un} and let M ′ = M [E′, B]. For each i ∈ {0, . . . , n}, let Li = X1 ∪ (W1 ∪
· · · ∪Wi) and Ri = X2 ∪ (Wi+1 ∪ · · · ∪Wn). Thus, (Li, Ri) is a k-separation in M ′

for each i ∈ {0, . . . , n}. By Proposition 3.2 and Lemma 4.3, there exists xi ∈ Wi such
that κM ′\xi

(Li−1, Ri) = k − 1 and κM ′/xi
(Li−1, Ri) = k − 1 for each i ∈ {1, . . . , n}.
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Consider a configuration (E′,V) representing M ′ over F. For any A ⊆ V let 〈A〉
denote the span of A. Then, for i ∈ {0, . . . , n}, let Vi denote 〈Li〉 ∩ 〈Ri〉; thus Vi is
a subspace of rank k − 1. Now let Di = Wi − B and Ci = Wi ∩ B. Note that N is
a minor of M ′\Di/Ci, so λM ′\Di/Ci

(Ri) = k − 1. Note that, since λM ′(Ri) = k − 1,
〈Ci〉 intersects 〈Ri〉 trivially. Choose a linear transformation Li such that the kernel
of Li is 〈Ci〉 and Li acts as the identity on 〈Ri〉. Thus Li projects (E′,V) onto
(E′,V)\Di/Ci. Let πi be the restriction of Li to Vi−1. Note that πi is an invertible
linear transformation from Vi−1 to Vi. Now let L = LnLn−1 · · · L0. Thus, L(X,V ) is
a configuration representing N .

Recall that κM ′\xi
(Li−1, Ri) = k − 1 and κM ′/xi

(Li−1, Ri) = k − 1. Therefore,
there exists a partition (D′

i, C
′
i) such that λM ′\D′

i
/C′

i
(Ri) = k− 1 and xi is in exactly

one of Di and D′
i. Choose a linear transformation L′

i such that the kernel of L′
i is 〈C ′

i〉
and L′

i acts as the identity on Ri. Thus L′
i projects (E′,V) onto (E′,V)\D′

i/C
′
i. Let

π′
i be the restriction of L′

i to Vi−1. Note that π′
i is an invertible linear transformation

from Vi−1 to Vi. Now, for i ∈ {0, . . . , n} we let σi = (π′
n · · ·π′

i+1)(πi · · ·π1). So σi

is an invertible linear transformation from V0 to Vn−1. The number of such distinct
transformations is n = n(k − 1, q). Therefore, there exists i > j such that σi = σj .
Since each of these linear transformations is invertible, we see that π′

iπ
′
i−1 · · ·π′

j+1 =
πiπi−1 · · ·πj+1; therefore

πn · · ·πi+1π
′
i · · ·π′

j+1πj · · ·π1 = πnπn−1 · · ·π1.

Let

L′ = Ln · · · Li+1L′
i · · · L′

j+1Lj · · · L1.

Now, L′(X,V) is equivalent to L(X,V), which is a representation of N . It follows
that M ′\xi and M ′/xi both contain N as a minor. But then M\xi and M/xi both
contain N as a minor, contradicting the minimality of M .

8. Branch-width. A tree is cubic if all vertices have degree 1 or 3; the vertices
with degree 1 are the leaves. A branch-decomposition of a matroid M on a finite
ground set E is a cubic tree such that E labels a set of the leaves of T . (No leaf
gets more than one label, but there may be unlabelled leaves.) The set displayed by
a given subtree of T is the set of elements of E that label leaves of that subtree.
A set of elements A of E is displayed by an edge e of T if it is displayed by one of
the two components of T\e; the width λ(e) of the edge e of T is λM (A) + 1. The
width of a branch-decomposition is the maximum of the widths of its edges, and the
branch-width of M is the minimum among the widths of its branch-decompositions.

Let T be a branch-decomposition of M and let e be an edge of width k in T . There
are two subsets A and B of E that are displayed by e. These two sets partition E,
and, if |A|, |B| ≥ k, then (A,B) is a k-separation of M ; we say that such k-separations
are displayed by T .

Lemma 8.1. Let (X1, X2) be an exact k-separation in a matroid N and let M
be a minor-minimal matroid that bridges the k-separation (X1, X2) in N . If N has a
branch-decomposition of width n that displays (X1, X2), then M has branch-width at
most n + 1.

Proof. Let X = E(N), let B be a basis of M such that N = M [X,B], and
let v1, . . . , vp be a blocking sequence for the separation (X1, X2) with respect to B.
By duality we may assume that v1 �∈ B. Let T be a width-n branch-decomposition
of N that displays (X1, X2) and let e = ab be the edge of T that displays X1 and
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X2. Now let Ta and Tb be the components of T − e containing a and b, respectively.
We construct a tree-decomposition T ′ of M as follows. Connect Ta to Tb with a path
P = (a, x1, . . . , xp, b), and for each i ∈ {i, . . . , p} add a leaf, labelled vi, adjacent to xi.
Note that e has width k ≤ n in T and, by Proposition 3.2, each edge of P has width
k+1 in T ′. The edges of T ′ incident with any of v1, . . . , vp all have width 2. Consider
any other edge f of T ′. By symmetry we may assume that f is an edge of Ta. Let A
and B be the sets displayed by f in T ′, where A ⊆ X1. Note that A is displayed by
f in T , so λN (A) ≤ n. By Proposition 3.2, λN (X1) = λM\v1

(X1). Therefore, since
A ⊆ X1, λN (A) = λM\v1

(A). Thus λM (A) ≤ λM\v1
(A) + 1 = λN (A) + 1 ≤ n + 1.

Therefore, T ′ has width at most n + 1, as required.
Theorem 1.4 follows immediately from Lemma 8.1 and the next lemma.
Lemma 8.2. Let N be a matroid with branch-width n and let (X1, X2) be a

k-separation of N . Then, there exists a branch-decomposition of N that displays
(X1, X2) and that has width at most n + k − 1.

Proof. Let T be a width-n branch-decomposition of N . We may assume that T
has some unlabelled leaf r. Let s be the neighbor of r in T . Construct two copies T1

and T2 of T − r such that for each vertex v of T the corresponding copies are labelled
v1 and v2. Now construct a cubic tree T ′ by connecting T1 and T2 with the edge
s1s2. We now make T ′ into a new branch-decomposition of N as follows. For each
i ∈ {1, 2} and e ∈ Xi, if e labels the leaf x in T , then we label the leaf xi with e in
T ′. Therefore, X1 and X2 are displayed by s1s2 in T ′.

Consider an edge f of T − r. Let A be the set that is displayed by the component
of T −f that does not contain s. Thus A∩X1 and A∩X2 are displayed by the copies
of f in T ′. Now, λN (A ∩ Xi) ≤ λN (A) + λN (Xi) ≤ n + (k − 1) for each i ∈ {1, 2}.
Therefore, T ′ has width at most n + k − 1, as required.
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Abstract. We present a number of lower bounds for the h-vectors of k-Cohen–Macaulay (k-
CM), broken circuit, and independence complexes. These lead to bounds on the coefficients of the
characteristic and reliability polynomials of matroids. The main techniques are the use of series and
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1. Introduction. Based on the ideas of Whitney [27] and Rota [21], the broken
circuit complex of a graph was introduced by Wilf in “Which polynomials are chro-
matic?” [29]. Extended to matroids by Brylawski [9], its f -vector corresponds to the
coefficients of the characteristic polynomial of the matroid. The h-vector encodes the
same information in a different way. From the point of view of matroids, Wilf’s orig-
inal question becomes “What are the possible f -vectors, or, equivalently, h-vectors,
of broken circuit complexes of matroids?”

Cohen–Macaulay complexes cover a wide variety of examples. In addition to
the broken circuit and independence complexes of matroids covered here, Cohen–
Macaulay complexes also include all triangulations of homology balls and spheres.
In contrast to broken circuit complexes, the possible h-vectors (and hence f -vectors)
of Cohen–Macaulay complexes have been completely characterized (see, for instance,
[24, Theorem II.3.3, p. 59]). Introduced by Baclawski, doubly Cohen–Macualay com-
plexes are Cohen–Macaulay complexes which lose neither a dimension nor the Cohen–
Macaulay property when any vertex is removed. Spheres are doubly Cohen–Macaulay,
but balls are not. More generally, a Cohen–Macaulay complex is k-Cohen–Macaulay
(k-CM) if it retains its dimension and is still Cohen–Macaulay whenever k− 1 or fewer
vertices are removed. In addition to the independence complexes considered below,
the order complex of a geometric lattice with the top and bottom points removed is
k-CM if every line has at least k points [2].

The h-vectors of independence complexes of matroids are contained in the inter-
section of h-vectors of broken circuit complexes and k-CM complexes. Precisely, the
cone on any independence complex is a broken circuit complex. In addition, if the
smallest cocircuit of the matroid has cardinality k, then its independence complex is
a k-CM complex. The close connection between h-vectors of independence complexes
of matroids and reliability problems has been studied by a number of authors. See
[13] for a recent survey.

Upper bounds on all of the above complexes have been studied. As they are
all Cohen–Macaulay they share a common absolute upper bound of hi ≤

(
n−r−1+i

i

)
,

∗Received by the editors July 18, 2002; accepted for publication (in revised form) June 30, 2004;
published electronically April 8, 2005. This work was partially supported by a VIGRE postdoc under
NSF grant 9983660 to Cornell University.

http://www.siam.org/journals/sidma/18-3/41135.html
†Department of Mathematics, Cornell University, Ithaca, NY 14853 (ebs@math.cornell.edu).

647



648 E. SWARTZ

where n is the number of vertices and (r − 1) is the dimension of the complex. In

addition, they all satisfy the relative upper bound hi+1 ≤ h
〈i〉
i (see section 4 for a

definition of h
〈i〉
i ).

Our main purpose is to analyze absolute and relative lower bounds for the h-
vectors of k-CM, broken circuit, and independence complexes. Section 2 contains
the basic facts of the short-simplicial h-vector. The main tool for providing relative
lower bounds is (2.6). The broken circuit and independence complexes of a matroid
are described in section 3. Sections 4, 5, and 6 contain absolute and relative lower
bounds for k-CM, broken circuit, and independence complexes, respectively.

Throughout the paper ∆ is an (r−1)-dimensional simplicial complex with vertex
set V, |V | = n. The link of a vertex v ∈ V is lk∆v, or just lk v if no confusion is
possible. We use ∆ − v for the complex obtained by removing v and all of the faces
which contain v from ∆. Similarly, if A ⊆ V, then ∆ −A is the complex obtained by
removing all of the vertices in A and any faces which contain one or more of those
vertices.

2. Face enumeration. The combinatorics of a simplicial complex ∆ can be
encoded in several ways. The most direct is to let fi(∆) be the number of faces of
cardinality i. For an (r − 1)-dimensional complex the h-vector of ∆ is the sequence
(h0(∆), . . . , hr(∆)), where

hi(∆) =

i∑
j=0

(−1)i−j

(
r − j

r − i

)
fj(∆).(2.1)

Equivalently,

fj(∆) =

j∑
i=0

(
r − i

r − j

)
hi(∆).(2.2)

By convention, hi(∆) = fi(∆) = 0 if i < 0 or i > r. The short simplicial h-vector was
introduced in [16] as a simplicial analogue of the short cubical h-vector in [1]. It is
the sum of the h-vectors of the links of the vertices. As far as we know, (2.5) was first
stated in [17]. However, only a proof for shellable ∆ was given there. So, we include
a proof for arbitrary pure complexes for the sake of completeness.

Definition 2.1. Let ∆ be a pure simplicial complex. Define

h̃i(∆) =
∑
v∈V

hi(lk v).(2.3)

Lemma 2.2 (see [16]). Let ∆ be a pure simplicial complex. For all i, 0 ≤ i ≤ r−1,

h̃i(∆) =

i∑
j=0

(−1)i−j(j + 1)

(
r − j − 1

r − i− 1

)
fj+1.(2.4)

Proposition 2.3. Let ∆ be a pure simplicial complex. Then,

h̃i−1(∆) = i hi(∆) + (r − i + 1)hi−1(∆).(2.5)

If dim(∆ − v) = r − 1 for every vertex v, then∑
v∈V

hi(∆ − v) = (n− i)hi(∆) − (r − i + 1)hi−1(∆).(2.6)
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Proof. Combining (2.2) and (2.4),

h̃i−1(∆) =

i−1∑
j=0

(−1)i−j−1(j + 1)

(
r − j − 1

r − i

) j+1∑
k=0

(
r − k

r − j − 1

)
hk(∆)

=

i∑
k=0

hk(∆)

⎧⎨⎩
i−1∑

j=k−1

(−1)i−j−1(j + 1)

(
r − j − 1

r − i

)(
r − k

r − j − 1

)⎫⎬⎭
=

i∑
k=0

hk(∆)

⎧⎨⎩
i−1∑

j=k−1

(−1)i−j−1(j + 1)

(
r − j − 1

i− j − 1

)(
r − k

j + 1 − k

)⎫⎬⎭ .

Substituting s = j − k + 1 and t = i− j − 1,

h̃i−1(∆) =

i∑
k=0

hk(∆)

{ ∑
s+t=i−k

(−1)t(i− t)

(
r + t− i

t

)(
r + s + t− i

s

)}

=

i∑
k=0

hk(∆)

{ ∑
s+t=i−k

(−1)t(i− t)
A

s!t!

}
,

where A is the falling factorial (r − k) · (r − k − 1) · · · (r − i + 1).
For a fixed i, define ck by

ck =
∑

s+t=i−k

(−1)t(i− t)
1

s!t!
.

Equation (2.5) is equivalent to showing that ci = i, ci−1 = 1, and ck = 0 in all other
cases. This can be seen by recognizing ci−k as the kth term in the generating series
for

(i + x)e−x · ex =

( ∞∑
t=0

(−1)t
(i− t)

t!
xt

)( ∞∑
s=0

1

s!
xs

)
.

In order to prove that (2.6) holds, we first notice that the hypothesis implies that
hi(∆) = hi(∆− v)+hi−1(lk v) for every vertex v. Now sum this equation over all the
vertices and apply (2.5).

The above proposition makes precise the idea that, taken together, hi−1(∆) and
hi(∆) measure the average contribution of hi−1(lk v) to hi(∆). Another consequence
of (2.5) is that if the automorphism group of a pure (r − 1)-dimensional complex
∆ is transitive, or, more generally, if hi−1(lk v) is independent of v, then n divides
{i hi(∆) + (r − i + 1)hi−1(∆)}.

3. Broken circuit and independence complexes of matroids. We follow
[19] for matroid terminology. Unless otherwise specified, M is always a rank r matroid
with ground set E (or E(M) if necessary) and |E| = n. There are many equivalent
ways of defining matroids. The most convenient for us is the following.

A matroid, M, is a pair (E, I), E is a nonempty finite ground set, and I is a
distinguished set of subsets of E. The members of I are called the independent subsets
of M and are required to satisfy the following:

1. The empty set is in I.
2. If B is an independent set and A ⊆ B, then A is an independent set.
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3. If A and B are independent sets such that |A| < |B|, then there exists an
element x ∈ B −A such that A ∪ x is independent.

Matroid theory was introduced by Whitney [28]. The prototypical example of a ma-
troid is a finite subset of a vector space with the canonical independent sets. Another
example is the cycle matroid of a graph. Here the ground set is the edge set of the
graph, and a collection of edges is independent if and only if it is acyclic.

An element e of a matroid is a loop if it is not contained in any independent set.
The circuits of a matroid are its minimal dependent sets. Every loop of M is a circuit.
A maximal independent set is called a basis, and any element which is contained in
every basis is a coloop of the matroid. Every basis of M has the same cardinality. The
rank of M, or r(M), is that common cardinality. Similarly, the rank of a subset A
of E is the cardinality of any maximal independent subset of A and is denoted r(A).
The deletion of M at e is denoted M − e. It is the matroid whose finite set is E − e
and whose independent sets are simply those members of I which do not contain e.
The contraction of M at e is denoted M/e. It is a matroid whose ground set is also
E − e. If e is a loop or a coloop of M , then M/e = M − e. Otherwise, a subset I of
E − e is independent in M/e if and only if I ∪ e is independent in M. Deletion and
contraction for a subset A of E is defined by repeatedly deleting or contracting each
element of A.

The dual of M is M�. It is the matroid whose ground set is the same as that of
M and whose bases are the complements of the bases of M. For example, Ui,j is the
matroid defined by E = {1, 2, . . . , j} and I = {A ⊆ E : |A| ≤ i.} So, U�

i,j = Uj−i,j .
Two nonloop elements e, f ∈ E are parallel if they form a circuit. The relation

“is parallel to” is an equivalence relation on E, and the corresponding equivalence
classes are the parallel classes of M. If P is a parallel class of M , then for any e ∈ P
all of the members of P − e are loops in M/e. A parallel class in M� is a series class
of M. If S is a series class of M, then for any e ∈ S, all of the members of S − e are
coloops in M − e.

Let M = (E, I) and M ′ = (E′, I ′) be two matroids with E∩E′ = ∅. Then M⊕M ′

is the direct sum of M and M ′. It is the matroid whose ground set is E ∪ E′ and
whose independent sets are those subsets of the form I ∪ I ′, I ∈ I, I ′ ∈ I ′. A matroid
is connected if it is not the direct sum of two smaller matroids. Every matroid can
be written uniquely (up to order) as a direct sum M = M1 ⊕ · · · ⊕Mk of connected
matroids. The components of M are the summands of this decomposition.

The independence complex of M is

∆(M) = {A ⊆ E : A is independent}.

Evidently, ∆(M) is a pure (r− 1)-dimensional complex, where r is the rank of M. In
addition, ∆(M−e) = ∆(M)−e and if e is not a loop of M, then ∆(M/e) = lk∆(M) e.

In order to define the broken circuit complex for M , we first choose a linear order ω
on the elements of the matroid. Given such an order, a broken circuit is a circuit with
its least element removed. The broken circuit complex is the simplicial complex whose
simplices are the subsets of E which do not contain a broken circuit. We denote the
broken circuit complex of M and ω by ∆BC(M), or ∆BC(M,ω). Different orderings
may lead to different complexes; see [3, Example 7.4.4]. However, fi(∆

BC(M,ω))
does not depend on ω (see Theorem 3.2 below). Conversely, distinct matroids can
have the same broken circuit complex. For instance, let E = {e1, e2, e3, e4, e5, e6}, and
let ω be the obvious order. Let M1 be the matroid on E whose bases are all triples
except {e1, e2, e3} and {e4, e5, e6} and let M2 be the matroid on E whose bases are
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all triples except {e1, e2, e3} and {e1, e5, e6}. Then M1 and M2 are nonisomorphic
matroids but their broken circuit complexes are identical.

In order to easily distinguish the h-vectors of ∆(M) and ∆BC(M) we use the
following notation.

Definition 3.1. Let M be a rank r matroid.

• hi(M) = hi(∆(M)).
• bi(M) = hr−i(∆

BC(M)).
• wi(M) = fr−i(∆

BC(M)).
• b�i (M) = bi(M

�) = hn−r−i(∆
BC(M�)).

We will suppress the M when there is no danger of confusion. The invariants
hi, bi, wi, b

�
i are closely related to the Tutte polynomial of M. The Tutte polynomial

is a two-variable polynomial invariant of M defined by

T (M ;x, y) =
∑
A⊆E

(x− 1)r(M)−r(A)(y − 1)|A|−r(A).

Theorem 3.2 (see [3]). Suppose M has k components and j coloops. Then,

(a) T (M ;x, 1) = h0x
r + h1x

r−1 + · · · + hr−jx
j ;

(b) T (M ;x, 0) = brx
r + br−1x

r−1 + · · · + bkx
k;

(c) T (M ; 0, y) = b�n−ry
n−r + · · · + b�ky

k;
(d) (−1)rT (M ; 1 − x, 0) = w0x

r − w1x
r−1 + · · · + (−1)rwr.

The wi are the unsigned Whitney numbers of the first kind. The characteristic
polynomial of M is (−1)rT (M ; 1 − x, 0). The characteristic polynomial of a matroid
has a number of applications including graph coloring and flows, linear coding theory,
and hyperplane arrangements. See [12] for a survey.

Properties (a)–(d) of bi and hi listed in Theorem 3.3 follow immediately from
corresponding properties of the Tutte polynomial, which can be found in [11]. The
parallel and series connection of two (pointed) matroids is described in [19, section 7.1].

Theorem 3.3 (Tutte recursion).

(a) If M has j coloops, then hi(M) = hi(M̃), where M̃ is M with the coloops
deleted. In particular, hi(M) > 0 if and only if 0 ≤ i ≤ r − j.

(b) If M has k components and no loops, then bi > 0 if and only if k ≤ i ≤ r.
(c) If e is neither a loop nor a coloop of M, then hi(M) = hi(M − e) +

hi−1(M/e) and bi(M) = bi(M − e) + bi(M/e).
(d) If M = M1 ⊕ M2, then hi(M) =

∑
j+k=i hj(M1)hk(M2) and bi(M) =∑

j+k=i bj(M1)bk(M2).

(e) Suppose that P is a parallel class of M. Let M̃ be M with all but one ele-
ment, say e, of P deleted. Then, hi(M) = hi(M̃) + (|P | − 1)hi−1(M̃/e).

(f) Let S be a series class of M. Let M̃ be M with all but one element, say

e, of S contracted. Then bi(M) = bi(M̃) +
∑|S|−1

j=1 bi−j(M̃ − e).
(g) Let M be a parallel connection of A and B, where the rank of A is r(A)

and the rank of B is r(B). The rank of M is r(A)+r(B)−1. In addition,
bi(M) =

∑
j+k=i+1 bj(A)bk(B). If A and B are connected, then M is

also connected.

Proof. Property (g) follows from the fact that if M is a parallel connection of A
and B, then T (M ;x, 0) = T (A;x, 0)∗T (B;x, 0)/x [11, pp. 179–182]. Both (e) and (f)
are proved by deleting and contracting all the elements of the given parallel or series
class except e.
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One of the consequences of (a) and (f) above is that if we increase the size of a
series class of cardinality k in M by one, then b1, . . . , bk are unchanged, while bi for
i > k may increase.

4. Cohen–Macaulay and k-CM complexes. There are several equivalent
definitions of Cohen–Macaulay complexes. The following will suffice for our purposes.

Definition 4.1. A pure (r − 1)-dimensional complex ∆ is Cohen–Macaulay if
for every face F ∈ ∆ and i < dim(lk F ), H̃i(lk F ; Q) = 0.

A numerical description of all possible h-vectors of Cohen–Macaulay complexes
can be given using the following operator. Given any positive integers h and i, there
is a unique way of writing

h =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · · +

(
aj
j

)
so that ai > ai−1 > · · · > aj ≥ j ≥ 1. Define

h〈i〉 =

(
ai + 1

i + 1

)
+

(
ai−1 + 1

i

)
+ · · · +

(
aj + 1

j + 1

)
.

Theorem 4.2 (see [24]). A sequence of nonnegative integers (h0, . . . , hr) is the

h-vector of some Cohen–Macaulay complex if and only if h0 = 1 and hi+1 ≤ h
〈i〉
i for

all 1 ≤ i ≤ r − 1.
The notion of k-CM complexes was introduced by Baclawski [2].
Definition 4.3. Let ∆ be a pure (r − 1)-dimensional simplicial complex with

vertex set V and k ≥ 1. We say that ∆ is k-CM if for all A ⊆ V with |A| < k,∆−A
is Cohen–Macaulay of dimension (r − 1).

Examples of 2-CM complexes include order complexes of geometric lattices, finite
buildings, and triangulations of spheres. Several examples and constructions involving
k-CM complexes, especially for order complexes of posets, are contained in [2]. Since
lk∆v−A = lk∆−Av, the link of any vertex of a k-CM complex is k-CM, and removing
a vertex from a k-CM complex leaves a (k − 1)-CM complex (as long as k > 1).

The independence and broken circuit complexes of a matroid are Cohen–Macaulay
[23]. So, ∆(M) is k-CM if and only if every hyperplane of M has cardinality at most
n − k. Equivalently, the smallest cocircuit of M has at least k elements. However,
∆BC(M) is a cone on the least element; hence it is only 1-CM. If the cone point
is removed, then the remaining complex is also Cohen–Macaulay but may still be
only 1-CM. For example, let M be the cycle matroid of the theta-graph with three
paths each of length 2. Direct computation shows that the h-vector of ∆BC(M) is
(1, 2, 3, 1). Removing the cone point leaves a 2-dimensional complex with five points
and the same h-vector. By Corollary 4.5 below, (1, 2, 3, 1) is not the h-vector of any
2-dimensional 2-CM complex with five points.

Theorem 4.2 gives an upper bound for possible h-vectors of Cohen–Macaulay
complexes. It also makes it clear that there are no lower bounds. For k-CM complexes
we have the following absolute lower bound. Recall that Ur,n is the rank r matroid
with n elements such that every r-element subset is a basis.

Proposition 4.4. Let ∆ be an (r − 1)-dimensional k-CM complex. Then,

hi(∆) ≥ hi(Ur,r+k−1).

Proof. Induction on n and k. When k = 1, the theorem is simply the statement
that hi(∆) ≥ 0 for i ≥ 1, and h0(∆) ≥ 1. For fixed k, the definition of k-CM forces
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n ≥ r + k − 1. Suppose n = r + k − 1. Since the removal of any subset of vertices
of cardinality k − 1 does not lower the dimension of ∆, every subset of vertices of
cardinality r must be a face of ∆. So, ∆ = ∆(Ur,r+k−1). For the induction step, let v
be any vertex of ∆. Then

hi(∆) = hi(∆ − v) + hi−1(lk∆v)

≥ hi(Ur,r+k−2) + hi−1(Ur−1,r+k−2) = hi(Ur,r+k−1).

Minimizing h-vectors is closely related to the problem of finding the least reliable
graph. Let G be a connected graph with r + 1 vertices and n edges. Thus M(G), the
cycle matroid of G, has rank r and cardinality n. Suppose that each edge of G has
equiprobability p, 0 < p < 1, of being deleted. Then the probability that G remains
connected is RG(p) = (1− p)r[h0(M(G)�) + h1(M(G)�)p+ · · ·+ hn−r(M(G)�)pn−r].
Boesch, Satyanarayana, and Suffel [4] posed the problem of finding the minimum of
RG(p) among all connected simple graphs with r + 1 vertices and n edges. They
also conjectured that a particular graph, which they called L(r + 1, n), would attain
that lower bound. Brown, Colbourn, and Devitt [7] further conjectured that the h-
vector of L(r + 1, n) would be an absolute lower bound for the h-vector of M(G)�

among all connected simple graphs with r + 1 vertices and n edges. The original
conjecture of Boesch, Satyanarayana, and Suffel [4] was confirmed for n greater than(
r−1
2

)
in [20]. The corresponding problem in the category of matroids is to find

among all rank r cosimple matroids of cardinality n one which minimizes the h-vector.
Since M is cosimple if and only if ∆(M) is 3-CM, the above proposition shows that
U0,n−r−2 ⊕ Ur,r+2 is the solution to this problem.

Combining the above proposition with (2.6) immediately gives a relative lower
bound.

Corollary 4.5. Let ∆ be an (r−1)-dimensional k-CM complex with n vertices.
Then,

(n− i)hi ≥ (r − i + 1)hi−1 + n

(
i + k − 3

i

)
.

Proof. For every vertex v, ∆ − v is (k − 1)-CM. Now combine (2.6), Proposition
4.4, and the fact that hi(Ur,r+k−2) =

(
i+k−3

i

)
.

Problem 4.6. Given r, n, k, and i, what is the minimum of hi(∆) over all (r−1)-
dimensional k-CM complexes with n vertices? Does there exist a ∆ which attains these
values?

Conjecture II.6.2 in [24] would imply that for 2-CM complexes with n equal to
r + 2, hi(∆) ≥ hi(∆(U1,2 ⊕ Ur−1,r)). In section 6 we will give an answer to this
problem for independence complexes of matroids when n is sufficiently large.

5. Broken circuit complexes. In this section we assume that M has no loops.
An absolute upper bound for bi when 1 ≤ i ≤ r is

(
n−i−1
r−i

)
, and this is achieved

by Un,r. Theorem 4.2 gives a relative upper bound of br−i ≤ b
〈i−1〉
r−i+1. Absolute lower

bounds for bi were determined by Brylawski.
Theorem 5.1 (see [10]). If M is as above, then bi ≥ n−r for all i, 2 ≤ i ≤ r−1.
In order to find relative lower bounds for b1 we introduce the following definition.
Definition 5.2. Let S be a series class of a connected matroid M. Then S is a

regular series class of M if M − S is connected.
Proposition 5.3. If M is connected and contains more than one series class,

then M contains at least three regular series classes.
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Proof. The proof is by induction on m, the number of series classes in M. A
matroid with exactly two series classes is not connected. If m = 3, then M is the
cycle matroid of a theta-graph with exactly three paths. In this case all three of the
series classes are regular.

For the induction step, let S be a series class which is not regular. Let M̃ be
the matroid obtained by contracting all but one of the elements of S. Let e be the
remaining element of S. Since M̃ is connected, but M̃ − e is not connected, M̃ is the
series connection of two connected matroids A and B at e [19, Theorem 7.1.16]. Both
A and B must contain more than one series class, otherwise they would be contained
in S. Therefore, the induction hypothesis applies to A and B. Even if {e} is contained
in a regular series class in A and B, both A and B contain two other regular series
classes. All four of these series classes are regular in M.

Theorem 5.4. If M is connected and 1 ≤ i ≤ r, then

bi ≤
(
r − 2

i− 1

)
b1 +

(
r − 2

i− 2

)
.(5.1)

Proof. The proof is by induction on n, the initial case being the three-point line.
Let S be a series class of M. If S is the only series class of M, then M is a circuit
and (5.1) holds. Otherwise, by the previous proposition, we may choose S to be a
regular series class. In particular, M − S is connected. We break the induction step
into three cases.

1. M − S and M/S are connected: Let s = |S|. If s > i, then bi(M) = bi(M̂)
and b1(M) = b1(M̂), where M̂ is M with S contracted down to a series class
of cardinality i. So, we will assume that s ≤ i. Let M̃ be M with S contracted
down to a single element e. Since M is connected, e is neither a loop nor a
coloop of M. Applying Tutte recursion to M and then again to M̃ , we see
that

bi(M) = bi(M̃/e) +

s−1∑
j=0

bi−j(M̃ − e).

Now, since M̃/e = M/S is a rank r−s connected matroid and M̃−e = M−S
is a rank r − s + 1 connected matroid, the induction hypothesis implies that
the above expression is bounded above by(
r− s− 2

i− 1

)
b1(M̃/e)+

(
r− s− 1

i− 2

)
+

s−1∑
j=0

(
r− s− 1

i− j− 1

)
b1(M̃−e)+

s−1∑
j=0

(
r − s− 1

i− j − 2

)

≤
(
r − 2

i− 1

)
b1(M̃/e) +

(
r − 2

i− 1

)
b1(M̃ − e) +

(
r − 2

i− 2

)

+

{(
r − s− 2

i− 1

)
−
(
r − 2

i− 1

)}
b1(M̃/e) +

(
r − s− 2

i− 2

)
.

Since M̃/e is connected, b1(M̃/e) ≥ 1. Thus, the last row is nonpositive and
(5.1) is satisfied. To see the last inequality, note that

s−1∑
j=0

(
r − s− 1

i− j − 1

)
≤

s−1∑
j=0

(
r − s− 1

i− j − 1

)(
s− 1

j

)
=

(
r − 2

i− 1

)
,
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and similarly,

s−1∑
j=0

(
r − s− 1

i− j − 2

)
≤

s−1∑
j=0

(
r − s− 1

i− j − 2

)(
s− 1

j

)
=

(
r − 2

i− 2

)
.

2. S = {e} and M − e is connected, but M/e is not connected: Then, M is the
parallel connection of two connected matroids A and B with r(A)+r(B)−1= r
[19, Theorem 7.1.16]. By Theorem 3.3 and the induction hypothesis,

bi(M) =
∑

j+k−1=i

bj(A)bk(B)

≤
∑

j+k−1=i

{(
r(A) − 2

j − 1

)
b1(A) +

(
r(A) − 2

j − 2

)}{(
r(B) − 2

k − 1

)
b1(B)

+

(
r(B) − 2

k − 2

)}

=
∑

j+k−1=i

{(
r(A) − 2

j − 1

)(
r(B) − 2

k − 1

)
b1(A)b1(B)

+

(
r(A) − 2

j − 1

)(
r(B) − 2

k − 2

)
b1(A)

}

+
∑

j+k−1=i

{(
r(A) − 2

j − 2

)(
r(B) − 2

k − 1

)
b1(B)

+

(
r(A) − 2

j − 2

)(
r(B) − 2

k − 2

)}

=

(
r − 3

i− 1

)
b1(A)b1(B) +

(
r − 3

i− 2

)
b1(A) +

(
r − 3

i− 2

)
b1(B) +

(
r − 3

i− 3

)
.

Therefore,

(
r − 2

i− 1

)
b1(M) +

(
r − 2

i− 2

)
− bi(M)

≥
{(

r − 2

i− 1

)
−
(
r − 3

i− 1

)}
b1(A)b1(B) +

{(
r − 2

i− 2

)
−
(
r − 3

i− 3

)}
−
(
r − 3

i− 2

)
{b1(A) + b1(B)}

=

(
r − 3

i− 2

)
(b1(A)b1(B) + 1 − b1(A) − b1(B)) ≥ 0.

3. Finally, suppose that S is a nontrivial series and that M − S is connected,
but M/S is not connected. Let s, M̃ , and e be as above. Since M̃/e is not
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connected, b1(M̃) = b1(M̃ − e). Therefore,

bi(M) = bi(M̃) +

s−1∑
j=1

bi−j(M̃ − e)

≤ b1(M)

⎧⎨⎩
s−1∑
j=0

(
r − s− 1

i− j − 1

)⎫⎬⎭ +

s−1∑
j=0

(
r − s− 1

i− j − 2

)

≤
(
r − 2

i− 1

)
b1(M) +

(
r − 2

i− 2

)
.

Corollary 5.5. Let M be a rank r matroid with k components, r − k ≥ 2. Let
2 ≤ i ≤ r − k. Then,

bi+k−1(M) ≤
(
r − k − 1

i− 1

)
bk(M) +

(
r − k − 1

i− 2

)
.(5.2)

Proof. Since k = 1 is the previous theorem, we assume that M is not connected.
Let M = M1⊕· · ·⊕Mk be a direct sum decomposition of M into connected matroids.
Define M̃1 = M1. Given M̃i, let M̃i+1 be any parallel connection of M̃i and Mi+1.
Then M̃k is a connected matroid of rank r − k + 1. Furthermore, by Theorem 3.3
bi+k−1(M) = bi(M̃k). Since (5.1) holds for the connected M̃, (5.2) holds for M.

When does equality occur in the above theorem? The proof shows that if equality
occurs, then it must also occur in the minors of M used in the induction. Combining
this with an induction argument shows that if bi(M) =

(
r−2
i−1

)
b1(M) +

(
r−2
i−2

)
, then

bj(M) =
(
r−2
j−1

)
b1(M) +

(
r−2
j−2

)
for all 1 ≤ j ≤ i. Brylawski proved (5.1) for i = r − 1.

He also showed that given b1 and r, equality occurs if M is the parallel connection of
a (b1 + 2)-point line and r − 1 three-point lines. Hence, (5.1) is optimal, although a
complete description of the matroids which satisfy equality in this corollary remains
unknown [10].

The coefficient b1(M) is also known as β(M), the beta invariant of M. Brylawski
[8] identified matroids with beta invariant 1 as series-parallel matroids, while Oxley
[18] classified matroids with 2 ≤ β(M) ≤ 4.

Theorem 5.6. Assume r ≥ 2 and let β = b1(M). Then, for all i, 0 ≤ i ≤ r,

wi ≤
i∑

j=0

(
r − j

r − i

){(
r − 2

r − i− 1

)
β +

(
r − 2

r − i− 2

)}
.

Proof. This follows immediately from (2.2) and Theorem 5.4.
It is also possible to estimate bi in terms of n − r. For positive integers i and x

define

φi(x) =

(
x− 2

i− 1

)(
x− 1

0

)
+

(
x− 2

i− 2

)(
x

1

)
+ · · · +

(
x− 2

0

)(
x + i− 2

i− 1

)
.

Theorem 5.7. Suppose M is connected. Then,

bi(M) ≤ φi(n− r)b1(M) + φi−1(n− r).(5.3)

Proof. We can assume that every series class of M has exactly i elements. Indeed,
by (a) and (c) of Theorem 3.3, any series class with more than i elements can be
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contracted down to cardinality i without changing either side of (5.3), while expanding
any class with fewer than i elements may increase the left-hand side of (5.3) but will
not alter the right-hand side. Let M̃ be the matroid obtained from M by contracting
all of the series classes down to one element. The dual of the formula on the top of
of [11, p. 185] is

T (M ;x, 0) = (xi−1 + · · · + x + 1)n−rT

(
M̃ ;xi,

xi−1 + · · · + x

xi−1 + · · · + x + 1

)
(5.4)

Using (5.4), we see that

bi(M) =

i∑
j=1

(
n− r + i− j − 1

i− j

)
b�j (M̃).(5.5)

Since b�1(M̃) = b1(M), (5.3) follows from (5.5) by applying (5.1) to M̃�.
Inequality (5.3) is as optimal as can be expected in the sense that given n− r, i,

and b1, there are matroids which satisfy equality. Take any matroid which satisfies
equality in (5.1) and expand every series class to cardinality i. Then, equality in (5.3)
holds. Of course, since br = 1 and φi is increasing in i, no matroid can satisfy equality
in (5.3) for all i.

6. Independence complexes. Suppose the smallest cocircuit of M has cardi-
nality k. As pointed out in section 4, ∆(M) is a k-CM complex. So, we can apply
those methods to ∆(M). In addition to the previously mentioned absolute upper

bound hi(M) ≤
(
n−r+i−1

i

)
and relative upper bound hi+1 ≤ h

〈i〉
i , the h-vectors of in-

dependence complexes of matroids satisfy an analogue of the g-theorem for simplicial
polytopes.

Theorem 6.1 (see [25]). Assume that M has no coloops. Let gi(M) = hi(M) −
hi−1(M). Then for all i, 1 ≤ i ≤ (r + 1)/2,

gi+1(M) ≤ g
〈i〉
i (M).

The above theorem was proved independently by Hausel and Sturmfels [15] for
matroids representable over the rationals using toric hyperkähler varieties.

Relative lower bounds, also reminiscent of the g-theorem for simplicial polytopes,
were originally established by Chari [14] using a PS-ear decomposition of ∆(M). See
[14] for the definition of PS-ear decompositions and a proof of the following theorem.

Theorem 6.2. Suppose M has no coloops. Then for all i, 0 ≤ i ≤ r/2,

hi−1 ≤ hi,

hi ≤ hr−i.

Problem 6.3. Do 2-CM complexes satisfy the inequalities in the previous two
theorems?

An affirmative answer to this question would, with the addition of the Dehn–
Sommerville equations, give a complete description of all possible h-vectors of simpli-
cial homology spheres [24, Conjecture II.6.2].

In [5] Brown and Colbourn conjectured that for cographic M, the complex zeros
of T (M ;x, 1) were contained in the closed unit disk. While this has since proved to
be false [22], attempts to prove it led to a couple of relative lower bounds for h-vectors
of independence complexes of any matroid.

Theorem 6.4. Suppose M has no coloops.
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1. For all i ≤ r (see [5]),

hi ≥
i∑

j=1

(−1)j−1hi−j .

2. Let Ij be the number of independent subsets of M of cardinality j (see [26]).
Then for all 0 ≤ k ≤ r,

r∑
j=k

(
j

k

)
(−2)r−jIj ≥ 0.

Stanley used the notion of a level ring to establish the relative lower bound
hj−i(M) ≤ hi(M)hj(M) whenever 0 ≤ i, j ≤ r. In particular, setting j = r, we
find that hr−i(M) ≤

(
n−r+i−1

i

)
hr(M). By applying (2.6) we can obtain similar rel-

ative lower bounds for hi−j(M) in terms of hi(M) and we can also determine when
equality occurs.

Proposition 6.5. Assume that M has no coloops. Then for all i, 1 ≤ j < i ≤ r,

hi−j(M) ≤
(
n−i+j−1
r−i+j

)(
n−i−1
r−i

) hi(M).(6.1)

Furthermore, equality occurs if and only if every series class of M has cardinality
greater than r − i + j.

Proof. Since M has no coloops, ∆(M) is a 2-CM complex. Therefore, (2.6) implies
(r − i + 1)hi−1(M) ≤ (n − i)hi(M). In order for equality to occur, hi(M − e) must
be zero for every e in E. By Theorem 3.3(a), this is equivalent to every series class
of M having cardinality greater than r − i + 1. The proposition follows by induction
on j.

In [6] Brown and Colbourn proved the relative lower bound hr−1(M) ≤ rhr(M),
which involves only the rank of M. This can be improved using Theorem 5.4.

Theorem 6.6. Let M be a rank r matroid without coloops. Then,

hr−i ≤
(
r − 1

i

)
hr +

(
r − 1

i− 1

)
.(6.2)

Proof. By [9], hi(M) equals br−i+1 of the free coextension of M. Since the latter
matroid has rank r+1 and is connected, (6.2) is an immediate consequence of Theorem
5.4.

As in the case of Theorem 5.4, if hr−i(M) =
(
r−1
i

)
hr(M)+

(
r−1
i−1

)
, then hr−j(M) ≤(

r−1
j

)
hr(M) +

(
r−1
j−1

)
for all 0 ≤ j ≤ i. A routine deletion-contraction induction shows

that for a given r and hr,

M = U1,hr+1 ⊕ U1,2 ⊕ · · · ⊕ U1,2︸ ︷︷ ︸
r−1

satisfies equality in (6.2).
Corollary 6.7. Let M be a rank r matroid without coloops. Let Ij be the

number of independent subsets of M of cardinality j. Then,

Ij ≤
j∑

i=0

(
r − i

r − j

){(
r − 1

i

)
hr +

(
r − 1

i− 1

)}
.
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Proof. Apply the above theorem to (2.1).
In section 4 we posed the problem of finding absolute lower bounds for a k-CM

complex given n and r. Here we examine this problem for independence complexes.
Consider the special case of a rank two matroid M without loops. The simplification
of M is isomorphic to U2,m, where m is the number of parallel classes of M. Therefore,
M is specified up to isomorphism by a partition n = p1 + · · · + pm, where the pi’s
are the sizes of the parallel classes of M. Since h0 = 1 and h1 = n − r, minimizing
the h-vector of M is equivalent to minimizing the number of bases of M. As noted
earlier, M is k-CM if and only if every hyperplane of M has cardinality at most n−k.
Equivalently, each pi ≤ n− k. The number of bases of M is(

n

2

)
−

m∑
i=1

(
pi
2

)
.

This is minimized by setting m = 
n/(n − k)�, pi = n − k for i ≤ m − 1, and
pm = n− (m−1)(n−k). Note that this implies that when n ≥ 2k, h2(M) is bounded
below by h2(U1,n−k ⊕ U1,k).

An independence complex is 2-CM if and only if it has no coloops. In [3] Björner
showed that for any matroid without coloops hi ≥ n − r for 0 < i < r. While it is
not specifically stated, the proof implies that hr ≥ n − 2r + 1. In general, given n
and r there may be no single coloop-free matroid that achieves all of these bounds.
For example, if n = 8 and r = 4, then the only matroid without coloops such that
h4(M) = 1 is M = U1,2⊕U1,2⊕U1,2⊕U1,2. However, h2(M) = 6 > n−r. If we restrict
our attention to i < r, then U1,n−r ⊕ Ur−1,r does satisfy hi = n− r for 0 < i < r.

Definition 6.8. M(r, n, k) = U1,n−r−k+2 ⊕ Ur−1,r+k−2.

Direct computation shows that hi(M(r, n, k)) =
(
k+i−2

i

)
+(n− r−k+1)

(
k+i−3
i−1

)
.

In addition, ∆(M(r, n, k)) is k-CM as long as n ≥ r + 2k − 2.
Theorem 6.9. Fix r ≥ 2 and k ≥ 3. There exists N(k, r) such that if M

is a matroid without loops whose smallest cocircuit has cardinality at least k and
n ≥ N(k, r), then for all i, 0 ≤ i ≤ r,

hi(M) ≥ hi(M(r, n, k)).(6.3)

Proof. First we show that if n > k(r + 1), then there exists e ∈ M such that
∆(M − e) is still k-CM. Let H be the set of hyperplanes of M of cardinality n − k.
If H is empty, then any e will do since no hyperplane of M − e will have size greater
than n − k − 1. Otherwise, let B be the intersection of all of the hyperplanes in H.
Since B is a flat of M there exists H1, . . . , Hr+1, not necessarily distinct, in H such
that H1 ∩ · · · ∩Hr+1 = B. Therefore, |B| ≥ n − k(r + 1), and B is not empty. But,
for any e ∈ B, ∆(M − e) is k-CM.

As noted above, when r = 2, N(2, k) = 2k works. So, assume that r ≥ 3.
Let M ′ be a contraction of M and let n′ = |E(M ′)|. By Proposition 4.4, hi(M

′) ≥
hi(Ur−1,r+k−2). In fact, if n > r + k − 2, then hi(M

′) is strictly greater than
hi(Ur−1,r+k−2) for 1 ≤ i ≤ r. Indeed, this is proved by Tutte recursion as in Proposi-
tion 4.4. The base case compares the h-vectors of U2,4 and any five-element rank
two matroid whose smallest cocircuit has at least three elements. The h-vector
of U2,4 is (1, 2, 3). From the discussion of rank two matroids, the h-vectors of the
latter group of matroids are bounded below by (1, 3, 4), the h-vector of the ma-
troid whose simplification is U2,3 and whose parallel classes have cardinality 2, 2,
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and 1. Note that this claim is not true when k = 2. In particular, U1,2 ⊕ Ur−1,r is
a coloop-free matroid with r + 2 elements whose hr is not strictly less than hr of
Ur,r+1.

To finish the proof, we find N(r, k, i) such that the theorem holds for just hi

and then let N(r, k) be the maximum of the all of the N(r, k, i). Since h0(M) = 1
and h1(M) = n − r, r + k − 1 works for N(r, k, 0) and N(r, k, 1). So fix i ≥ 2.
Let N be the minimum of hi(M̄) for all loopless matroids M̄ such that |E(M̄)| =
k(r + 1) + 1, r(M̄) = r, and the smallest cocircuit of M̄ has at least k elements. Let
N(r, k, i) = k(r + 1) + 1 + hi(M(r, k(r + 1) + 1, k)) −N.

Claim. If n ≥ N(k, r, i), then hi(M) ≥ hi(M(r, n, k)).
Proof of claim. Choose e1 ∈ M such that the smallest cocircuit of M − e1 has

cardinality greater than or equal to k. Given ej , choose ej+1 so that the smallest
cocircuit of M − {e1, . . . , ej , ej+1} has size at least k. This can be done up to j =
n− k(r + 1) − 1. Deleting and contracting on each deletion,

hi(M) = hi(M̃) +
∑
j

hi−1(M − {e1, . . . , ej−1}/ej),

where M̃ is M−{e1, . . . , en−k(r+1)−1}. By construction, |E(M̃)| = k(r+1)+1, r(M̃) =

r, and the smallest cocircuit of M̃ has at least k elements. In addition, the rank of
each contraction is r − 1, and its independence complex is k-CM. There are two
possibilities.

• Every contraction has more than r + k − 2 nonloop elements. In this case
hi(M) ≥ hi(M̃) + (n− k(r + 1) − 1)[hi−1(Ur−1,r+k−2) + 1]. Compare this to
computing hi(M(r, n, k)) by deleting and contracting down to U1,rk−k+3 ⊕
Ur−1,r+k−2. The definition of N(r, k, i) ensures that hi(M) is bounded below
by hi(M(r, n, k)).

• At least one contraction, say M − {e1, . . . , ej−1}/ej), has exactly r + k − 2
elements. Since this contraction is a rank r − 1 matroid whose smallest
cocircuit has at least k elements, it must be equal to Ur−1,r+k−2. There-
fore, M − {e1, . . . , ej−1} has one nontrivial parallel class which contains ej ,
and the simplification of M − {e1, . . . , ej−1} is a one-element coextension
of Ur−1,r+k−2. The one-element coextension of Ur−1,r+k−2 which minimizes
hi(M −{e1, . . . , ej−1}) is the one obtained by adding a coloop to Ur−1,r+k−2.
Hence, hi(M − {e1, . . . , ej−1}) is bounded below by hi(M(r, n− j, k)). How-
ever, this implies that hi(M) ≥ hi(M(r, n − r, k) + j hi−1(Ur−1,r+k−2)) =
hi(M(r, n, k)).

Some lower bound on n is necessary in order for (6.3) to hold. For instance, let
M = U1,3⊕U1,3⊕U1,3. Then r = 3, k = 3, and n = 9. The h-vector of M is (1, 6, 12, 8),
while the h-vector of M(3, 9, 3) = U1,5 ⊕U2,4 is (1, 6, 11, 12). As usual, absolute lower
bounds yield relative lower bounds via (2.6).

Corollary 6.10. Fix r ≥ 2 and k ≥ 3. There exists N(k, r) such that if M is
a matroid without loops whose smallest cocircuit has cardinality k and n ≥ N(k, r),
then for all i, 0 ≤ i ≤ r,

(r − i + 1)hi−1(M) + n hi(M(r, n− 1, k − 1)) ≤ (n− i)hi(M).

Acknowledgment. An anonymous referee’s comments and suggestions dramat-
ically improved the exposition in several places.
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Abstract. The notion of a splitting authentication code is very important in the context of
an authentication code with arbitration. Ogata et al. [Discrete Math., 279 (2004), pp. 383–405]
characterized an optimal splitting authentication code in terms of a splitting balanced incomplete
block design (BIBD). A (v, u× c, 1)-splitting BIBD is a pair (V,B), where V is a v-set of points and
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that the necessary conditions for the existence of a (v, u× c, 1)-splitting BIBD (or, equivalently, an
optimal c-splitting authentication code with u source states and v messages) are also sufficient for

(1) (u, c) = (2, 2t) for any positive integer t,
(2) (u, c) = (2, 3) with a definite exception of v = 10,
(3) (u, c) = (3, 2) with a definite exception of v = 9, and
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1. Introduction. Authentication codes were invented by Gilbert, MacWilliams,
and Sloane [4] for protecting the integrity of information, which involve three active
parties: a transmitter T , a receiver R, and an opponent O. The transmitter T trans-
mits messages to the receiver R using a communication channel. The opponent O
has access to this communication channel and can interfere with the contents of cryp-
tograms transmitted via this channel. Two types of active attack from the opponent
O, impersonation and substitution, are usually considered.

A game-theoretic model for authentication codes was developed by Simmons [10].
In this model, the transmitter T and the receiver R share a common encoding rule
(or key) e. The key e is chosen from some key space E according to some specified
probability distribution. Given a source state (or plaintext) s from some source state
space S, the transmitter T computes a message m = e(s) ∈ M , where M is the
message space, and sends m ∈ M to the receiver R. The receiver R accepts or rejects
the transmitted message m ∈ M based on the key e ∈ E which the receiver R shared
with the transmitter T .
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We say that an authentication code has perfect secrecy if the opponent O has no
information about the source state s ∈ S given a message m ∈ M . In this paper, we
will consider only authentication codes with perfect secrecy.

It is possible that more than one message can be used to communicate a particular
source state s ∈ S; this is called splitting, a very important concept in the context of
an authentication code with arbitration (see [11, 12, 6, 7]). In this case, a message
m ∈ M is computed as m = e(s, r) ∈ M , where r is some random number chosen
from a specified finite set R. If we define

e(s) = {m ∈ M : m = e(s, r) for some r ∈ R},

then splitting means that |e(s)| > 1 for some e ∈ E and s ∈ S. Note also that for
any e ∈ E, e(s)∩ e(s′) = ∅ if s �= s′, for otherwise decoding would be impossible. Let
κ(e) = ∪s∈Se(s). We say that e ∈ E accepts m ∈ M if m ∈ κ(e).

In an impersonation attack, the opponent O transmits a message m ∈ M to
the receiver R. The opponent O succeeds if m ∈ κ(e). The impersonation attack
probability PI is defined as

PI = max
m∈M

Pr(m ∈ κ(e)),

where the probability is computed over the key space E. In a substitution attack,
the opponent O observes a message m ∈ M transmitted by the transmitter T and
then substitutes m ∈ M with another message m′ ∈ M . The opponent O succeeds
if m ∈ κ(e) and m′ ∈ e(s′), where s, s′ ∈ S, s �= s′; in other words, the receiver R
accepts m′ ∈ M as authentic and is misled to the false source state s′ ∈ S. The
substitution attack probability PS is defined as

PS =
∑
m∈M

Pr(T sends m) max
m′∈M

Pr(R accepts m′, s′ �= s, s, s′ ∈ S | R accepts m),

where the probability is computed over the key space E.
A splitting authentication code is called c-splitting if |e(s)| = c for any e ∈ E

and any s ∈ S. In a c-splitting authentication code, for every e ∈ E, we know
that |κ(e)| = c|S|. The following theorem describes the known bounds on attack
probabilities and the number of keys in a c-splitting authentication code.

Theorem 1.1 (see [9]). For any c-splitting authentication code, the following
two inequalities always hold:

PI ≥ c|S|/|M |, PS ≥ c(|S| − 1)/(|M | − 1).

If in fact the above equalities are satisfied, then another inequality also holds:

|E| ≥ |M |(|M | − 1)/(c2|S|(|S| − 1)).

A c-splitting authentication code is said to be optimal if it satisfies all the equalities
in Theorem 1.1.

In this paper, we will focus our attention on the combinatorial constructions
and existence problems of optimal c-splitting authentication codes. An optimal c-
splitting authentication code has been shown to be closely related to a combinatorial
structure called splitting balanced incomplete block design (BIBD). As a consequence,
to construct such an optimal c-splitting authentication code, we need only to construct
its corresponding splitting balanced incomplete block design. Various recursive and
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direct constructions are used to produce splitting BIBDs or, equivalently, optimal
c-splitting authentication codes. Especially, we show that the necessary conditions
for the existence of a (v, u×c, 1)-splitting BIBD or, equivalently, an optimal c-splitting
authentication code with u source states and v messages, are also sufficient for

(1) (u, c) = (2, 2t) for any positive integer t,
(2) (u, c) = (2, 3) with a definite exception of v = 10,
(3) (u, c) = (3, 2) with a definite exception of v = 9, and
(4) (u, c) = (4, 2) with two possible exceptions of v = 49, 385.

2. Splitting authentication codes, splitting BIBDs, and graph designs.
Optimal c-splitting authentication codes are closely related to some combinatorial
structures such as splitting BIBDs and balanced graph designs. Let v, u, c, λ be posi-
tive integers such that v ≥ uc. A (v, u× c, λ)-splitting BIBD is a pair (V,B), where

(1) V is a v-set of elements called points;
(2) B is a collection of u× c arrays, called blocks, with entries from V, such that

every point occurs at most once in each block;
(3) for every pair of distinct points x, y ∈ V, there are exactly λ blocks in which

x and y occur in different rows.
The following combinatorial properties of a splitting BIBD can be easily obtained.
Lemma 2.1 (see [9]). In a (v, u× c, λ)-splitting BIBD (V,B), each point of V is

contained in exactly

r = λ(v − 1)/((u− 1)c)

blocks, and there are exactly

b = λv(v − 1)/
(
u(u− 1)c2

)
blocks. Furthermore,

b ≥ v/u.

Ogata et al. [9] showed the following relations between splitting authentication
codes and splitting BIBDs. An authentication matrix of a c-splitting authentication
code is a matrix with the rows indexed by the keys e ∈ E, the columns indexed by
the source states s ∈ S, and entry (e, s) given by e(s) ⊆ M .

Theorem 2.2 (see [9]). If there exists an optimal c-splitting authentication code,
then the rows of its authentication matrix form the blocks of an (|M |, |S|×c, 1)-splitting
BIBD, each source state in a row of the authentication matrix yielding a row in its
corresponding block of the splitting BIBD.

Conversely, starting from a (v, u×c, 1)-splitting BIBD (V,B), we can put M = V,
S = {s1, . . . , su}, and for each block ⎛⎜⎜⎜⎝

B1

B2

...
Bu

⎞⎟⎟⎟⎠ ,

we define an encoding rule e ∈ E such that e(s1) = B1, e(s2) = B2, . . . , e(su) = Bu.
Then we obtain the following result.

Theorem 2.3 (see [9]). If there exists a (v, u × c, 1)-splitting BIBD, then there
exists an optimal c-splitting authentication code such that
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(1) |M | = v, |S| = u;
(2) each source state occurs with equal probability.

As an immediate consequence of the above results [9], to construct optimal c-
splitting authentication codes, we need only to construct their corresponding splitting
balanced incomplete block designs.

We also noticed that splitting BIBDs are in fact a special kind of graph designs.
Let G = (V (G), E(G)) be a graph, where V (G) is the set of vertices of G and E(G)
is the set of edges of G. Let λKn be the multiple complete graph with n vertices,
that is, the graph with n vertices such that any two distinct vertices are incident with
λ common edges, and let Ku

c be the complete u-partite graph with each part having
c vertices, that is, the graph with the set of vertices being partitioned into u parts
of size c each such that every vertex is adjacent to every vertex in a different part.
A (λKn, G)-graph design is a partition of the edges of λKn into subgraphs, called
G-blocks, each of which is isomorphic to G. A (λKn, G)-graph design is balanced if
each vertex of λKn belongs to exactly the same number of G-blocks. Then, from
the definitions, we can easily see that a (v, u× c, λ)-splitting BIBD is equivalent to a
(λKv,K

u
c )-balanced graph design.

Therefore, we can also investigate optimal c-splitting authentication codes from
a graph theoretic point of view. However, in this paper, we will use only the combi-
natorial design theoretic approach.

3. Combinatorial constructions. Now we describe our combinatorial con-
structions for splitting BIBDs or, equivalently, optimal splitting authentication codes.
These include recursive constructions, in which the new concept of a splitting group di-
visible design plays an important role, and direct constructions by difference method,
some of which making use of Weil’s theorem on character sums and Wilson’s choice
mapping.

3.1. Recursive constructions. Let K be a set of some positive integers. A
group divisible design, denoted by K-GDD, is a triple (V,G,B), where V is a set of
elements called points, G is a partition of V into subsets called groups, and B is a
collection of subsets of V called blocks such that

(1) |B| ∈ K for any B ∈ B;
(2) |G ∩B| ≤ 1 for any G ∈ G and any B ∈ B; and
(3) for any pair of points {x, y}, where x and y belong to distinct groups, there

exists exactly one block of B in which x and y occur.

We define the group type (or type) of a K-GDD to be the multiset (|G| : G ∈ G).
The usual exponential notation will be used to describe types. Thus a GDD of type
tu1
1 . . . tun

n is one in which there are exactly ui groups of size ti, 1 ≤ i ≤ n.

A {k}-GDD of type 1v is commonly called a (v, k, 1)-BIBD.

Let u ≥ 2 and c ≥ 2 be integers. A splitting GDD, denoted by u × c-splitting
GDD, is a triple (V,G,A) where V is a set of elements called points, G is a partition
of V into subsets called groups, and B is a collection of u× c arrays with entries from
V, called blocks, such that

(1) any point of V can occur at most once in any block;
(2) for any pair of points {x, y}, where x and y belong to distinct groups, there

exists exactly one block of A in which x and y occur in different rows.

We can define the group type (or type) of a u× c-splitting GDD similarly to a K-
GDD. Clearly, a u×c-splitting GDD of type 1v is equivalent to a (v, u×c, 1)-splitting
BIBD.
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Splitting GDDs can be used to construct splitting BIBDs. In this section, we
describe several recursive constructions for splitting GDDs and splitting BIBDs. They
are analogues of the well-known recursive constructions for GDDs and BIBDs due to
Wilson [14].

Theorem 3.1 (see [14]). Let (V,G,B) be a GDD. Further let w : V −→ N ∪ {0}
be a weight function, where N is the set of positive integers. For each B ∈ B, suppose
that there exists a K-GDD of type (w(x) : x ∈ B), (∪x∈BS(x), {S(x) : x ∈ B},B(B)),
where S(x) = {x1, x2, . . . , xw(x)} for every x ∈ V and B(B) is the collection of blocks
of the ingredient GDD. Then there exists a K-GDD of type (

∑
x∈G w(x) : G ∈ G),

(∪x∈VS(x), {∪x∈GS(x) : G ∈ G},∪B∈BB(B)).
Theorem 3.2 (see [14]). Let (V,G,B) be a K-GDD. Further, let G0 be a set

of new points, that is, G0 ∩ V = ∅, and suppose that for each group G ∈ G, there
exists a K-GDD (G ∪ G0, {G0} ∪ HG,BG), where HG is the set of groups except G0

and BG is the collection of blocks of the ingredient GDD. Then there exists a K-GDD
(V ∪G0, {G0} ∪ {HG : G ∈ G},B ∪ (∪G∈GBG)).

A special case of Theorem 3.2 is the following, which is very useful in the con-
struction of BIBDs.

Corollary 3.3 (see [14]). Let (V,G,B) be a {k}-GDD. Further, let ∞ be a new
point, that is, {∞} ∩ V = ∅, and suppose that for each group G ∈ G, there exists
a (|G| + 1, k, 1)-BIBD, (G ∪ {∞},BG), where BG is the collection of blocks of the
ingredient BIBD. Then there exists a (|V|+1, k, 1)-BIBD (V ∪{∞},B∪ (∪G∈GBG)).

Then we can state our recursive constructions for splitting GDDs and splitting
BIBDs.

Theorem 3.4. Let (V,G,B) be a GDD. Further, let w : V −→ N ∪ {0} be
a weight function such that w(x) = w(y) for any points x, y ∈ V. For each block
B ∈ B, suppose that there exists a u × c-splitting GDD of type (w(x) : x ∈ B),
(∪x∈BS(x), {S(x) : x ∈ B},A(B)), where S(x) = {(x, 1), (x, 2), . . . , (x,w(x))} for
every point x ∈ V. Then there exists a u× c-splitting GDD of type (

∑
x∈G w(x) : G ∈

G), (∪x∈VS(x), {∪x∈GS(x) : G ∈ G},∪B∈BA(B)).
A degenerate case of Theorem 3.4 is the following simple but very powerful con-

struction.
Corollary 3.5. Let u ≥ 2 and c ≥ 2 be two integers. Further, let (V,G,B) be a

{u}-GDD, and let w : V −→ N ∪{0} be a weight function such that w(x) = c for any
point x ∈ V. Then there exists a u× c-splitting GDD of type (

∑
x∈G w(x) : G ∈ G).

Proof. For any block B = {b1, b2, . . . , bu} ∈ B, there always exists a u×c-splitting
GDD of type cu, (∪x∈BS(x), {S(x) : x ∈ B}, {B′}), where S(x) = {(x, 1), (x, 2), . . . ,
(x,w(x))} for every point x ∈ V, and

B′ =

⎛⎜⎜⎝
(b1, 1) · · · (b1, c)
(b2, 1) · · · (b2, c)
· · · · · · · · ·

(bu, 1) · · · (bu, c)

⎞⎟⎟⎠ .

Then apply Theorem 3.4.
Theorem 3.6. Let (V,G,A) be a u× c-splitting GDD. Further, let G0 be a set of

new points, that is, G0 ∩ V = ∅, and suppose that for each group G ∈ G, there exists
a u× c-splitting GDD, (G ∪G0, {G0} ∪ HG,AG). Then there exists a u× c-splitting
GDD, (V ∪G0, {G0} ∪ {HG : G ∈ G},A ∪ (∪G∈GAG)).

Theorem 3.6 leads to the following corollary, which is very useful in the construc-
tion of splitting BIBDs.
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Corollary 3.7. Let (V,G,B) be a u×c-splitting GDD. If for each group G ∈ G,
there exists a (|G| + 1, u× c, 1)-splitting BIBD, then there exists a (|V| + 1, u× c, 1)-
splitting BIBD.

3.2. Difference method direct constructions. To apply the recursive con-
structions described in subsection 3.1, we must first have some constructions to pro-
duce ingredient splitting BIBDs. The method of differences is the most widely used
direct construction for many types of combinatorial designs. Splitting BIBDs can also
be constructed by this method.

We first construct (v, 2 × c, 1)-splitting BIBDs.
Lemma 3.8. There exists a (2c2t + 1, 2 × c, 1)-splitting BIBD for any positive

integers t and c.
Proof. Let the set of points be Z2c2t+1. Then the blocks of the desired (2c2t +

1, 2×c, 1)-splitting BIBD can be obtained by developing the elements of Z2c2t+1 in the
following base blocks +1 modulo 2c2t+1, that is, for each base block in the following
list, construct 2c2t + 1 blocks by adding the elements 0, 1, 2, . . . modulo 2c2t + 1 to
the given base block:(

1 2 · · · c
2c2i− (2c2 − c) + 1 2c2i− (2c2 − c) + c + 1 · · · 2c2i− (2c2 − c) + c(c− 1) + 1

)
,

where i = 1, 2, . . . , t.
Lemma 3.9. There exists a (28, 2 × 3, 1)-splitting BIBD.
Proof. Let the set of points be Z28. The blocks of the desired (28, 2×3, 1)-splitting

BIBD can be obtained by developing the elements of Z28 in the following given base
blocks +4 modulo 28, that is, for each base block in the following list, construct seven
blocks by adding the elements 0, 4, 8, 12, 16, 20, 24 modulo 28 to the given base block:(

1 17 20
2 3 25

)
,

(
4 10 16
11 13 17

)
,

(
1 2 3
10 11 12

)
,(

4 20 22
16 18 19

)
,

(
3 14 21
9 19 27

)
,

(
1 2 16
8 18 19

)
.

Next we consider the construction of (v, 3×2, 1)-splitting BIBDs. We list explicitly
(v, 3 × 2, 1)-splitting BIBDs for v = 25, 33, 49, 57, 81.

Lemma 3.10. There exists a (v, 3×2, 1)-splitting BIBD for v ∈ {25, 33, 49, 57, 81}.
Proof. For v = 25, let the set of points be Z25. The blocks of the desired

(25, 3 × 2, 1)-splitting BIBD can be obtained by developing the elements of Z25 in
the following given base block +1 modulo 25:⎛⎝ 0 1

2 4
12 20

⎞⎠ .

For v = 33, let the set of points be Z33. The blocks of the desired (33, 3 × 2, 1)-
splitting BIBD can be obtained by developing the elements of Z33 in the following
given base blocks +3 modulo 33:⎛⎝ 3 5

4 18
15 29

⎞⎠ ,

⎛⎝ 1 18
10 20
14 31

⎞⎠ ,

⎛⎝ 3 29
12 13
19 31

⎞⎠ ,

⎛⎝ 1 11
3 29
8 30

⎞⎠ .
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For v = 49, let the set of points be Z49. The blocks of the desired (49, 3 × 2, 1)-
splitting BIBD can be obtained by developing the elements of Z49 in the following
given base blocks +1 modulo 49:⎛⎝ 0 1

2 4
11 19

⎞⎠ ,

⎛⎝ 0 1
6 14
22 26

⎞⎠ .

For v = 57, let the set of points be Z57. The blocks of the desired (57, 3 × 2, 1)-
splitting BIBD can be obtained by developing the elements of Z57 in the following
given base blocks +3 modulo 57:⎛⎝ 0 49

4 50
44 51

⎞⎠ ,

⎛⎝ 0 11
2 15
23 37

⎞⎠ ,

⎛⎝ 0 28
5 38
34 49

⎞⎠ ,

⎛⎝ 0 17
3 48
27 31

⎞⎠ ,

⎛⎝ 0 55
1 25
16 17

⎞⎠ ,

⎛⎝ 0 2
20 32
35 52

⎞⎠ ,

⎛⎝ 0 27
11 46
13 39

⎞⎠ .

For v = 81, let the set of points be Z27 × {0, 1, 2}. The blocks of the desired
(81, 3 × 2, 1)-splitting BIBD can be obtained by developing the first coordinates of
elements of Z27 × {0, 1, 2} in the following given base blocks +1 modulo 27:⎛⎝ (0, 0) (26, 0)

(0, 1) (2, 1)
(4, 1) (7, 1)

⎞⎠ ,

⎛⎝ (0, 0) (1, 0)
(10, 1) (12, 1)
(18, 1) (21, 1)

⎞⎠ ,

⎛⎝ (0, 0) (1, 0)
(14, 1) (16, 1)
(0, 2) (4, 2)

⎞⎠ ,

⎛⎝ (0, 0) (1, 0)
(23, 1) (25, 1)
(2, 2) (6, 2)

⎞⎠,

⎛⎝ (0, 0) (13, 1)
(7, 0) (15, 2)
(26, 1) (14, 2)

⎞⎠ ,

⎛⎝ (0, 1) (2, 1)
(17, 1) (26, 1)
(20, 2) (24, 2)

⎞⎠ ,

⎛⎝ (0, 1) (13, 1)
(0, 2) (12, 2)
(5, 2) (9, 2)

⎞⎠ ,

⎛⎝ (0, 0) (26, 0)
(10, 2) (20, 2)
(16, 2) (18, 2)

⎞⎠,

⎛⎝ (0, 0) (26, 0)
(8, 2) (12, 2)
(22, 2) (24, 2)

⎞⎠ ,

⎛⎝ (0, 0) (3, 0)
(13, 0) (26, 0)
(18, 0) (24, 0)

⎞⎠ .

Now we consider the construction for (v, 4 × 2, 1)-splitting BIBDs. Similarly, we
list explicitly (v, 4 × 2, 1)-splitting BIBDs for v = 97, 145, 193, 241, 289, 337, 433.

Lemma 3.11. There exists a (v, 4×2, 1)-splitting BIBD for v ∈ {97, 145, 193, 241,
289, 337, 433}.

Proof. We prove this lemma in a way similar to Lemma 3.10, but here we describe
only the base blocks for each desired splitting BIBD.

For v = 97, let the set of points be Z97. The base blocks of the desired (97, 4×2, 1)-
splitting BIBD are given below:⎛⎜⎜⎝

1 2
5 29
37 48
22 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
6 55
31 85
44 45
22 0

⎞⎟⎟⎠ .

For v = 145, let the set of points be Z145. The base blocks of the desired (145, 4×
2, 1)-splitting BIBD are given below:⎛⎜⎜⎝

3 88
37 76
96 98
119 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 68
6 92
36 106
133 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2 64
60 119
130 138
18 0

⎞⎟⎟⎠ .
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For v = 193, let the set of points be Z193. Multiplying the following two base
blocks by 1, 81 ∈ Z193 yields the four base blocks of the desired (193, 4×2, 1)-splitting
BIBD: ⎛⎜⎜⎝

1 2
5 8
43 115
140 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
11 126
39 160
140 147
56 0

⎞⎟⎟⎠ .

For v = 241, let the set of points be Z241. Multiplying the following base block
by 1, 87, 872, 873, 874 ∈ Z241 yields the five base blocks of the desired (241, 4 × 2, 1)-
splitting BIBD: ⎛⎜⎜⎝

1 2
6 85
50 227
116 0

⎞⎟⎟⎠ .

For v = 289, let the set of points be GF (172). Choose one primitive polynomial
f(x) = x2 + 11x+ 6 ∈ GF (17)[x]. Then multiplying the following two base blocks by
1, x96, x192 ∈ GF (172) yields the desired six base blocks:⎛⎜⎜⎝

x x2

x3 x4

x5 x127

x136 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
x10 x17

x35 x163

x139 x182

x66 0

⎞⎟⎟⎠ .

For v = 337, let the set of points be Z337. Multiplying the following base block
by 1, 8, 82, 83, 84, 85, 86 ∈ Z337 yields the desired seven base blocks:⎛⎜⎜⎝

1 2
5 94
74 205
108 0

⎞⎟⎟⎠ .

For v = 433, let the set of points be Z433. Multiplying the following base block
by 1, 27, 272, 273, 274, 275, 276, 277, 278 ∈ Z433 yields the desired nine base blocks:⎛⎜⎜⎝

1 2
5 8

248 292
316 0

⎞⎟⎟⎠ .

We also describe a direct construction for (v, 5 × 2, 1)-splitting BIBDs. By a
computer search and by applying Weil’s theorem on character sums, we can show the
existence of (p, 5 × 2, 1)-splitting BIBDs for some prime numbers p ≡ 1 (mod 80).

A multiplicative character of a finite field GF (q) is a homomorphism from the
multiplicative group of GF (q) into the multiplicative group of complex numbers of
absolute value 1. The following is the statement of Weil’s theorem on multiplicative
character sums cited from Theorem 5.41 in [8]. In the theorem it is understood that
if χ is a multiplicative character of GF (q), then χ(0) = 0.
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Theorem 3.12. Let χ be a multiplicative character of GF (q) of order m > 1 and
let f be a polynomial of GF (q)[x] which is not of the form kgm for some k ∈ GF (q)
and some g ∈ GF (q)[x]. Then we have∣∣∣∣ ∑

x∈GF (q)

χ(f(x))

∣∣∣∣ ≤ (d− 1)
√
q,

where d is the number of distinct roots of f(x) in its splitting field over GF (q).

As an application of Theorem 3.12, Chang and Ji [1] obtained the following lemma,
Lemma 3.13. To state their result and describe our own, we need to explain some
definitions and notations in finite fields. Given a prime power q ≡ 1(modn) and
a primitive element ω ∈ GF (q), Cn

0 will denote the unique multiplicative subgroup
{ωin : 0 ≤ i < (q − 1)/n} of index n and order (q − 1)/n, while Cn

j will denote the

multiplicative coset of Cn
0 represented by ωj , i.e., Cn

j = ωj ·Cn
0 . The multiplicative

cosets Cn
0 , C

n
1 , . . . , C

n
n−1 of Cn

0 are the cyclotomic classes of index n in GF (q). They
evidently partition GF (q) \ {0}. The class of cosets {Cn

0 , C
n
1 , . . . , C

n
n−1} will be de-

noted by Cn. Given a set of n distinct elements in GF (q), if they belong to n distinct
cyclotomic classes Cn

0 , C
n
1 , . . . , C

n
n−1, then we say that this set of n elements forms a

system of distinct representatives of the cyclotomic classes Cn
0 , C

n
1 , . . . , C

n
n−1, and it

is denoted by SDRC(Cn).

Lemma 3.13 (see [1]). Let p ≡ 1(mod q) be a prime number satisfying the inequal-
ity p− [

∑
0≤i≤s−2

(
s
i

)
(s− i−1)(q−1)s−i]

√
p− sqs−1 > 0. Then, for any given s-tuple

(j1, j2, . . . , js) ∈ {0, 1, . . . , q − 1}s and any given s-tuple (c1, c2, . . . , cs) of pairwise
distinct elements of GF (p), there exists an element x ∈ GF (p) such that x+ ci ∈ Cq

ji
for each i, i = 1, 2, . . . , s.

Let p = 80t + 1 be a prime number, where t is a positive integer. Let w be a
primitive element of GF (p) and x be some element of GF (p). We consider the list
ΔA of the 80 differences from any two entries in different rows of the following 5 × 2
array:

A =

⎛⎜⎜⎜⎜⎝
1 x

w16t xw16t

w32t xw32t

w48t xw48t

w64t xw64t

⎞⎟⎟⎟⎟⎠ .

It is straightforward to check that

ΔA =
{
1, w8t, w16t, w24t, w32t, w40t, w48t, w56t, w64t, w72t

}
×
{
1 − w16t, 1 − w32t, x− w16t, x− w32t, x− w48t, x− w64t,

x(1 − w16t), x(1 − w32t)
}
.

Now if we define A = {Ai : 0 ≤ i ≤ t− 1}, where

Ai = w8i·A =

⎛⎜⎜⎜⎜⎝
w8i xw8i

w16t+8i xw16t+8i

w32t+8i xw32t+8i

w48t+8i xw48t+8i

w64t+8i xw64t+8i

⎞⎟⎟⎟⎟⎠ ,
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then

ΔA = ∪0≤i≤t−1ΔAi

=
{
1, w8, . . . , w8(t−1)

}
×
{
1, w8t, w16t, w24t, w32t, w40t, w48t, w56t, w64t, w72t

}
×
{
1 − w16t, 1 − w32t, x− w16t, x− w32t, x− w48t, x− w64t,

x
(
1 − w16t

)
, x

(
1 − w32t

)}
.

Clearly, when t ≡ 1, 3, 7, 9 (mod 10), C8
0 = {1, w8, . . . , w8(t−1)} × {1, w8t, w16t, w24t,

w32t, w40t, w48t, w56t, w64t, w72t}, and if {1 − w16t, 1 − w32t, x − w16t, x − w32t, x −
w48t, x−w64t, x(1−w16t), x(1−w32t)} forms an SDRC(C8), then ΔA = GF (q) \ {0}.
The latter condition is equivalent to the following condition (∗):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − w16t ∈ C8
a ,

1 + w16t ∈ C8
b ,

x− w16t ∈ C8
c ,

x− w32t ∈ C8
d ,

x− w48t ∈ C8
e ,

x− w64t ∈ C8
f ,

x ∈ C8
g ,

where {a, a+b, c, d, e, f, a+g, a+b+g} should form a complete set of residues modulo 8.
Let p = 80t + 1 be a prime number, where t ≡ 1, 3, 7, 9 (mod 10). We first

investigate the existence of a primitive element w in GF (p) such that 1 + w16t �∈ C8
0 .

Lemma 3.14. Let p = 80t + 1 be a prime number, where t is a positive integer.
Then in GF (p), one and only one of the following two properties is satisfied:

(1) 1 + θ16t ∈ C8
0 for any primitive element θ ∈ GF (p).

(2) 1 + θ16t �∈ C8
0 for any primitive element θ ∈ GF (p).

Proof. Let h = w16t, where w is a fixed primitive element of GF (p). Then
h5 = w80t = 1, which implies that 1, h, h2, h3, h4 are exactly the five solutions to the
equation x5 − 1 = 0 in GF (p). For any other primitive element θ ∈ GF (p), we also
have θ16t �= 1 and θ16t satisfies the equation x5 − 1 = 0. Thus, θ16t must be one of
the four elements h, h2, h3, h4. Denote the set {h, h2, h3, h4} by H. Since h = w16t,
we can easily know that H ⊂ C8

0 . We prove that if 1 + h ∈ C8
0 , then 1 + H ⊂ C8

0 .
In fact, since h5 = 1, we know that 1 + h + h2 + h3 + h4 = 0. Also, it is clear that
−1 = w40t ∈ C8

0 . Then (1 + h)(1 + h2) = 1 + h + h2 + h3 = −h4 ∈ C8
0 , which implies

that 1 + h2 ∈ C8
0 . Similarly, (1 + h)(1 + h3) = 1 + h + h3 + h4 = −h2 ∈ C8

0 , which
implies that 1 + h3 ∈ C8

0 . Finally, 1 + h4 = h4(1 + h) ∈ C8
0 . Therefore, for a fixed

primitive element w ∈ GF (p), if 1 + w16t ∈ C8
0 , then 1 + θ16t ∈ C8

0 for any other
primitive element θ ∈ GF (p), and if 1 + w16t �∈ C8

0 , then 1 + θ16t �∈ C8
0 for any other

primitive element θ ∈ GF (p).
As an immediate consequence, to show the existence of a primitive element w ∈

GF (p) such that 1+w16t �∈ C8
0 , we need only to show that the least primitive element

w0 of GF (p) satisfies the above condition. The computational results show that in
most cases with p ≤ 107, the least primitive element w0 ∈ GF (p) does satisfy the
condition 1 + w16t

0 �∈ C8
0 .

In fact, for a primitive element w of GF (p), a proof similar to that of Lemma 3.14
shows that if 1 + w16t ∈ C8

0 , then 1 + y16t ∈ C8
0 for any other element y �∈ C5

0 , and
if 1 + w16t �∈ C8

0 , then 1 + y16t �∈ C8
0 for any other element y �∈ C5

0 . Therefore, the
problem of whether there is a primitive element w in GF (p) such that 1 +w16t �∈ C8

0

can be further reduced to an easier problem—whether there is an element y �∈ C5
0

such that 1 + y16t �∈ C8
0 .
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Based on these observations, with the aid of a computer, we have determined one
pair (w, x) satisfying the condition (∗) for any prime number p ≤ 107, p = 80t + 1,
t ≡ 1, 3, 7, 9 (mod 10), as long as the least primitive element w0 ∈ GF (p) satisfies
the condition 1 + w16t

0 �∈ C8
0 . To save the space, we list only a few examples with

p ≤ 5 × 104 in this paper.
Lemma 3.15. There exists a (p, 5 × 2, 1)-splitting BIBD for each p listed in

Appendix 1.
Proof. For each p listed in Appendix 1, we have found a pair (w, x) which satisfies

the condition (∗). Then A = {Ai : 0 ≤ i ≤ t− 1} forms the collection of base blocks
of the desired (p, 5 × 2, 1)-splitting BIBD.

Now we consider large prime numbers p = 80t + 1 with t ≡ 1, 3, 7, 9 (mod 10).
Under the assumption that in GF (p) there is an element y �∈ C5

0 such that 1 + y16t �∈
C8

0 , by applying Lemma 3.13 with q = 8 and s = 5, we know that for p ≥ 1.8 × 1010,
there always exists a pair (w, x), w a primitive element and x a nonzero element
of GF (p), which satisfies the condition (∗). This implies that there always exists a
(p, 5 × 2, 1)-splitting BIBD for each such p.

Summarizing the above, we obtain the following existence result for (p, 5 × 2, 1)-
splitting BIBDs.

Theorem 3.16. Let p = 80t + 1, t ≡ 1, 3, 7, 9 (mod 10), be a prime number such
that in GF (p) there is an element y �∈ C5

0 satisfying 1 + y16t �∈ C8
0 . Then there exists

a (p, 5 × 2, 1)-splitting BIBD provided that p ≤ 107 or p ≥ 1.8 × 1010.
In the remainder of this subsection, we provide a construction for an infinite series

of (v, u × c, 1)-splitting BIBDs for any integers u ≥ 2 and c ≥ 2. Let q be a prime
power, e a positive integer deviding q− 1, r ≥ 2 an integer, and Pr the set of ordered
pairs {(i, j) : 1 ≤ i < j ≤ r}. We define an r-choice (for e) to be any mapping
C : Pr −→ Ce, assigning to each pair (i, j) ∈ Pr a cyclotomic class C(i, j) of index e
in GF (q). An r-vector (a1, a2, . . . , ar) of elements of GF (q) is said to be consistent
with the choice C if and only if aj − ai ∈ C(i, j) for all (i, j) ∈ Pr.

Lemma 3.17 (see [13]). Let q ≡ 1 (mod e) be a prime power and q > er(r−1).
Then for any r-choice C : Pr −→ Ce, there exists an r-vector (a1, a2, . . . , ar) of
elements of GF (q) consistent with C.

Theorem 3.18. Let u ≥ 2 and c ≥ 2 be two integers. Then there exists a
(q, u × c, 1)-splitting BIBD for any prime power q = 2u(u − 1)c2m + u(u − 1)c2 + 1
satisfying q > [u(u− 1)c2]uc(uc−1), where m is some positive integer.

Proof. Let r = uc and e = u(u − 1)c2. We define a uc-choice C0 : Puc −→
Cu(u−1)c2 such that {C(sc + i, tc + j) : 0 ≤ s < t ≤ u − 1, 1 ≤ i, j ≤ c} =

{Cu(u−1)c2

0 , C
u(u−1)c2

1 , . . . , C
u(u−1)c2

1
2u(u−1)c2−1

}. Then according to Lemma 3.17, we know

that for any prime power q = u(u − 1)c2n + 1 satisfying q > [u(u − 1)c2]uc(uc−1),
where n is some positive integer, there exists a uc-vector (a1, a2, . . . , auc) of elements
of GF (q) consistent with the above defined uc-choice C0. If we take n = 2m+1, then

−1 ∈ C
u(u−1)c2

1
2u(u−1)c2

. We then define a u× c array

B =

⎛⎜⎜⎝
a1 a2 · · · ac
ac+1 ac+2 · · · a2c

· · · · · · · · · · · ·
a(u−1)c+1 a(u−1)c+2 · · · auc

⎞⎟⎟⎠ .

Clearly in this case, the differences ΔB = SDRC(Cu(u−1)c2). Therefore we know that

{x·B : x ∈ C
u(u−1)c2

0 } forms the collection of base blocks of the desired (q, u × c, 1)-
splitting BIBD.
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Note that although the above proof is a constructive proof, which is usually
more valuable than an existence proof, since we do not know explicitly the uc-vector
(a1, a2, . . . , auc), we expect strongly a more explicit direct construction for (v, u×c, 1)-
splitting BIBDs for any two integers u ≥ 2 and c ≥ 2.

4. Existence results. In this section, we will use the results obtained in the
previous sections to establish the existence result of a (v, u× c, 1)-splitting BIBD or,
equivalently, an optimal c-splitting authentication code with u source states and v
messages, for several small u ≥ 2 and c ≥ 2.

The following assertion can be easily proved by applying Lemma 2.1.
Theorem 4.1. The necessary conditions for the existence of a (v, u×c, 1)-splitting

BIBD or, equivalently, an optimal c-splitting authentication code with u source states
and v messages, are that {

v − 1 ≡ 0 (mod (u− 1)c),
v(v − 1) ≡ 0 (modu(u− 1)c2).

Remembering that a (v, u× c, λ)-splitting BIBD is in fact a (λKv,K
u
c )-balanced

graph design, we can know, by a result due to Wilson [15] (see also [5]), that the
above necessary conditions are also asymptotically sufficient for the existence of a
(v, u×c, 1)-splitting BIBD or, equivalently, an optimal c-splitting authentication code
with u source states and v messages.

Theorem 4.2 (see [15]). For any given integers u ≥ 2 and c ≥ 2, there exists
an integer N(u, c) such that if v > N(u, c), then the necessary conditions for the
existence of a (v, u× c, 1)-splitting BIBD are also sufficient.

Unfortunately, the above is only an asymptotic existence result. We do not know
the exact value of N(u, c) for any given u ≥ 2 and c ≥ 2. In what follows, we determine
the exact values of N(u, c) for a few small u ≥ 2 and c ≥ 2. First we consider the
case u = 2.

Theorem 4.3. Let c ≥ 2 be any even integer. Then the necessary and sufficient
condition for the existence of a (v, 2×c, 1)-splitting BIBD is that v−1 ≡ 0 (mod 2c2).

Proof. According to Theorem 4.1, v = cs + 1 for some positive integer s. Then
cs(cs+1) ≡ 0 (mod 2c2), which implies s(cs+1) ≡ 0 (mod 2c), and s ≡ 0 (mod c). We
may assume s = ct for some positive integer t. Then v = c2t + 1, and we know that
(c2t+1)c2t ≡ 0 (mod 2c2), which means (c2t+1)t ≡ 0 (mod 2). Since c is even, t must
be even, and therefore v − 1 ≡ 0 (mod 2c2). This proves the necessity.

For the sufficiency, see Lemma 3.8.
Complete existence results for odd c are not many. We have only completely

solved the case c = 3.
Theorem 4.4. The necessary and sufficient condition for the existence of a

(v, 2 × 3, 1)-splitting BIBD is that v ≡ 1 (mod 9) except for v = 10.
Proof. From Theorem 4.1, we can easily know that, for odd c, the necessary

condition is v − 1 ≡ 0 (mod c2). When c = 3, it becomes v ≡ 1 (mod 9).
We prove the sufficiency. The case v ≡ 1 (mod 18) can be solved by Lemma 3.8.

Now we consider the case v ≡ 10 (mod 18). It is obvious that for any integers t ≥ 2
and c ≥ 1, there always exists a {2}-GDD of type (2c)t−1(3c)1, where any two points
in different groups form a block. By applying Corollary 3.5, we obtain a 2×c-splitting
GDD of type (2c2)t−1(3c2)1. Then applying Corollary 3.7 with a (2c2 + 1, 2 × c, 1)-
splitting BIBD from Lemma 3.8, we know that there exists a (2c2t+ c2 + 1, 2× c, 1)-
splitting BIBD for any integer t ≥ 2, provided that there exists a (3c2 + 1, 2 × c, 1)-



SPLITTING AUTHENTICATION CODES 675

splitting BIBD. According to Lemma 3.9, there exists a (28, 2× 3, 1)-splitting BIBD,
and therefore there exists an (18t+ 10, 2× 3, 1)-splitting BIBD for any integer t ≥ 2.

Finally, we prove the nonexistence of a (10, 2 × 3, 1)-splitting BIBD. If such a
splitting BIBD exists, then there would be in total five blocks, and every point would
occur in exactly three blocks. Without loss of generality, we may assume that the
set of points of this splitting BIBD is V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and from the
definition of a splitting BIBD, we may also assume that the three blocks containing
the point 1 ∈ V are(

1 a b
2 3 4

)
,

(
1 c d
5 6 7

)
,

(
1 e f
8 9 10

)
.

Note that the points in {2, 3, 4}, {5, 6, 7}, and {8, 9, 10} can be permuted randomly
within their set, respectively, up to isomorphism. So, without loss of generality, we
need only to consider the cases {a, b} = {5, 6} and {5, 8}, that is, {a, b} in the same
block and in different blocks.

(1) {a, b} = {5, 6}: From the definition of a splitting BIBD, it is easy to see that
{c, d} can be contained only in {8, 9, 10} and {e, f} can be contained only in {2, 3, 4}.
Since the points in {8, 9, 10} can be relabeled randomly up to isomorphism, we may
assume {c, d} = {8, 9}. Similarly, we may assume {e, f} = {2, 3}. Now, consider the
third block containing the point 2 ∈ V. This new block should be of the form below,
up to isomorphism: (

2 x y
3 4 7

)
.

Counting the pairs containing the point 3 ∈ V, we know that x, y can be contained
only in {2, 4, 7}. This is impossible since every point can occur at most once in any
block. Therefore in this case, no (10, 2 × 3, 1)-splitting BIBD can exist.

(2) {a, b} = {5, 8}: Similarly, we know that c, d can be contained only in {8, 9, 10}
and e, f can be contained only in {5, 6, 7}. Then it can be easily seen that at least
one of the pairs of points from {5, 6, 7} × {8, 9, 10} occurs in(

1 c d
5 6 7

)
,

(
1 e f
8 9 10

)
simultaneously. This leads to a contradiction to the definition of a splitting BIBD
with λ = 1 that each pair of points should appear in different rows of exactly one
block. Therefore, in this case, no (10, 2 × 3, 1)-splitting BIBD can exist either.

This completes the proof.

Next we investigate the existence of a (v, 3 × 2, 1)-splitting BIBD.

Lemma 4.5 (see [2]). Let g, t, and u be nonnegative integers. Then there exists
a {3}-GDD of type gtu1 if and only if the following conditions are satisfied:

(1) if g > 0, then t ≥ 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;
(2) u ≤ g(t− 1) or gt = 0;
(3) g(t− 1) + u ≡ 0 (mod 2) or gt = 0;
(4) gt ≡ 0 (mod 2) or u = 0;
(5) 1

2g
2t(t− 1) + gtu ≡ 0 (mod 3).

Theorem 4.6. The necessary and sufficient condition for the existence of a
(v, 3 × 2, 1)-splitting BIBD is that v ≡ 1, 9 (mod 24) except for v = 9.
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Proof. The necessity is clear from Theorem 4.1. We are to prove the sufficiency.
From Lemma 4.5, there exists a {3}-GDD of type 12t for any integer t ≥ 3.

Giving weight 2 to each point of this {3}-GDD and applying Corollary 3.5, we obtain
a 3×2-splitting GDD of type 24t for any integer t ≥ 3. From Lemma 3.10, there exists
a (25, 3× 2, 1)-splitting BIBD. Applying Corollary 3.7, we obtain a (24t+ 1, 3× 2, 1)-
splitting BIBD for any integer t ≥ 3. A (49, 3 × 2, 1)-splitting BIBD also exists from
Lemma 3.10. Therefore a (24t + 1, 3 × 2, 1)-splitting BIBD exists for any positive
integer t.

Similarly, from Lemma 4.5, there exists a {3}-GDD of type 12t(2m)1 for any
integers t ≥ 3 and 0 ≤ m ≤ 6(t − 1). Giving weight 2 to each point of this {3}-
GDD and applying Corollary 3.5, we obtain a 3 × 2-splitting GDD of type 24t(4m)1

for any integers t ≥ 3 and 0 ≤ m ≤ 6(t − 1). From Lemma 3.10, there exist a
(25, 3 × 2, 1)-splitting BIBD and a (33, 3 × 2, 1)-splitting BIBD. Taking m = 8 and
applying Corollary 3.7, we obtain a (24t+ 33, 3× 2, 1)-splitting BIBD for any integer
t ≥ 3. Both a (57, 3 × 2, 1)-splitting BIBD and an (81, 3 × 2, 1)-splitting BIBD also
exist from Lemma 3.10. Therefore a (24t + 9, 3 × 2, 1)-splitting BIBD exists for any
positive integer t.

Now we prove the nonexistence of a (9, 3×2, 1)-splitting BIBD. If such a splitting
BIBD exists, then there would be in total three blocks, and every point would occur in
exactly two blocks. Without loss of generality, we may assume that the set of points of
this splitting BIBD is V = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and one of the three possible blocks
of this splitting BIBD is ⎛⎝ 1 a

2 3
4 5

⎞⎠,

where the point a ∈ V should be in the subset {6, 7, 8, 9} ⊂ V since any point cannot
occur more than once in any block. We consider the other possible block containing
the point 1 ∈ V. We may suppose, again without loss of generality, that this block is
of the form ⎛⎝ 1 b

c d
e f

⎞⎠,

where any point of {c, d, e, f} must not be in {2, 3, 4, 5}, that is, the subset {c, d, e, f}
of points must be equal to {6, 7, 8, 9}. Now we focus our attention on the two points a
and b. The point a should be in {6, 7, 8, 9}, and the point b should be in {2, 3, 4, 5}. As
an immediate consequence, the pair {a, b} of distinct points would appear in different
rows of both the first and second possible blocks. This leads to a contradiction to the
definition of a splitting BIBD with λ = 1 that each pair of points should appear in
different rows of exactly one block. Therefore, there is no (9, 3× 2, 1)-splitting BIBD.

The proof is then completed.
Finally, we consider the existence of a (v, 4 × 2, 1)-splitting BIBD. We need the

following result on {4}-GDDs due to Ge and Ling [3].
Lemma 4.7 (see [3]). There exists a {4}-GDD of type 12tm1 for any integers

t ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 6(t− 1).
Then we can prove the following result.
Theorem 4.8. The necessary and sufficient condition for the existence of a

(v, 4 × 2, 1)-splitting BIBD is that v ≡ 1 (mod 48), with two possible exceptions v =
49, 385.
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Proof. The necessity is an easy corollary of Theorem 4.1. We need only to prove
the sufficiency.

According to Lemma 4.7, there exists a {4}-GDD of type 12tm1 for any integers
t ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 6(t− 1). Giving weight 4 to each point of this
{4}-GDD and applying Theorem 3.1 with the well-known ingredient {4}-GDD of type
44, we obtain a {4}-GDD of type 48t(4m)1 for any integers t ≥ 4 and m ≡ 0 (mod 3)
with 0 ≤ m ≤ 6(t−1). Again giving weight 2 to each point of the resultant {4}-GDD,
and applying Corollary 3.5, we obtain a 4 × 2-splitting GDD of type 96t(8m)1 for
any integers t ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 6(t − 1). From Lemma 3.11,
there exists a (97, 4×2, 1)-splitting BIBD. If there exists an (8m+1, 4×2, 1)-splitting
BIBD, where m ≡ 0 (mod 3) with 0 ≤ m ≤ 6(t − 1), then by applying Corollary 3.7,
we obtain a (96t+ 8m+ 1, 4× 2, 1)-splitting BIBD for any integer t ≥ 4. A (145, 4×
2, 1)-splitting BIBD also exists by Lemma 3.11. Taking m = 12, 18, we obtain a
(v, 4 × 2, 1)-splitting BIBD for any positive integer v ≡ 1 (mod 48) except possibly
for v = 49, 193, 241, 289, 337, 385, 433. All of these remaining splitting BIBDs except
for v = 49, 385 have been constructed in Lemma 3.11. Therefore a (v, 4 × 2, 1)-
splitting BIBD exists for any positive integer v ≡ 1 (mod 48) except possibly for
v = 49, 385.

5. Concluding remarks. In this paper, we studied optimal c-splitting authen-
tication codes from a combinatorial viewpoint. We described various combinatorial
constructions for optimal c-splitting authentication codes. We showed that the nec-
essary conditions for the existence of an optimal c-splitting authentication code with
u source states and v messages are also sufficient for (u, c) = (2, 2t) for any positive
integer t, (u, c) = (2, 3) with a definite exception of v = 10, (u, c) = (3, 2) with a defi-
nite exception of v = 9, and (u, c) = (4, 2) with two possible exceptions of v = 49, 385.
However, many problems are left open. For example, what is the explicit expression
of N(u, c) as a function of u and c in Theorem 4.2? Another challenging problem,
which might be more important from a cryptographic point of view, is how to directly
and explicitly construct a (u(u − 1)c2t + 1, u × c, 1)-splitting BIBD or, equivalently,
an optimal c-splitting authentication code with u source states and c2u(u − 1)t + 1
messages, for any given t ≥ 1 and c ≥ 2, whenever c2u(u− 1)t + 1 is a prime power.

Appendix 1.

(p, w, x) (p, w, x) (p, w, x) (p, w, x)

(241,7,159) (881,3,231) (1361,3,651) (2161,23,1090)

(3121,7,2156) (3761,3,1396) (4241,3,3024) (4561,11,3205)

(4721,6,3614) (5521,11,574) (6481,7,6313) (6961,13,2063)

(7121,3,718) (9041,3,349) (9521,3,729) (10321,7,5522)

(12241,7,6768) (12721,13,10138) (13681,22,7398) (13841,6,10800)

(14321,3,3392) (15121,11,10850) (15761,3,12740) (16561,7,4126)

(17041,7,13872) (17681,3,15559) (18481,13,7135) (19121,6,729)

(19441,13,8488) (21521,3,8696) (21841,11,8995) (22481,3,11916)

(22961,6,8634) (23761,7,3574) (26161,13,21228) (26321,3,19049)

(27281,6,6490) (28081,19,501) (30161,3,27) (31121,3,18682)

(32561,6,30665) (34961,3,21425) (36721,37,18918) (37361,3,11291)

(38321,3,33069) (39761,3,16151) (40241,3,12654) (41521,22,8753)

(42641,3,9053) (42961,11,9487) (43441,11,12459) (45361,11,3117)

(45841,7,18310) (47441,3,11350) (49681,17,36263)



678 GENNIAN GE, YING MIAO, AND LIHUA WANG

Acknowledgments. The authors express their heartfelt gratitude to Professor
L. Zhu for his many constructive discussions and suggestions. Without his unselfish
help, this paper could not be in the present form. The authors also thank the two
anonymous referees and Professor Kevin T. Phelps, the editor, for their helpful com-
ments.

REFERENCES

[1] Y. Chang and L. Ji, Optimal (4up, 5, 1) optical orthogonal codes, J. Combin. Des., 12 (2004),
pp. 346–361.

[2] C. J. Colbourn, D. G. Hoffman, and R. Rees, A new class of group divisible designs with
block size three, J. Combin. Theory Ser. A, 59 (1992), pp. 73–89.

[3] G. Ge and A. C. H. Ling, Group divisible designs with block size four and group type gum1

for small g, Discrete Math., 285 (2004), pp. 97–120.
[4] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, Codes which detect deception, Bell

System Tech. J., 53 (1974), pp. 405–424.
[5] K. Heinrich, Graph decompositions and designs, in The CRC Handbook of Combinatorial

Designs, CRC Press, Boca Raton, FL, 1996, pp. 361–366.
[6] T. Johansson, Lower bounds on the probability of deception in authentication with arbitration,

IEEE Trans. Inform. Theory, 40 (1994), pp. 1573–1585.
[7] K. Kurosawa, New bound on authentication code with arbitration, in Advances in Cryptology—

CRYPTO’94, Lecture Notes in Comput. Sci. 839, Springer, Berlin, 1994, pp. 140–149.
[8] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, UK,

1997.
[9] W. Ogata, K. Kurosawa, D. R. Stinson, and H. Saido, New combinatorial designs and

their applications to authentication codes and secret sharing schemes, Discrete Math., 279
(2004), pp. 383–405.

[10] G. J. Simmons, Authentication theory/coding theory, in Advances in Cryptology—
CRYPTO’84, Lecture Notes in Comput. Sci. 196, Springer, Berlin, 1985, pp. 411–431.

[11] G. J. Simmons, Message authentication with arbitration of transmitter/receiver disputes, in
Advances in Cryptology—EUROCRYPT’87, Lecture Notes in Comput. Sci. 304, Springer,
Berlin, 1988, pp. 150–165.

[12] G. J. Simmons, A Cartesian product construction for unconditionally secure authentication
codes that permit arbitration, J. Cryptology, 2 (1990), pp. 77–104.

[13] R. M. Wilson, Cyclotomy and difference families in elementary abelian groups, J. Number
Theory, 4 (1972), pp. 17–47.

[14] R. M. Wilson, Constructions and uses of pairwise balanced designs, in Combinatorics Part I:
Theory of Designs, Finite Geometry and Coding Theory, Math. Centre Tracts 55, Math.
Centrum, Amsterdam, 1974, pp. 18–41.

[15] R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph,
Congr. Numer., 15 (1976), pp. 647–659.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 18, No. 4, pp. 679–696

LOWER BOUNDS FROM TILE COVERS FOR THE CHANNEL
ASSIGNMENT PROBLEM∗
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Abstract. A method to generate lower bounds for the channel assignment problem is given.
The method is based on the reduction of the channel assignment problem to a problem of covering
the demand in a cellular network by preassigned blocks of cells called tiles. This tile cover approach is
applied to networks with a cosite constraint and two different constraints between cells. A complete
family of lower bounds is obtained, which include a number of new bounds that improve or include
almost all known clique bounds. When applied to an example from the literature, the new bounds
give better results.
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AMS subject classifications. 05C78, 05C90, 90C57

DOI. 10.1137/S0895480101384402

1. Introduction. Finding an optimal assignment of communication channels in
a cellular network is a difficult combinatorial optimization problem which has received
considerable attention over the last decade. This is due to the explosive growth of
wireless communications and the scarcity of the radio spectrum. The channel as-
signment problem (CAP) is NP-complete even in a drastically simplified form, and,
consequently, most efforts have gone toward the development of good heuristics. (Re-
cently, integer programming techniques which can lead to exact solutions have been
used. See, for example, [12].) Lower bounds play an important role in the evaluation
of any heuristic or approximation algorithm. Moreover, lower bounds can help to
identify the structures that form the bottleneck for a particular instance, and this
information can, in turn, be used to find better assignments.

A basic model for a cellular network describes it in terms of the demand for chan-
nels in each cell and a set of reuse constraints which prescribe minimal separations
that must exist between channels assigned to certain cells in order to avoid interfer-
ence. The goal of the CAP is to assign channels (represented by integers) to the cells
such that each cell receives as many channels as its demand requires while respecting
the reuse constraints. Here, the objective is to minimize the span of the assignment,
which is the difference between the highest and the lowest channel assigned. (An
alternative objective, when a limited span is given, can be to minimize the number of
violated interference constraints.)

Cellullar networks can be modeled as graphs where the nodes of the graph rep-
resent the cells, and two nodes are adjacent precisely when there exists a (nonzero)
reuse constraint between them. The demands are given by a weight vector indexed by
the nodes, and the reuse constraints are given by a vector indexed by the nodes and
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edges. When all reuse constraints are 1, the CAP reduces to the problem of finding a
coloring of a weighted graph.

The minimal span needed for any assignment will generally be determined by
the cells with highest demand. It is reasonable to assume that these cells will often
be geographically close, corresponding, for example, to a business district or a city
center. Since interference also tends to be highest between cells that are close, these
cells will often form a clique in the underlying graph.

Most lower bounds for the CAP are therefore based on cliques. The simplest
clique bound, mentioned in [6] but generally considered folklore, is found by assuming
that all edge constraints and cosite constraints are equal to the lowest constraint in the
clique. A first refinement was obtained in [6] by considering two different constraints.
A second refinement, similar to the situation studied here, was considered in [18]. In
all of these cases, bounds were obtained using ad hoc methods.

In this paper, we study networks where the reuse constraint between different
cells can take only three values, one of which is reserved for the cosite constraint.
The cosite constraint is the reuse constraint between channels assigned to the same
cell, or node. Naturally, any bounds obtained from this approach can also be used in
networks with more general constraints by reducing the constraints in any particular
set of edges to the lowest constraint in that set.

We describe how lower bounds can be generated from an approach based on
reducing the CAP to a covering problem. The crucial step is to show that any channel
assignment can be broken down into small blocks called tiles. A tile cover is a collection
of tiles such that the number of tiles covering a node equals the number of channels
assigned to that node. The conversion of the CAP to a tile cover problem brings
the advantage that tile covers can be easily analyzed using linear programming (LP)
duality and polyhedral methods. A similar tile cover method, applied to the simpler
case of cliques with one cosite constraint and one edge constraint, can be found in [10].
This particular result is used in our paper as the base case for the induction which
forms the proof of our main theorem. In [13], heuristic channel assignment methods
using preassigned “tiles” of assigned channels are applied successfully to a number of
CAP instances.

We apply the tile cover approach to configurations which we call nested cliques.
These are cliques consisting of an inner clique and an outer clique where all edge
constraints involving an inner clique node take the larger constraint value, while all
edge constraints containing only nodes from the outer clique take the smaller value
(see section 2 for a more precise definition). Nested cliques arise naturally from the
geographical layout of cellular networks and from the fact that interference levels are
generally lower between transmitters that are at greater distance from each other.
Hence, it will be common to find a cluster of cells with high interference constraints
between them surrounded by an outer shell of cells at greater distance and thus with
weaker interference constraints. Such a situation will form a nested clique in the
interference graph.

Using the tile cover approach on nested cliques, we derive a comprehensive family
of general “second generation” clique bounds. This family includes all bounds from
[6] and improves the bound obtained in [18]. We also show, using an example, how
the approach can be used directly to obtain specific lower bounds for any specific set
of parameters.

There are two types of clique bounds that cannot be derived directly from our
approach. In [15], [8], and [16], it was shown how the traveling salesman problem
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and its linear program relaxation can be used to derive lower bounds for cliques.
This approach is most effective when the cosite constraint is relatively low. In [2], an
integer programming approach for obtaining upper and lower bounds is given, which
is based on d-walks, i.e., walks that cover each node more than once. This method is
somewhat related to the tile cover method, since paths between successive visits of a
node in the walk can be seen as tiles.

In [19] a lower bounding method is described which is based on network flows.
We will show that our tile cover bounds give an improvement of 13% when applied to
the example given in this paper.

Since it is NP-hard to find a maximum weight clique in a graph, it will also be
hard to find the nested clique that gives the best bound. However, clique enumeration
procedures such as the Carraghan–Pardalos algorithm (see [5]) give good performance
in practice. The reduction of the CAP to a tile cover problem leads to an easy way
of computing the lower bound for any particular clique by way of a linear program.
Alternatively, any particular network can be analyzed in advance using our method,
and a complete family of easily computable lower bounds can be obtained. Therefore,
we expect the computation of the best tile cover clique bound to be feasible and
realistic.

The layout of the paper is at follows. After introducing some formal definitions
related to channel assignment in section 2, we introduce and define the concepts
involved in the tile cover method in section 3. At the end of this section we also
state our main result, namely, that each channel assignment can be reduced to a tile
cover, such that the cost of the cover is no larger than the span of the assignment.
In section 4, we develop lower bounds for tile covers using an LP formulation and we
show how they translate into bounds for the CAP. In section 5, the proof of the main
theorem is given.

2. Preliminaries. For the basic definitions of graph theory we refer to [4]. A
(simple) graph G is a pair (V,E) of a node set V and an edge set E, where each edge
e ∈ E is an unordered pair of nodes. A clique in a graph is a set of nodes of which
every pair is adjacent.

In this paper, we will use the following notation for integer vectors: if y ∈ Z
V for

some set V , then y(v) is the coordinate of y indexed by v. Sets will often be represented
by their characteristic vectors. Given a set V and A ⊆ V , the characteristic vector
χA ∈ Z

V
+ is defined as follows:

χA(v) =

{
1 if v ∈ A,
0 otherwise.

Conversely, given a vector y ∈ Z
V
+, the support of y, denoted by V (y), is the set of all

nodes in V indexing nonzero coordinates of y, so

V (y) = {v ∈ V : y(v) > 0}.

A constrained graph G = (V,E, s, e) is a graph with node set V , edge set E,
and positive integer constraint vectors s ∈ Z

V
+, e ∈ Z

E
+. Vectors s and e represent

the channel reuse constraints: vector s represents the cosite constraints, the required
separation between channels assigned to the same node, and e represents the edge
constraints, the required separation between channels assigned to the two endpoints
of an edge.

A constrained, weighted graph is a pair (G,w) where G is a constrained graph and
w is a positive integral weight vector indexed by the nodes of G. The coordinate of
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w corresponding to node u is denoted by w(u) and called the weight of node u. The
weight of node u represents the number of channels needed at node u.

A channel assignment for a constrained, weighted graph (G,w) where G =
(V,E, s, e) is an assignment f of sets of nonnegative integers (which will represent
the channels) to the nodes of G that satisfies the conditions

|f(u)| = w(u) (u ∈ V ),
i ∈ f(u) and j ∈ f(v) ⇒ |i− j| ≥ e(uv) (uv ∈ E, u �= v),
i, j ∈ f(u) and i �= j ⇒ |i− j| ≥ s(u) (u ∈ V ).

For reasons of brevity, throughout this paper we will use the notation f(V ) to denote
f(V ) =

⋃
u∈V f(u), in deviation from the standard definition of f(V ) = {f(u) |u ∈

V }.
The span S(f) of a channel assignment f of a constrained weighted graph is the

difference between the lowest and the highest channel assigned by f , in other words,
S(f) = maxv∈V f(v) − minv∈V f(v). The span S(G,w) of a constrained, weighted
graph G and a positive integer vector w indexed by the nodes of G is the minimum
span of any channel assignment for (G,w).

We will consider complete graphs with constraints that have a special, nested
structure. A constrained graph G = (V,E, s, e) is a nested clique with parameters
(k, u, a), where k ≥ u > a if s(v) ≥ k for all v ∈ V , and V can be partitioned into
two sets Q and R such that e(vw) ≥ a if v, w ∈ R, and e(vw) ≥ u otherwise. The
parameters k, u, and a are always assumed to be positive integers.

3. Tile covers. In this paper, we reduce the channel assignment problem for
nested cliques to a tile covering problem. The tiles that may be used for a tile cover
are defined in this section. We can think of these tiles as partial assignments, or
“building blocks,” from which any possible assignment can be constructed.

We assume that a particular nested clique G with node partition (Q,R) and
parameters (k, u, a) is given. We define the set T of all possible tiles that may be
used in a tile cover of G. All tiles are defined as vectors indexed by the nodes of
G. For reasons of brevity we will sometimes identify a tile with its support and thus
think of tiles as node sets. It is this representation that allows mention of “the nodes
in tile t.”

In order to facilitate the definition and the proof of Theorem 5.1, we distinguish
various categories of tiles. So

T = TQ ∪ TR ∪ TQR ∪ T big
QR .

The tiles in each category are defined as

TQ = {χA : A ⊆ Q},
TR = {χB : B ⊆ R},
TQR = {χA + χB : A ⊆ Q, B ⊆ R, where A �= ∅, B �= ∅},
T big
QR = {χA∪B + χA2∪B2 : A2 ⊆ A ⊆ Q, B2 ⊆ B ⊆ R, A2 �= ∅, B2 �= ∅}.

The tiles in T big
QR will be called big tiles. Note that all coefficients of tiles in TQ, TR,

and TQR have value either zero or 1, while for tiles in T big
QR , the coefficients indexed

by nodes in A2 and B2 have value 2.
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A tiling is a collection of tiles from T (multiplicities are allowed). We represent
a tiling by a nonnegative integer vector y ∈ Z

T
+, where y(t) represents the number of

copies of tile t present in the tiling. A tile cover of a weighted nested clique (G,w) is
a tiling y such that

∑
t∈T y(t)t(v) ≥ w(v) for each node v of G.

With each tile t ∈ T we associate a cost c(t). The costs of the tiles in each
category are given in Table 1. The cost of each tile t is derived from the span of a
channel assignment for (G, t) plus a “link-up” cost of connecting the assignment to
a following tile. This link-up cost is calculated using the assumption that the same
assignment will be repeated. For example, t = χA, where A = {v0, . . . , vj−1, vj}, is
a tile of j + 1 distinct vertices in Q. Then the minimum span of (G, t) is u, and an
assignment of minimum span would be f(vi) = iu for all i. However, if this assignment
is repeated, the next channel that can be assigned will be (j + 1)u, which is u more
than the highest channel in the assignment. Hence the link-up cost of this assignment
equals u.

It will follow from Theorem 5.1 that our choice of the costs is justified.

Table 1

Costs of tiles.

Number of Number of
Category nodes in Q nodes in R Cost

TQ n 0 max{k, nu}
TR 0 m max{k,ma}
TQR n m max{k, nu + ma + u− a}
T big
QR n, of which m, of which max{k, nu} + max{k,ma}

n2 have value 2 m2 have value 2 + n2u + m2a + u− a

Formally, the cost of a tile t is such that for any constant α the minimum span
of (G,αt) equals αc(t) minus a small constant, or

S(G,αt)

α
→ c(t) as α → ∞.

The cost of a tiling y, denoted by c(y), is the sum of the cost of the tiles in the
tiling. So c(y) =

∑
t∈T y(t)c(t). The minimum cost of a tile cover of a weighted

nested clique (G,w) will be denoted by τ(G,w).

4. Polyhedral bounds from tile covers. In section 5 we will prove the fol-
lowing theorem.

Theorem 5.1. Let G be a nested clique with node partition (Q,R) and parameters
(k, u, a). Then for any weight vector w for G,

S(G,w) ≥ τ(G,w) − k.

In this section, we will demonstrate how this theorem, combined with polyhedral
methods, leads to new lower bounds for S(G,w).

The problem of finding a minimum cost tile cover of (G,w) can be formulated as
an integer program (IP):

Minimize
∑
t∈T

c(t)y(t)

subject to:
∑
t∈T

t(v)y(t) ≥ w(v) (v ∈ V ),

y(t) ≥ 0 (t ∈ T ),
y integer.
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We obtain the LP relaxation of this IP by removing the requirement that y must be
integral. Any feasible solution to the resulting linear program is called a fractional
tile cover. The minimum cost of a fractional tile cover gives a lower bound on the
minimum cost of a tile cover. The dual of this LP is formulated as follows:

Maximize
∑
v∈V

w(v)x(v)

subject to:
∑
v∈V

t(v)x(v) ≤ c(t) (t ∈ T ),

x(v) ≥ 0 (v ∈ V ).

By LP duality, the maximum of the dual is equal to the minimum cost of a fractional
tile cover. Thus, any vector that satisfies the inequalities of the dual program gives
a lower bound on the cost of a minimum fractional tile cover, and therefore also on
the span of the corresponding complete constrained, weighted graph. The maximum
is achieved by one of the vertices of the polytope TC(G) defined as follows:

TC(G) =

{
x ∈ Q

V
+ :

∑
v∈V

t(v)x(v) ≤ c(t) for all t ∈ T
}
.

A classification of the vertices of this polytope will therefore lead to a compre-
hensive set of lower bounds that can be obtained from fractional tile covers. The next
theorem demonstrates the strength of the tile cover approach, by giving a family of
bounds for nested cliques with parameters (k, u, 1).

Theorem 4.1. Let G be a nested clique with node partition (Q,R) and parameters
(k, u, 1). Let w ∈ Z

V
+ be a weight vector for G, and let wQmax be the maximum weight

of any node in Q, and wRmax the maximum weight of any node in R. Then

τ(G,w) ≥ (λ1 − λ2)wQmax + λ2

∑
v∈Q

w(v) + (λ3 − λ4)wRmax + λ4

∑
v∈R

w(v)

for each 4-tuple (λ1, λ2, λ3, λ4), where λ1, λ2, λ3, and λ4 can take the following values:

λ1 λ2 λ3 λ4 Case

k 0 0 0 (1)
0 0 k 0 (2)

k − (μ− 1)δ δ δ 0 (3)
δ δ k − (μ− 1)δ 0 (4)

k − (μ− 1)δ δ ε ε (5)
u u 1 1 (6)

u u u k−u
k−1 (7)

2u− 1 ν 1 1 (8)

where

μ = � k
u,

δ = (μ + 1)u− k,

ε =

{
1 if μ = 1,

min
{

δ
k−2u+1 ,

2u+μδ−δ
k+1 , 1

}
otherwise,

ν =

{
1 if μ = 1,

u− max
{

u−1
μ , δ−1

μ−1

}
otherwise.
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Proof. For the proof we consider feasible points in TC(G) that are of the form

λ1χ
{q} + λ2χ

Q−{q} + λ3χ
{r} + λ4χ

R−{r}, where q ∈ Q, r ∈ R, λ1 ≥ λ2, λ3 ≥ λ4.

For such points, the inequality system that defines TC(G) reduces to the following
form:

λ1 + (μ− 1)λ2 ≤ k,(1)

λ1 + μλ2 ≤ (μ + 1)u,(2)

λ3 + (k − 1)λ4 ≤ k,(3)

λ1 + (μ− 2)λ2 + λ3 + (k − μu)λ4 ≤ k,(4)

λ1 + (μ− 1)λ2 + λ3 ≤ (μ + 1)u,(5)

2λ1 + (μ− 1)λ2 + 2λ3 + (k − 1)λ4 ≤ 2k + 2u,(6)

2λ1 + μλ2 + 2λ3 + (k − 1)λ4 ≤ k + (μ + 3)u,(7)

λ1, λ2, λ3, λ4 ≥ 0.(8)

Inequalities (1) and (2) are obtained by choosing tiles of size μ and μ+1, respec-
tively, from TQ. Inequality (3) is derived from a tile of size k from TR.

Inequalities (4) and (5) are derived from tiles in TQR. Inequality (4) is derived
from a tile with μ− 1 nodes in Q and k − μu− u + 1 nodes in R, and inequality (5)
from a tile with μ nodes in Q and one node in R.

Inequalities (6) and (7) are obtained by choosing tiles from T big
QR , where nodes q

and r have weight 2, all other nodes have weight 1, m = k, and n = μ or n = μ + 1,
respectively.

Note that inequalities (2) and (3) imply that λ2 ≤ u and λ4 ≤ 1. Using this
fact, it is easy to see that all inequalities that correspond to tiles other than those
mentioned are implied by inequalities (1)–(7).

It can be verified that each of the points provided in the statement of the theorem
provides a feasible solution to the system. Note that each of the feasible solutions
satisfies at least one inequality with equality. So, for each vector x = λ1χ

{q} +
λ2χ

Q−{q}+λ3χ
{r}+λ4χ

R−{r} with (λ1, λ2, λ3, λ4) as given, and q and r any nodes in Q
and R, respectively, it holds that x ∈ TC(G). Therefore, τ(G,w) ≥

∑
v∈V w(v)x(v).

Since λ1 ≥ λ2 and λ3 ≥ λ4,
∑

v∈V w(v)x(v) is maximized when we choose q and r to
be the nodes of maximum weight in Q and R, respectively. With this choice of q and r,∑

v∈V w(v)x(v) = (λ1−λ2)wQmax+λ2

∑
v∈Q w(v)+(λ3−λ4)wRmax+λ4

∑
v∈R w(v),

and the result follows.

Theorem 4.1 leads to a family of bounds, since each case of values for the param-
eters (λ1, λ2, λ3, λ4) as given in the table leads to a different bound. Some of these
bounds are new, while others have been obtained before by conventional methods.

The bounds derived from cases (5), (7), and (8) are new. From case (7), where
(λ1, λ2, λ3, λ4) = (u, u, u, k−u

k−1 ), we obtain the bound

S(G,w) ≥ u

⎛⎝∑
v∈Q

w(v) + wRmax

⎞⎠ +
k − u

k − 1

∑
v∈R,v �=vRmax

w(v) − k.

This bound strengthens the bound S(G,w) ≥ u
∑

v∈C w(v) − u (first mentioned in
[6]), which holds for any clique C, where all edge constraints have value at least u.
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From case (8), which uses the point (2u− 1, ν, 1, 1), we obtain the new bound

S(G,w) ≥ (2u− 1)wQmax + ν
∑

v∈Q,v �=vQmax

w(v) +
∑
v∈R

w(v) − k.

In [17] a bound of (2u − 1)wQmax +
∑

v∈R w(v) − κ (where κ is a small constant) is
given for nested cliques with the special property that |Q| = 1. The bound resulting
from case (8) can be seen as a generalization of this bound for nested cliques where
Q contains more than one node.

Case (5) uses the point (k − (μ− 1)δ, δ, ε, ε) and leads to the bound

S(G,w) ≥ (k − μδ)wQmax + δ
∑
v∈Q

w(v) + ε
∑
v∈R

w(v) − k.

The new bound from case (5) can be seen as an extension of the bound S(G,w) ≥
(k − μδ)wmax + δ

∑
v∈C w(v) − κ (κ is a small constant) that was given for cliques

with cosite constraint k and uniform edge constraint u in [6].
Using the clique Q ∪ {vRmax} (with edge constraint at least u), our method also

gives the bound

S(G,w) ≥ (k − μδ)wmax + δ

⎛⎝∑
v∈Q

w(v) + wRmax

⎞⎠− k.

We simply use case (3) or (4), depending on whether wmax = wQmax or wmax =
wRmax, respectively.

The bound from case (6), namely,

S(G,w) ≥ u
∑
v∈Q

w(v) +
∑
v∈R

w(v) − k,

was the first bound treating nested cliques specifically. It was derived in [6] using ad
hoc methods.

The bound derived from cases (1) and (2) is the well-known bound

S(G,w) ≥ kwmax − k.

In all these results, we have used the general rule, stated in Theorem 5.1, that
S(G,w) ≥ τ(G,w) − k. A careful reading of the proof of Theorem 5.1 will show that
in most cases the extra term k is too pessimistic. In principle, it is possible to find a
more precise additive term by a more precise, and hence more complicated, analysis.
Since our main interest here lies in showing a method by which lower bounds can be
derived rather than in finding the best possible lower bounds, we content ourselves
with the additive factor of k. However, this may cause our bounds to differ slightly
from the older bounds.

The preceding theorems show how new lower bounds can be generated for any
particular choice of parameters. In practice, it will often be useful to apply the tile
cover method directly to the exact parameters of the particular network. For any
specific nested clique, a classification of all extreme points of TC(G) can be obtained
by using vertex enumeration software, for example, the package lrs, developed by
Avis [3]. In general, we can use the dual program to obtain families of vertices, and
hence bounds, for certain choices of parameters.

This approach is demonstrated in the following example. The example is taken
from [19], where it was used to demonstrate a lower bound derived from network
flows. We will see that our tile cover approach gives a significant improvement.
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Example 4.1. Consider the cellular network layout as shown Figure 1. The circled
number in each cell represents the label of the cell; the node associated with the cell
with label i is called vi. The larger number in each cell gives the demand in the cell,
i.e., the weight of the associated node. The particular hexagonal cell layout of this
example is that of the “Philadelphia problem” [1], which has frequently been used as
a benchmark for algorithms and lower bounds for the channel assignment problem
(see, for example, [6, 7, 9, 13, 14, 20, 2]).

987

88 25

77
6

54321

521815

15

1310

16

10

8

8

8

31 36 57 28

151328

212019

1817

8

151413

1211

Fig. 1. The layout of the example.

The cosite constraint s(vi) = 5 for each node vi. The edge constraints are de-
scribed in terms of the distance dij between the centers of cells vi and vj , where the
unit is the distance between the centers of adjacent cells:

e(vi, vj) =

⎧⎨⎩
0 if dij > 3,

1 if
√

3 < dij ≤ 3,

2 if 0 < dij ≤
√

3.

This layout contains nested cliques of size 8, with 2 nodes in Q and 6 nodes in R,
and nested cliques of size 7, with 1 node in Q and 6 nodes in R. The nested cliques
have parameters (5, 2, 1).

For a nested clique with bipartition (Q,R), where |Q| = 2 and |R| = 6, we
derived a set of lower bounds using the software lrs. We looked for points of the form
(x1, x2, y1, y2, y3, y4, y5, y6), where x1 and x2 correspond to nodes of Q and x1 ≥ x2,
and y1, . . . , y6 correspond to the nodes of R and y1 ≥ y2 ≥ · · · ≥ y6. The inequality
system that defines TC(G) reduces to the following:

x1 + x2 ≤ 5,
y1 + y2 + y3 + y4 + y5 ≤ 5,
x1 + y1 + y2 ≤ 5,
x1 + y1 + y2 + y3 ≤ 6,
x1 + y1 + y2 + y3 + y4 ≤ 7,
x1 + x2 + y1 ≤ 6,
x1 + x2 + y1 + y2 ≤ 7,
x1 + x2 + y1 + y2 + y3 ≤ 8,
x1 + x2 + y1 + y2 + y3 + y4 ≤ 9,
x1 ≥ x2 ≥ 0, y1 ≥ y2 ≥ · · · ≥ y6 ≥ 0.
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Given this system, lrs returned a set of vertices, 14 of which could be used to
generate lower bounds (the other vertices could be obtained from those 14 by dropping
some coordinates to zero).

We applied these bounds to the nested clique formed by the cells as indicated in
Figure 1. Here Q = {v9, v16}, and R = {v2, v8, v10, v15, v17, v20}. To obtain the
best possible results, the nodes of larger weight in Q and R were matched with
larger coordinates xi or yi, respectively. The best result was obtained by the point
(3, 2, 1, 1, 1, 1, 1, 1). The corresponding lower bound is

S(G,w) ≥ 3w(v9) + 2w(v16) +
∑
v∈R

w(v) − 5

= 3 · 77 + 2 · 57 + (52 + 36 + 28 + 28 + 25 + 13) − 5

= 522.

This improves by 13% the lower bound of 460 obtained in [19].
Example 4.2. Our second example also involves a variation of the Philadelphia

problem. It should be noted that this example incorporates many properties of real-
life problems: a regular planar layout of the base stations, derived from the ideal
packing formed by the hexagonal grid, as well as edge constraints that diminish as
the distance between base stations increases. This example again uses the layout of
Figure 1. The cosite constraint for this example is 7, while the edge constraints are
as follows:

e(vi, vj) =

⎧⎪⎪⎨⎪⎪⎩
0 if dij > 3,

1 if
√

7dij ≤ 3,

2 if
√

3 < dij ≤ 2,

3 if 0 < dij ≤
√

3.

In this case, the network contains a nested clique (Q,R), where Q = {v8.v9, v16}
and R = {v2, v15, v17}, with parameters (7, 3, 2) (other nested cliques exist in similar
configurations). Assume that the demand in this nested clique is as follows:

Node v2 v8 v9 v15 v16 v17

Demand 10 15 30 30 15 10

Consider the following dual solution to the tile cover problem: x = (2, 2, 4, 3, 2, 3)
(the ordering of the components in the vector refers to the order of the nodes as given
in the table above), and a tile cover consisting of 10 copies of the tile (1, 1, 2, 2, 1, 1) ∈
T big
QR , and 5 copies each of tiles (0, 1, 1, 1, 0, 0) and (0, 0, 1, 1, 1, 0), both in TQ. It can

be easily checked that these primal/dual solutions have the same value, namely, 310.
This leads to a lower bound for the span of 303. This lower bound can be refined to
307 if the tile cover method is extended to include patches, as explained later in this
paper. Moreover, the optimal tile cover can be converted into a matching channel
assignment (in the last line, i takes values from 0 to 9):

v2 v8 v9 v15 v16 v17

6,15, . . . ,42 0,9,18, . . . ,81 3,12,21, . . . ,84 51,60, . . . ,87
104 + 22i 93 + 22i 90, 99 + 22i 102, 109 + 22i 96 + 22i 106 + 22i

Example 4.3. In [2], a small assignment problem of only 7 nodes is presented
(instances M1 and M2). The problem was formed to test the limits of the method
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proposed in the paper. Indeed, for this instance there is a gap of 3 between upper and
lower bounds found by the method of Avenali, Mannino, and Sassano [2]. The cosite
constraint is 5 for each node, while the edge constraints are as given in the following
table.

v1 v2 v3 v4 v5 v6 v7

v1 5 2 3 4 1 0 0
v2 5 1 4 1 4 2
v3 5 1 1 2 0
v4 5 0 1 0
v5 5 1 1
v6 5 2
v7 5

This example is highly irregular, but it does contain some small nested cliques.
For example, there is a nested clique (Q,R) with parameters (5, 4, 2), where Q = {v6}
and R = {v1, v2}. One of the tiles for this nested clique is the tile from TQR consisting
of all vertices of (Q,R), with cost 2 · 4 + 2 = 10. In the examples of [2], the demand
of all nodes is equal. Combining 10 such tiles gives a tile cover of cost 100, which
leads to a lower bound of 95 for the case where the demand on all nodes equals 10.
Following the more precise method outlined later in this paper, we can replace one of
the tiles by a patch with cost 6, which gives a lower bound of 96 when the demand on
all nodes equals 10, and 106 when the demand on all nodes equals 11. This reduces
the gap between upper and lower bounds to 1. (Note that this particular case, where
|Q| = 1, can also be solved with the bound from [17].)

5. From channel assignments to tile covers. In this section we give the
proof of the following theorem.

Theorem 5.1. Let G be a nested clique with node partition (Q,R) and parameters
(k, u, a). Then for any weight vector w for G,

S(G,w) ≥ τ(G,w) − k.

This theorem will follow as a corollary from a more technical lemma. The lemma
reduces any channel assignment to a tiling that uses only tiles from T , except for one
extra tile called a patch. (In subsequent proofs, we will specify a specific tile to act as
the patch of any given tiling.) A patch is added to take care of the highest channels
assigned, for which there is no link-up cost. Patches are defined as follows.

Given a nested clique G with node bipartition (Q,R) and constraints (k, u, a),
the patch set P is defined as

P = PQ ∪ PR ∪ PQR ∪ Pbig
QR.

The patches in each category are defined below:

PQ = {χA : A ⊆ Q},
PR = {χB : B ⊆ R},
PQR = {χA + χB : A ⊆ Q, B ⊆ R, A �= ∅, B �= ∅},

Pbig
QR = {χA∪B + χA2∪B2 : A2 ⊆ A ⊆ Q, B2 ⊆ B ⊆ R, A2 �= ∅, B2 �= ∅}.
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The cost of a patch p is denoted by c′(p). The definition of the cost of a tile cover
y ∈ Z

T ∪P is adjusted to account for patch cost:

c(y) =
∑
t∈T

c(t)y(t) +
∑
p∈P

c′(p)y(p).

Patch costs for each category are given in Table 2.

Table 2

Costs of patches.

Number of Number of
Category nodes in Q nodes in R Cost

PQ n 0 (n− 1)u
PR 0 m (m− 1)a
PQR n m nu + (m− 1)a

Pbig
QR n, of which m, of which (n + n2)u + (m2 − 1)a+

n2 have weight 2 m2 have weight 2 max{k,ma}

When we reduce a channel assignment to a tiling, a patch from PR will be used
only when the first channel is assigned to a node in R, and a patch from either PQ or

Pbig
QR will be used only if the first channel is assigned in Q.

For the rest of this section we will adopt the following terminology. Suppose f
is a channel assignment for a constrained graph G with node set V , where f(V ) =
{h0, h1, . . . , hf}, with h0 ≤ h1 ≤ · · · ≤ hf . We say that a tiling y of G covers channels
hi to hj (where j ≥ i) if y is a tile cover of the subgraph induced by the nodes of
G that were assigned channels between hi and hj . More precisely, y covers channels
{hi, . . . , hj} if for each node v ∈ V ,∑

t∈T
y(t)t(v) ≥ |f(v) ∩ {hi, . . . , hj}|.

Also, when y is a tiling and t is a patch or tile, we use y + {t} to mean the tiling
where one more copy of t is added, i.e., strictly speaking, the tiling y + χ{t}.

We start by stating a lemma that proves that any channel assignment can be
reduced to a tile cover for the cliques where there is only one edge constraint and a
cosite constraint.

Lemma 5.2 (see [10]). Let G be a clique with cosite constraint k and edge con-
straint u. Let Q be the node set of G, and let the tile set TQ and patch set PQ be as
defined above. Let f be a channel assignment for G, where f(V ) = {h0, h1, . . . , hf},
h0 < h1 < · · · < hf . Then there exists a tile cover y ∈ Z

TQ∪PQ

+ of (G,w) which
contains exactly one patch p, covers all channels {h0, . . . , hf}, and has cost at most
hf − h0. Moreover, the support of p consists of the nodes that are assigned channels
hf−n, . . . , hf , where n = |V (p)| and

c(y − {p}) ≤ hf−n − h0.

The proof of Lemma 5.2 provides the following method of constructing the tile
cover y, with patch p. Begin by finding a tile containing the set of nodes that are
assigned channels in the range [h0, h0 + k). Let t0 denote that tile. For j ≥ 1, we
recursively find a tile tj containing the nodes assigned channels in the range [hej , hej +

k), where hej is the first channel not covered by the tiling yj−1 = χ{t0,t1,...,tj−1}.
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Tile tj is chosen so that the cost of yj = yj−1 + {tj} is at most hej+1
− h0, where

hej+1 is the first channel not covered by yj . This process continues until the only
channels not covered by the current tiling y� form a patch p. The cost of this patch
is c′(p) = hf − he�+1

, where h�+1 is the first channel not covered by y�. The required
tile cover y is formed by adding p to y�.

We are now ready to state and prove the technical lemma from which Theorem 5.1
will follow. The proof of this lemma uses a straightforward induction on the number of
times the channel assignment “crosses over” from Q to R or vice versa. By invocation
of Lemma 5.2, tilings are obtained for the channel assignment up to the first crossover
and between the first and second crossovers, respectively. Then induction is used to
obtain a tiling of the channel assignment that includes all channels after the second
crossover. These tilings are then combined to obtain one new tiling which satisfies the
induction hypothesis. The difficulties arise mainly from the fact that three different
patches must be combined. As a result, there are a number of cases to be considered.
Once the appropriate combinations of tiles and patches are described, verifying the
cost of the tiling merely involves finding the appropriate substitutions. This, together
with the fact that numerous cases are analogous, compels us to omit the details of
the proof in many cases. For a complete treatment of the proof, we refer the reader
to [11].

Lemma 5.3. Let G be a nested clique with node partition (Q,R) and integer
constraints (k, u, a), and let T and P be the tile and patch set for G. Let f be a
channel assignment for G, where f(V ) = {h0, h1, . . . , hf}, h0 < h1 < · · · < hf . Then
there exists a tile cover y ∈ Z

T ∪P
+ of (G,w) which contains one patch p, covers all

channels {h0, . . . , hf}, and has cost at most hf −h0. Furthermore, if h0 is assigned to

a node in Q, then p /∈ PR, and if h0 is assigned to a node in R, then p /∈ PQ ∪Pbig
QR.

Proof. Let G be a nested clique and f be a channel assignment, as defined in the
statement of the lemma. A crossover is defined to be a pair of channels (hi, hi+1),
where the nodes that receive channels hi and hi+1 are in different parts of the bipar-
tition (Q,R). We now proceed with induction on the number of crossovers.

If f has no crossovers, then the statement follows directly from Lemma 5.2.

Suppose f has exactly one crossover and h0 is assigned to a node in Q. Let h�

be the first channel in R greater than h0. By Lemma 5.2, we can cover the channels
in {h0, . . . , h�−1} with a tiling yQ, containing one patch pQ ∈ PQ, with cost at most
h�−1 − h0. Likewise, the channels in {h�, . . . , hf} can be covered with a tiling yR of
cost at most hf − h�, containing one patch pR ∈ PR. Combining the two patches
into one, we form a new patch p = pQ + pR ∈ PQR with cost nu + (m − 1)a, where
n = |V (pQ)| and m = |V (pR)|. So c′(p) = c′(pQ)+c′(pR)+u. Moreover, h�−h�−1 ≥ u
since h�−1 is assigned to a node in Q, and h� to a node in R.

Our final tiling is y = yQ − {pQ} + yR − {pR} + {p} with cost

c(y) = c(yQ) − c′(pQ) + c(yR) − c′(pQ) + c′(p)

≤ (h�−1 − h0) + (hf − h�) + u

≤ hf − h0.

When h0 is assigned to a node in R, the proof is analogous.

For the induction step, assume that f is a channel assignment with g crossovers,
where g ≥ 2, and assume that the lemma holds for any channel assignment with less
than g crossovers.

Case 1. Channel h0 is assigned to a node in Q.
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Let h� be the first channel assigned to a node in R, and let hj be the first channel
greater than h� assigned to a node in Q. So (h�−1, h�) and (hj−1, hj) are the first two
crossovers of f . Note that h� ≥ h�−1 + u and hj ≥ hj−1 + u.

By Lemma 5.2, we can find a tiling yQ (with one patch, pQ ∈ PQ) which covers
channels {h0, . . . , h�−1} in Q and has cost at most h�−1−h0, and a tiling yR (with one
patch, pR ∈ PR) which covers channels {h�, . . . hj−1} and has cost at most hj−1 − h�.

Define n and m to be the number of nodes in V (pQ) and V (pR), respectively.
By Lemma 5.2, V (pQ) consists of the nodes that receive channels {h�−n, . . . , h�−1},
and V (pR) consists of the nodes that receive channels {hj−m, . . . , hj−1}. Note that
c′(pQ) = (n− 1)u. c′(pR) = (m− 1)a.

Case 1A. Tiling yR contains only the patch pR (no other tiles).
In this case, patch pR covers all channels from h� to hj−1.
(i) Suppose hj − h�−n ≥ k. Let y = yQ − {pQ} + {t} + yend, where t = pQ + pR,

and yend is a tiling covering channels {hj , . . . , hf} with cost at most hf − hj and a
patch that is not in PR. (By induction, such a tiling yend exists.) The new tiling y has
the patch of yend as its patch. It is clear that y covers all channels from h0 to hf and
has a patch of the required type. It now remains to be proved that c(y) ≤ hf − h0.

Since the channels from h�−n to hj cover n+1 nodes in Q and m nodes in R, with
two crossovers, we have hj ≥ h�−n + (n− 1)u + (m− 1)a + 2u. Also, by assumption,
hj − h�−n ≥ k. Therefore, hj − h�−n ≥ max{nu + ma + u− a, k} = c(t), and

c(y) = c(yQ − {pQ}) + c(t) + c(yend)

≤ (h�−n − h0) + (hj − h�−n) + (hf − hj)

= hf − h0.

(ii) Suppose hj−h�−n < k. If there is a channel in the range [h�−n+k, h�−n+k+u)
which has been assigned to a node in Q, let hi denote that channel. (The choice of
hi is unique, since the given range has length less than u.) Otherwise, let hi be the
first channel greater than or equal to h�−n + k + u. If no such hi can be chosen, then
let i = f + 1, so hi−1 = hf and hi is undefined. Note that it is always the case that
hi−1 < hl−n + k + u.

We form the final tile cover y as follows:
Step 1. Let A be the set of all nodes that receive channels from {h�−n, . . . , hi−1}.

Also, let n1 = |Q ∩A|, and let m1 = |R ∩A|.
Step 2. Find a tiling yend which covers channels {hi, . . . , hf} and has cost at most

hf − hi. Let pend be the patch of yend. (In the case that hi−1 = hf , both
yend and p are empty.)

Step 3. If pend ∈ PQ ∪ PQR ∪ Pbig
QR, form tile t = χA ∈ TQR and let y = yQ − {pQ} +

{t} + yend.
Step 4. If pend ∈ PR, then

4(a) pick a node v ∈ A ∩Q,
4(b) form patch p = pend + χ{v} ∈ PQR,
4(c) form tile t = χA − χ{v},
4(d) form tile cover y = yQ − {pQ} + {t} + yend − {pend} + {p}.

Step 5. If pend is empty, then
5(a) form patch p = χA ∈ PQR,
5(b) form tile cover y = yQ − {pQ} + {p}.

As before, it is easy to see that y covers all channels from h0 to hf . Steps 3, 4,
and 5 guarantee that the patch of y is not in PR, as required. We prove that in all
cases, c(y) ≤ hf − h0.
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Claim 5.4. No two channels in S = {hl−n, . . . , hi−1} are assigned to the same
node.

Proof of claim. Assume two channels hα and hβ , l − n ≤ α < β ≤ i − 1, are
assigned to the same node. Now, by combining our cosite constraint with a previous
remark, we have k ≤ hβ − hα ≤ hi−1 − hl−n < k + u.

Since hi−1 is in the interval [hl−n + k, hl−n + k + u), it follows from the choice of
hi that no channel in [hl−n + k, hl−n + k + u) is assigned to a node in Q. Hence, all
channels from S assigned to Q are in the interval [hl−n, hl−n + k). Since the range
of this interval is less than k, it cannot be the case that hα and hβ are assigned to a
node in Q.

Suppose hα and hβ are both assigned to nodes in R. Since hl−n is assigned to a
node in Q, hl−n + u ≤ hα due to our adjacency constraints. Since hβ < hl−n + k + u,
hβ − hα < k, which is a contradiction. Hence, no node receives two channels from
C.

Claim 5.5. When a channel hi can be chosen, hi − h�−n ≥ max{n1u + m1a +
u− a, k}.

Proof of claim. Suppose hi is assigned to a node in Q. Since {h�−n, . . . , hi} is
covered by n1 +1 nodes in Q and m1 nodes in R and contains at least two crossovers,
we have hi − h�−n ≥ (n1 − 1)u + (m1 − 1)a + 2u = n1u + m1a + u− a.

If hi is assigned to a node in R, then {h�−n, . . . , hi} covers n1 nodes of Q and
m1 + 1 nodes in R and contains at least three crossovers. Hence, hi − h�−n ≥ (n1 −
2)u + (m1 − 1)a + 3u = n1u + m1a + u− a.

Whenever hi is chosen, it is done in such a way that hi ≥ hl−n + k. Hence,
hi − h�−n ≥ max{k + u, n1u + m1a + u− a}.

In Step 3, we have t = χA ∈ TQR and c(t) = max{k, n1u+m1a+u−a} ≤ hi−h�−n.
Therefore,

c(y) = c(yQ − {pQ}) + c(t) + c(yend) ≤ hf − h0.

In Step 4, a new patch p = pend + χ{v} ∈ PQR is formed, since pend is not of the
required type. The cost of this new patch is c′(p) = c′(pend)+u. In finding the cost of t
there are two possibilities to consider. If n1 > 1, then t = χA−χ{v} ∈ TQR and c(t) =
max{k, (n1 − 1)u + m1a + u− a}. If n1 = 1, then t ∈ TR and c(t) = max{k,m1a} ≤
max{k, (n1−1)u+m1a+u−a}. Now, since hi−h�−n ≥ max{k+u, n1u+m1a+u−a},
it follows that c(t) ≤ hi − h�−n − u. Since c′(p) − c′(pend) ≤ u, it follows that

c(y) = c(yQ − {pQ}) + c(yend) + (c′(p) − c′(pend)) + c(t) ≤ hf − h0.

In Step 5, we have hi−1 = hf . Since p ∈ PQR, we have c′(p) = n1u + (m1 − 1)a.
Furthermore, since {h�−n, . . . , hf} contains n1 nodes from Q, m1 nodes from R, and
at least two crossovers, hf − h�−n ≥ n1u + (m1 − 1)a = c′(p). Therefore,

c(y) = c(yQ − {pQ}) + c′(p) ≤ hf − h0.

Case 1B. yR contains a tile other than pR.
By Lemma 5.2, patch pR covers channels {hj−m, . . . , hj−1}, and these channels

are all assigned to nodes in R, so j − m ≥ �. Since (h�−1, h�) is a crossover, the
assignment of channels {hj−m, . . . , hf} has g − 1 crossovers. Then, by induction,
there exists a tiling yend that covers all channels in {hj−m, . . . , hf}, contains a patch
pend ∈ PQR ∪ PR, and has cost at most hf − hj−m.
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Let VQ = V (pend) ∩ Q, VR = V (pend) ∩ R. Also let np = |VQ| and mp = |VR|.
Note that c′(pend) = npu + (mp − 1)a if pend ∈ PQR, and c′(pend) = (mp − 1)a if
pend ∈ PR.

Choose tR to be any tile from yR other than pR. Let Vt = V (tR) and mt = |Vt|.
Note that tR ∈ TR and c(tR) = max{k,mta}. Let VpQ

= V (pQ). Recall that |VpQ
| = n

and c′(pQ) = (n− 1)u. In Table 3, we show how to combine pQ, pend, and tR into a
new tile t and a new patch p.

Table 3

Combining patches.

Case Condition Tile t Patch p

(1) pend ∈ PQR

(1.1) (1) and VQ ∩ VpQ = ∅ tR pend + pQ
(1.2) (1) and VQ ∩ VpQ �= ∅
(1.2.1) (1.2) and VR ∩ Vt = ∅ pend + tR pQ

(1.2.2) (1.2) and VR ∩ Vt �= ∅ there is no t tR + pend + pQ
(2) pend ∈ PR tR pend + pQ

Case Cost c(t) t ∈ Cost c′(p) p ∈
(1.1) c(tR) TR (n + np)u + (mp − 1)a PQR

(1.2.1) max{k, npu + mpa + mta + u− a} TQR c′(pQ) PQ

(1.2.2) – – (n + np)u + |VR ∩ Vt|a− Pbig
QR

a + max{k, |VR ∪ Vt|a}
(2) c(tR) TR nu + (mp − 1)a PQR

In Cases (1.1), (1.2.1), and (2), we form the new tiling

y = yQ − {pQ} + yR − {pR} − {tR} + yend − {pend} + {t} + {p}.

In Case (1.2.2), there is no t, so we take the tiling

y = yQ − {pQ} + yR − {pR} − {tR} + yend − {pend} + {p}.

In all cases, it is straightforward to verify that y covers all channels and has a
patch of the required type, and that c(y) ≤ hf − h0.

Case 2. Channel h0 is assigned to a node in R.
Since this case is very similar to Case 1, we omit the details of the proof. And,

unless otherwise stated, the same terminology will apply.
Let h� be the first channel assigned to a node in Q, and hj the first channel greater

than h� assigned to a node in R. As in Case 1, by Lemma 5.2, we can find tilings
yR and yQ of the required cost, which together cover all channels in {h0, . . . , hj−1}.
Furthermore, by induction, we can find the appropriate tiling yend (with patch pend)
to cover the remaining channels.

We now provide the method for finding a new tiling y that covers all channels in
the assignments and has cost at most hf − h0.

Case 2A. Tiling yQ contains only the patch pQ.
(i) If hj − hl−m ≥ k, then let y = yR − {pR} + {t} + yend, where t = pQ + pR.
(ii) Suppose hj − h�−m < k. Channel hi is chosen in a manner similar to that in

Case 1A. Simply replace “Q” and “n” with “R” and “m,” respectively, in the descrip-
tion. Similarly, A denotes the set of nodes receiving channels from {h�−m, . . . , hi−1}.

If pend ∈ PR ∪ PQR, then let y = yR − {pR} + {t} + yend, where t = χA ∈ TQR.
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Table 4

Combining patches.

Case Condition Tile t Patch p

(1) pend ∈ Pbig
QR

(1.1) (1) and Vt ∩ VQ = ∅ pend + tQ pR

(1.2) (1) and Vt ∩ VQ �= ∅ pend + χVt−VQ χVt∩VQ + pR

(2) pend ∈ PQR tQ + χVR χVQ + pR
(3) pend ∈ PQ tQ pend + pR

Case Cost c(t) t ∈ Cost c′(p) p ∈

(1.1) max{k, (np + nt)u} + max{k,mpa} T big
QR c′(pR) PR

+np
2u + mp

2a + u− a

(1.2) max{k, |Vt ∪ VQ|u} + max{k,mpa} T big
QR |Vt ∩ VQ|u + c′(pR) PQR

+np
2u + mp

2a + u− a

(2) max{k, ntu + mpa + u− a} TQR npu + c′(pR) PQR

(3) c(tQ) TQ npu + c′(pR) PQR

If pend ∈ PQ, y = yR − {pR}+ {p}+ yend − {pend}+ {t}, where p = pend + χ{v},
v ∈ A ∩R, and t = χA−{v}.

If pend ∈ Pbig
QR, then let t = χVQ +χVR , t′ = χA, and p = χBQ +χBR . In this case,

let y = yR − {pR} + yend − {pend} + {t} + {t′} + {p}.
For Cases 2A(i) and 2A(ii), it is straightforward to show that c(y) ≤ hf − h0.

Case 2B. yQ contains tiles other than pQ.

Choose tQ to be any tile from yQ−{pQ}. In Table 4, we show how we will combine
pR, pend, and tQ into a new tile t and a new patch p. Note that nt = |V (tQ)| in this
case. In all instances, we form the new tiling

y = yR − {pR} + yQ − {pQ} − {tQ} + yend − {pend} + {t} + {p}.

It is straightforward to verify that y covers all channels and has cost at most
hf − h0. This completes the proof.

6. Conclusions. We have given a new general method of obtaining lower bounds
for the channel assignment problems. When applied to the specific example of nested
cliques, this leads to a complete family of lower bounds. This family includes almost
all known clique-bounds. The bounds are easy to compute, and give improved results
when applied to an example from the literature.

Nested cliques occur naturally in many CAPs. Radio signals decay with distance,
so edge constraints between transmitters that are close together are usually stricter
than constraints between transmitters that are farther apart. For the same reason,
cosite constraints are usually the most restrictive. In this situation, a tight cluster
of transmitters in a central area such as a city center, surrounded by a wider ring of
more sparsely placed transmitters, will typically form a nested clique. The examples
in this paper illustrate this situation.

Further work should address the computational issues related to lower bounds.
A computational study comparing the performance of tile cover bounds to the lower
bounds from previous work discussed in the introduction on a number of realistic
CAP instances would be a valuable addition to this theoretical analysis.
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Another interesting question is whether the tile cover approach can be used to
obtain good channel assignments. Knowledge about which lower bound is most re-
strictive for any particular instance could be used to determine which tiles were most
suited to build the best assignment.
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Abstract. We consider the problem of learning a labeled graph from a given family of graphs on
n vertices in a model where the only allowed operation is to query whether a set of vertices induces
an edge. Questions of this type are motivated by problems in molecular biology. In the deterministic
nonadaptive setting, we prove nearly matching upper and lower bounds for the minimum possible
number of queries required when the family is the family of all stars of a given size or all cliques of
a given size. We further describe some bounds that apply to general graphs.
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1. Introduction. Let H be a family of labeled graphs on the set V = {1, 2, . . . , n},
and suppose H is closed under isomorphism. Given a hidden copy of some H ∈ H, we
have to identify it by asking queries of the following form. For F ⊆ V , the query QF

is, Does F contain at least one edge of H? Our objective is to identify H by asking
as few queries as possible. We say that a family F solves the H-problem if, for any
two distinct members H1 and H2 of H, there is at least one F ∈ F that contains an
edge of one of the graphs Hi and does not contain any edge of the other. Obviously,
any such family enables us to learn an unknown member of H deterministically and
nonadaptively, by asking the questions QF for each F ∈ F . Note that for any family
H, the set of all pairs of vertices solves the H-problem. Note also that the information
theoretic lower bound implies that we need at least log |H| queries, where here and
throughout the paper, all logarithms are in base 2, unless otherwise specified, and we
omit all floor and ceiling signs when these are not crucial.

There are some families of graphs for which the above problem has been studied,
motivated by applications in molecular biology. These include matchings [1] and
Hamiltonian cycles [5, 6]. The biological problem is to find, given a set of molecules,
pairs that react with each other. Here the vertices correspond to the molecules,
the edges correspond to the reactions, and the queries correspond to experiments of
putting a set of molecules together in a test tube and determining whether a reaction
occurs. The problem of finding a hidden matching is the one encountered by molecular
biologists when they apply multiplex PCR in order to close the gaps left in a DNA
strand after shotgun sequencing. See [1] and its references for more details.

The previous works in this field study the minimum number of queries needed to
identify a hidden graph, from various families of graphs. Some of these works consider
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query models other than the one described above. The authors of [1] study the hidden
subgraph problem for the family of matchings. In that paper it is shown that under
the deterministic and nonadaptive model, the minimum number of queries that one
has to ask in order to identify a hidden matching is Θ(n2); that is, one can do better
than the trivial algorithm of asking all pairs only by a constant factor. It is also
proved that Ω(n2) queries are needed in order to find a hidden copy of any bounded-
degree graph with a linear size matching. The authors further present randomized
nonadaptive algorithms that use Θ(n log n) random queries, and deterministic k-round
algorithms that ask O(n1+1/(2(k−1))polylogn) queries. Grebinski and Kucherov [5, 6]
study the family of Hamiltonian cycles. A few query models are discussed in those
papers. Besides the model presented above, they consider the additive model, in
which the answer to a query is not just “yes” or “no” but the number of edges in the
subset. Both models are considered also when the size of the queries is bounded. They
present matching lower and upper bounds under each of these models, where some
of the upper bounds are achieved by 2-round algorithms, and the other algorithms
are fully adaptive. In [7], Grebinski and Kucherov study the problem for low degree
graphs and prove matching lower and upper bounds under the additive nonadaptive
model.

In the present paper we consider only the deterministic nonadaptive model, where
the answers are only “yes” or “no.” The main families considered are families of stars
and families of cliques. We study both families of stars or cliques of a given size and
the families of all cliques or all stars. It is shown that the trivial upper bound of(
n
2

)
is tight up to a 1 + o(1)-multiplicative term for the families of stars of k edges,

for all n
2
3 log

2
3 n � k ≤ n − 2. For smaller stars, we show that fewer queries suffice

and we give upper and lower bounds on the minimum number of queries needed.
These bounds are tight up to some polylogn factor for all sizes of stars, and they
are of order k3, up to the polylogn factors. We show that the problem is easier
when the hidden subgraph is a clique. In fact, even for the family of all cliques,
the problem can be solved using O(n log2 n) queries. We study, as in the case of
stars, the problem of a hidden clique of size k, for all values of k. In all cases,
we prove upper and lower bounds that are tight up to some polylogn factor and
are of order k2, up to the polylogn factors. We also consider the case where the
family of graphs consists of all the graphs isomorphic to a given general graph G
and give a lower bound that depends on the maximum size of an independent set in

G. From this general bound, we obtain a lower bound of Ω( n2

log2 n
) for the random

graph G(n, 1
2 ).

In section 2 we study the hidden subgraph problem where the hidden graph is
a star, in section 3 we consider the case where the hidden graph is a clique, and in
section 4 we prove a result for general graphs. Section 5 contains some concluding
remarks and open problems.

2. Stars. In this section we consider the case where the graphs in H are stars.
Denote by Sk the family of all graphs on V = {1, 2, . . . , n} that consist of a copy of
K1,k and n − k − 1 isolated vertices. Let S = ∪n−1

k=1Sk. We begin with the following
simple claim.

Proposition 2.1. The minimum size of a family F that solves the S-problem is
exactly

(
n
2

)
.

Proof. We show that any family F that solves the S-problem must contain all
pairs of vertices. Let u and v be two distinct vertices in V . Let S1 be the star whose
center is u and whose leaves are all other vertices of V , and let S2 be the star whose
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Table 1

Bounds on the size of a family that solves the Sk-problem.

k Lower bound Upper bound

k ≤
√
n Ω( k3 log n

log k
) O(k3 logn)

√
n < k < n2/3

(2 log n)1/3 Ω( k3

log2 n
) O(k3 logn)

n2/3

(2 log n)1/3 ≤ k ≤ O(n2/3 log2/3 n) Ω( k3

log2 n
) �n(n−2)

2
�

k = ω(n2/3 log2/3 n), k ≤ n− 3 (1 − o(1))
(
n
2

)
�n(n−2)

2
�

k = n− 2 �n(n−2)
2

� �n(n−2)
2

�

k = n− 1 �logn� �logn�

center is u and whose leaves are all other vertices of V except for v. Clearly, the
answer to a query QF where F does not contain u is “no” for both S1 and S2, and
the answer to a query QF with F containing u and another vertex of both stars is
“yes” in both cases. Therefore F must contain the query {u, v} or otherwise it cannot
distinguish between S1 and S2.

Note that the proof actually shows that even the solution of the Sn−2 ∪ Sn−1-
problem requires

(
n
2

)
queries. We now consider the case where the size of the star is

known and prove the following theorem, which gives lower and upper bounds on the
minimum size of a family that solves the Sk-problem. These bounds are tight in all
cases up to some polylog n factor.

Theorem 2.2. For all k ≤ n − 2 and n > 2, there exists a family of size

min(�n(n−2)
2 �, O(k3 log n)) that solves the Sk-problem, and every family that solves

the Sk-problem either contains (1 − o(1))
(
n
2

)
pairs or is of size at least Ω( k3

log2 n
).

Moreover, if k ≤
√
n, then the size of any family that solves the Sk-problem is at least

Ω(k
3 logn
log k ). For k = n− 1, the minimum size of such a family is exactly �log n�.
The best bounds we get, for various values of k, are summarized in Table 1. In

the rest of this section we prove these results.

Proposition 2.3. For all n > 2, the minimum size of a family F that solves the
Sn−1-problem is exactly �log n�.

Proof. The family Sn−1 is of size n, so we clearly need at least �log n� queries.
To prove that �log n� queries suffice, we construct the following family that solves the
Sn−1-problem. Note that we need only identify the center of the star. Assign distinct
vectors of length �log n� over {0, 1} to the vertices in V . For all 1 ≤ i ≤ �log n�, let
Fi be the set of all vertices whose ith bit is 1, and let F = {Fi | 1 ≤ i ≤ �log n�}. The
answer to a query QFi is “yes” if and only if Fi contains the center. Thus, for all i,
we can obtain the ith bit of the center from the answer to QFi .

Proposition 2.4. The minimum size of a family F that solves the Sn−2-problem

is 2 for n = 3, 5 for n = 4, and �n(n−2)
2 � for all n ≥ 5

Proof. Let F be a family that solves the Sn−2-problem. Let u, v, and w be three
distinct vertices in V . Let S1 be the star whose center is u and in which the isolated
vertex is v, and let S2 be the star whose center is u and the isolated vertex is w.
The only sets that distinguish between S1 and S2 are {u, v} and {u,w}; hence F
must contain at least one of them. Thus F must contain all pairs of vertices but a

matching, and hence |F| ≥ �n(n−2)
2 �. Moreover, it is easy to check directly that for

n = 3, 2 pairs are necessary and suffice, and so are 5 pairs for n = 4.
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On the other hand, assume n ≥ 5, take a maximum matching M on V , and
let F be the family of all pairs of vertices besides those in M . Since |M | = �n

2 �,
|F| = �n(n−2)

2 �. All the edges but those of M are obtained directly from the queries.
Since n ≥ 5, the center of the star can be identified by these edges, and then the only
edge that may be in the graph and was not asked is the edge in M incident with the
center, if there is such an edge in M . We can now decide whether this edge exists or
not by the size of the star that was found.

Note that the above upper bound holds for all Sk, where 3 ≤ k ≤ n− 2.
We now give some general upper and lower bounds on the minimum size of a

family that solves the Sk-problem. These bounds are tight up to some polylogn
factor. From now on we assume, throughout the section, that n is large.

Proposition 2.5. For every k, there exists a family F of size O(k3 log n) that
solves the Sk-problem.

Proof. Let m = ck3 log n for some absolute constant c, and let F1, F2, . . . , Fm be
m random subsets of V , chosen independently as follows. For every Fi, every v ∈ V
is chosen to be in Fi independently with probability 1

k . Let S1 and S2 be two stars
of size k, such that |E(S1) \ E(S2)| = |E(S2) \ E(S1)| = 1. Let u be the center of
S1 and S2, let u1, . . . , uk−1 be the other common vertices, and let v be the additional
vertex of S1, and w the additional vertex of S2. Fi distinguishes between S1 and S2

if and only if u ∈ Fi, uj /∈ Fi for all 1 ≤ j ≤ k − 1, and exactly one vertex among v
and w is in Fi. Thus the probability that Fi distinguishes between S1 and S2 is

2

k2

(
1 − 1

k

)k

= Ω

(
1

k2

)
.

Therefore, the probability that no Fi distinguishes between S1 and S2 is[
1 − Ω

(
1

k2

)]m
< n−(2k+2),

provided c is sufficiently large. For two stars that differ in more edges, this probability
is smaller. The number of pairs of stars is smaller than n2k+2, and hence, there is a
family F = {F1, F2, . . . , Fm} that solves the Sk-problem.

We show that the upper bound given in Proposition 2.5 is tight up to a factor of
polylogn. More precisely, we show that for every k ≤ n − 2, a family F that solves

the Sk-problem either contains (1 − o(1))
(
n
2

)
pairs or is of cardinality Ω( k3

polylog n ).
Proposition 2.6. For every k ≤ n−2, if F is a family that solves the Sk-problem,

then F either contains (1 − o(1))
(
n
2

)
pairs or is of cardinality at least Ω( k3

log2 n
).

Proof. Let F be a family that solves the Sk-problem. Then, for every u ∈ V and
A,B ⊆ V \ {u} such that |A| = 2, |B| = k − 1, and A ∩ B = ∅, there exists a set
F ∈ F such that u ∈ F , |F ∩ A| = 1, and F ∩ B = ∅. Indeed, otherwise F would
not distinguish between the two stars whose center is u, which share the vertices of
B, and where the additional vertex of one star is one vertex of A, and the additional
vertex of the other one is the other vertex of A. Denote by F0 the family of all sets
F ∈ F of size 2. Let m = c · n logn

k , and define F1 = {F ∈ F | 2 < |F | ≤ m} and
F2 = F \ (F0 ∪ F1). We show that for any constant ε > 0, if |F0| ≤ (1 − ε)

(
n
2

)
,

then |F1 ∪ F2| > c1ε
3 · k3

log2 n
for some constant c1 that depends only on c. Suppose

|F0| ≤ (1 − ε)
(
n
2

)
and |F1 ∪ F2| ≤ c1ε

3 · k3

log2 n
. For every u ∈ V , denote by Vu the set

of vertices v ∈ V \ {u} such that {u, v} /∈ F0. Let V ′ = {u ∈ V | |Vu| ≥ ε
2 (n − 1)}.
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Since |F0| ≤ (1− ε)
(
n
2

)
, |V ′| ≥ ε

2n. Otherwise, since the pairs of vertices that are not
in F0 are pairs {u, v} such that v ∈ Vu, and since v ∈ Vu if and only if u ∈ Vv, we
have

|F0| =

(
n

2

)
− 1

2

∑
u∈V

|Vu|

=

(
n

2

)
− 1

2

⎛⎝∑
u∈V ′

|Vu| +
∑

u∈V \V ′

|Vu|

⎞⎠
>

(
n

2

)
− 1

2

[
|V ′|(n− 1) + |V \ V ′| ε

2
(n− 1)

]
>

(
n

2

)
− 1

2

[ ε
2
n(n− 1) + n

ε

2
(n− 1)

]
= (1 − ε)

(
n

2

)
.

Choose uniformly a vertex u ∈ V ′ and then choose uniformly a subset A =
{v, w} ⊆ Vu. Define F ′

1 = {F ∈ F1 | u ∈ F, |F ∩A| = 1}. For each F ∈ F1

Pr(F ∈ F ′
1) ≤

|F |(|F | − 1)(n− |F |)
ε
2n

( ε
2 (n−1)

2

) ≤ 16

ε3
· |F |2
n2

.

Therefore,

E[|F ′
1|] ≤

16

ε3

∑
F∈F1

|F |2
n2

≤ 16

ε3
|F1|

m2

n2
,

and hence, there is a choice of u and A such that

|F ′
1| ≤

16

ε3
|F1|

m2

n2

≤ 16c1c
2 · k3

log2 n
· n

2 log2 n

k2n2

≤ k

2
− 1,

provided c1c
2 is sufficiently small. Thus, there exists a subset B1 ⊆ V \ ({u} ∪ A) of

size k
2 − 1 that intersects every F ∈ F ′

1. Choose a random subset B2 ⊆ V of size k
2 .

For every F ∈ F2

Pr(F ∩B2 = ∅) =

(
n−|F |

k
2

)
(

n
k
2

)
≤

(
1 − |F |

n

) k
2

≤ e−
km
2n

= n−c2
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for some constant c2 = Θ(c). Therefore, if c is sufficiently large, with high probability
u /∈ B2, A ∩ B2 = ∅, and for all F ∈ F2, F ∩ B2 �= ∅. Denote B′ = B1 ∪ B2.
B′ ⊆ V \ ({u} ∪ A), and |B′| ≤ k − 1. Let B be an arbitrary extension of B′ to a
subset of V \ ({u} ∪ A) of size k − 1. Consider the following two stars S1 and S2; u
is the center of S1 and S2, they share the vertices of B, the additional vertex of S1 is
v, and the additional vertex of S2 is w. Since A was chosen from Vu, the pairs {u, v}
and {u,w} are not in F0, and thus no set in F0 can distinguish between S1 and S2.
Neither can the sets in F1 that do not contain u, nor those whose intersection with A
is not of size 1. All other sets in F1 (i.e., sets F ∈ F1 such that u ∈ F and |F ∩A| = 1)
and all the sets in F2 contain a vertex of B, so they cannot distinguish between these
two stars either. Thus F cannot distinguish between S1 and S2, contradicting the
assumption that it solves the Sk-problem.

We now prove a better lower bound for k ≤
√
n. This bound is tight up to a

factor of log k. For the proof of this bound, we need a variant of a lemma proved in
[8, 4].

Definition 2.7. Let A be a family of subsets of a set S. We say that A is
r-cover-free if no set in A is contained in the union of any r other sets in A.

Lemma 2.8. Let S be a set of size m, and let A be a family of n subsets of S.
Suppose A is r-cover-free, where r ≤ 2

√
n. Then,

m >
r2 log(n− r

2 )

10 log r
.

In [8], it is proved that for fixed r and large n ≥ n(r), logn
m ≤ 8 · log r

r2 . A simple
modification of that proof described below shows that the lemma as stated above
holds for every r ≤ 2

√
n.

Proof. Let S and A be as defined in the lemma, and suppose that m ≤ r2 log(n− r
2 )

10 log r .

As long as A contains a set A of size greater than 2m
r , we remove A from A, and its

members from S and from all other sets in A. Since |S| = m, this process stops after
at most r

2 steps. Thus, we now have a subset S′ of S and a family A′ of subsets of S′,
where each subset is of size at most 2m

r . Denote by m′ the size of S′, and by n′ the
size of A′. Clearly, n′ ≥ n− r

2 . No set A ∈ A′ is contained in the union of r
2 others,

or otherwise, the original set from which A was obtained would be contained in the
union of these r

2 sets and the sets that were removed. Thus, every set in A′ has a
subset of size at most � 4m

r2 � that is not contained in any other set in A′. Otherwise,
if there were a set A ∈ A′ for which the above did not hold, then, since |A| ≤ 2m

r , the
set A would have been covered by r

2 other sets in A′, which is impossible. Therefore,
there are n′ distinct sets of size at most � 4m

r2 �. Thus,

n′ ≤
(

m′

� 4m
r2 �

)
.

If 4m
r2 < 1, then the right-hand side of this inequality is m′, and thus we have n′ ≤ m′

and hence n ≤ m, contradicting the assumption that

m ≤
r2 log(n− r

2 )

10 log r
≤ 4n

5
(1 + o(1)).
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Thus, 4m
r2 ≥ 1, and we have

n− r

2
≤ n′ ≤

(
m′

� 4m
r2 �

)
≤

(
m

� 4m
r2 �

)
< 2

10m log r

r2

and hence

m >
r2 log(n− r

2 )

10 log r
,

contradicting the assumption.

We use the above lemma to improve the lower bound for k ≤
√
n.

Proposition 2.9. For every k ≤
√
n, if F is a family that solves the Sk-problem,

then |F| = Ω(k
3 logn
log k ).

Proof. Let F be a family that solves the Sk-problem. Choose, randomly, A,B ⊆
V , such that |A| = 2, |B| = k

2 − 1, and A ∩ B = ∅. Define G = {F ∈ F | |F ∩ A| =
1, F ∩B = ∅}. Clearly,

Pr(F ∈ G) =
|F |(n− |F |)(

n
2

)
(

n−|F |−1
k
2−1

)
(

n−2
k
2−1

)

=
2|F |
n

(
n−|F |

k
2

)
(

n−1
k
2

)
≤ 2|F |

n

(
1 − |F | − 1

n− 1

) k
2

≤ 2|F |
n

e−
k|F |
4n .

If |F | ≤ 4n
k , then

Pr(F ∈ G) ≤ 8

k
.

If |F | > 4n
k , denote x = k|F |

4n . Since x > 1 we have

Pr(F ∈ G) ≤ 8

k
xe−x <

8

ek
.

Hence, for all F ,

Pr(F ∈ G) ≤ c

k

for some constant c, and thus the expected size of G is c · |F|
k . Therefore, there exists

a choice of A and B for which |G| ≤ c · |F|
k . Denote V ′ = V \ (A ∪ B) and consider

the family G′ = {F ∩ V ′ | F ∈ G}. Since F solves the Sk-problem, for all u ∈ V ′, and



704 NOGA ALON AND VERA ASODI

every C ⊆ V ′ \ {u} of size k
2 , there is a set F ∈ G′ such that u ∈ F and F ∩ C = ∅.

Otherwise, F would not distinguish between the two stars whose center is u, that
share the k−1 vertices of B∪C, and for which the additional vertex of one of them is
one element of A and the additional vertex of the other one is the other element of A.
Let m = |G′|, let n′ = |V ′| = n− k

2 − 1, and let M be the m by n′ matrix whose rows
are the incidence vectors of the sets in G′. Now let us look at the columns of M as the
incidence vectors of subsets of another set, of size m. For every column i and every
set J of k

2 columns such that i /∈ J , there exists a row in which the ith coordinate
is 1, and for all j ∈ J , the jth coordinate is 0. Thus, no subset corresponding to a
column is contained in the union of k

2 subsets corresponding to any other k
2 columns,

and by Lemma 2.8,

|G′| = m >
(k2 )2 log(n′ − k

4 )

10 log k
2

= Ω

(
k2 log n

log k

)
,

and hence,

|F| ≥ Ω(k|G|) ≥ Ω(k|G′|) ≥ Ω

(
k3 log n

log k

)
.

3. Complete graphs. In this section we consider the case where the hidden
graphs are complete graphs. Denote by Ck the family of all graphs on V = {1, 2, . . . , n}
that consist of a copy of Kk and n− k isolated vertices. Let C = ∪n

k=2Ck.
In the following theorem, we prove lower and upper bounds on the minimum size

of a family that solves the C-problem.

Theorem 3.1. Any family that solves the C-problem is of size at least Ω(n log n),
and there exists a family of size O(n log2 n) that solves the C-problem.

Proposition 3.2. The minimum size of a family F that solves the C-problem is
at least Ω(n log n).

Proof. Let F be a family that solves the C-problem. Let u ∈ V , and let V1 =
V \ {u}. In order to distinguish between the complete graph on V1 and the complete
graph on V1 ∪ {u}, F must contain a query F1(u) = {u, v1} for some v1 ∈ V1. Now
let V2 = V1 \ {v1}. In order to distinguish between the complete graph on V2 and the
complete graph on V2 ∪ {u}, F must contain a query F2(u) such that u ∈ F2(u) and
|F2(u)∩ V2| = 1. Denote by v2 the vertex in F2(u)∩ V2. We can continue in this way
and define for all 1 ≤ i ≤ n− 2 a set Vi = Vi−1 \ {vi−1} and find a set Fi(u) ∈ F that
distinguishes between the complete graph on Vi and the complete graph on Vi ∪ {u}.
Then u ∈ Fi(u), and |Fi(u) ∩ Vi| = 1. Denote by vi the vertex in Fi(u) ∩ Vi. For all
1 ≤ i ≤ n − 2, |Vi| = n − i, and since |Fi(u) ∩ Vi| = 1, |Fi(u)| ≤ i + 1. Furthermore,
all the sets Fi(u) for 1 ≤ i ≤ n− 2 are distinct, since the vertices vi are distinct, and
vi ∈ Fi(u), but for all j < i, vi /∈ Fj(u). F contains these sets Fi(u) for all u ∈ V . For
every vertex u ∈ V and all 1 ≤ i ≤ n− 2, assign a weight to the pair (u, i), defined by
w(u, i) = 1

|Fi(u)| . For a set F ∈ F , there are at most |F | vertices u (the vertices in F )

such that F = Fi(u) for some i. Thus the total weight corresponding to a set F ∈ F
is at most 1; that is,

∑
(u,i):Fi(u)=F

w(u, i) ≤ |F | · 1

|F | = 1.
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Therefore,

|F| ≥
∑
F∈F

∑
(u,i):Fi(u)=F

w(u, i)

=
∑
u∈V

n−2∑
i=1

w(u, i)

=
∑
u∈V

n−2∑
i=1

1

|Fi(u)|

≥
∑
u∈V

n−2∑
i=1

1

i + 1

= Ω(n log n).

Proposition 3.3. There exists a family F of cardinality O(n log2 n) that solves
the C-problem.

Proof. We construct the family F recursively as follows. First, the set V is in
F . Now partition V into two halves V1 and V2 and find the part of the clique in each
half. The clique is the union of the cliques found in V1 and V2. This works as long as
the part of the clique in each Vi is of size 0 or of size at least 2. But if the part of the
clique in Vi is of size 1, then the answer to QVi is “no,” and we need some additional
queries to find this vertex. Suppose that the clique has one vertex in V1. We show
that we can find this vertex by the following queries. Assign distinct vectors of length
�log |V1|� over {0, 1} to the vertices in V1. For all 1 ≤ i ≤ �log |V1|�, j ∈ {0, 1} and
u ∈ V2, we have the following set F (i, j, u) = {v ∈ V1 |the ith bit of v is j} ∪ {u} in
F . If the answer to QV is “yes” and the answer to QV1 is “no,” then there is at least
one vertex u of the clique in V2. If there are no vertices of the clique in V1, then the
answers to all QF (i,j,u) are “no.” Otherwise, there is precisely one vertex v of the
clique in V1. The answer to QF (i,j,u) is “yes” if and only if u is in the clique, and the
ith bit of v is j. Since there is at least one vertex of the clique in V2, we can obtain
v from these queries. We should have similar queries for the case that V2 contains
one vertex of the clique. Denote by f(n) the number of queries needed for n vertices.
Then, by the above discussion,

f(n) ≤ 4 · n
2
· log

n

2
+ 2f

(n
2

)
+ 1 = O(n log2 n).

We now give upper and lower bounds for cliques of a given size. These results are
tight up to a factor of polylogn for all admissible sizes.

Theorem 3.4. For every k, there exists a family F of size O(k2 log n) that solves
the Ck-problem, and every family that solves the Ck-problem either contains Ω(n) pairs

or is of size at least Ω( k2

logn ). Moreover, for all k ≤ n
1
3 , the size of any family that

solves the Ck-problem is at least Ω(k
2 logn
log k ), and for all k ≤

√
n it is at least Ω(k2). In

addition, for all s, there exists a family of size (s+1)�n
2 � that solves the Cn−s-problem.

The best bounds we have, for various values of k, are summarized in Table 2. In
the rest of this section we prove these results.

Proposition 3.5. For every k, there exists a family F of size O(k2 log n) that
solves the Ck-problem.

Proof. Let m = ck2 log n for some absolute constant c, and let F1, F2, . . . , Fm be
m random subsets of V , chosen independently as follows. For every Fi, every v ∈ V is
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Table 2

Bounds on the size of a family that solves the Ck-problem.

k Lower bound Upper bound

k ≤ n
1
3 Ω( k2 log n

log k
) O(k2 logn)

n
1
3 < k ≤

√
n Ω(k2) O(k2 logn)

√
n < k <

√
n logn Ω( k2

log n
) O(k2 logn)√

n logn ≤ k ≤ n− log2 n Ω(n) O(n log2 n)

k = n− s, s < log2 n Ω(n) (s + 1)�n
2
�

chosen to be in Fi independently with probability 1
k . Let C1 and C2 be two complete

graphs of size k such that |V (C1) \ V (C2)| = |V (C2) \ V (C1)| = 1. Let v1, . . . , vk−1

be the common vertices of C1 and C2, and let ui be the additional vertex of Ci for
i = 1, 2. Fi distinguishes between C1 and C2 if and only if exactly one vertex among
u1 and u2 and exactly one vertex among v1, . . . , vk−1 are in Fi. Thus the probability
that Fi distinguishes between C1 and C2 is

2

k
· k − 1

k

(
1 − 1

k

)k−1

= Ω

(
1

k

)
.

Therefore, the probability that no Fi distinguishes between C1 and C2 is[
1 − Ω

(
1

k

)]m
≤ n−2k

for an appropriate value of c. For two cliques that differ in more vertices, this proba-
bility is smaller. The number of pairs of cliques is smaller than n2k, and hence, there
is a family F = {F1, F2, . . . , Fm} that solves the Ck-problem.

Proposition 3.6. For every k, if F is a family the solves the Sk-problem, then

F either contains Ω(n) pairs or is of cardinality at least Ω( k2

logn ).

Proof. Clearly, we may assume that k2 > log n, since otherwise there is nothing
to prove. Let F be a family that solves the Ck-problem. Then, for all A,B ⊆ V
such that |A| = 2, |B| = k − 1, and A ∩ B = ∅, there exists a set F ∈ F such that
|F ∩A| = 1 and |F ∩B| = 1. Indeed, otherwise F would not distinguish between the
complete graph on B and one vertex of A, and the complete graph on B and the other
vertex of A. Denote by F0 the family of all sets F ∈ F of size 2. Let m = c · n log n

k ,
and define F1 = {F ∈ F | 2 < |F | ≤ m} and F2 = F \ (F0 ∪ F1). We show that

if, say, |F0| ≤ 1
10n, then |F1 ∪ F2| > c1 · k2

logn for some constant c1 that depends

only on c. Suppose |F0| ≤ 1
10n and |F1 ∪ F2| ≤ c1 · k2

logn . Choose uniformly a subset

A = {u, v} ⊆ V , and define F ′
1 = {F ∈ F1 | |F ∩A| = 1}. For each F ∈ F1

Pr(F ∈ F ′
1) = 2 · |F |

n
· n− |F |

n− 1
≤ 2 · |F |

n
.

Therefore,

E[|F ′
1|] ≤ 2

∑
F∈F1

|F |
n

≤ 2|F1|
m

n
.
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By Markov’s inequality, the probability that |F ′
1| > 4|F1|mn is at most 1

2 . Since
|F0| ≤ 1

10n, the probability that there is a set F ∈ F0 such that F ∩ A �= ∅ is less
than 2

5 . Thus, there exists a choice of A such that for all F ∈ F0, F ∩ A = ∅ and
|F ′

1| ≤ 4|F1|mn . For such a choice of A and appropriate values of c and c1,

|F ′
1| ≤ 4|F1| ·

m

n

≤ 4c1c ·
k2

log n
· n log n

kn

≤ k − 1

4
.

Thus, there exists a subset B1 ⊆ V \ A of size k−1
2 such that for every F ∈ F ′

1,

|F ∩B1| ≥ 2. Choose a random subset B2 ∈ V of size k−1
2 . For all F ∈ F2

Pr(|F ∩B2| ≤ 1) =

(
n−|F |
k−1
2

)
(

n
k−1
2

) +
k − 1

2
· |F |
n

·

(
n−|F |
k−1
2 −1

)
(

n−1
k−1
2 −1

)
≤

(
1 − |F |

n

) k−1
2

+
k − 1

2
· |F |
n

·
(

1 − |F | − 1

n− 1

) k−1
2 −1

≤ e−
k−1
2 ·mn +

k − 1

2
· n
n
· e−( k−1

2 −1)m−1
n−1

≤ n−c2

for some constant c2 = Θ(c). Therefore, if c is sufficiently large, then, with high
probability, A ∩ B2 = ∅ and for every F ∈ F2, |F ∩ B2| ≥ 2. Denote B′ = B1 ∪ B2.
B′ ⊆ V \ A, and |B′| ≤ k − 1. Let B be an arbitrary extension of B′ to a subset
of V \ A of size k − 1. Let C1 be the complete graph on B ∪ {u}, and let C2 be
the complete graph on B ∪ {v}. Since for every F ∈ F0, u, v /∈ F , no set in F0 can
distinguish between C1 and C2. Neither can sets in F1 that contain both u and v, or
that contain neither of them. All other sets in F1, i.e., sets that contain exactly one
vertex among u and v, and all the sets in F2 contain at least two vertices of B, so
they cannot distinguish between these two cliques either. Thus F cannot distinguish
between C1 and C2, contradicting the assumption that it solves the Ck-problem.

We now prove a better lower bound for k ≤ n
1
3 . This bound is tight up to a

factor of log k.

Lemma 3.7. Let S be a set of size m, and let A be a family of n subsets of S.
Suppose that there are no distinct A,B1, . . . , Br, C1, . . . , Cr ∈ A for which

A ⊆
r⋃

i=1

Bi

and

A ⊆
r⋃

i=1

Ci,

where r ≤ n
1
3 . Then m = Ω( r

2 logn
log r ).
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Proof. Let B = ∅. As long as there exist A,B1, . . . , Br ∈ A such that

A ⊆
r⋃

i=1

Bi,

remove A,B1, . . . , Br from A, and add A to B. Let A′ be the family obtained from
A at the end of this process, and denote the size of B by l. Then, |A′| = n− l(r + 1),
and both A′ and B are r-cover-free. A′ is clearly r-cover-free, or otherwise the above
process would not stop. B is also r-cover-free, because if there were A,C1, . . . , Cr ∈ B
such that

A ⊆
r⋃

i=1

Ci,

then there would also be B1, . . . , Br ∈ A that were removed from A together with A,
such that

A ⊆
r⋃

i=1

Bi,

contradicting the assumption. If l ≥ n
2
3

4 , then, since r ≤ n
1
3 , we have, by Lemma 2.8,

m >
r2 log(l − r

2 )

10 log r
= Ω

(
r2 log n

log r

)
.

Otherwise l < n
2
3

4 , and thus, since r < n
1
3 , |A′| = n− l(r+1) > n

2 . Hence, by Lemma
2.8,

m >
r2 log(n2 − r

2 )

10 log r
= Ω

(
r2 log n

log r

)
.

Proposition 3.8. For every k ≤ n
1
3 , if F is a family that solves the Ck-problem,

then |F| = Ω(k
2 logn
log k ).

Proof. Let F be a family that solves the Ck-problem. Define m = |F|, and let M
be the m by n matrix whose rows are the incidence vectors of the sets in F . Consider
the columns of M as the incidence vectors of subsets of another set, of size m. For
1 ≤ i ≤ n, let Gi be the subset corresponding to the ith column of M . Define the
family G as G = {G2i−1 ∪G2i | 1 ≤ i ≤ n

2 }. We claim that there are no distinct sets
A,B1, . . . , B k−1

4
, C1, . . . , C k−1

4
∈ G such that

A ⊆
k−1
4⋃

i=1

Bi(3.1)

and

A ⊆
k−1
4⋃

i=1

Ci.(3.2)

Suppose there were such sets. A is the union of two subsets corresponding to two dis-
tinct columns of M . Let u and v be the vertices corresponding to these columns. Sim-
ilarly, let w1, . . . , wk−1 be the vertices corresponding to B1, . . . , B k−1

4
, C1, . . . , C k−1

4
.
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The members of A are the queries that contain u or v. Since (3.1) and (3.2) hold,
each such query contains at least two vertices from w1, . . . , wk−1. Thus, no query
distinguishes between the complete graph on u,w1, . . . , wk−1 and the complete graph
on v, w1, . . . , wk−1. Hence, there are no such sets in G, and therefore, by Lemma 3.7,
with r = k−1

4 and A = G,

|F| = m = Ω

(
k2 log n

log k

)
.

We now prove that for all nΩ(1) ≤ k ≤
√
n, any family that solves the Ck-problem

is of size at least Ω(k2).
Definition 3.9. Let A be a subset of a set S, and let A be a family of subsets

of S. We say that A is covered twice by A if for all a ∈ A, there are at least two sets
in A that contain a.

Lemma 3.10. Let S be a set of size m, and let A be a family of n subsets
of S. Suppose that no set in A is covered twice by any r other sets in A, where
nΩ(1) ≤ r ≤

√
n. Then m = Ω(r2).

Proof. Suppose m ≤ εr2, for some small constant ε > 0. We show that if ε is
sufficiently small, then there is a set A ∈ A that is covered twice by some r other sets
in A. As long as there exists a ∈ S that belongs to one or two sets in A, remove these
sets from A. After removing these sets, a belongs to no set in A. Therefore, this
process stops after at most m steps, and then every a ∈ S belongs to zero or at least
three sets. Let A′ be the family of the remaining sets, and denote its size by n′. Thus
n′ ≥ n− 2m ≥ n− 2εr2 ≥ (1 − 2ε)n. If there exists a set A ∈ A′ such that |A| ≤ r

2 ,
then it is covered twice by a family of at most r sets in A′ \ {A}, consisting of two
arbitrarily chosen sets that contain each member of A. Suppose now that every set
A ∈ A′ is of size greater than r

2 . Choose randomly r
2 sets B1, . . . , B r

2
∈ A′. Let C

be the set of all a ∈ S that belong to at most one set from B1, . . . , B r
2
. Now choose

randomly another set A ∈ A′. If |A ∩C| ≤ r
4 , then for all a ∈ A ∩C, choose two sets

in A′ \ {A} that contain a. These sets, together with B1, . . . , B r
2
, form a family of at

most r sets that cover A twice. We now show that E[|A ∩ C|] ≤ r
5 , and hence there

exists a choice of B1, . . . , B r
2

and A �= B1, . . . , B r
2

for which |A ∩ C| ≤ r
4 . Therefore

A is covered twice by r other sets, contradicting the assumption. Let a ∈ S, and let
k be the number of sets in A′ that contain a. The probability that a ∈ A ∩ C is at
most

k

n′

⎡⎣
(

n′−k
r
2

)
(

n′
r
2

) +
k
(

n′−k
r
2−1

)
(

n′
r
2

)
⎤⎦ =

k

n′

⎡⎣
(

n′−k
r
2

)
(

n′
r
2

) +
kr

2n′

(
n′−k
r
2−1

)
(

n′−1
r
2−1

)
⎤⎦

≤ k

n′

(
1 − k

n′

) r
2

+
k2r

2n′2

(
1 − k − 1

n′ − 1

) r
2−1

≤ k

n′ e
− kr

2n′ +
k2r

2n′2 e
− kr

4n′ .

We now show that this probability is at most c
r for some constant c. Let us first

consider the term k
n′ e

− kr
2n′ . If k ≤ 2n′

r , then this term is at most 2
r . If k > 2n′

r ,

denote x = kr
2n′ . Since x > 1 we have k

n′ e
− kr

2n′ = 2
rxe

−x < 2
er . Consider now the term

k2r
2n′2 e

− kr
4n′ . If k ≤ 8n′

r , then this term is at most 32
r . If k > 8n′

r , then denote x = kr
4n′ .

Then x > 2, and k2r
2n′2 e

− kr
4n′ = 8

rx
2e−x. It is easy to check that x2e−x is decreasing for

all x > 2, and hence 8
rx

2e−x < 32
e2r .
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Thus the probability that a ∈ A∩C is at most c
r for some constant c. Therefore,

we have

E[|A ∩ C|] ≤ cm

r
≤ cεr2

r
≤ r

5
,

provided ε is sufficiently small, completing the proof of the lemma.
Proposition 3.11. For every nΩ(1) ≤ k ≤

√
n, if F is a family that solves the

Ck-problem, then |F| = Ω(k2).
Proof. For nΩ(1) ≤ k ≤ n1/3 the result follows from Proposition 3.8. We thus

assume that k > n1/3. Let F be a family that solves the Ck-problem. Define m = |F|,
and let M be the m by n matrix whose rows are the incidence vectors of the sets
in F . Consider the columns of M as the incidence vectors of subsets of another set,
of size m. For 1 ≤ i ≤ n, let Gi be the subset corresponding to the ith column of
M . Define G = {G2i−1 ∪ G2i | 1 ≤ i ≤ n

2 }. We claim that there are no distinct sets
A,B1, . . . , B k−1

2
∈ G such that A is covered twice by B1, . . . , B k−1

2
. Suppose there were

such sets. A is the union of two subsets corresponding to two distinct columns of M .
Let u and v be the corresponding vertices. Similarly, let w1, . . . , wk−1 be the vertices
corresponding to B1, . . . , B k−1

2
. The members of A are the queries that contain u or

v. Since A is covered twice by B1, . . . , B k−1
2

, each such query contains at least two

vertices from w1, . . . , wk−1. Thus, no query distinguishes between the complete graph
on u,w1, . . . , wk−1 and the complete graph on v, w1, . . . , wk−1. Hence, there are no
such sets in G, and therefore, by Lemma 3.10,

|F| = m = Ω(k2).

We conclude the section with a simple upper bound, which improves our estimate
for cliques that contain almost all the vertices.

Proposition 3.12. For every s, there exists a family of size at most

(s + 1)
⌈n

2

⌉
that solves the Cn−s-problem.

Proof. For each u ∈ V , ask s + 1 pairs that contain u. u is in the clique if and
only if the answer to at least one of these queries is “yes.”

4. General graphs. In this section we consider families that contain all the
graphs on V isomorphic to a graph G. Denote by HG the family of all graphs isomor-
phic to G.

Theorem 4.1. Let G = (V,E) be a graph on n vertices, and suppose that there
are three vertices u, v, w ∈ V such that for every two of them, the sets of their neighbors
except these vertices themselves are distinct, i.e., N(u) \ {v} �= N(v) \ {u}, N(u) \
{w} �= N(w) \ {u}, and N(v) \ {w} �= N(w) \ {v}. Then, the size of any family that

solves the HG-problem is at least Ω( n2

α2(G) ), where α(G) is the maximum size of an

independent set in G.
Proof. For any two vertices x, y ∈ V , denote by A(x, y) the set of vertices z ∈

V \ {x, y} such that z is a neighbor of both x and y, or of neither of them. We show
that there are two vertices among u, v, and w, for which the size of this set is at least
1
3n− 1. Suppose that A(u, v) < 1

3n− 1. Then, V \ (A(u, v)∪{u, v, w}) > 2
3n− 2, and

each one of these vertices is a neighbor of exactly one vertex among u and v. Thus,
each one of these vertices is in A(u,w) or in A(v, w), and hence at least one of these sets
is of size at least 1

3n− 1. Assume, without loss of generality, that |A(u, v)| ≥ 1
3n− 1.
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Let F be a family that solves the HG-problem, and let α = α(G). Assume that

|F| < n2

12α2 . Every set F ∈ F is of size at most α, or otherwise the answer to QF is
“yes” (and is known in advance). For every x ∈ V , denote by f(x) the number of sets
F ∈ F such that x ∈ F . Note that∑

x∈V

f(x) =
∑
F∈F

|F | ≤ α|F| < n2

12α
.(4.1)

Let V ′ = {x ∈ V | f(x) < n
6α}. Then |V ′| ≥ n

2 , since otherwise

∑
x∈V

f(x) ≥
∑

x∈(V \V ′)

f(x) ≥ n

2
· n

6α
=

n2

12α
,

contradicting (4.1). For x ∈ V ′, the number of vertices z ∈ V such that there exists
a set F ∈ F that contains both x and z is at most∑

F :x∈F

|F | ≤ f(x)α <
n

6
.

Let x, y ∈ V ′, and let A be the set of all vertices z ∈ V such that there exists a set
F ∈ F that contains x or y, and z. Then

|A| ≤
∑

F :x∈F

|F | +
∑

F :y∈F

|F | < n

3
.

Let G1 be a graph isomorphic to G, where u is mapped to x, v is mapped to y,
and only vertices from A(u, v) are mapped into A. Let G2 be the graph in which u
is mapped to y, v is mapped to x, and the rest of it is identical to G1. The only
queries that could distinguish between G1 and G2 are queries QF where F contains
x or y, but then all the other vertices in F are in A(u, v) and thus, the answer to
QF is the same for G1 and G2. Therefore, F cannot distinguish between G1 and G2,
contradicting the assumption that it solves the HG-problem.

Corollary 4.2. Let G = G(n, 1
2 ) be the random graph on n vertices. Then,

almost surely, any family that solves the HG-problem is of size at least Ω( n2

log2 n
).

Proof. The corollary follows from Theorem 4.1 since almost surely α(G) =
O(log n) (see, for example, [3] or [2]), and since there are almost surely three ver-
tices u, v, and w with distinct sets of neighbors, as defined in the theorem.

5. Concluding remarks.
• It will be interesting to close the polylogarithmic gaps between the upper and

the lower bounds proved in this paper.
• Another intriguing challenge is to obtain a general way to estimate, for every

graph G, the number of queries needed to identify a hidden graph isomorphic
to G. In particular, the problem of characterizing all graphs for which the
trivial upper bound of O(n2) is best possible seems interesting. Our results
enable us to prove an Ω(n2) lower bound for the number of queries required
to identify a hidden copy of any graph with at least one isolated vertex,
containing a vertex of degree 1 which is adjacent to a vertex of high degree.
We omit the details.

• The problems considered here can be investigated when more than one round
is allowed and in the case when the algorithms are fully adaptive.
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SET SYSTEMS WITH RESTRICTED CROSS-INTERSECTIONS AND
THE MINIMUM RANK OF INCLUSION MATRICES∗

PETER KEEVASH† AND BENNY SUDAKOV‡

Abstract. A set system is L-intersecting if any pairwise intersection size lies in L, where L
is some set of s nonnegative integers. The celebrated Frankl–Ray-Chaudhuri–Wilson theorems give
tight bounds on the size of an L-intersecting set system on a ground set of size n. Such a system
contains at most

(n
s

)
sets if it is uniform and at most

∑s
i=0

(n
i

)
sets if it is nonuniform. They also

prove modular versions of these results.

We consider the following extension of these problems. Call the set systems A1, . . . ,Ak L-
cross-intersecting if for every pair of distinct sets A,B with A ∈ Ai and B ∈ Aj for some i �= j
the intersection size |A ∩ B| lies in L. For any k and for n > n0(s) we give tight bounds on the

maximum of
∑k

i=1 |Ai|. It is at most max {k
(n
s

)
,
( n
�n/2�

)
} if the systems are uniform and at most

max {k
∑s

i=0

(n
i

)
, (k − 1)

∑s−1
i=0

(n
i

)
+ 2n} if they are nonuniform. We also obtain modular versions

of these results.

Our proofs use tools from linear algebra together with some combinatorial ideas. A key ingredient
is a tight lower bound for the rank of the inclusion matrix of a set system. The s∗-inclusion matrix
of a set system A on [n] is a matrix M with rows indexed by A and columns by the subsets of [n] of
size at most s, where if A ∈ A and B ⊂ [n] with |B| ≤ s, we define MAB to be 1 if B ⊂ A and 0
otherwise. Our bound generalizes the well-known result that if |A| < 2s+1, then M has full rank |A|.
In a combinatorial setting this fact was proved by Frankl and Pach in the study of null t-designs; it
can also be viewed as determining the minimum distance of the Reed–Muller codes.

Key words. set systems, restricted intersections, inclusion matrices

AMS subject classification. 05D05

DOI. 10.1137/S0895480103434634

1. Introduction. Extremal problems on set systems with restricted intersec-
tions have been an important part of combinatorics in the last half-century. One of
the first such results was obtained by Majumdar [11] and rediscovered by Isbell [8].
Extending earlier results of Fischer, they showed that a set system on [n] = {1, . . . , n}
in which the intersection of any pair of sets has the same cardinality t can have at
most n + 1 sets, and if t �= 0 it can have at most n sets. This is commonly known as
the nonuniform Fischer inequality. (A set system is uniform if all of its sets have the
same size.)

Throughout this paper L will denote a set of s nonnegative integers. We say that
a set system A is L-intersecting if for every A,B ∈ A we have |A ∩ B| ∈ L. The
nonuniform Fischer inequality was further generalized by Ray-Chaudhuri and Wilson
[13] and Frankl and Wilson [7], who obtained tight bounds for L-intersecting set
systems, both uniform and nonuniform. They showed that an L-intersecting family
on [n] can have at most

(
n
s

)
sets if it is uniform, and at most

∑s
i=0

(
n
i

)
sets if it is

nonuniform. Frankl and Wilson also proved modular versions of these results. For
p prime, they showed that the same bounds hold if the intersection sizes belong to
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L mod p and the sizes of the sets in A do not belong to L mod p. For an excellent
account of this subject and its applications we refer the reader to [2].

In this paper, we consider the following extension of these problems. Call the
set systems A1, . . . ,Ak L-cross-intersecting if for every pair of distinct sets A,B with
A ∈ Ai and B ∈ Aj for some i �= j we have |A ∩ B| ∈ L. We consider the problem
of finding L-cross-intersecting systems with total size as large as possible, for each
k. This can be thought of as a multicolored version of the Frankl–Ray-Chaudhuri–
Wilson theorem in the following sense. We can reformulate the property of being
L-intersecting as a forbidden configuration condition: we forbid any pair of sets with
intersection size not lying in L. Now suppose we are given a list of set systems
A1, . . . ,Ak, which we think of as colors. We call another set system F multicolored
if for each F ∈ F we can choose a color Ai containing F in such a way that each
F ∈ F gets a different color. Suppose we have an integer k and some forbidden
configurations {Fγ : γ ∈ Γ}. The multicolored extremal problem is to choose k
colors A1, . . . ,Ak with total size |A1| + · · · + |Ak| as large as possible subject to
containing no multicolored forbidden configuration Fγ . The L-intersection problem
has as forbidden configurations all pairs of sets with intersection sizes not belonging
to L. The multicolored version of this is clearly equivalent to the L-cross-intersection
problem defined above.

We refer the reader to [9] and [4] for recent results on other multicolored extremal
problems and to [14] and [6] for other results on cross-intersecting families.

There are two natural examples of large L-cross-intersecting systems that are
uniform. One is to take all of the Ai equal to some fixed maximum uniform L-
intersecting set system, which in the case L = {0, 1, . . . , s − 1} can have as many as(
n
s

)
sets. Another is to take one Ai to be as large as possible, i.e., of size

(
n

�n/2�
)
, and

then all the other set systems have to be empty. The following theorem shows that
one of these constructions is always optimal.

Theorem 1.1. Let L be a set of s nonnegative integers, n > 100s2 log(s + 1),
and let A1, . . . ,Ak be uniform set systems on [n] that are L-cross-intersecting. Then

k∑
i=1

|Ai| ≤ max

{
k

(
n

s

)
,

(
n

�n/2�

)}
.

We get a similar picture in the nonuniform case. Again we have the example
where all of the Ai are equal to some fixed maximum L-intersecting set system, which
can have as many as

∑s
i=0

(
n
i

)
sets when L = {0, 1, . . . , s−1}. Alternatively, if we take

one Ai to be as large as possible, i.e., to contain all 2n subsets of [n], then the other
Ai can contain only sets whose sizes belong to L (and are also L-cross-intersecting).
In the case L = {0, 1, . . . , s− 1} we could take one Ai to contain all sets and take all
the other set systems to consist of the subsets of size at most s− 1. Again we prove
that one of these two possibilities is optimal.

Theorem 1.2. Let L be a set of s nonnegative integers, n > 100s2 log s, and let
A1, . . . ,Ak be set systems on [n] that are L-cross-intersecting. Then

k∑
i=1

|Ai| ≤ max

{
k

s∑
i=0

(
n

i

)
, (k − 1)

s−1∑
i=0

(
n

i

)
+ 2n

}
.

One can ask similar questions in a modular setting. For a prime p, we say that
a set system A is L-intersecting mod p if the sizes of all pairwise intersections of
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sets belong to L mod p. We define L-cross-intersecting mod p in a similar fashion.
The uniform modular Frankl–Ray-Chaudhuri–Wilson theorem states that if A is an
r-uniform set system that is L-intersecting mod p and r /∈ L mod p, then |A| ≤

(
n
s

)
.

The nonuniform modular version is that if A is L-intersecting mod p and no set in
A has size belonging to L mod p, then |A| ≤

∑s
i=0

(
n
i

)
. We can show the following

cross-intersecting versions of these results.
Theorem 1.3. Suppose p is prime, L is a set of s < p residues modulo p,

and A1, . . . ,Ak are set systems on [n] that are L-cross-intersecting mod p such that

every set A ∈
⋃k

i=1 Ai has |A| = r for some r /∈ L mod p. Let m be chosen so that
m /∈ L mod p and |n/2 − m| is as small as possible. Then for n > n(s) sufficiently
large

k∑
i=1

|Ai| ≤ max

{
k

(
n

s

)
,

(
n

m

)}
.

Theorem 1.4. Suppose p is prime, L is a set of s < p residues modulo p, and
A1, . . . ,Ak are set systems on [n] that are L-cross-intersecting mod p such that every

set A ∈
⋃k

i=1 Ai has |A| /∈ L mod p. Then for n > n(s) sufficiently large

k∑
i=1

|Ai| ≤ max

⎧⎨⎩k

s∑
i=0

(
n

i

)
,

∑
i/∈L mod p

(
n

i

)⎫⎬⎭ .

Our proofs use two tools from linear algebra that are often useful in problems
concerning set systems with restricted intersections: the original inclusion matrix
method of Ray-Chaudhuri and Wilson [13] and the polynomial method as used by
Alon, Babai, and Suzuki [1]. The s∗-inclusion matrix of a set system A on [n] is a
matrix M with rows indexed by A and columns by the subsets of [n] of size at most
s, where if A ∈ A and B ⊂ [n] with |B| ≤ s, we define MAB to be 1 if B ⊂ A and 0
otherwise. A key ingredient of our proofs is a tight lower bound on the rank of M ,
which is interesting in its own right.

For s ∈ N0 = N ∪ {0}, we define functions fs : N0 → N0 as follows. For any s
we let fs(0) = 0. For any a > 0 we let f0(a) = 1. Given s, a > 0, write a = 2t + c,
where 0 ≤ c < 2t. We define fs(a) =

∑s
i=0

(
t
i

)
+ fs−1(c). (Here we let

(
t
i

)
be equal to

t(t−1)···(t−i+1)
i! for t ≥ i ≥ 1; for t ≥ 0 we let

(
t
0

)
= 1 and for other values of t and i

we set
(
t
i

)
= 0.) The following theorem shows that these functions give a tight lower

bound for the rank of the s∗-inclusion matrix over any field.
Theorem 1.5. If |A| = a and M is the s∗-inclusion matrix of A, then rank(M) ≥

fs(a). Furthermore, there is a set system A for which rank(M) = fs(a).
We say that a set system A is s∗-independent if the rows of its s∗-inclusion matrix

are linearly independent. It is well known (see, e.g., [2]) that if |A| < 2s+1, then A is
s∗-independent. In a combinatorial setting this fact was proved by Frankl and Pach
[5] in the study of null t-designs; it can also be viewed as determining the minimum
distance of the Reed–Muller codes (see [10] for background information on codes).
One can deduce this statement immediately from the above theorem together with
the observation that fs(a) = a for a < 2s+1. This observation can be proved by
induction as follows. As before, write a = 2t + c, where 0 ≤ c < 2t. Since t ≤ s,
we have

∑s
i=0

(
t
i

)
= 2t. Then as c < 2s we have fs−1(c) = c (by induction), and so

fs(a) = 2t + c = a, as required.
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The rest of this paper is organized as follows. In the next section we prove cross-
intersecting versions of the oddtown theorem and the nonuniform Fischer inequality.
These are special cases of our main theorems, but have the advantage that we can
prove them for all n. We set up the linear algebra machinery in section 3 and prove
Theorem 1.5. Section 4 contains the proofs of Theorems 1.1 and 1.2. In section 5 we
sketch how the proofs may be adapted to give the modular Theorems 1.3 and 1.4.
The final section contains some concluding remarks.

We use the following notation throughout the paper. Write [n] = {1, . . . , n}. The
subsets of [n] of size s are denoted by [n](s), and those of size at most s are denoted
by [n](≤s).

2. Warm-up. In this section we will prove a couple of special cases of our main
results, both for illustrative purposes and because in these cases we do not need
to impose the condition that n has to be sufficiently large. We recall the oddtown
theorem of Berlekamp [3] (see also [2]), which is a special case of the modular Frankl–
Ray-Chaudhuri–Wilson theorem. It states that if we have a collection of odd subsets
of [n] such that every pairwise intersection has even size, then we can have at most
n sets in total. Equality can be achieved by the collection of all singleton sets, for
example. We will prove the following cross-intersecting version.

Theorem 2.1. Suppose A1, . . . ,Ak are set systems on [n] each consisting of odd
sets so that every pair of distinct sets A,B with A ∈ Ai and B ∈ Aj for some i �= j

has intersection of even size. Then
∑k

i=1 |Ai| ≤ max{kn, 2n−1}.
Proof. Let A be the subsets of [n] that belong to at least two of the Ai and

let B be those sets that belong to exactly one of the Ai. Then for any A ∈ A and
B ∈ A ∪ B with A �= B we have |A ∩ B| even. We use boldface letters to indicate
the incidence vectors in F

n
2 corresponding to subsets of [n]; i.e., if A ⊂ [n], then

A denotes the vector whose ith coordinate is 1 if i ∈ A and 0 otherwise. Let 1
denote the vector with all coordinates equal to 1. Any A ∈ A ∪ B has odd size, i.e.,
A · A = 1, and for any A ∈ A and B ∈ A ∪ B with A �= B we have A · B = 0.
The sets in A are linearly independent as vectors, for if

∑
A∈A cAA = 0, then taking

the inner product with A for any A ∈ A, we get cA = 0. (In particular |A| ≤ n.)
The sets in B therefore satisfy |A| independent homogeneous linear constraints of
the form A · B = 0, as well as the inhomogeneous constraint 1 · B = 1 (because
they have odd size). If |A| = n, then these constraints are inconsistent. Then B
is empty and we have

∑k
i=1 |Ai| ≤ k|A| ≤ kn, so we are done. Otherwise the sets

in B belong to an affine subspace of dimension n − |A| − 1, so |B| ≤ 2n−|A|−1 and

then
∑k

i=1 |Ai| ≤ k|A| + 2n−|A|−1. It is easy to see that k|A| + 2n−|A|−1 is a convex
function of |A| (e.g., by differentiating twice), so as 0 ≤ |A| ≤ n− 1, it is maximized

at either |A| = 0 or |A| = n− 1. Either way we have
∑k

i=1 |Ai| ≤ max{kn, 2n−1}, as
required.

It is clear from the proof that equality can occur only when either A or B is
empty. In the first case every odd set appears in exactly one Ai. In fact, one of the
Ai contains all the odd sets, and the other Aj are empty (assuming that n ≥ 3).
To see this, note that the graph on the odd sets defined by joining sets with odd
intersection is connected, so if there are two of the Aj that are nonempty, we would
find an edge of the graph going from one to the other, which is impossible. In the
second case A must be a system of n odd sets with all pairwise intersections of even
size, and A1 = · · · = Ak = A.
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We will also prove the following cross-intersecting version of the nonuniform
Fischer inequality.

Theorem 2.2. Suppose A1, . . . ,Ak are set systems on [n] and there is some t so
that for every pair of distinct sets A,B with A ∈ Ai and B ∈ Aj for some i �= j, we

have |A ∩ B| = t. Then
∑k

i=1 |Ai| ≤ max{k(n + 1), k − 1 + 2n}. Moreover, if t �= 0,

then we have
∑k

i=1 |Ai| ≤ max{kn, 2n}.
Proof. Let A be the subsets of [n] that belong to at least two of the Ai and let B

be those sets that belong to exactly one of the Ai. Then for any A ∈ A and B ∈ A∪B
with A �= B we have |A ∩B| = t.

We first consider the case when there is no set in A of size t. As in the previous
proof we use boldface to denote incidence vectors of sets, which we now think of as
belonging to R

n. One can show that the vectors {A : A ∈ A} are linearly independent.
(This follows from the proof of the nonuniform Fischer inequality given in [2], which
we briefly sketch. Let M be the matrix with rows equal to the vectors {A : A ∈ A}.
Then MMT is the |A| by |A| intersection matrix, which has each off-diagonal entry
equal to t and each diagonal entry larger than t. It is not hard to show that any such
matrix is nonsingular, and therefore M has rank |A|, as required.) It also follows that
|A| ≤ n.

Now for each A ∈ A we consider the linear form fA(x) = A ·x− t in the variables
x = (x1, . . . , xn). Then fA vanishes on all the incidence vectors of members of A∪B,
except A itself. Since the incidence vectors of sets B ∈ B satisfy |A| independent
constraints fA(B) = 0, they lie in the intersection of an affine space of dimension
n − |A| with the cube {0, 1}n. It follows that |B| ≤ 2n−|A|. To see this, pick any
B0 ∈ B and consider the vectors {B − B0 mod 2 : B ∈ B} in F

n
2 . If there are more

than 2n−|A| such vectors, then they span an F2-vector space of dimension at least
n−|A|+1. It follows that the real vectors {B−B0 : B ∈ B} span a real vector space
of dimension at least n − |A| + 1 and satisfy |A| independent constraints, which is

impossible. Therefore
∑k

i=1 |Ai| ≤ k|A| + 2n−|A| ≤ max{kn, 2n} by convexity. This
proves both parts of the theorem under the assumption that there is no set in A of
size t.

Now suppose there is some A0 ∈ A with |A0| = t. Then all sets in A∪B contain
A0. Repeating the above argument, we see that the vectors {A : A ∈ A\A0} are
linearly independent, so |A\A0| ≤ n and |B| ≤ 2n−|A\A0|. If |A\A0| = n, then
B must be empty. For if there is B ∈ B, then A ∪ B contains n + 2 sets with
all pairwise intersections having size t, which is impossible. In this case we have∑k

i=1 |Ai| ≤ k|A| ≤ k(n + 1). In the case A = {A0} we have |B| ≤ 2n − 1 (since

A0 /∈ B) so
∑k

i=1 |Ai| ≤ k|A|+ |B| ≤ k + 2n − 1. Otherwise we have 2 ≤ |A| ≤ n and

k∑
i=1

|Ai| ≤ k|A| + 2n−|A|+1 ≤ max{2k + 2n−1, kn + 2}

by convexity. Now kn + 2 ≤ k(n + 1) for k ≥ 2, and if 2k + 2n−1 > k(n + 1), we
have k < 2n−1/(n − 1), so (k − 1 + 2n) − (2k + 2n−1) = 2n−1 − (k + 1) ≥ 0. (We
are ignoring the case n = 1, for which the theorem is trivially true.) We deduce that∑k

i=1 |Ai| ≤ max{k(n + 1), k − 1 + 2n}, which is the first part of the theorem.

To get the improvement when t �= 0, consider the set systems A′
i = {A\A0 : A ∈

Ai}. These are defined on a set of size n− t, and for every pair of distinct sets A,B
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with A ∈ A′
i and B ∈ A′

j for some i �= j we have |A∩B| = 0. By the first part of the
theorem we have

k∑
i=1

|Ai| =

k∑
i=1

|A′
i| ≤ max{k(n− t + 1), k − 1 + 2n−t} ≤ max{kn, 2n}

and we are done.

3. Tools from linear algebra. This section contains the linear algebra compo-
nents of our argument, which are a tight lower bound on the rank of the s∗-inclusion
matrix and the polynomial method.

3.1. The rank of the inclusion matrix. For a set system A on [n], the s∗-
inclusion matrix M has rows indexed by A and columns indexed by the subsets of [n]
of size at most s (including the empty set), where if A ∈ A and B ⊂ [n] with |B| ≤ s
we define MAB to be 1 if B ⊂ A and 0 otherwise. In this subsection we will prove a
tight lower bound for the rank of this matrix, which is of interest in its own right.

Let V = F

∑s
i=0 (ni), where F is some field, and denote its standard basis by eZ ,

where Z ranges over subsets of [n] of size at most s. Given a set A ∈ A, we define the
s∗-inclusion vector

vsA =
∑

Z⊂A,|Z|≤s

eZ .

These are the row vectors of the s∗-inclusion matrix. We define V s
A to be the row

space, i.e., the subspace of V spanned by the vectors {vsA : A ∈ A}. Note that the
rank of the s∗-inclusion matrix is equal to the dimension of V s

A.
Throughout we adopt the following standard convention for binomial coefficients.

We let
(
t
i

)
be equal to t(t−1)···(t−i+1)

i! for t ≥ i ≥ 1; for t ≥ 0 we let
(
t
0

)
= 1 and for

other values of t and i we set
(
t
i

)
= 0. We will use the following well-known identities,

which follow easily from the fact that
(
t+1
s

)
=

(
t
s

)
+

(
t

s−1

)
:

s∑
i=0

(
t + 1

i

)
=

s∑
i=0

(
t

i

)
+

s−1∑
i=0

(
t

i

)
,(1)

(
t + 1

s

)
=

s∑
i=0

(
t− i

s− i

)
.(2)

For s ∈ N0 = N∪{0}, we define functions fs : N0 → N0 as follows. For any s we
let fs(0) = 0. For any a > 0 we let f0(a) = 1. Given s, a > 0, write a = 2t + c, where
0 ≤ c < 2t. We define fs(a) =

∑s
i=0

(
t
i

)
+ fs−1(c). We will show that if |A| = a, then

dimV s
A ≥ fs(a). First we need some inequalities for the functions fs.

Lemma 3.1. If a < 2t, then fs(a) − fs−1(a) ≤
(
t
s

)
.

Proof. Write a = 2t1 + 2t2 + · · · , where t > t1 > t2 > · · · . Then ti ≤ t − i. We
have

fs(a) − fs−1(a) =
∑
i≥1

(
ti

s + 1 − i

)
≤

∑
i≥1

(
t− i

s + 1 − i

)
=

(
t

s

)
,

where we use (2).
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Lemma 3.2. If a ≥ b, then fs(a + b) ≤ fs(a) + fs−1(b) for s ≥ 1.
Proof. We argue by induction on a+ b and s. Write a = 2t + c, where 0 ≤ c < 2t.

First we check the base cases of the induction. The statement is trivial when b = 0,
so we can suppose b > 0. When s = 1 we have two cases. First suppose that
c = 0. Then f1(a) = t + 1. Since 0 < b ≤ a = 2t we have 2t < a + b ≤ 2t+1, so
f1(a + b) = t + 2. Since f0(b) = 1 we have f1(a + b) = f1(a) + f0(b). Next suppose
that c > 0. Then f1(a) = t + 2. Since b ≤ a < 2t+1 we have a + b < 2t+2, so
f1(a + b) ≤ t + 3 = f1(a) + f0(b), as required.

Now suppose that s > 1 and that the statement is true with s replaced by s′ < s
and also for the same s applied to a pair a′, b′ with a′ + b′ < a+ b. Note in particular
that for any s′ < s and any x, y we have fs′(x + y) ≤ fs′(x) + fs′(y). For we
may suppose that x ≥ y, and then by induction fs′(x + y) ≤ fs′(x) + fs′−1(y) ≤
fs′(x) + fs′(y).

Consider first the case that b < 2t − c. Then a + b < 2t+1. We have fs(a) =∑s
i=0

(
t
i

)
+fs−1(c) and fs(a+b) =

∑s
i=0

(
t
i

)
+fs−1(b+c), so fs(a)+fs−1(b)−fs(a+b) =

fs−1(b) + fs−1(c) − fs−1(b + c) ≥ 0, by the observation in the previous paragraph.
Next we consider the case that b ≥ 2t, say b = 2t + d, where 0 ≤ d ≤ c < 2t.

Then fs−1(b) =
∑s−1

i=0

(
t
i

)
+ fs−2(d). Since 2t+1 ≤ a + b < 2t+2 we have fs(a + b) =∑s

i=0

(
t+1
i

)
+ fs−1(c + d). Using (1) we get fs(a) + fs−1(b) − fs(a + b) = fs−1(c) +

fs−2(d) − fs−1(c + d) ≥ 0 by induction (since c ≥ d).
Finally, we are left with the case 2t− c ≤ b < 2t. We have 2t+1 ≤ a+ b < 2t+2, so

fs(a+ b) =
∑s

i=0

(
t+1
i

)
+ fs−1(b+ c− 2t). Since 2t ≤ b+ c < 2t+1 we have fs(b+ c) =∑s

i=0

(
t
i

)
+fs−1(b+c−2t), so fs(a+b)−fs(b+c) =

∑s
i=0

(
t+1
i

)
−
∑s

i=0

(
t
i

)
=

∑s−1
i=0

(
t
i

)
.

Then fs(a)+fs−1(b)−fs(a+b) =
∑s

i=0

(
t
i

)
+fs−1(c)+fs−1(b)−fs(b+c)−

∑s−1
i=0

(
t
i

)
=

fs−1(b)+fs−1(c)−fs(b+c)+
(
t
s

)
. If b ≥ c, then by Lemma 3.1 we have fs−1(b)+

(
t
s

)
≥

fs(b), so fs(a) + fs−1(b) − fs(a + b) ≥ fs(b) + fs−1(c) − fs(b + c) ≥ 0 by induction
(since b + c < a + b). Similarly, if c ≥ b we have fs(a) + fs−1(b) − fs(a + b) ≥
fs(c) + fs−1(b) − fs(b + c) ≥ 0. In all cases we are done.

Proof of Theorem 1.5. We argue by induction on a and s. The result is trivial if
a = 0, a = 1, or s = 0, so we suppose that a ≥ 2 and s ≥ 1. Let A be a set system
on a set X with |A| = a. Pick x ∈ X and let Ax = {A ∈ A : x ∈ A}, Ax = A\Ax.
Write ax = |Ax| and ax = |Ax|. We can choose x so that 0 < ax, ax < a.

Let M be the matrix whose rows consist of the s∗-inclusion vectors of sets in
A, with the following order of rows and columns. The rows are ordered in such a
way that those corresponding to sets in Ax precede those in Ax. The columns are
ordered into three groups; the first group is those columns given by entries in the
s∗-inclusion vectors corresponding to sets in X(≤s−1) not containing x, the second
group is those corresponding to sets in X(s) not containing x, and the third group
is those corresponding to sets in X(≤s) that contain x; each of the three groups is
ordered lexicographically. Thus M has the structure(

M1 M2 0
M3 M4 M3

)
for some matrices M1,M2,M3,M4. Note that rk(M) = dimV s

A.
Consider the system A′ = {AΔ{x} : A ∈ A}, where Δ denotes symmetric

difference. Since A′
x = {A∪{x} : A ∈ Ax} and A′

x = {A\{x} : A ∈ Ax}, the matrix
corresponding to A′ (with respect to the same order on rows and columns) is

M ′ =

(
M3 M4 0
M1 M2 M1

)
.
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Note that M ′ can be obtained from M by row and column operations. In terms of
the block structure, we swap the two rows, subtract the first column from the third
column, then multiply the third column by −1. This shows that rk(M ′) = rk(M),
i.e., dimV s

A′ = dimV s
A. Therefore, we can suppose without loss of generality that

ax ≥ ax.
Now note that

dimV s
A = rk(M) ≥ rk

(
M1 M2

)
+ rk(M3) = dimV s

Ax
+ dimV s−1

Ax
.

Since 0 < ax, ax < a we can apply induction to get dimV s
Ax

≥ fs(ax) and dimV s−1
Ax

≥
fs−1(ax). Since ax ≥ ax and ax + ax = a, by Lemma 3.2 we have dimV s

A ≥ fs(ax) +
fs−1(ax) ≥ fs(a). This proves the first part of the theorem.

Finally we note that the bound on dimension is tight. To show this, we prove by
induction on a and s that if a = 2t + c, with c < 2t, then there is a set system A
on [t + 1] with |A| = a and dimV s

A = fs(a). This is clear if a = 1 or if s = 0, so we
suppose a ≥ 2 and s ≥ 1. By induction we can find a set system B on [t] with c sets
so that dimV s−1

B = fs−1(c). Let B′ =
{
B ∪ {t + 1} : B ∈ B

}
and A = P([t]) ∪ B′,

i.e., A consists of all subsets of [t] together with each set of B with the element
t + 1 added. In the s∗-inclusion matrix for A, the block with rows corresponding to
P([t]) and columns corresponding to [t](≤s) has full rank

∑s
i=0

(
t
i

)
. Any extra rank in

the matrix can come only from the block with rows corresponding to B′ and columns
corresponding to

{
X∪{t+1} : X ∈ [t](≤s−1)

}
, and this has rank dimV s−1

B = fs−1(c).

Therefore dimV s
A =

∑s
i=0

(
t
i

)
+ fs−1(c) = fs(a), as required.

We note the following properties of the function fs(a) for future reference:

fs(a) ≥
s∑

i=0

(
�log2 a�

i

)
;(3)

If 2n − 2n−s < a ≤ 2n, then fs(a) = fs(2
n) =

s∑
i=0

(
n

i

)
.(4)

To see the second property note that we can write a = 2n−1 + 2n−2 + · · · + 2n−s + b,
with 0 < b < 2n−s, and so fs(a) =

∑s
j=0

∑
i≥0

(
n−1−j
s−j−i

)
=

∑
i≥0

(
n

s−i

)
, where we use

(2).

3.2. The polynomial method. In this subsection we summarize the particular
application of the polynomial method that we need in the following lemma.

Lemma 3.3. (i) Suppose A is an L-intersecting family of sets and that |A| /∈ L
for all A ∈ A. Then the s∗-inclusion vectors {vsA : A ∈ A} are linearly independent
over R.

(ii) Suppose also that B is a set system such that |A∩B| ∈ L for any A ∈ A and
B ∈ B. Then no vector vsB with B ∈ B lies in V s

A.
Proof. We use boldface to denote the incidence vector corresponding to a subset of

[n]. For a set A we define the polynomial fA(x) =
∏

�∈L(x·A−�). We will restrict x =
(x1, . . . , xn) to range over {0, 1}-vectors, so by repeatedly replacing any occurrence of
x2
i by xi we can represent fA(x) by a multilinear polynomial

∑
X∈[n](≤s) cA,X

∏
i∈X xi.

Let wA =
∑

X∈[n](≤s) cA,XeX , where we recall that {eX : X ∈ [n]≤s} denotes the

standard basis of V = R

∑s
i=0 (ni). Then by definition we have fA(B) = wA · vsB .

Note that fA(B) = 0 if and only if |A ∩ B| ∈ L, so for A,B ∈ A we have
wA · vsB = fA(B) = 0 if and only if A �= B. Now if

∑
A∈A tAv

s
A = 0, then taking the
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inner product of this identity with wA for each A ∈ A we obtain that tA = 0 for every
A, which proves part (i) of the lemma. Also, if B ∈ B and vsB =

∑
A∈A tAv

s
A, then

taking the inner product with wA, we again see that tA = 0 for each A ∈ A. This
gives vsB = 0, a contradiction that proves part (ii) of the lemma.

The same proof shows that this result holds with R replaced by the field with p
elements (for some prime p) provided that |A| /∈ L mod p for all A ∈ A.

4. Proofs of the main theorems. We start by proving Theorem 1.1, which
we recall states that if n > 100s2 log(s + 1) and A1, . . . ,Ak are uniform set systems

on [n] that are L-cross-intersecting, then
∑k

i=1 |Ai| ≤ max{k
(
n
s

)
,
(

n
�n/2�

)
}. First we

need the following estimate on the middle binomial coefficients.
Lemma 4.1.

2n

2
√
n
≤

(
n

�n/2�
)
≤ 2n

√
n
.

Proof. Let g(n) = 2−n
√
n
(

n
�n/2�

)
. We want to prove that 1/2 ≤ g(n) ≤ 1. This is

easily verified for n = 1 and n = 2. We see that g(n + 2) > g(n): for even n we have
g(2m)

g(2m−2) =
(
1 − 1

2m

)√
m

m−1 > 1, as
(
1 − 1

2m

)2 − m−1
m = 1

4m2 > 0, and for odd n we

have g(2m+1)
g(2m−1) = (1− 1

2(m+1) )
√

2m+1
2m−1 > 1, as (1− 1

2(m+1) )
2− 2m−1

2m+1 > 1
4(m+1)2 > 0. Now

g(n) ≥ 1/2 follows for all n by induction. For the upper bound we use the Stirling
approximation n! ∼

√
2πn nne−n, from which it follows that g(n) →

√
2/π as n → ∞.

Since g(2m) and g(2m+1) are increasing sequences we have g(n) ≤
√

2/π < 1.
Proof of Theorem 1.1. Let kc = �

(
n

�n/2�
)
/
(
n
s

)
�. Then for k ≤ kc we want to show

that
∑k

i=1 |Ai| ≤
(

n
�n/2�

)
and for k > kc we want to show that

∑k
i=1 |Ai| ≤ k

(
n
s

)
. Note

that it suffices to prove these two statements in the specific cases k = kc and k = kc+1.
Then the case k = kc clearly implies that for k ≤ kc we have

∑k
i=1 |Ai| ≤

(
n

�n/2�
)
.

Also the case k > kc + 1 follows by induction. If we ignore the smallest Ai we are left
with k − 1 L-cross-intersecting set systems, which have total size at most (k − 1)

(
n
s

)
,

so the total size of all k systems is at most k
k−1 · (k − 1)

(
n
s

)
= k

(
n
s

)
.

By the above remark we can assume that k = kc or k = kc + 1. Suppose
that A1, . . . ,Ak are L-cross-intersecting r-uniform set systems with

∑k
i=1 |Ai| ≥

max{k
(
n
s

)
,
(

n
�n/2�

)
}. Note that we can assume r /∈ L. Let A be the subsets of [n]

that belong to at least two of the Ai and let B be those subsets that belong to exactly
one of the Ai. Since the Ai are L-cross-intersecting, for any A ∈ A and B ∈ A∪B we
have |A∩B| ∈ L. It follows from the Ray-Chaudhuri–Wilson theorem that |A| ≤

(
n
s

)
,

and if B �= ∅, then |A| <
(
n
s

)
(as we can add one set from B to A and still have

an L-intersecting family). From Lemma 3.3 we know that the s∗-inclusion vectors
{vsA : A ∈ A} are linearly independent over R, i.e., they form a basis of V s

A, and we
also see that no vector vsB with B ∈ B lies in V s

A. We conclude that

|A| + dimV s
B ≤

s∑
i=0

(
n

i

)
.(5)

Note that we can assume that both A and B are nonempty. For if A = ∅ we have∑k
i=1 |Ai| ≤ |B| ≤

(
n
r

)
≤

(
n

�n/2�
)

and if B = ∅ we have
∑k

i=1 |Ai| ≤ k|A| ≤ k
(
n
s

)
; in

either case we are done. Thus we cannot have |A| =
(
n
s

)
(for then B = ∅), so we have

|A| ≤
(
n
s

)
− 1. Since

k

(
n

s

)
≤

k∑
i=1

|Ai| ≤ k|A| + |B| ≤ k

((
n

s

)
− 1

)
+ |B|,
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we have |B| ≥ k > (
(

n
�n/2�

)
/
(
n
s

)
) − 1. By Lemma 4.1 we have |B| > 2n/ns+1, so by

Theorem 1.5 and (3)

dimV s
B ≥ fs(|B|) ≥

s∑
i=0

(
�log2 |B|�

i

)
≥

s∑
i=0

(
�n− (s + 1) log2 n�

i

)
.

Now from (5) we get

|A| ≤
s∑

i=0

(
n

i

)
− dimV s

B ≤
s∑

i=0

((
n

i

)
−

(
n− �(s + 1) log2 n�

i

))

≤ �(s + 1) log2 n�
s−1∑
i=0

(
n− 1

i

)
,

where we use the inequality
(
n
i

)
−

(
n−t
i

)
=

∑t
j=1

((
n+1−j

i

)
−

(
n−j
i

))
=

∑t
j=1

(
n−j
i−1

)
≤

t
(
n−1
i−1

)
. Therefore

|B| ≥
k∑

i=1

|Ai| − k|A| ≥
(

n

�n/2�

)
−

((
n

�n/2�
)(

n
s

) + 1

)
�(s + 1) log2 n�

s−1∑
i=0

(
n− 1

i

)
>

(
1 − 3s(s + 1) log2 n

2n

)(
n

�n/2�

)
.(6)

In particular we easily see that |B| >
(

n
�n/3�

)
, so n/3 < r < 2n/3. Recalling that

A �= ∅, we now consider any A ∈ A. For any B ∈ B the size of its intersection with A
belongs to L, so we get

|B| ≤
∑
�∈L

(
r

�

)(
n− r

r − �

)
≤ s

(
r

�r/2�

)(
n− r

�(n− r)/2�

)

< s · 2r√
r
· 2n−r

√
n− r

<
2ns

n/3
<

6s√
n

(
n

�n/2�

)
,

where we use Lemma 4.1. Comparing with (6) we get

6s√
n
> |B|/

(
n

�n/2�

)
> 1 − 3s(s + 1) log2 n

2n
.

Since n > 100s2 log(s + 1), this gives the required contradiction.
It is clear from the proof that equality can occur only when either A or B is

empty. In the first case every set of size �n/2� appears in exactly one Ai. In fact,
one of the Ai contains all the sets of size �n/2�, and the other Aj are empty (which
can be proved as in the remark after Theorem 2.1). In the second case A must be a
maximum uniform L-intersecting family, and A1 = · · · = Ak = A.

Next we prove Theorem 1.2, which we recall states that if n > 100s2 log s and
A1, . . . ,Ak are set systems on [n] that are L-cross-intersecting, then

∑k
i=1 |Ai| ≤

max{k
∑s

i=0

(
n
i

)
, (k − 1)

∑s−1
i=0

(
n
i

)
+ 2n}.

Proof of Theorem 1.2. We will assume that s > 1, as the case s = 1 is covered by
Theorem 2.2. Suppose that A1, . . . ,Ak are L-cross-intersecting set systems with

k∑
i=1

|Ai| ≥ max

{
k

s∑
i=0

(
n

i

)
, (k − 1)

s−1∑
i=0

(
n

i

)
+ 2n

}
.
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Let A be the sets that belong to at least two of the Ai and let B be those sets that
belong to exactly one of the Ai.

Write kc = � 2n−
∑s−1

i=0 (ni)
(ns)

�. Then for k ≤ kc we want to show that
∑k

i=1 |Ai| ≤

(k − 1)
∑s−1

i=0

(
n
i

)
+ 2n and for k > kc we want to show that

∑k
i=1 |Ai| ≤ k

∑s
i=0

(
n
i

)
.

Note that it suffices to prove these two statements in the specific cases k = kc and
k = kc + 1. As for Theorem 1.1, the case k > kc + 1 follows by induction. We
can prove the case k < kc by induction on k (decreasing from kc) with the following

argument. Suppose for the sake of contradiction that we have
∑k

i=1 |Ai| > (k −
1)

∑s−1
i=0

(
n
i

)
+ 2n. Then clearly |A| >

∑s−1
i=0

(
n
i

)
. Let Ak+1 = A. Then A1, . . . ,Ak+1

are L-cross-intersecting and
∑k+1

i=1 |Ai| > k
∑s−1

i=0

(
n
i

)
+ 2n, which contradicts our

induction hypothesis. Therefore we can assume that k = kc or k = kc + 1.
Since A is L-intersecting we have |A| ≤

∑s
i=0

(
n
i

)
by the Frankl–Wilson theorem,

and if B �= ∅, then |A| <
∑s

i=0

(
n
i

)
(similar to the previous theorem). Let AL = {A ∈

A : |A| ∈ L} and AL = {A ∈ A : |A| /∈ L}. Let � be the largest element of L. Then

AL is (L\�)-intersecting, so |AL| ≤
∑s−1

i=0

(
n
i

)
. Exactly as in the proof of Theorem 1.1

we see that the s∗-inclusion vectors {vsA : A ∈ AL} form a basis of V s
AL

and no vector

vsB with B ∈ B lies in V s
AL

. This shows that |AL| + dimV s
B ≤

∑s
i=0

(
n
i

)
.

We can assume that B is nonempty, for otherwise
∑k

i=1 |Ai| ≤ k|A| ≤ k
∑s

i=0

(
n
i

)
,

and we are done. We can also assume that AL is nonempty, for otherwise we have

|A| = |AL| ≤
∑s−1

i=0

(
n
i

)
and so

k∑
i=1

|Ai| ≤ k|A| + |B| ≤ k|A| + (2n − |A|) ≤ (k − 1)

s−1∑
i=0

(
n

i

)
+ 2n,

and again we are done. We cannot have |A| =
∑s

i=0

(
n
i

)
(for then B = ∅) so we have

|A| ≤
∑s

i=0

(
n
i

)
− 1. It follows that |B| ≥ k > 2n

(ns)
− 2 > 2n

ns , and so by Theorem 1.5

dimV s
B >

∑s
i=0

(�n−s log2 n�
i

)
. Now we get

|AL| ≤
s∑

i=0

(
n

i

)
− dimV s

B <

s∑
i=0

((
n

i

)
−

(
n− �s log2 n�

i

))

≤ �s log2 n�
s∑

i=0

(
n− 1

i− 1

)
<

2s2 log2 n

n

(
n

s

)
.

Choose an integer t so that 2−(t+1) ≤ |AL|/
(
n
s

)
≤ 2−t. Since n ≥ 100s2 log s and

s ≥ 2, from the above inequality we have t ≥ 2. Also, since AL is nonempty we have
t ≤ log2

(
n
s

)
< s log n.

Since |A| = |AL| + |AL| ≤ 2−t
(
n
s

)
+

∑s−1
i=0

(
n
i

)
we see that

|B| ≥
k∑

i=1

|Ai| − k|A| > (k − 1)

s−1∑
i=0

(
n

i

)
+ 2n − k

(
2−t

(
n

s

)
+

s−1∑
i=0

(
n

i

))

> 2n −
s−1∑
i=0

(
n

i

)
−

(
2n(
n
s

) + 1

)
2−t

(
n

s

)
> 2n − 2n−t+1,

where for the last inequality we use the upper bound on t. We cannot have t ≥
s + 1, for then (4) gives dimV s

B =
∑s

i=0

(
n
i

)
and then AL must be empty, which is a
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contradiction. We deduce that t ≤ s. Now by Theorem 1.5 and (2) we have

dimV s
B > fs(2

n − 2n−t+1) = fs(2
n−1 + 2n−2 + · · · + 2n−t+1)

=

t−2∑
j=0

∑
i≥0

(
n− 1 − j

s− j − i

)

=
∑
i≥0

⎛⎝∑
j≥0

(
n− 1 − j

s− i− j

)
−

∑
j≥0

(
n− t− j

s− i− t + 1 − j

)⎞⎠
=

∑
i≥0

((
n

s− i

)
−

(
n− t + 1

s− i− t + 1

))
.

Therefore

2−(t+1)

(
n

s

)
≤ |AL| ≤

s∑
i=0

(
n

i

)
− dimV s

B ≤
∑
i≥0

(
n− t + 1

s− i− t + 1

)
≤ 2

(
n− t + 1

s− t + 1

)
.

We deduce that 2t+2 ≥
(
n
s

)
/
(
n−t+1
s−t+1

)
≥ (n/s)t−1, and so n/s ≤ 21+3/(t−1) ≤ 16, which

gives the required contradiction.

From the proof we see that equality can occur only when either B or AL is
empty. In the first case we have Ai = A equal to an L-intersecting family of size∑s

i=0

(
n
i

)
. It was shown by Qian and Ray-Chaudhuri [12] that this is only possible

when L = {0, 1, . . . , s− 1} and A = [n](≤s). In the second case |B| = 2n and A = AL

must have size
∑s−1

i=0

(
n
i

)
and be (L\�)-intersecting (where � is the largest element

of L), so again using the result of [12] we must have L\� = {0, 1, . . . , s − 2} and
A = [n](≤s−1). Therefore one of the Ai contains all subsets of [n], and the others are
all equal to [n](≤s−1).

5. The modular versions. The modular versions of the theorems proved in the
last section have very similar proofs. The main ideas are the same, but the computa-
tions are significantly different and more involved, so we feel obliged to present them
separately. We will be brief on those points of similarity to avoid excessive repetition,
and we make no effort to obtain a bound on the smallest n for which the results hold.
This section may be omitted on a first reading of this paper.

First we recall the statement of Theorem 1.3. Suppose p is prime, let L be a set
of s < p residues modulo p, and let A1, . . . ,Ak be set systems on [n] that are L-cross-

intersecting mod p such that every set A ∈
⋃k

i=1 Ai has |A| = r, for some r /∈ L mod p.
Let m be chosen so that m /∈ L mod p and |n/2 − m| is as small as possible. The

theorem claims that for n > n(s) sufficiently large
∑k

i=1 |Ai| ≤ max
{
k
(
n
s

)
,
(
n
m

)}
.

We define all vectors and polynomials over Fp (the field with p elements) instead
of R.

Proof of Theorem 1.3. Let kc =
⌊(

n
m

)
/
(
n
s

)⌋
. We can assume that k = kc or

k = kc + 1. Suppose that A1, . . . ,Ak are set systems that are L-cross-intersecting
mod p such that every set A ∈

⋃k
i=1 Ai has |A| = r, for some r /∈ L mod p, and

suppose that
∑k

i=1 |Ai| ≥ max
{
k
(
n
s

)
,
(
n
m

)}
. Let A be the subsets of [n] that belong

to at least two of the Ai and let B be those sets that belong to exactly one of the Ai.
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Since the Ai are L-cross-intersecting mod p, for any A ∈ A and B ∈ A ∪ B we
have |A ∩ B| ∈ L mod p. It follows from the modular Frankl–Wilson theorem that
|A| ≤

(
n
s

)
, and if B �= ∅, then |A| <

(
n
s

)
. From the remark after Lemma 3.3 we

know that the s∗-inclusion vectors {vsA : A ∈ A} form a basis of the Fp-vector space
V s
A, and we also see that no vector vsB with B ∈ B lies in V s

A. We conclude that
|A| + dimV s

B ≤
∑s

i=0

(
n
i

)
.

We can assume that both A and B are nonempty. Then |A| ≤
(
n
s

)
− 1, so

|B| ≥ k >
((

n
m

)
/
(
n
s

))
− 1. By definition of m we have |m − n/2| ≤ s so

(
n
m

)
=

(1 + o(1))
(

n
�n/2�

)
and then by Lemma 4.1 we have |B| > 2n/ns+1. Following the

proof of Theorem 1.1 we get the inequalities dimV s
B ≥

∑s
i=0

(�n−(s+1) log2 n�
i

)
and

|A| ≤ �(s + 1) log2 n�
∑s−1

i=0

(
n−1
i

)
. Then

|B| ≥
k∑

i=1

|Ai| − k|A| ≥
(
n

m

)
−

((
n
m

)(
n
s

) + 1

)
�(s + 1) log2 n�

s−1∑
i=0

(
n− 1

i

)

>

(
1 − 3s(s + 1) log2 n

2n

)(
n

m

)
.(7)

In particular |B| = (1 + o(1))
(

n
�n/2�

)
so |r − n/2| = o(

√
n). Recalling that A �= ∅,

we now consider any A ∈ A. For any B ∈ B the size of its intersection with A belongs
to L mod p. We can choose x so that |x− r/2| = o(

√
n) and x /∈ L mod p. Any set of

size r which intersects A in x points cannot belong to B, and there are at least
(
r
x

)(
n−r
r−x

)
of these. Now

(
r
x

)
= (1 + o(1))

(
r

�r/2�
)

and r − x = (n − r)/2 + o(
√
n), so

(
n−r
r−x

)
=

(1+ o(1))
(

n−r
�(n−r)/2�

)
. Therefore we can choose n large enough that

(
r
x

)
> 2r/3

√
r and(

n−r
r−x

)
> 2n−r/3

√
n− r. We deduce that |B| <

(
n
m

)
− 2n/9n < (1 − 1/10

√
n)

(
n
m

)
. For

n > n(s) sufficiently large this contradicts (7), which completes the proof.
Next we recall the statement of Theorem 1.4. Suppose p is prime, L is a set of

s < p nonnegative integers, and A1, . . . ,Ak are set systems on [n] that are L-cross-

intersecting mod p such that every set A ∈
⋃k

i=1 Ai has |A| /∈ L mod p. The theorem
claims that for n > n(s) sufficiently large

k∑
i=1

|Ai| ≤ max

⎧⎨⎩k

s∑
i=0

(
n

i

)
,

∑
i/∈L mod p

(
n

i

)⎫⎬⎭ .

First we need the following lemma.
Lemma 5.1. Suppose |L| = s and x > x(s) is sufficiently large. Then

∑
i/∈L mod p

(
x

i

)
>

2x

3s
.

Proof. We will restrict attention to those i that lie in the interval I = [x/2 −
x2/3, x/2 + x2/3], as the sum of

(
x
i

)
for i outside this interval is o(2x) by the Chernoff

bound. By slightly altering I if necessary we may suppose that |I| is divisible by
s + 1, and we partition it into subintervals {Jφ : φ ∈ Φ} with |Jφ| = s + 1 for every
φ ∈ Φ. Note that any Jφ contains at least one i /∈ L mod p. (Since p ≥ s + 1,
each element of Jφ gives a distinct residue mod p, so not every element of Jφ can
belong to L mod p.) It is easy to see that

(
x
j1

)
= (1 + o(1))

(
x
j2

)
for any j1, j2 ∈ Jφ,
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so
∑

i∈Jφ, i/∈L mod p

(
x
i

)
> 1+o(1)

s+1

∑
i∈Jφ

(
x
i

)
. Therefore

∑
i/∈L mod p

(
x

i

)
≥

∑
Jφ

∑
i∈Jφ, i/∈L mod p

(
x

i

)
>

1 + o(1)

s + 1

∑
Jφ

∑
i∈Jφ

(
x

i

)

=
1 + o(1)

s + 1

∑
i∈I

(
x

i

)
>

2x

3s
,

as required.

Proof of Theorem 1.4. Write kc = �
∑

i/∈L mod p (ni)∑s
i=0 (ni)

�. We can assume that k = kc or

k = kc+1. Suppose that A1, . . . ,Ak are set systems that are L-cross-intersecting mod
p such that every set A ∈

⋃k
i=1 Ai has |A| /∈ L mod p, and suppose that

∑k
i=1 |Ai| ≥

max{k
∑s

i=0

(
n
i

)
,
∑

i/∈L mod p

(
n
i

)
}. Let A be the sets that belong to at least two of

the Ai and let B be those sets that belong to exactly one of the Ai. Since A is
L-intersecting mod p we have |A| ≤

∑s
i=0

(
n
i

)
by the Frankl–Wilson theorem, and

if B �= ∅, then |A| <
∑s

i=0

(
n
i

)
. The s∗-inclusion vectors {vsA : A ∈ A} form a

basis of V s
A over Fp and no vector vsB with B ∈ B lies in V s

A. This shows that
|A| + dimV s

B ≤
∑s

i=0

(
n
i

)
.

We can assume that both A and B are nonempty. Then |A| ≤
∑s

i=0

(
n
i

)
− 1, so

|B| ≥ k > (
∑

i/∈L mod p

(
n
i

)
/
∑s

i=0

(
n
i

)
)−1 > 2n/ns+1, by Lemma 5.1. Again we get the

inequalities dimV s
B ≥

∑s
i=0

(�n−(s+1) log2 n�
i

)
and |A| ≤ �(s + 1) log2 n�

∑s−1
i=0

(
n−1
i

)
.

Then

|B| ≥
k∑

i=1

|Ai| − k|A|

≥
∑

i/∈L mod p

(
n

i

)
−

(∑
i/∈L mod p

(
n
i

)∑s
i=0

(
n
i

) + 1

)
�(s + 1) log2 n�

s−1∑
i=0

(
n− 1

i

)

>

(
1 − 3s(s + 1) log2 n

2n

) ∑
i/∈L mod p

(
n

i

)
.(8)

Recalling that A �= ∅, we now consider any A ∈ A. For any B ∈ B the size of its
intersection with A belongs to L mod p. Let C = {C ⊂ [n] : |C| /∈ L mod p and |A ∩
C| /∈ L mod p}. Then we have |B| ≤

∑
i/∈L mod p

(
n
i

)
− |C|. Fix a number m > 10s so

that Lemma 5.1 holds for all x ≥ m.

Suppose first that |A| < m. Note that C contains all sets of the form C = A∪D,
where D ∩ A = ∅ and |D| /∈ L′ = {� − |A| mod p : � ∈ L}. By applying Lemma 5.1
to L′ there are at least 2n−m/3s > 2n−2m such sets D, so |C| ≥ 2n−2m. Next suppose
that |A| > n−m. Since C contains all sets C such that C ⊂ A and |C| /∈ L mod p, we
again have |C| > 2n−m/3s > 2n−2m. Finally suppose that m ≤ |A| ≤ n −m. There
are at least 2|A|/3s sets D ⊂ A such that |D| /∈ L mod p. For each such D there are at
least 2n−|A|/3s sets E ⊂ [n]\A such that |E| /∈ {�− |D| mod p : � ∈ L}. We obtain at
least 2n/9s2 > 2n−2m sets D∪E ∈ C. In all cases we see that |C| ≥ 2n−2m. Therefore
|B| ≤

∑
i/∈L mod p

(
n
i

)
− 2n−2m < (1 − 2−2m)

∑
i/∈L mod p

(
n
i

)
. For n > n(s) sufficiently

large this contradicts (8), which completes the proof.
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6. Concluding remarks.
• It would be interesting to determine the minimum value of n for which our

results hold.
• The bounds that we give are tight when L = {0, 1, . . . , s− 1}, but one could

consider a variant of this problem in which the set L is fixed to be some
different set. It seems plausible that the following should be true.
(1) To maximize the total size of uniform L-cross-intersecting systems A1, . . . ,
Ak on [n] one should either take all Ai equal to a maximum uniform L-
intersecting system or take one Ai equal to all sets of size �n/2� and the
others empty.
(2) To maximize the total size of nonuniform L-cross-intersecting systems
A1, . . . ,Ak on [n] one should either take all Ai equal to a maximum nonuni-
form L-intersecting system or take one Ai to consist of all subsets of [n] and
the others equal to a maximum L-intersecting system in which the sizes of
all sets also belong to L.

Acknowledgment. We would like to thank an anonymous referee for some useful
remarks.
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THE COVER TIME OF RANDOM REGULAR GRAPHS∗

COLIN COOPER† AND ALAN FRIEZE‡

Abstract. Let r ≥ 3 be constant, and let Gr denote the set of r-regular graphs with vertex set
V = {1, 2, . . . , n}. Let G be chosen randomly from Gr. We prove that with high probability (w.h.p.)
the cover time of a random walk on G is asymptotic to r−1

r−2
n logn.

Key words. cover time, random graphs
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1. Introduction. Let G = (V,E) be a connected graph, let |V | = n, and let
|E| = m. A random walk Wu, u ∈ V , on the undirected graph G = (V,E) is a Markov
chain X0 = u,X1, . . . , Xt, . . . ∈ V associated to a particle that moves from vertex to
vertex according to the following rule: the probability of a transition from vertex i,
of degree di, to vertex j is 1/di if {i, j} ∈ E, and 0 otherwise. For u ∈ V let Cu

be the expected time taken for Wu to visit every vertex of G. The cover time CG

of G is defined as CG = maxu∈V Cu. The cover time of connected graphs has been
extensively studied. It is a classic result of Aleliunas et al. [2] that CG ≤ 2m(n− 1).
It was shown by Feige [8], [9] that for any connected graph G

(1 − o(1))n log n ≤ CG ≤ (1 + o(1))
4

27
n3.

The lower bound is achieved by (for example) the complete graph Kn, whose cover
time is determined by the Coupon Collector problem.

In a previous paper [7] we studied the cover time of random graphs Gn,p when
np = c log n, where c = O(1) and (c − 1) log n → ∞. This extended a result
of Jonasson, who proved in [12] that when the expected average degree (n − 1)p
grows faster than logn, with high probability (w.h.p.) a random graph has the same
cover time (asymptotically) as the complete graph Kn, whereas when np = Ω(log n),
this is not the case. (A sequence of events En, n ≥ 0, is said to occur w.h.p. if
limn→∞ Pr(En) = 1.)

Theorem 1 (see [7]). Suppose that np = c log n = log n + ω, where ω = (c −
1) log n → ∞ and c ≥ 1. If G ∈ Gn,p, then w.h.p.

CG ∼ c log

(
c

c− 1

)
n log n.

The notation An ∼ Bn means that limn→∞ An/Bn = 1.
The main new result of the paper concerns the cover time of random regular

graphs.
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Theorem 2. Let r ≥ 3 be constant. Let Gr denote the set of r-regular graphs
with vertex set V = {1, 2, . . . , n}. If G is chosen randomly from Gr, then w.h.p.

CG ∼ r − 1

r − 2
n log n.

Using a similar argument we can consider how many steps are needed for the walk

to get within distance k of every vertex. Let us call this C
(k)
G . Cover time corresponds

to k = 0. We prove the following theorem.
Theorem 3. Let r ≥ 3, k ≥ 0 be constants. Let Gr denote the set of r-regular

graphs with vertex set V = {1, 2, . . . , n}. If G is chosen randomly from Gr, then w.h.p.

C
(k)
G ∼ 1

(r − 2)(r − 1)k−1
n log n.

The next section contains the heart of the proof of our theorems. In it we establish
a good estimate of the probability that the first visit of W to a vertex v takes place
at a time t. Once this is done, we can proceed to the proof of Theorem 2 in section 3
and the proof of Theorem 3 in section 6.

2. The first visit time lemma.

2.1. Convergence of the random walk. In this section G denotes a fixed
connected graph, and u is some arbitrary vertex from which a walk Wu is started. Let
Wu(t) be the vertex reached at step t, let P be the matrix of transition probabilities

of the walk, and let P
(t)
u (v) = Pr(Wu(t) = v). Let πv = dv

2m for v ∈ V . Let λmax > 0
be the second largest absolute value of an eigenvalue of P . Assume that λmax < 1.
Then,

|P (t)
u (x) − πx| ≤ (πx/πu)1/2λt

max ≤ n1/2λt
max.(2.1)

See, for example, [11]. (Note that connectivity and λmax < 1 imply ergodocity.)

2.2. Generating function formulation. For the results of this section, we do
not require that G be regular.

Fix two vertices u, v. Let ht be the probability Pr(Wu(t) = v) = P
(t)
u (v) that

the walk Wu visits v at step t. Let H(s) be the generating function for the sequence
ht, t ≥ 0.

Similarly, considering the walk Wv, starting at v, let rt be the probability that
this walk returns to v at step t = 0, 1, . . . . Let R(s) be the generating function for
the sequence rt, t ≥ 0. We note that r0 = 1.

Let ft(u→v) be the probability that the first visit of the walk Wu to v occurs at
step t. If u �= v, then f0(u→v) = 0. Let F (s) generate ft(u→v). Thus

H(s) = F (s)R(s).(2.2)

Let

T =
4 log n

log 1/λmax
.(2.3)

We note that (2.1) gives

max
x∈V

|P (t)
u (x) − πx| ≤ n−3 for t ≥ T.(2.4)
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For R(s) let

RT (s) =

T−1∑
j=0

rjs
j .(2.5)

Thus RT (s) generates the probability of a return to v during steps 0, . . . , T − 1 of a
walk starting at v. Similarly for H(s), let

HT (s) =

T−1∑
j=0

hjs
j .(2.6)

2.3. First visit time: Single vertex v. The following lemma should be viewed
in the context that G is an n vertex graph which is part of a sequence of graphs with
n growing to infinity. We prove it in greater generality than is needed for the proof
of Theorem 2.

In what follows c1, c2, . . . are positive constants independent of n.
Lemma 4. Let T be as defined in (2.3). Suppose that
(a) HT (1) ≤ (1 − c1)RT (1).

(b) max|s|=1
|RT (s)−RT (1)|

RT (1) ≤ 1 − c2.

(c) Tπv = o (1) , Tπv = Ω(n−2).
(d) λmax ≤ c3 < 1.

Let

λ =
c2

100T
.(2.7)

Let

pv =
πv

RT (1)(1 + O(Tπv))
,(2.8)

cu,v = 1 − HT (1)

RT (1)(1 + O(Tπv))
,(2.9)

where the values of the 1 + O(Tπv) terms are given implicitly in (2.16) and (2.19),
respectively. Then

ft(u→v) = cu,v
pv

(1 + pv)t+1
+ O(e−λt/2) for all t ≥ T.(2.10)

Proof. Write

R(s) = RT (s) + R̂T (s) +
πvs

T

1 − s
,(2.11)

A(s) = (1 − s)R(s) = πvs
T + (1 − s)(RT (s) + R̂T (s)),(2.12)

where RT (s) is given by (2.5) and

R̂T (s) =
∑
t≥T

(rt − πv)s
t

generates the error in using the stationary distribution πv for rt when t ≥ T .
Note that while (2.11) is valid only for |s| < 1, the fact that |rt − πv| ≤ n1/2ct3

means that the expansion (2.12) is valid for |s| < c−1
3 .
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Similarly, let

H(s) = HT (s) + ĤT (s) + πv
sT

1 − s
,(2.13)

B(s) = (1 − s)H(s) = πvs
T + (1 − s)(HT (s) + ĤT (s)).(2.14)

Using (2.11), (2.13) we rewrite F (s) = H(s)/R(s) from (2.2) as F (s) = B(s)/A(s).

If |s| ≤ λ
−1/3
max , then (2.1) implies that for Z = H,R,

|Ẑ(s)| ≤ n1/2
∑
t≥T

(sλmax)
t = o(n−2).(2.15)

For real s ≥ 1 and Z = H,R, we have

ZT (1) ≤ ZT (s) ≤ ZT (1)sT .

Let s = 1 + βπv, where β > 0 is constant. Since Tπv = o(1) we have

ZT (s) = ZT (1)(1 + O(Tπv)).

Tπv = o(1) implies that |s| ≤ λ
−1/3
max and (2.15) applies. As Tπv = Ω(n−2) and

RT (1) ≥ 1 + r2 > 1 + 1
n , this implies that

A(s) = πv(1 − βRT (1)(1 + O(Tπv))).

It follows that A(s) has a real zero at s0, where

s0 = 1 +
πv

RT (1)(1 + O(Tπv))
= 1 + pv,(2.16)

say. We also see that

A′(s0) = −RT (1)(1 + O(Tπv)) �= 0(2.17)

and thus s0 is a simple zero (see, e.g., [6, p. 193]). The value of B(s) at s0 is

B(s0) = πv

(
1 − HT (1)

RT (1)(1+O(Tπv)) + O(Tπv)
)
�= 0.(2.18)

Thus, from (2.8), (2.9)

B(s0)

A′(s0)
= −pvcu,v.(2.19)

Thus the residue of F (s) at s0 is B(s0)/A
′(s0) (see, e.g., [6, p. 195]), and the principal

part of the Laurent expansion of F (s) at s0 is

f(s) =
B(s0)/A

′(s0)

s− s0
.(2.20)

To approximate the coefficients of the generating function F (s), we now use a standard
technique for the asymptotic expansion of power series (see, e.g., [13, Thm. 5.2.1]).

We prove (below) that s0 is the only zero of A(s) inside the circle Cλ = {s =
(1 + λ)eiθ}. Thus F (s) = f(s) + g(s), where g(s) is analytic in Cλ. Let M =
maxs∈Cλ

|g(s)|. Thus M ≤ max |f(s)| + max |F (s)|.
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As F (s) = B(s)/A(s) on Cλ, we have that

|F (s)| ≤ HT (1)(1 + λ)T + O(Tπv)

|RT (s)| −O(Tπv)
.

Let s̃ = s/(1+λ). We note that |RT (s)−RT (s̃)| ≤ ((1+λ)T − 1)RT (1) and also that
Lemma 4(b) implies that |RT (s̃)| ≥ c2RT (1), which implies that

|RT (s)| ≥ RT (1)
(
c2 + 1 − ec2/100

)
,

and hence M = O(1).
Let at = [st]g(s); then (see, e.g., [6, p. 143]), at = g(t)(0)/t!. By the Cauchy

inequality (see, e.g., [6, p. 130]), we have that |g(t)(0)| ≤ Mt!/(1 + λ)t and thus

|at| ≤
M

(1 + λ)t
= O(e−tλ/2).

As [st]F (s) = [st]f(s) + [st]g(s) and [st]1/(s− s0) = −1/(s0)
t+1, we have

[st]F (s) =
−B(s0)/A

′(s0)

st+1
0

+ O(e−tλ/2).(2.21)

Thus, we obtain

[st]F (s) = cu,v
pv

(1 + pv)t+1
+ O(e−tλ/2),

which completes the proof of (2.10).
We now prove that s0 is the only zero of A(s) inside the circle Cλ. We use

Rouché’s theorem (see, e.g., [6]), which states: Let two functions f(z) and g(z) be
analytic inside and on a simple closed contour C. Suppose that |f(z)| > |g(z)| at
each point of C; then f(z) and f(z) + g(z) have the same number of zeros, counting
multiplicities, inside C.

Let the functions f(s), g(s) be given by f(s) = (1 − s)RT (1) and g(s) = πvs
T +

(1 − s)(RT (s) −RT (1) + R̂T (s)). For s ∈ Cλ, let s̃ = s/(1 + λ),

|g(s)|/|f(s)| ≤ πv(1 + λ)T

λRT (1)
+

|RT (s) −RT (s̃)|
RT (1)

+
|RT (s̃) −RT (1)|

RT (1)
+ o(n−2)

≤ 100ec2/100πvT +
(
ec2/100 − 1

)
+ (1 − c2) + o(n−2)

< 1.

As f(s) + g(s) = A(s), we conclude that A(s) has only one zero inside the circle Cλ.
This is the simple zero at s0.

Corollary 5. Let At(v) be the event that Wu has not visited v by step t. Then
for t ≥ T ,

Pr(At(v)) =
cu,v

(1 + pv)t
+ O(λ−1e−λt/2).

Proof. We use Lemma 4 and Pr(At(v)) =
∑

τ>t fτ (u→v).
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3. Random regular graphs are nice. Our task now is to show that a typical
r-regular graph satisfies conditions (a)–(d) of Lemma 4 and to compute RT (1).

We start with some typical properties of a random regular graph. Let

σ = 	log log log n
.
Say a cycle C is small if |C| ≤ σ.

An r-regular graph G is nice if
(P1) G is connected.
(P2) The second eigenvalue of the adjacency matrix of G is at most 2

√
r − 1 + ε,

where ε > 0 is arbitrarily small (ε = 1/10 is small enough).
(P3) There are at most r2σ vertices on small cycles.
(P4) No pair of small cycles are within distance 3σ of each other.
Theorem 6. Let r ≥ 3 be a constant and let G be chosen uniformly from the set

Gr of r-regular graphs with vertex set [n]. Then G is nice w.h.p.
Proof. (P1): That a random r-regular graph is r-connected w.h.p., for r ≥ 3, was

proved in [4].
(P2): That the second eigenvalue of a random r-regualr graph is this small w.h.p.

was proved by Friedman [10].
For (P3), (P4) we use the configuration model as elaborated in [5]. Let W =

[n] × [r] (Wv = v × [r] represents r half-edges incident with vertex v ∈ [n].) A
configuration F is a partition of W into rn/2 2-element subsets, and Ω denotes the
set of possible configurations. We associate with F a multigraph μ(F ) = ([n], E(F )),
where, as a multiset,

E(F ) = {(v, w) : {(v, i), (w, j)} ∈ F for some 1 ≤ i, j ≤ r}.
(Note that v = w is possible here.)

We say that F is simple if the multigraph μ(F ) has no loops or multiple edges. Let
Ω0 denote the set of simple configurations. It is known that if F is chosen uniformly
from Ω, then

(a) Each G ∈ G(n, r) is the image (under μ) of exactly (r!)n simple configurations.

(b) Pr(F ∈ Ω0) ≈ e−(r2−1)/4.
It follows from this that any property of almost every μ(F ) is a property of almost
every member of Gr.

(P3): The expected number of small cycles in μ(F ), F chosen randomly from Ω,
is bounded by

σ∑
k=3

(
n

k

)
(k − 1)!

2

(r(r − 1))kMrn−2k

Mrn
≤

σ∑
k=3

(
n

k

)
(k − 1)!

2

( r

n

)k

≤ rσ,

where M2m = (2m)!
2mm! and |Ω| = Mrn.

The almost sure occurrence of property (P3) now follows from the Markov in-
equality.

(P4): Similarly, the expected number of pairs of small cycles that are close to
each other is bounded by

σ∑
a=3

σ∑
b=3

(
n

a

)(
n

b− 1

)
(a− 1)!

2

(b− 1)!

2

( r

n

)a+b

+

σ∑
a=3

σ∑
b=3

σ∑
c=1

(
n

a

)(
n

b

)(
n

c

)
(a− 1)!

2

(b− 1)!

2
ab

( r

n

)a+b+c+1

= o(1).
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Remark 1. Although the main subject of the paper is random regular graphs, it
is worth mentioning Ramanujan graphs. An n-vertex r-regular graph is Ramanujan

if λmax ≤ 2
√
r−1
r . It is known that such graphs have girth Ω(logn) and so they are

nice; see Alon [3]. Consequently, their cover time ∼ r−1
r−2n log n.

Remark 2. Aldous [1] considered the cover time of Cayley graphs and obtained a
similar expression for the cover time. By relaxing the assumptions in Lemma 4 it is
possible to obtain some of his results, e.g., the hypercube and toroidal grids in three
or more dimensions.

4. Nice graphs. Assume from now on that G is a nice regular graph. For v ∈ V
and k ≥ 0, let Nk(v) = {w : dist(v, w) = k} be the set of vertices at distance k from
v. Let Ml(v) = ∪l

j=0Nl(v), and let Gl(v) be the subgraph of G induced by Ml(v).
Also let us replace the notations RT (1), HT (1) by Rv, Hv, reflecting their dependence
on v.

Definition 7. We say v is locally tree-like if Gσ(v) is a tree.
Lemma 8. If v is locally tree-like, then

RT (1) =
r − 1

r − 2
+ o(σ−1).

Proof. Let Tr be the infinite r-regular tree, rooted at v. Let X be a random walk
on Tr starting at v. Let ρi be the probability that X is at v at step i. Now we can
project the walk X onto a walk Y on {0, 1, 2, . . . , }, where the particle moves right
with probability q = r−1

r and left with probability p = 1
r , except, of course, at the

origin, where it must move right. Let Ei be the expected number of visits to 0 for Y
starting at i. Then

E0 = 1 + E1 = 1 + E0p/q.

This is because E1 is E0 times the expected number of visits to 0 between right moves
from 1. Solving gives

∞∑
i=0

ρi = E0 =
r − 1

r − 2
.(4.1)

Note next that for i ≥ 0 we have ρ2i+1 = 0 and we will argue that

ρ2i ≤
(

2i

i

)
(r − 1)i

r2i
,(4.2)

and then

∞∑
i=σ+1

ρi ≤
∑

j=σ/2

(
2j

j

)
(r − 1)i

r2i
= o(σ−1).(4.3)

We compare this with RT (1). First observe that ri = ρi for i ≤ σ. Then from (2.1)
we see that

T∑
i=σ+1

ri ≤
T∑

i=σ+1

(πv + λi
max) = o(σ−1).

Let us now prove (4.2). First observe that the right-hand side of (4.2) is the probability
that a walk Y1 is at the origin after 2i steps. Here Y1 is the walk on {0,±1,±2, . . . , }
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where the particle moves right with probability q = r−1
r and left with probability

p = 1
r ; i.e., there is no barrier at the origin. We can couple Y,Y1 so that Y(t) ≥ |Y1(t)|.

When Y1(t) > 0 we can move them in the same direction and when Y1 < 0 then we
can move Y further from the origin whenever Y1 moves further from the origin.

The lemma now follows from (4.1) and (4.3).
Remark 3. Because there are very few non-tree-like vertices and because they are

far apart, we will find that we do not need to estimate RT (1) for such vertices. It is
relatively easy to show that for non-tree-like vertices RT (1) = 1 + O(r−1) as r → ∞;
thus the only difficulty is with small r.

Lemma 9. If v is locally tree-like, then for |s| = 1, |RT (s)−RT (1)|
RT (1) ≤ 5

6 .

Proof. For any s,

|RT (s) −RT (1)| ≤
T∑

j=1

rj |sj − 1|.

As |s| = 1, we have that

T∑
j=1

rj |sj − 1| ≤ 2

T∑
j=1

rj .(4.4)

We prove the lemma for r ≥ 4 by observing that Lemma 8 implies

2

T∑
j=1

rj = 2(RT (1) − 1) = (1 + o(1))
2

r − 2
≤ (1 + o(1))

2

3
· r − 1

r − 2
= (1 + o(1))

2

3
RT (1).

(4.5)

When r = 3 we improve on (4.4) using ad hoc arguments. First observe that
πv = 1/n for v ∈ V and that (2.1) implies that

S0 =

T∑
i=σ

rj |sj − 1| ≤ 2

T∑
i=σ

ri ≤ 2

T∑
i=σ

(λi
max + πv) = o(1).(4.6)

Now consider j < σ. For a locally tree-like vertex, rj = 0 if j is odd, and rj > 0
if j is even. Fix 0 ≤ θ < 2π and let s = eiθ; then for j = 2k

|sj − 1| = (2(1 − cos jθ))
1/2

= 2| sin kθ|.

Thus

S1 =

σ−1∑
j=1

rj |sj − 1| = 2


(σ−1)/2�∑
k=1

r2k| sin kθ|.

Note now that r2 = 1
3 and r4 = 5

27 . Suppose first that θ /∈ I = [ 3π16 ,
5π
16 ] ∪ [ 11π16 , 13π

16 ].
Then | sin 2θ| ≤ sin 3π

8 and so

S1 ≤ 2

σ−1∑
j=1

rj −
2

3

(
1 − sin

3π

8

)
.(4.7)
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On the other hand, if θ ∈ I, then | sin 4θ| ≤ sin π
4 and then

S1 ≤ 2

σ−1∑
j=1

rj −
10

27

(
1 − sin

π

4

)
.(4.8)

Equations (4.6), (4.7), (4.8) imply that S0 + S1 ≤ 2(RT (1) − 1) − 1/3. The lemma
follows, since RT (1) ∼ 2 for r = 3.

Finally, we note the following lemma.

Lemma 10. For nice graphs, HT (1)
RT (1) ≤ 9

10 .

Proof. Let f ′
t be the probability that Wu has a first visit to v at time t. As

H(s) = F (s)R(s), we have

HT (1) ≤ Pr(Wu visits v by time T − 1)RT (1)

= RT (1)

T−1∑
t=1

f ′
t .

Now (2.1) implies that if τ0 = 	2 log λ−1
max log log n
, then

T−1∑
t=τ0

f ′
t ≤

T−1∑
t=τ0

(πv + λt
max) = o(1).

We now estimate
∑τ0

t=0 f
′
t , the probability that Wu visits v by time τ0. Let v1, v2, . . . ,

vr be the neighbors of v and let w be the first neighbor of v visited by Wu. Then

Pr(Wu visits v by time τ0) =

r∑
i=1

Pr(Wu visits v by time τ0 | w = vi)Pr(w = vi)

≤
r∑

i=1

Pr(Wvi
visits v by the time τ0)Pr(w = vi).

So it suffices to prove the lemma when u is a neighbor of v. If Gl(u) is a tree, then
we can argue as in Lemma 8. Let ψ be the probability that a particle at the root of
Tr ever returns to the root. The expected number of visits is

r − 1

r − 2
=

∞∑
k=1

kψk−1(1 − ψ) =
1

1 − ψ
.

So ψ = 1
r−1 , and

Pr(Wu does not visit v by time τ0) ≥
r − 1

r
(1 − ψ − o(1)) =

r − 2

r
− o(1).

If Gl(u) contains a cycle C, then let e = (ξ, η) be an edge of C not incident with
u and let Tu be the tree Gl(u) − e. Let N ′(u) = {u1, u2, . . . , us}, s ∈ {r − 2, r − 1}
be the neighbors of u which are not on a shortest path from ξ or η to u in Tu.
|N ′(u) \ {v}| ≥ r − 3, and so

Pr(Wu does not visit v by time τ0) ≥
r − 3

r
(1 − ψ − o(1)) =

(r − 2)(r − 3)

r(r − 1)
− o(1).
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This leaves the case r = 3 and N ′(u) = {v}. With probability 2
3 we have Wu(1) �= v.

If ξ or η is reached (possibly N(u) = {v, ξ, η}), then with probability 1
3 the next move

is away from u and 1 − ψ − o(1) bounds the probability that there is no return to ξ
or η. Hence

Pr(Wu does not visit v by time τ0) ≥
2

9
(1 − ψ − o(1)),

completing the proof of the lemma.

5. Cover time of nice graphs. We now prove that

CG ∼ r − 1

r − 2
n log n.

Assume that u, v ∈ V and that v is tree-like. Section 3 establishes that the
conditions of Lemma 4 hold and gives values for the parameters cuv, pv given by
(2.8), (2.9). To summarize, we have

RT (1) =
r − 1

r − 2
+ o(1),

HT (1)

RT (1)
≤ 9

10
, λmax ≤ 2

√
r − 1 + .1

r
,

πv =
1

n
, T = O(log n), λ = Ω(1/ log n).

Hence, the probability that Wu has not visited v by some step t ≥ T (see Corollary
5) is given by

Pr(At(v)) = (1 + o(1))cuve
−tpv + O(λ−1e−λt/2).

Here cuv < 1 and

pv =
r − 2

(r − 1)n
(1 + o(σ−1)).

5.1. Upper bound on cover time. Let t0 = �(1 + σ−1) r−1
r−2n log n�. We prove

that for nice graphs, for any vertex u ∈ V ,

Cu ≤ t0 + o(t0).(5.1)

Let TG(u) be the time taken to visit every vertex of G by the random walk Wu. Let
Ut be the number of vertices of G which have not been visited by Wu at step t. We
note the following:

Cu = E TG(u) =
∑
t>0

Pr(TG(u) ≥ t),(5.2)

Pr(TG(u) > t) = Pr(Ut > 0) ≤ min{1,E Ut}.(5.3)

It follows from (5.2), (5.3) that for all t

Cu ≤ t +
∑
s≥t

E Us = t +
∑
v∈V

∑
s≥t

Pr(As(v)).(5.4)

Let V1 be the set of locally tree-like vertices and let V2 = V − V1. If G is nice,
then |V2| ≤ r3σ for there are at most rσ vertices within distance σ of a particular
vertex in a small cycle, and at most r2σ vertices on small cycles.
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For v ∈ V1 we have∑
s≥t0

Pr(As(v)) ≤ (1 + o(1))e−t0pv

∑
s≥t0

e−(s−t0)pv + O(λ−2e−λt0/2)

≤ 2p−1
v e−t0pv

≤ 3
r − 1

r − 2
.

Furthermore, we see that in particular,

Pr(A5n(v)) ≤ 2e−1.(5.5)

Suppose next that v ∈ V2. We can find w ∈ V1 such that dist(v, w) ≤ σ. So from
(5.5), with ν = 5n + σ, we have

Pr(Aν(v)) ≤ 1 − (1 − 2e−1)r−σ

since if our walk visits w, it will with probability at least r−σ visit v within the next
σ steps. Thus if γ = (1 − 2e−1)r−σ,∑

s≥t0

Pr(As(v)) ≤
∑
s≥t0

(1 − γ)
s/ν�(5.6)

≤
∑
s≥t0

(1 − γ)s/(2ν)

=
(1 − γ)t0/(2ν)

1 − (1 − γ)1/(2ν)

≤ 3νγ−1.(5.7)

Thus, for all u ∈ V ,

Cu ≤ t0 + 3
r − 1

r − 2
|V1| + 3|V2|νγ−1

= t0 + O(r4σn)

= t0 + o(t0),

as σ = 	log log log n
.
5.2. Lower bound on cover time. For any vertex u, we can find a set of

vertices S such that at time t1 = t0(1 − ε), ε → 0, the probability the set S is
covered by the walk Wu tends to zero. Hence TG(u) > t1 w.h.p., which implies that
CG ≥ t0 − o(t0).

We construct S as follows. Let S ⊆ V1 be some maximal set of locally tree-like
vertices all of which are at least distance 2σ + 1 apart. Thus |S| ≥ (n− r3σ)r−(2σ+1).

Let S(t) denote the subset of S which has not been visited by Wu after step t.
Now, provided t ≥ T

E |S(t)| ≥ (1 − o(1))
∑
v∈S

(
cu,v

(1 + pv)t
+ o(n−2)

)
.

Let u be a fixed vertex of S. Let v ∈ S and let HT (1) be given by (2.6); then (2.1)
implies that

HT (1) ≤
T−1∑
t=σ

(πv + λt
max) = o(1).(5.8)
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Thus cuv = 1 − o(1). Setting t = t1 = (1 − ε)t0, where ε = 2σ−1, we have

E |S(t1)| = (1 + o(1))|S|e−(1−ε)t0pv

≥ n1/σ.(5.9)

Let Yv,t be the indicator for the event that Wu has not visited vertex v at time t. Let
Z = {v, w} ⊂ S. We will show (below) that for v, w ∈ S

E (Yv,t1Yw,t1) =
cu,Z

(1 + pZ)t+2
+ o(n−2),(5.10)

where cu,Z ∼ 1 and pZ ∼ 2(r − 2)/(n(r − 1)). Thus

E (Yv,t1Yw,t1) = (1 + o(1))E (Yv,t1)E (Yw,t1).(5.11)

It follows from (5.9) and (5.11) that

Pr(S(t1) �= 0) ≥ (E |S(t1)|)2
E |S(t1)|2

=
1

E|St1 |(|St1 |−1)

(E|S(t1)|)2 + (E |St1 |)−1
= 1 − o(1).

Proof of (5.10). Let Γ be obtained from G by merging v, w into a single node Z.
This node has degree 2r and every other node has degree r.

There is a natural measure preserving mapping from the set of walks in G which
start at u and do not visit v or w to the corresponding set of walks in Γ which do
not visit Z. Thus the probability that Wu does not visit v or w in the first t steps is
equal to the probability that a random walk Ŵu in Γ which also starts at u does not
visit Z in the first t steps.

We apply Lemma 4 to Γ. That πZ = 2
n is clear, and cu,Z = 1 − o(1) is argued as

in (5.8). The derivation of RT (1) in Lemma 8 is also valid. The vertex Z is tree-like
up to distance σ in Γ. The fact that the root vertex of the corresponding infinite tree
has degree 2r does not affect the calculation of RT (1).

6. Looking ahead. We now consider Theorem 3. Fix u ∈ V and let C
(k)
u be

the expected time for Wu to have been within distance k of every vertex. In analogy
to (5.4) we have

C(k)
u ≤ t +

∑
v∈V

∑
s≥t

Pr(A(k)
s (v)),(6.1)

where A(k)
s (v) is the event that Wu has not been within distance k by time s.

Now fix v with dist(u, v) > k. Assume that v is tree-like. Define Γ0 by contracting
Mk(v) to a single vertex Z and deleting any loops created (Mk is defined in section
4). There is a natural measure preserving mapping from the set of walks in G which
start at u and do not get within distance k of v to the corresponding set of walks in
Γ0 which do not visit Z. Thus the probability that Wu does not get within distance
k in the first t steps is equal to the probability that a random walk Ŵu in Γ0 which
also starts at u does not visit Z in the first t steps; i.e., Pr(At(Z)) = Pr(A(k)

s (v)).

We apply Lemma 4 to Γ. πZ = |Nk(v)|
rn−O(1) = (r−1)k

n−O(1) , RZ ∼ r−1
r−2 , and HZ/RZ ≤

9/10. So now if t0 = � 1+σ−1

(r−2)(r−1)k−1n log n�, then
∑

t≥t0
Pr(At(Z)) = O(1). Thus∑

v∈V1

∑
t≥t0

Pr(A
(k)
t (v)) = O(n).(6.2)
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Now A
(k)
t (v) ⊆ At(v) and (5.7) holds, even with the smaller value of t0. Thus∑

v∈V2

∑
t≥t0

Pr(A
(k)
t (v)) = o(n),(6.3)

and an upper bound of t0 + o(t0) for C
(k)
u follows from (6.1), (6.2), and (6.3).

The lower bound is obtained by taking a set S of n1−o(1) tree-like vertices at
distance at least 3σ apart and using the Chebyshev inequality as we did in section
5.2. Choose u ∈ S and then for each pair of vertices v1, v2 ∈ S \ {u} we form Γ1 by
contracting Mk(v1) ∪ Mk(v2) into a single vertex, removing loops and then arguing
as we did before.
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Abstract. A difference triangle set (DΔS) is a collection of sets of integers having the property
that every integer can be written in at most one way as the difference of two elements within a set
of the collection. The standard objective is to minimize the largest difference represented, given a
specified size of the collection and sizes of the sets that it contains. In order to construct DΔSs,
we present a new type of combinatorial design, monotonic directed (v, k, λ)-designs (MDDs). Using
MDDs, we give a general recursive construction for difference triangle sets (DΔSs). Several instances
of this main construction are derived. One of these, the perfect construction, leads to an infinite
family of regular (optimal) DΔSs if the existence of a single regular DΔS is known.

Key words. difference triangle set, directed design, directed packing, Golomb ruler, spanning
ruler set
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1. Introduction.
Definition 1.1. An (I, J)-difference triangle set (DΔS) is a set

Δ = {Δ1,Δ2, . . . ,ΔI},

where, for each 1 ≤ i ≤ I, Δi = {aij |0 ≤ j ≤ J} is a set of nonnegative integers such
that

0 = ai0 < ai1 < · · · < aiJ

and all the integers aij − aij′ with 1 ≤ i ≤ I and 0 ≤ j′ < j ≤ J are distinct.

Let m(Δ) = max{aiJ |1 ≤ i ≤ I}. An (I, J)-DΔS is regular if m(Δ) = IJ(J+1)
2 .

Let M(I, J) = min{m(Δ)|Δ is an (I, J) − DΔS}. If m(Δ) = M(I, J), then Δ is
optimal.

By the definition, any regular DΔS is an optimal one.
Difference triangle sets have applications in the design of missile guidance codes,

radio systems to reduce intermodulation interference, convolutional self-orthogonal
codes, optical orthogonal codes, and in numerous other areas [6, 13]. The fundamental
problem (a rather difficult one) is to determine the value of M(I, J) for a given pair
(I, J). The special case of determining M(1, J) is the well-studied problem of finding
Golomb rulers (see, for example, [9]) which has continued to resist many attacks.
Because of these difficulties, the establishment of good lower and upper bounds for
M(I, J) is of interest. For a general discussion and tables, see [6, 12, 13], and for
progress on DΔSs and a summary of all known optimal families of DΔSs, see [16].
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In this paper, we present a general recursive construction for DΔSs, the main
construction. Based on this, we derive a “perfect construction”; the adjective “per-
fect” is chosen because it leads to perfect coverage of differences. Indeed it leads to
an infinite family of regular DΔSs, given the existence of a single regular DΔS. We
also develop a ruler construction, which in general produces further useful DΔSs. We
begin with the main construction next.

2. Main construction.
Definition 2.1. Let X be a v-set and B be a collection of k-subsets of X called

blocks. A pair (X,B) is a (v, k, λ)-design (respectively, packing) if any pair of differ-
ent elements of X is contained in exactly (respectively, at most) λ blocks.

If we define a special order within each block of a design, then we get a directed
system, formally defined next.

Definition 2.2. Let X be a v-set. A transitively ordered k-subset B =

(a1, a2, . . . , ak) of X consists of k(k−1)
2 ordered pairs of form (ai, aj) with 1 ≤ i <

j ≤ k. Let B be a collection of transitively ordered k-subsets of X; these are directed
blocks. A pair (X,B) is a directed (v, k, λ)-design (respectively, packing) if any or-
dered pair of different elements from X is contained in exactly (respectively, at most)
λ directed blocks.

The existence of directed (v, k, λ)-designs is completely settled when λ = 1 and
k ∈ {3, 4, 5, 6}.

Theorem 2.3.

1. [11] A directed (v, 3, 1)-design exists if and only if v ≡ 0, 1 (mod 3).
2. [18] A directed (v, 4, 1)-design exists if and only if v ≡ 1 (mod 3) and v ≥ 4.
3. [19] A directed (v, 5, 1)-design exists if and only if v ≡ 1, 5 (mod 10), v ≥ 5

and v �= 15.
4. [2] A directed (v, 6, 1)-design exists if and only if v ≡ 1, 6 (mod 15), v ≥ 6

and v �= 21.
Known necessary conditions for the existence of a directed (v, k, 1)-design are that

2(v− 1) ≡ 0 (mod k− 1), 2v(v− 1) ≡ 0 (mod k(k− 1)) and v ≥ k. However, we need
some further conditions.

Definition 2.4. Let B = (a1, a2, . . . , ak) ∈ B be a directed block. Let pos(ai)
denote the position of ai in the ordered v-set (a1, a1 + 1, . . . , v − 1, 0, 1, . . . , a1 − 1).
Then B is a monotonic directed block if pos(a1) < pos(a2) < · · · < pos(ak) in the real
number system.

A monotonic directed (v, k, λ)-design (respectively, packing), denoted by (v, k, λ)-
MDD (respectively, (v, k, λ)-MDP) is a pair (X,B) satisfying two conditions:

1. (X,B) is a directed (v, k, λ)-design (respectively, (v, k, λ)-packing).
2. Each directed block in B is monotonic.

If λ = 1, then a (v, k, 1)-MDP with t directed blocks is denoted by t-MDP(v, k).

Correspondingly, a (v, k, 1)-MDD is denoted by MDD(v, k) or 2v(v−1)
k(k−1) -MDP(v, k).

The following directed blocks form an MDD(7, 1) or a 7-MDP(7, 4):

(0 1 4 6)
(1 2 5 0)
(2 3 6 1)
(3 4 0 2)
(4 5 1 3)
(5 6 2 4)
(6 0 3 5)
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This MDD can be obtained by developing (0 + i, 1 + i, 4 + i, 6 + i) modulo 7.
We employ certain MDD(v, k) and t-MDP(v, k). Another object we require in

our recursive construction is cyclic difference families.
Definition 2.5. Let F = {B1, B2, . . . , Bt} be a family of k-subsets, called base

blocks, of Zv. F is a cyclic difference family (respectively, cyclic difference packing),
denoted by (v, k, 1)-DF (respectively, (v, k, 1)-DP), if any nonzero element of Zv can
be represented in a unique way (respectively, at most one way) as a difference of two
elements lying in some member of F .

The abbreviated notation DF(v, k) is used for a (v, k, 1)-DF. We also use the
notation t-DP(v, k) to indicate that the difference packing consists of t base blocks.

A DF(v, k) can be denoted as a v−1
k(k−1) -DP(v, k).

Theorem 2.6 (main construction). If there exists a t-DP(v, k) and an s-MDP(k, h),
then there exists an (st, h− 1)-DΔS Δ with m(Δ) ≤ v − 1.

Proof. Let {B1, B2, . . . , Bt} be the t-DP(v, k). For each

Bi = {bi,0, bi,1, . . . , bi,k−1}

with 1 ≤ i ≤ t, the collection of differences

D(Bi) = {bi,j1 − bi,j2 |0 ≤ j1 �= j2 ≤ k − 1}

contains no repeated elements modulo v. D(Bi) also can be viewed as follows:

{(j1, j2)|0 ≤ j1 �= j2 ≤ k − 1}.

This is a subset of all possible ordered pairs of Zk.
Let (X, C) be the s-MDP(k, h) with C = {C1, C2, . . . , Cs}. For every Cj =

(cj1, cj2, . . . , cjh), 1 ≤ j ≤ s, and each Bi from the t-DP(v, k), construct the fol-
lowing st sequences:

Δi = {(bi,cj1 , bi,cj2 , . . . , bi,cjh )|1 ≤ j ≤ s}, 1 ≤ i ≤ t.

Since (X, C) is an MDP(k, h), every ordered pair (�1, �2) of Zk is contained in at
most one of the directed blocks of C. Since each ordered pair represents a distinct
difference, every difference bi,j1 − bi,j2 in D(Bi) is contained in at most one of the
sequences in Δi.

For each sequence (bi,cj1 , bi,cj2 , . . . , bi,cjh ) in Δi, there are two possible cases. The
first is that

bi,cj1 < bi,cj2 < · · · < bi,cjh

as integers. Then it is in the correct form as a sequence of a DΔS.
The second case is that it consists of two increasing subsequences as follows:

bi,cj1 < bi,cj2 < · · · < bi,cjw , bi,cjw+1
< bi,cjw+2

< · · · < bi,cjh

with bi,cjw > bi,cjw+1
and bi,cjh < bi,cj1 as integers. Then we transform the sequence

into an increasing sequence,

bi,cj1 < bi,cj2 < · · · < bi,cjw < bi,cjw+1
+ v < bi,cjw+2

+ v < · · · < bi,cjh + v.

The monotonicity of the s-MDP(k, h) means that any sequence in Δi consists of at
most two increasing subsequences with the properties listed above. Hence it can be
transformed into an increasing sequence with maximal difference less than v.
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Take the normalized form for each sequence in Δi, properly transformed if nec-
essary, with 1 ≤ i ≤ h. Then ∪t

i=1Δi is the desired difference triangle set, where Δi

is the normalized form of Δi with possible transformations. The total number of se-
quences is st, and the monotonic property ensures that in each sequence the maximal
element is no more than v − 1.

In the following sections, we derive several variations of the main construction.

3. Perfect constructions.
Theorem 3.1 (perfect construction). If there exists a DF(v, k) and an MDD(k, h),

then there exists a regular ( 2(v−1)
h(h−1) , h− 1)-DΔS Δ with m(Δ) = v − 1.

Proof. This is a simple application of the main construction.
The existence of cyclic difference families has been extensively studied. However

research on the existence of MDDs is almost nonexistent. We only have some examples
for MDD(v, k) with k small. They all come from some regular DΔSs.

Lemma 3.2. If there exists an (I, J)-DΔS Δ with m(Δ) ≤ m, then there exists
a t-MDP(m + 1, J + 1) with t = (m + 1)I.

Proof. For each sequence in Δ, say S = (a0, a1, . . . , aJ), develop (a0 + i, a1 +
i, . . . , aJ+i) modulo m+1. We claim that the resulting design is a t-MDP(m+1, J+1),
with t = (m + 1)I. We show that each ordered pair of Zm+1 is contained in at most
one ordered block. Let (a, b) be an ordered pair of Zm+1. If the difference d = b− a
(mod m + 1) is contained in one sequence of Δ, say aj − ai = d with 1 ≤ i < j ≤ J ,
then (a, b) is contained in one of the ordered blocks (a0 + i, a1 + i, . . . , aJ + i). Since
every S is in increasing order, each (a0 + i, a1 + i, . . . , aJ + i) is monotonic. Thus the
resulting design is a t-MDP(m + 1, J + 1) with t = (m + 1)I.

Corollary 3.3. If there exists a regular (I, J)-DΔS, then there exists an

MDD

(
IJ(J + 1)

2
+ 1, J + 1

)
.

Proof. A simple counting verifies the claim.
For J ≥ 3, the only known regular (I, J)-DΔSs are the following.
Lemma 3.4.

1. [10, 15] For I ≤ 50, there exists a regular (I, 3)-DΔS for 4 ≤ I ≤ 23 and for
I ∈ {1, 25, 28, 30, 31, 36, 41}.

2. [15] If there exists a regular (I, 3)-DΔS, then there exists a regular (I, 3)-DΔS
with I = 5I + 1, 7I + 1, 13I + 1, 19I + 4, 23I + 5, 15I + 5, 15I + 6.

3. [15] There exists a regular (I, 4)-DΔS for I ∈ {6, 8, 10}.
Using fundamental results on difference families over finite fields due to Wilson,

we can construct an infinite family of regular difference triangle sets from a single
MDD.

Theorem 3.5 (see [20]). Suppose p is a prime, and p − 1 ≡ 0 (mod k(k − 1)).
Then there exists a DF(p, k) if

p >

(
k
2

)k(k−1)

.

We also employ the well-known Dirichlet theorem on primes in an arithmetic
progression, that there exist infinitely many primes of the form p ≡ 1 (mod k(k− 1)).

Theorem 3.6.

1. If there exists an MDD(k, J), then for any prime p ≡ 1 (mod k(k − 1)) and

p > (k2 )k(k−1), there exists a regular (I, J − 1)-DΔS with I = 2(p−1)
J(J−1) .



DIFFERENCE TRIANGLE SETS 745

2. If there exists a regular (I, J)-DΔS, then for any prime p ≡ 1 (mod k(k−1))

and p > (k2 )k(k−1) with k = IJ(J+1)
2 + 1, there exists a regular (I, J)-DΔS

with I = 2(p−1)
J(J+1) .

Proof. To obtain the proof, apply the perfect construction using Corollary 3.3
and Theorem 3.5.

Simply stated, the existence of any single regular (I, J)-DΔS implies the existence
of an infinite family of regular DΔSs with the same J .

When k is relatively small, we have much better existence results available for
cyclic difference families. We illustrate this when k = 7, using the current existence
result.

Theorem 3.7 (see [5]). Let p ≡ 1 (mod 42), p �= 43, be a prime. Then there
exists a cyclic DF(p, 7) if one of the following conditions is satisfied:

1. p < 261239791 with p �= 127, p �= 211.
2. p > 1.236597 × 1013.

There exists an MDD(7, 4) from a regular (1, 3)-DΔS. Then there also exists a reg-
ular (I, 3)-DΔS for I = p−1

6 with p ∈ {337, 379, 421, 463, 547, 631, 673, 757, 883, 967}
for p < 1000. Since 7 is a prime, there is a recursive construction available for cyclic
DF(v, 7) as well.

Theorem 3.8 (see [1]). Let k be a prime or prime power, and v ≡ 1 (mod
k(k − 1)). If there exists a cyclic DF(v, k) and a cyclic DF(u, k), then there exists a
cyclic DF(uv, k).

In other words, for any primes p and q, if a DF(p, 7) and a DF(q, 7) both exist,
there exists a DF(pq, 7). This yields many more regular (I, 3)-DΔSs.

4. The ruler construction. Difference triangle sets have different names. An
(1, J)-DΔS is a spanning ruler. The shortest spanning ruler with J + 1 marks is a
Golomb ruler ; this nomenclature has been widely adopted since [7]. An (I, J)-DΔS
is then a spanning ruler set. A cyclic t-DP(v, k) is correspondingly a set of circular
rulers, and a cyclic DF(v, k) is a set of perfect circular rulers. The following well-known
cyclic difference set is a perfect circular ruler, according to the “ruler” terminology.

Theorem 4.1 (see [17]). For any prime or prime power q, there exists a cyclic
DF(q2 + q + 1, q + 1).

The following example, which first appeared in [8], inspired our work. Let q = 7.
Then there exists a DF-(57,8), a perfect ruler of length 57 with 8 marks:

C = {0, 1, 5, 7, 17, 35, 38, 49}.

There exists a Golomb ruler of length 6 with 4 marks:

S = {0, 1, 4, 6}.

Think of m(S) = 8 instead of 6 and apply Lemma 3.2 to produce an 8-MDP(8, 4).
Thus, we can construct an (8, 4)-DΔS Δ with m(Δ) ≤ 57−1 = 56 (in fact, by carrying
out the construction one finds that m(Δ) = 52). It is not optimal, since there exists
a regular (8, 4)-DΔS. However, it produces good sets of spanning rulers in general.

Theorem 4.2 (ruler construction). Let Δ be an (I, J)-DΔS with m(Δ) = m. Let
q be the smallest prime power such that m ≤ q. Then there exists an (I(q+1), J)-DΔS
Σ with m(Σ) ≤ q2 + q.

Proof. From the (I, J)-DΔS, we can construct a (q + 1)I-MDP(q + 1, J + 1)
according to Lemma 3.2. Since q is a prime or prime power, there then exists a
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DF(q2 + q + 1, q + 1) via Theorem 4.1. The conclusion then follows from the main
construction.

The ruler construction basically asserts that a set of perfect circular rulers and
a set of spanning rulers can produce a larger set of spanning rulers with the same
number of marks.

5. Relative difference family constructions. The main construction sug-
gests how to make good sets of spanning rulers or DΔSs. The basic idea is to try to
pack many differences from the set of circular rulers into a set of spanning rulers. Two
approaches should be used simultaneously. One is to try to construct optimal MDPs
(i.e., an MDP with the maximal possible number of directed blocks), and another one
is to try to find a better n-DP(v, k), in particular one with large k. Unfortunately,
knowledge is limited about the existence of optimal MDPs and of cyclic difference
packings with large block size.

However, we do have some other options. Let us begin with an example.
There exists a regular (6, 4)-DΔS Δ with m(Δ) = 60. Since 61 is a prime, by

Theorem 5.1, there exists a 1-DP(3720, 1), where 3720 = 612 − 1 with the missing
differences:

M = {0, 62, 2 · 62, 3 · 62, . . . , 59 · 62}.

From Δ, we can construct an MDD(61, 5) with 61 × 6 = 366 directed blocks. By
the main construction, we can construct a (366, 4)-DΔS Σ with m(Σ) = 3720. But
we can add more, by adding six more spanning rulers as follows:

{62 · ai,0, 62 · ai,1, . . . , 62 · ai,4}, 1 ≤ i ≤ 6,

where {ai,0, ai,1, . . . , ai,4} ∈ Δ. We have just constructed a regular (372, 4)-DΔS.
The 1-DP(3720, 1) is an instance of a more general result due to Bose.
Theorem 5.1 (see [3]). For any prime power q, there exists a 1-DP(q2 − 1, q)

with the following missing differences:

{0, q + 1, 2(q + 1), . . . , (q − 2)(q + 1)}.

Following the example given, we obtain the following general construction.
Theorem 5.2. Let q be a prime power. If there exist an (I, J)-DΔS Δ with

m(Δ) ≤ q − 1 and an s − MDP (q, J + 1), then there exists an (sI + I, J)-DΔS Σ
with m(Σ) = q2 − 1.

Proof. The main construction yields an (sI, J)-DΔS from an s−MDP (q, J + 1)
and an (I, J)-DΔS. Using a 1 − DP (q2 − 1, q) from Theorem 5.1, we add I more
spanning rulers as follows:

{(q + 1) · ai,0, (q + 1) · ai,1, . . . (q + 1) · ai,J}, 1 ≤ i ≤ I,

where {ai,0, ai,1, . . . , ai,J} ∈ Δ. The differences appearing in the I spanning rulers
are multiples of (q + 1) that are not contained in the 1 −DP (q2 − 1, q).

Corollary 5.3. Let q be a prime power. If there exists an (I, J)-DΔS Δ with
m(Δ) ≤ q − 1, then there exists an (sI + I, J)-DΔS Σ with m(Σ) ≤ q2 − 1 and
s = (m(Δ) + 1)I.

Proof. From Lemma 3.2, an (I, J)-DΔS yields an s-MDP(m(Δ) + 1, J) with
s = (m(Δ) + 1)I.

If everything happens perfectly, we get another perfect construction.
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Corollary 5.4. Let q be a prime power. If there exists a regular (I, J)-DΔS Δ

with I(J+1)J
2 = q − 1, then there exists a regular (qI + I, J)-DΔS.

Proof. All the differences in the 1-DP(q2 − 1, q) are contained in the resulting
DΔS.

Even further, we can get an infinite family of regular DΔSs from a single regular
DΔS if m(Δ) + 1 happens to be a prime power.

Theorem 5.5. Let q be a prime power. If there exists a regular (I, J)-DΔS Δ

with I(J+1)J
2 = q − 1, then there exists a regular ( (q2t−1)I

q−1 , J)-DΔS for any t ≥ 0.

Proof. If I(J+1)J
2 = q − 1, then

(q + 1)I
(J + 1)J

2
+ 1 = (q − 1)(q + 1) + 1 = q2

which is still a prime power. Then Corollary 5.4 can be applied to the resulting regular
DΔS, and the conclusion follows from a simple calculation.

The 1-DP(q2−1, q) can be viewed as a relative difference family, defined as follows.
Definition 5.6 (see [4]). Let N be a subgroup of Zv with n elements. Let

F = {B1, B2, . . . , Bt} be a family of k-subsets, called base blocks, of Zv. F is a
cyclic relative difference family, denoted by t-RDF(v, n, k), if every nonzero element
of Zv −N can be represented in a unique way as a difference of two elements lying in
some member of F .

Finally, we generalize Theorem 5.1 to a relative difference family construction.
Theorem 5.7 (RDF construction). If there exists a t-RDF(v, n, k), an s-MDP(k,

J + 1) and an (I, J)-DΔS Δ with m(Δ) ≤ n, then there exists an (st + I, J)-DΔS Σ
with m(Σ) = v − 1.

Proof. The construction is similar to the one of Theorem 5.2.

6. Conclusions. We have presented a new type of combinatorial design, the
monotonic directed design. Although the existence of directed designs has been ex-
tensively studied, few families of MDDs are known currently. In order to use the
perfect construction, the existence of MDDs is crucial for constructions of DΔSs. An
example of MDD(v, k) with k ≥ 4, not constructed from a regular DΔS, would be of
great interest. However, we should not expect any MDD(v, k) with k ≥ 6.

Theorem 6.1 (see [14]). M(I, J) ≥ IJ(J+1)
2 + 1 for J > 4.

Corollary 6.2. There does not exist an MDD(v, k) with k ≥ 6.
The use of monotonic directed designs and packings suggests a new direction for

the construction of difference triangle sets, and hence their further study is of definite
value.

Acknowledgment. The authors thank Herbert Taylor for many suggestions that
inspired this research.
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Abstract. In this paper we present an efficient procedure for identifying all maximal covers from
the set of covers implied by a 0-1 knapsack constraint. It requires tight bounds for the cardinality
of certain minimal covers and an ordering of the covers implied by the knapsack constraint. This
type of maximal cover can be very useful for tightening 0-1 models. We also present a modification
of the procedure to identify only maximal covers whose induced inequalities are violated by a given
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1. Introduction. Consider the 0-1 linear programming (LP) problem

Min or Max
∑
j∈J

cjxj

subject to
∑
j∈J

aijxj ∼ bi ∀i ∈ I,

xj ∈ {0, 1} ∀j ∈ J,

(1.1)

where I = {1, . . . ,m}, J = {1, . . . , n}, {aij}i∈I, j∈J , {bi}i∈I , {cj}j∈J are rational
numbers and ∼ is the sense of each constraint (≤, ≥, = ).

The LP relaxation of (P ) is the same problem as (1.1), where each variable xj is
allowed to take any value in the interval [0, 1].

We say that two constraint systems Ax ∼ b and A′x ∼ b′ are equivalent if
{x ∈ {0, 1}n | Ax ∼ b} = {x ∈ {0, 1}n | A′x ∼ b′}. The system A′x ∼ b′

is said to be as tight as the system Ax ∼ b if it is equivalent to Ax ∼ b and
{x ∈ [0, 1]n | A′x ∼ b′} ⊆ {x ∈ [0, 1]n | Ax ∼ b}. The system A′x ∼ b′ is
said to be tighter than the system Ax ∼ b if it is equivalent to Ax ∼ b and
{x ∈ [0, 1]n | A′x ∼ b′} ⊂ {x ∈ [0, 1]n | Ax ∼ b}.

A constraint
∑n

j=1 ajxj ∼ b is said to be valid for a set R ⊆ R
n if it is satisfied

by any vector (x1, . . . , xn) ∈ R.
The tighter a 0-1 model, the smaller could be the gap between the optimal ob-

jective function value of the related 0-1 problem and the optimal objective func-
tion value of its LP relaxation, and, probably, less computational effort could be
required to solve the problem. Therefore, we are interested in tightening the ini-
tial formulation of (1.1). It is well known that this can be done by means of valid
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constraints for its feasible region, e.g., inequalities induced by maximal covers from
the set of covers implied by any valid constraint for the feasible region of (1.1); see
[4, 6, 8, 9, 10, 12, 15, 18, 20, 21, 22, 24, 28, 31] among many others.

In easy terms, a cover can be considered as a subset of indices of 0-1 variables
where at most k of such variables can take the value 1. In particular, we are interested
in the so-called maximal covers from the set of covers implied by a 0-1 knapsack
constraint, i.e., covers derived from a 0-1 knapsack constraint such that the inequalities
induced by any other covers that can be derived from the knapsack constraint are not
tighter than their induced inequalities. We present an algorithm for identifying such
maximal covers.

This paper is structured as follows. Section 2 reviews classical types of covers
and states some related results. Section 3 introduces a simple method for computing
a lower and an upper bound for the cardinality of a minimal cover with respect to a
knapsack constraint. Section 4 presents a procedure for identifying all maximal covers
from the set of covers implied by a knapsack constraint. Section 5 presents a modi-
fication of this procedure to identify only maximal covers whose induced inequalities
are violated by a given fractional solution. Section 6 reports some computational
experiments. Finally, section 7 draws some conclusions from this work.

2. Covers. Basic concepts and results. In this section we review some types
of covers given in the literature; see [1, 2, 7, 14, 20, 24, 25, 30, 31, 32] among others.
We also state some results concerning these types of covers; their proofs can be found
in [11, 20].

Given a set of variables {x1, . . . , xn} and a set F ⊆ {1, . . . , n}, let X(F ) =∑
j∈F xj .

Definition 2.1. Given a set of variables {x1, . . . , xn} and an inequality of the
form X(C+) −X(C−) ≤ kC − |C−|, where C+, C− ⊆ {1, . . . , n}, C+ ∩C− = ∅, and
kC is an integer such that 1 ≤ kC ≤ |C+ ∪ C−|, the set C = C+ ∪ C− is said to be a
cover, and the inequality X(C+) −X(C−) ≤ kC − |C−| is said to be induced by C.

Definition 2.2. A trivial cover is a cover C such that kC = |C|.
Definition 2.3. A cover C is said to be implied by the constraint

∑n
j=1 ajxj ≤ b

if its induced inequality is valid for the set {(x1, . . . , xn) ∈ {0, 1}n |
∑n

j=1 ajxj ≤ b}.
Definition 2.4. The inequality

∑n
j=1 ajxj ≤ b is said to be dominated by the

inequality
∑n

j=1 a
′
jxj ≤ b′ if {(x1, . . . , xn)∈ [0, 1]n |

∑n
j=1 a

′
jxj ≤ b′}⊆{(x1, . . . , xn)∈

[0, 1]n |
∑n

j=1 ajxj ≤ b}.
Definition 2.5. Given a set of covers C, C ∈ C is a maximal cover from C if

its induced inequality is not dominated by the inequality induced by C ′ ∀C ′ ∈ C such
that C ′+ �= C+ or C ′− �= C− or kC′ �= kC .

There are several ways to tighten the formulation of problem (1.1) by means of
maximal covers whose induced inequalities are valid for its feasible region. Their
induced inequalities can be appended to the constraint system of (1.1), e.g., by using
them as cutting planes in a branch-and-cut framework (see [15, 18, 31], among many
others). They can also be used to increase or reduce the coefficients of some constraints
(see, e.g., [6, 8, 9, 10, 20]) and to detect constraint redundancy and fix variables (see,
e.g., [21, 22]). In [11, 20] it was shown that the extensions of the strong covers defined
in [1] are the maximal covers from the set of covers implied by the related 0-1 knapsack
constraint. So, their induced inequalities can be lifted and used to obtain facets of
the knapsack polytope (see [1, 2, 4, 8, 14, 24, 25, 29, 30, 31, 32], among others).

We consider valid knapsack constraints for the feasible region of problem (1.1) of
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the form ∑
j∈J0

ajxj ≤ b,(2.1)

where 0 < aj ≤ b ∀j ∈ J0 and aj ≤ aj′ ∀j, j′ ∈ J0 such that j < j′. (Note that any
constraint of (1.1) can be put in this form if one previously decomposes each equality
into two inequalities.) Let us assume that

∑
j∈J0

aj > b, since, otherwise, constraint
(2.1) would be redundant.

Given a nonempty set C ⊆ J0, let ml(C) denote the set of the l smallest indices
of C, where l is an integer such that 1 ≤ l ≤ |C|. (Note that the set ml(C) contains
the indices of the l variables in {xj}j∈C with smallest coefficients in constraint (2.1).)

Proposition 2.6. Let C be a maximal cover from the set of covers implied by
constraint (2.1). Then C is a nontrivial cover, C ⊆ J0, and its induced inequality is
X(C) ≤ max {l |

∑
j∈ml(C) aj ≤ b}.

Proof. See [11, 20].
Definition 2.7. A nontrivial cover C implied by constraint (2.1) with in-

duced inequality X(C) ≤ kC is said to be minimal with respect to constraint (2.1)
if
∑

j∈C\{k} aj ≤ b ∀k ∈ C.

Given a nonempty set C ⊆ J0, let γ(C) = min {j | j ∈ C} and γ(C) = max {j |
j ∈ C}.

Proposition 2.8. A cover C is minimal with respect to constraint (2.1) if and
only if C ⊆ J0,

∑
j∈C aj > b,

∑
j∈C\{γ(C)} aj ≤ b and its induced inequality is

X(C) ≤ |C| − 1.
Proof. See [11, 20].
Definition 2.9. Let C be a minimal cover with respect to constraint (2.1). The

extension of C is the set E(C) = C ∪ {j ∈ J0 | j > γ(C)}.
Proposition 2.10. If C is a minimal cover with respect to constraint (2.1), then
(1) E(C) is a nontrivial cover implied by constraint (2.1), and the inequality

X(E(C)) ≤ |C| − 1 is induced by E(C).
(2) The inequality induced by C is dominated by the inequality X(E(C)) ≤ |C|−1.
Proof. See [11, 20], among others.
Theorem 2.11. If C is a maximal cover from the set of covers implied by con-

straint (2.1), then there exists a unique minimal cover with respect to constraint (2.1),
say, C ′, such that E(C ′) = C.

Proof. See [11, 20].
Theorem 2.12. Let C be a minimal cover with respect to constraint (2.1) and let

X(E(C)) ≤ |C|−1 be the inequality induced by E(C). Then E(C) is a maximal cover
from the set of covers implied by constraint (2.1) if and only if one of the following
conditions is satisfied:

(1) E(C) ⊂ J0 and
∑

j∈C\{γ(C)} aj + aγ(J0\E(C)) ≤ b.

(2) E(C) = J0.
Proof. See [11, 20].
Theorem 2.11 establishes that every maximal cover from the set of covers implied

by constraint (2.1) is the extension of a unique minimal cover with respect to (2.1).
Therefore, to identify these maximal covers it suffices to determine the minimal covers
with respect to (2.1) by using an enumerative procedure based on Proposition 2.8 and
to apply Theorem 2.12.

In the next section we present easily computable lower and upper bounds for the
cardinality of the minimal covers with respect to constraint (2.1).
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3. Obtaining bounds for the cardinality of a minimal cover. For simplic-
ity, from now on it will be assumed that J0 = {1, . . . , n0}.

Let k = max {k ∈ {1, . . . , n0 − 1} |
∑n0

j=n0−(k−1) aj ≤ b}.
Lemma 3.1. Let C be a minimal cover with respect to constraint (2.1). Then

|C| ≥ k + 1.
Proof. Suppose that |C| ≤ k. In this case

∑
j∈C aj ≤

∑n0

j=n0−(k−1) aj ≤ b, which
contradicts Proposition 2.8.

Let j =

⎧⎪⎨⎪⎩ min {k ∈ J0 |
∑

j∈J0\{k}
aj ≤ b} if

n0−1∑
j=1

aj ≤ b,

n0 + 1 otherwise.

Lemma 3.2. Let C be a minimal cover with respect to constraint (2.1). Then
{j, . . . , n0} ⊆ C.

Proof. Suppose that ∃ k ∈ {j, . . . , n0} \ C. In this case, C ⊆ J0 \ {k}, hence∑
j∈C aj ≤

∑
j∈J0\{k} aj ≤ b, which contradicts Proposition 2.8.

Lemma 3.3. The following statements hold:
(1)

∑n0

j=j aj > b if and only if j = n0 − k.

(2)
∑n0

j=j aj ≤ b if and only if j ≥ n0 − k + 1.

Proof. (1) If
∑n0

j=j aj > b, then k = n0 − j, since
∑n0

j=j+1 aj ≤
∑

j∈J0\{j} aj ≤ b.

Conversely, if j = n0 − k, by the definition of k we have that
∑n0

j=j aj > b.

(2) The proof follows from the definition of k.

Let k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k if

n0∑
j=j

aj > b,

n0 − j + max {k∈{1, . . . , j − 1}|
k∑

j=2

aj +

n0∑
j=j

aj ≤ b} otherwise.

Lemma 3.4. Let C be a minimal cover with respect to constraint (2.1). Then
|C| ≤ k + 1.

Proof. By Lemma 3.2 we have that {j, . . . , n0} ⊆ C.
If C = {j, . . . , n0}, then |C| = n0 − j + 1. On the other hand,

∑n0

j=j aj > b by

Proposition 2.8. Accordingly, by claim (1) of Lemma 3.3 it follows that |C| = k + 1.
If {j, . . . , n0} ⊂ C, then {j, . . . , n0} ⊆ C \ {γ(C)}, and, by Proposition 2.8,

k = n0 − j + max {k ∈ {1, . . . , j − 1} |
∑k

j=2 aj +
∑n0

j=j aj ≤ b}. Now, if max {k ∈
{1, . . . , j − 1} |

∑k
j=2 aj +

∑n0

j=j aj ≤ b} = j − 1, by Proposition 2.8 we must have

C = J0, hence |C| = k + 1; otherwise, we have
∑k−n0+j+1

j=2 aj +
∑n0

j=j aj > b and,

considering that C \ {γ(C)} ⊆ {2, . . . , n0}, by Proposition 2.8 it follows that |C| ≤
|{1, . . . , k − n0 + j} ∪ {j, . . . , n0}| = k + 1.

Corollary 3.5. Let C be a minimal cover with respect to constraint (2.1)
with induced inequality X(C) ≤ kC . Then k + 1 ≤ |C| ≤ k + 1 and, equivalently,
k ≤ kC ≤ k.

Proof. The proof follows from Lemmas 3.1 and 3.4 and from Proposition 2.8.
Corollary 3.5 states that k and k are, respectively, a lower and an upper bound

for the right-hand side of the inequality induced by any minimal cover with respect
to constraint (2.1), but it is not guaranteed that they are the tightest ones. Thus,
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it would be interesting to analyze whether these bounds are reachable, that is, to
determine whether there exist minimal covers with respect to constraint (2.1) with
induced inequality X(C) ≤ k or X(C) ≤ k. Lemma 3.6 shows that the lower bound k
is always reachable. Nevertheless, the upper bound k is not always reachable.

Lemma 3.6. Let C = {n0−k, . . . , n0} be a cover with induced inequality X(C)≤
k. Then C is a minimal cover with respect to constraint (2.1).

Proof. The proof follows from Proposition 2.8.
Example 1 illustrates how to identify all maximal covers from the set of cov-

ers implied by a knapsack constraint by using the procedure referred to at the end
of section 2.

Example 1. Consider the knapsack constraint

x1 + 4x2 + 5x3 + 5x4 + 7x5 ≤ 13,(3.1)

where xj ∈ {0, 1} ∀j ∈ {1, . . . , 5}.
By Corollary 3.5 and Proposition 2.8, the minimal covers with respect to con-

straint (3.1) are the sets C ⊂ {1, 2, 3, 4, 5} such that |C| = 3,
∑

j∈C aj > 13 and∑
j∈C\{γ(C)} aj ≤ 13, since k = k = 2. Consequently, the minimal covers with re-

spect to (3.1) are C1 = {2, 3, 4}, C2 = {2, 3, 5}, C3 = {2, 4, 5}, and C4 = {3, 4, 5}.
For each k ∈ {1, 2, 3, 4}, let X(E(Ck)) ≤ 2 be the inequality induced by the cover

E(Ck). By Theorems 2.11 and 2.12, E(C1) is the unique maximal cover from the set
of covers implied by constraint (3.1). Notice that

∑
j∈C1\{γ(C1)} aj + aγ(J0\E(C1)) =

a1 + a2 + a3 = 10 < 13 and
∑

j∈Ck\{γ(Ck)} aj + aγ(J0\E(Ck)) = a2 + a3 + a4 = 14 >

13 ∀k ∈ {2, 3, 4}.
In the following section we present some results that lead to a new procedure based

on Proposition 2.8. It only obtains the minimal covers with respect to constraint (2.1)
whose extensions are maximal covers from the set of covers implied by constraint (2.1).
Therefore, it will not be necessary to apply either the enumerative procedure referred
to at the end of section 2 or in Theorem 2.12.

4. Identification of all maximal covers from the set of covers implied
by a knapsack constraint. From now on let us assume that j1 < · · · < j|C| for any
cover C = {j1, . . . , j|C|}.

Definition 4.1. Let C = {j1, . . . , j|C|} ⊆ J0 and C ′ = {j′1, . . . , j′|C|} ⊆ J0 be

two distinct covers with the same cardinality such that
∑

j∈C aj > b and
∑

j∈C′ aj > b,
and let k0 = min {k ∈ {1, . . . , |C|} | jk �= j′k}. If jk0 < j′k0

, C is said to be previous
to C ′ and C ′ is said to be subsequent to C.

Given kC ∈ {k, . . . , k}, let A0
kC

= {j0
1 , . . . , j

0
kC+1}, where j0

k = min {j ∈ J0 | j >

j0
k−1,

∑k−1
l=1 aj0l + aj +

∑n0

l=n0−(kC−k) al > b} ∀k ∈ {1, . . . , kC + 1} and j0
0 = 0.

Lemma 4.2. Let kC ∈ {k, . . . , k}. Then, every cover C ⊂ J0 such that |C| =
kC + 1, C �= A0

kC
and

∑
j∈C aj > b, is subsequent to A0

kC
.

Proof. The proof follows from the definition of A0
kC

.
Definition 4.3. A consecutive cover is a cover C = {j1, . . . , j|C|} such that

jk+1 = jk + 1 ∀k ∈ {1, . . . , |C| − 1}.
Given C = {j1, . . . , j|C|} ⊂ J0 a nonconsecutive cover such that

∑
j∈C aj > b,

let k∗(C) = max {k ∈ {1, . . . , |C| − 1} | jk + 1 < jk+1} and A∗(C) = {j∗1 , . . . , j∗|C|},
where j∗k = jk ∀k ∈ {1, . . . , k∗(C) − 1}, j∗k∗(C) = jk∗(C) + 1 and j∗k = min {j ∈ J0 |
j > j∗k−1,

∑k−1
l=1 aj∗l + aj +

∑n0

l=n0−(|C|−k−1) al > b} ∀k ∈ {k∗(C) + 1, . . . , |C|}. (Note

that A∗(C) is subsequent to C.)
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Lemma 4.4. Let C ⊂ J0 be a nonconsecutive cover such that
∑

j∈C aj > b. Then
every cover C ′ ⊂ J0 with |C ′| = |C|, mk∗(C)(C

′) = mk∗(C)(A
∗(C)), C ′ �= A∗(C), and∑

j∈C′ aj > b, is subsequent to A∗(C).
Proof. The proof follows from the definition of A∗(C).
Propositions 4.5 and 4.7 give some necessary conditions for the extension of a

minimal cover with respect to constraint (2.1) to be a maximal cover from the set of
covers implied by (2.1).

Proposition 4.5. Let C ⊂ J0 be a nonconsecutive cover such that
∑

j∈C aj > b
and let C ′ be a minimal cover with respect to constraint (2.1) subsequent to C with
mk∗(C)(C

′) = mk∗(C)(C). Then E(C ′) is not a maximal cover from the set of covers
implied by constraint (2.1).

Proof. Let C = {j1, . . . , j|C|} and C ′ = {j′1, . . . , j′|C|}. Considering that

mk∗(C)(C
′) = mk∗(C)(C) and C ′ is subsequent to C, it follows that j′k = jk ∀k ∈

{1, . . . , k∗(C)} and j′k∗(C)+1 ≥ jk∗(C)+1. Moreover, by the definition of k∗(C) we

have that jk + 1 = jk+1 ∀k ∈ {k∗(C) + 1, . . . , |C| − 1}; hence
∑|C|

k=k∗(C)+1 aj′k ≥∑|C|
k=k∗(C)+1 ajk . Therefore

∑
j∈C\{γ(C)} aj ≤

∑
j∈C′\{γ(C′)} aj ≤ b, since C ′ is a

minimal cover with respect to constraint (2.1). So, taking X(C) ≤ |C| − 1 as the
inequality induced by C, we can conclude from Proposition 2.8 that C is a minimal
cover with respect to constraint (2.1). Thus, by claim (1) of Proposition 2.10, E(C)
is a cover implied by (2.1) and the inequality X(E(C)) ≤ |C| − 1 is induced by it.

Suppose that E(C ′) is a maximal cover from the set of covers implied by con-
straint (2.1). Then, by Propositions 2.6 and 2.8, the inequality induced by E(C ′) is
X(E(C ′)) ≤ |C| − 1 and, since E(C ′) ⊂ {j1, . . . , jk∗(C)} ∪ {j ∈ J0 | j ≥ jk∗(C)+1} =
E(C), the inequality X(E(C ′)) ≤ |C| − 1 is dominated by X(E(C)) ≤ |C| − 1, which
is a contradiction. Consequently, E(C ′) is not a maximal cover from the set of covers
implied by constraint (2.1).

Corollary 4.6. Let C ⊂ J0 be a nonconsecutive cover such that
∑

j∈C aj > b
and let C ′ be a minimal cover with respect to constraint (2.1) subsequent to C and
previous to A∗(C). Then E(C ′) is not a maximal cover from the set of covers implied
by constraint (2.1).

Proposition 4.7. Let C ⊂ J0 be a consecutive cover such that
∑

j∈C aj > b
and let C ′ be a minimal cover with respect to constraint (2.1) subsequent to C. Then
E(C ′) is not a maximal cover from the set of covers implied by constraint (2.1).

Proof. The proof is similar to the proof of Proposition 4.5.
Given kC ∈ {k, . . . , k}, let Al

kC
= A∗(Al−1

kC
) ∀l ∈ N such that Al−1

kC
is a noncon-

secutive cover. Since the sets Al
kC

are distinct, there will be a finite number of indices

l for which the set Al
kC

is defined. Let pkC
be the biggest of those indices. The sets

{Al
kC

}kC∈{k,... ,k}, l∈{0,... ,pkC
} will lead to a characterization for the maximal covers

from the set of covers implied by constraint (2.1); see Corollary 4.11.
Example 2. Consider the knapsack constraint

2x1 + 3x2 + 5x3 + 5x4 + 7x5 + 8x6 + 9x7 ≤ 19,

where xj ∈ {0, 1} ∀j ∈ {1, . . . , 7}.
It can easily be verified that for this constraint k = 2 and k = 3.
For kC = 2 we have A0

2 = {2, 6, 7}, A1
2 = {3, 5, 6}, A2

2 = {4, 5, 6}, and p2 = 2
(see Figure 4.1).

For kC = 3 we have A0
3 = {1, 2, 5, 6}, A1

3 = {1, 3, 4, 6}, A2
3 = {1, 3, 5, 6}, A3

3 =
{1, 4, 5, 6}, A4

3 = {2, 3, 4, 5}, and p3 = 4 (see Figure 4.2).
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• • • A0
2

• • • A1
2

• • • A2
2

Fig. 4.1. Graphic representation of the family {Al
2}l∈{0,1,2}.

• • • • A0
3

• • • • A1
3

• • • • A2
3

• • • • A3
3

• • • • A4
3

Fig. 4.2. Graphic representation of the family {Al
3}l∈{0,1,2,3,4}.

Let C = {j1, . . . , j|C|} ⊂ J0 be a cover such that
∑

j∈C aj > b. If γ(C) > 1 or

C is a nonconsecutive cover, we define Ā(C) = (C \ {γ(C)}) ∪ {jk∗(C)+1 − 1}, where
k∗(C) = 0 if C is a consecutive cover. (Note that Ā(C) is previous to C provided
that

∑
j∈Ā(C) aj > b.)

Proposition 4.8. Let kC ∈ {k, . . . , k}. If γ(A0
kC

) > 1 or A0
kC

is a nonconsec-
utive cover, then

∑
j∈Ā(Al

kC
) aj ≤ b ∀l ∈ {0, . . . , pkC

}.
Proof. See Appendix A.

Corollary 4.9. Let kC ∈ {k, . . . , k}. Then every consecutive cover C ⊆ J0

such that |C| = kC + 1 and
∑

j∈C aj > b is not previous to A
pkC

kC
.

Proof. Let C ⊆ J0 be a consecutive cover such that |C| = kC+1 and
∑

j∈C aj > b,

and suppose that C is previous to A
pkC

kC
. In this case, γ(A

pkC

kC
) > γ(C) ≥ 1, and,

considering that Ā(A
pkC

kC
) = {γ(A

pkC

kC
)−1, . . . , γ(A

pkC

kC
)+kC −1}, by Proposition 4.8

it follows that
∑

j∈C aj ≤ b, which is a contradiction.

Theorem 4.10. Let C be a minimal cover with respect to constraint (2.1) and let
X(E(C)) ≤ |C|−1 be the inequality induced by E(C). Then E(C) is a maximal cover
from the set of covers implied by constraint (2.1) if and only if ∃ l ∈ {0, . . . , p |C|−1}
such that C = Al

|C|−1.

Proof. (⇒) The proof follows from Lemma 4.2, Corollary 4.6, and Proposition
4.7.

(⇐) If E(C) = J0, by Theorem 2.12 we have that E(C) is a maximal cover from
the set of covers implied by constraint (2.1).
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If E(C) ⊂ J0, then γ(C) > 1 or C is a nonconsecutive cover. Therefore∑
j∈Ā(C) aj ≤ b by Proposition 4.8. Let C = {j1, . . . , j|C|}. Since γ (J0 \ E(C)) =

jk∗(C)+1 − 1, it follows that Ā(C) = (C \ {γ(C)}) ∪ {γ(J0 \ E(C))}, from which∑
j∈C\{γ(C)} aj +a γ(J0\E(C)) ≤ b. Accordingly, by Theorem 2.12, E(C) is a maximal

cover from the set of covers implied by constraint (2.1).

Corollary 4.11. The set of maximal covers from the set of covers implied
by constraint (2.1) is {E(Al

kC
) | kC ∈ {k, . . . , k}, l ∈ {0, . . . , pkC

},
∑

j∈Al
kC

\{γ(Al
kC

)}
aj ≤ b}.

Proof. The proof follows from Proposition 2.8, Corollary 3.5, and Theorems 2.11
and 4.10.

Lemma 4.12. Let kC ∈ {k, . . . , k} and l ∈ {0, . . . , pkC
}. Then {j, . . . , n0} ⊆

Al
kC

.

Proof. Suppose that ∃ k ∈ {j, . . . , n0} \ Al
kC

. In this case Al
kC

⊆ J0 \ {k}, and
hence

∑
j∈Al

kC

aj ≤
∑

j∈J0\{k} aj ≤ b, which is a contradiction.

The algorithm below identifies all maximal covers from the set of covers implied
by constraint (2.1) by using a procedure based on Corollary 4.11 and Lemma 4.12.
In [20] it is shown that the nondominated extensions considered in [7] (see also [19])
are maximal covers from the set of covers implied by a knapsack constraint, but, in
general, the procedures proposed in [7] only obtain a small fraction of the whole set
of maximal covers.

Algorithm 1.

Step 1. Compute k, j, and k. Set h = 0, j0 = 0, and kC = k.
Step 2. Set k0 = 1 and jk = k − kC + n0 − 1 ∀k ∈ {kC − n0 + j + 1, . . . , kC + 1}.
Step 3. Set jk = min{j ∈ J0 | j > jk−1,

∑k−1
l=1 ajl +aj +

∑n0

l=n0−(kC−k) al > b} ∀k ∈
{k0, . . . , kC − n0 + j} and C = {j1, . . . , jkC+1}.

Step 4. If
∑kC+1

k=2 ajk ≤ b, set h = h + 1 and Ch = E(C).
Step 5. If jkC+1 − j1 = kC , go to Step 8.

Step 6. If
∑kC+1

k=2 ajk > b and jkC+1 − j1 = kC + 1, go to Step 8 (there is not any
minimal cover with respect to constraint (2.1) subsequent to C).

Step 7. Set k∗(C) = max{k ∈ {1, . . . , kC} | jk+1 < jk+1} and jk∗(C) = jk∗(C)+1. If
jk∗(C) + 1 = jk∗(C)+1, set C = {j1, . . . , jkC+1} and go to Step 4. Otherwise,
set k0 = k∗(C) + 1 and go to Step 3.

Step 8. If kC < k, set kC = kC +1 and go to Step 2. Otherwise, STOP (all maximal
covers from the set of covers implied by constraint (2.1) have been identified).

Note. For kC = k, all of the covers {j1, . . . , jkC+1} identified by Algorithm 1 are

such that
∑kC+1

k=2 ajk ≤
∑n0

j=n0−(k−1) aj ≤ b.

The problem of identifying all maximal covers from the set of covers implied by
a 0-1 knapsack constraint is intractable in the sense that the number of this type
of maximal covers cannot be bounded by a polynomial function of the number of
variables in the knapsack constraint; see [13]. Therefore, every algorithm that solves
this problem (in particular, Algorithm 1) will have exponential time complexity.

Example 3. Consider the knapsack constraint

x1 + 2x2 + 2x3 + 3x4 + 5x5 + 7x6 + 7x7 ≤ 15,(4.1)

where xj ∈ {0, 1} ∀j ∈ {1, . . . , 7}.
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Appendix B gives the steps of Algorithm 1 to identify the maximal covers from the
set of covers implied by constraint (4.1). These maximal covers are C1 = {2, 6, 7}, C2 =
{3, 6, 7}, C3 = {4, 6, 7}, C4 = {5, 6, 7}, C5 = {1, 4, 5, 6, 7}, C6 = {2, 3, 5, 6, 7}, C7 =
{2, 4, 5, 6, 7}, and C8 = {3, 4, 5, 6, 7}. Their induced inequalities are

x2 + x6 + x7 ≤ 2,
x3 + x6 + x7 ≤ 2,

x4 + x6 + x7 ≤ 2,
x5 + x6 + x7 ≤ 2,

x1 + x4 + x5 + x6 + x7 ≤ 3,
x2 + x3 + x5 + x6 + x7 ≤ 3,
x2 + x4 + x5 + x6 + x7 ≤ 3,

x3 + x4 + x5 + x6 + x7 ≤ 3.

If the inequality induced by a maximal cover from the set of covers implied by
constraint (2.1) is dominated by the same (2.1), then it will not be necessary to append
it to the constraint system of problem (1.1), since the resulting formulation will not
be tighter than the current one. Nevertheless, in certain cases this type of maximal
cover can help to reformulate some constraints of (1.1); see [10, 20]. Propositions
4.13 and 4.14 lead to a characterization of the maximal covers from the set of covers
implied by constraint (2.1) whose induced inequalities are dominated by (2.1). This
characterization is stated in Corollary 4.15.

Proposition 4.13. Let C be a maximal cover from the set of covers implied by
constraint (2.1) whose induced inequality is dominated by constraint (2.1). Then

(1) C = J0.
(2) aj = b

k
∀j ∈ {1, . . . , k + 1}.

(3) aj = b
k

∀j ∈ J0 if k = k.
Proof. See Appendix A.
Proposition 4.14. Let X(J0) ≤ k be the inequality induced by J0. If aj =

b
k

∀j ∈ {1, . . . , k + 1}, then J0 is a maximal cover from the set of covers implied by
constraint (2.1), and its induced inequality is dominated by constraint (2.1).

Proof. If aj = b
k

∀j ∈ {1, . . . , k + 1}, by Proposition 2.8 and Theorem 2.12 it
follows that J0 is a maximal cover from the set of covers implied by constraint (2.1).

Let (xj)j∈J ∈ [0, 1]n be such that
∑

j∈J0
ajxj ≤ b. By considering that k

b aj ≥
1 ∀j ∈ J0, we get that

∑
j∈J0

xj ≤ k
b

∑
j∈J0

ajxj ≤ k
b b = k. Consequently, the

inequality induced by J0 is dominated by constraint (2.1).
Corollary 4.15. Let C be a maximal cover from the set of covers implied by

constraint (2.1). Then the inequality induced by C is dominated by constraint (2.1) if
and only if C = J0 and aj = b

k
∀j ∈ {1, . . . , k + 1}.

Proof. The proof follows from Propositions 2.6, 4.13, and 4.14.
Note. If constraint (2.1) is such that aj=aj′ ∀j, j′∈J0, then by using Corollary 4.11

it is easy to see that the unique maximal cover from the set of covers implied by (2.1) is
J0. Its induced inequality coincides with constraint (2.1) after applying the Euclidean
reduction procedure (see [15, 20], among others).

In section 6.1 it will be shown that the number of maximal covers from the set
of covers implied by a knapsack constraint can be very large. Therefore, it may be
advisable to introduce some modifications into Algorithm 1 to restrict the maximal
covers that it is allowed to identify. For example, if problem (1.1) is solved within
a branch-and-cut framework, at each node one can opt for identifying only maximal
covers whose induced inequalities are violated by the optimal solution to the current
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LP subproblem, provided that this optimal solution is fractional. In the next section
we present a modification of Algorithm 1 to identify only certain maximal covers
whose induced inequalities are violated by a given fractional solution.

5. Identification of maximal covers from the set of covers implied by
a knapsack constraint whose induced inequalities are violated by a given
fractional solution. Let (xj)j∈J be a fractional feasible solution for the LP relax-
ation of problem (1.1). We are interested in identifying maximal covers from the set of
covers implied by constraint (2.1), say, E(C), whose induced inequalities are violated
by (xj)j∈J , that is,

∑
j∈E(C) xj > |C|−1. Since the computational effort required for

obtaining all of these maximal covers can be excessive, it may be preferable to identify
only maximal covers such that the violation of their induced inequalities reaches a cer-
tain threshold. Now, considering that

∑
j∈E(C) xj ≤

∑
j∈J0

xj , we find that a possible

choice is to identify maximal covers such that
∑

j∈E(C) xj > max{|C|−1, α
∑

j∈J0
xj},

where α ∈ [0, 1). (Note that all maximal covers from the set of covers implied by (2.1)
whose induced inequalities are violated by (xj)j∈J will be obtained if we take α = 0.)

Let k
′

= min {k, [
∑

j∈J0
xj ]} and let us assume that k ≤ k

′
, since, otherwise,

there would not be any maximal covers from the set of covers implied by constraint
(2.1) whose induced inequalities are violated by (xj)j∈J .

The algorithm below identifies all maximal covers from the set of covers implied
by constraint (2.1) such that

∑
j∈E(C) xj > max {|C| − 1, α

∑
j∈J0

xj} by using a
procedure based on Algorithm 1.

Algorithm 2.

Step 1. Compute k, j, and k
′
. If j > n0 − k, set h = 0, j0 = 0, kC = k, and go to

Step 2. If
∑n0

j=j xj > max {k, α
∑

j∈J0
xj}, set C1 = {j, . . . , n0}. STOP.

Step 2. Set jk = k − kC + n0 − 1 ∀k ∈ {kC − n0 + j + 1, . . . , kC + 1}, k = 1 and
kα = max {kC , α

∑
j∈J0

xj}.
Step 3. Set jk = min {j ∈ J0 | j > jk−1,

∑k−1
l=1 ajl + aj +

∑n0

l=n0−(kC−k) al > b}. If
k = kC + 1, go to Step 6.

Step 4. If k = kC − n0 + j, go to Step 7.

Step 5. If
∑k−1

l=1 xjl +
∑n0

l=jk
xl > kα, set k = k + 1 and go to Step 3. Otherwise,

go to Step 8.
Step 6. If

∑kC

l=1 xjl +
∑n0

l=jk
xl > kα, set C = {j1, . . . , jkC+1} and go to Step 10.

Otherwise, go to Step 9.
Step 7. If

∑k
l=1 xjl +

∑n0

l=j xl > kα, set C = {j1, . . . , jkC+1} and go to Step 10. If

jk < j − 1, set jk = jk + 1 and repeat Step 7.
Step 8. If k = 1, go to Step 16.
Step 9. Set k = k − 1, jk = jk + 1 and go to Step 5.

Step 10. If
∑kC+1

l=2 ajl ≤ b, set h = h + 1 and Ch = E(C).
Step 11. If jkC+1 − j1 = kC , go to Step 16.

Step 12. If
∑kC+1

l=2 ajl > b and jkC+1 − j1 = kC + 1, go to Step 16.
Step 13. Set k∗(C) = max {l ∈ {1, . . . , kC} | jl + 1 < jl+1}.
Step 14. Set jk∗(C) = jk∗(C) + 1. If jk∗(C) + 1 < jk∗(C)+1, set k = k∗(C) and go to

Step 4.

Step 15. If
∑k∗(C)−1

l=1 xjl +
∑n0

l=jk∗(C)
xl > kα, set C = {j1, . . . , jkC+1} and go to

Step 10. If k∗(C) > 1, set k∗(C) = k∗(C) − 1 and go to Step 14.

Step 16. If kC < k
′
, set kC = kC + 1 and go to Step 2. Otherwise, STOP.
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Example 4. Consider the 0-1 LP problem

Max 2x1 + 11x2 + x3 + 5x4 + 3x5 + 12x6 + 2x7

subject to x1 + 2x2 + 2x3 + 3x4 + 5x5 + 7x6 + 7x7 ≤ 15,

xj ∈ {0, 1} ∀j ∈ {1, . . . , 7}.
(5.1)

(Note that the feasible region of problem (5.1) is defined by constraint (4.1); see
Example 3.)

Let us apply a branch-and-cut procedure to problem (5.1). Let (x1, . . . , x7) be
the optimal solution to the LP relaxation of (5.1). It can be shown that x1 = x2 =
x4 = x6 = 1, x5 = 2

5 , and x3 = x7 = 0.
Appendix C gives the steps of Algorithm 2 to identify the maximal covers from

the set of covers implied by constraint (4.1) whose induced inequalities are violated
by (x1, . . . , x7) (for this purpose, we have taken α = 0). These maximal covers are
C1 = {1, 4, 5, 6, 7} and C2 = {2, 4, 5, 6, 7}. Their induced inequalities are

x1 + x4 + x5 + x6 + x7 ≤ 3,
x2 + x4 + x5 + x6 + x7 ≤ 3.

It can be shown that the optimal solution to the LP relaxation of the problem
that results from appending these inequalities to the formulation of problem (5.1) is
x∗

1 = x∗
2 = x∗

3 = x∗
4 = x∗

6 = 1 and x∗
5 = x∗

7 = 0. Therefore, (x∗
1, · · · , x∗

7) is an optimal
solution to (5.1) as well.

6. Computational experience.

6.1. Results on randomly generated knapsack constraints. In this section
we report some computational experiments where Algorithm 1 has been applied to
0-1 knapsack constraints of the form

∑n0

j=1 ajxj ≤ b with a1 ≤ · · · ≤ an0 . For
each fixed value of n0, the coefficients a1, . . . , an0

have been randomly generated
from the set {1, . . . , 1000} (the Quicksort procedure has been used for sorting them
in nondecreasing order; see subroutines “sort” and “indexx” in sections 8.2 and 8.4
of [27], respectively), and several right-hand sides b ∈ {an0

, . . . ,
∑n0

j=1 aj − 1} have
been considered. Let ρ denote the relative position of b within its variation range,

i.e., ρ =
b−an0∑n0−1

j=1 aj−1
(note that ρ ∈ [0, 1] provided that

∑n0−1
j=1 aj �= 1). Let m0

denote the number of maximal covers from the set of covers implied by the constraint∑n0

j=1 ajxj ≤ b and t the CPU time (expressed in seconds) required by Algorithm 1
to identify all of them.

The implementation platform is Microsoft FORTRAN PowerStation v4.0 and
Pentium III, 1000 Mhz, 256 Mb RAM.

Tables 6.1–6.4 show the values of b, ρ, m0, and t for different values of n0.
We can observe in Table 6.1 that the computational effort required by Algorithm

1 is practically null and the number of maximal covers is small. Therefore, it is
advisable to identify all of them.

In Table 6.2 the computational effort remains practically null. However, for some
values of b, the number of maximal covers becomes too large to keep all of them stored
in a cover pool.

In Tables 6.3 and 6.4 it is worth noting the large number of maximal covers that
can be obtained from knapsack constraints with relatively few variables. This fact
reveals the need for imposing an upper bound on the number of maximal covers that
Algorithm 1 is allowed to identify.
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Table 6.1

Computational results for n0 = 10.

b ρ m0 t

966
1500
1850
2300
2700
3150
3600
4010
4450
5100

0.0000
0.1001
0.2039
0.3077
0.4000
0.5038
0.6076
0.7022
0.8037
0.9536

8
18
24
32
33
30
22
18
10
1

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Table 6.2

Computational results for n0 = 20.

b ρ m0 t

945
1800
2700
3500
4300
5200
6000
6850
7700
8900

0.0000
0.1022
0.2098
0.3054
0.4010
0.5085
0.6042
0.7057
0.8073
0.9508

100
831

4 215
10 318
16 586
17 218
11 352
4 321

834
12

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Table 6.3

Computational results for n0 = 30.

b ρ m0 t

956
2100
3100
4200
5200
6300
7300
8400
9400

11000

0.0000
0.1085
0.2033
0.3077
0.4025
0.5068
0.6017
0.7060
0.8008
0.9526

2 913
126 729
995 051

4 078 936
7 835 604
8 247 850
4 642 029
1 178 565

150 130
320

0.00
0.11
0.87
2.74
5.11
5.71
3.73
1.43
0.22
0.00

Table 6.4

Computational results for n0 = 40.

b ρ m0 t

999
3500
5800
8200

10500
13000
15200
17600
20000
23500

0.0000
0.1057
0.2028
0.3043
0.4014
0.5071
0.6000
0.7014
0.8028
0.9507

154
334 805

28 614 341
575 346 532

2 907 873 285
4 710 541 502
2 443 519 127

349 382 467
10 718 552

621

0.00
0.17
6.54

109.63
517.18
807.02
417.38
64.38
3.07
0.00
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We have carried out an extensive computational experience on randomly gener-
ated knapsack constraints with up to 10,000 variables allowing a maximum of 1000
identified maximal covers. In all cases, the CPU time required by Algorithm 1 has
been almost null.

6.2. Results on single source capacitated plant location problem in-
stances. Given a set of potential plant locations with known capacities and a set of
customers with known demands, the single source capacitated plant location problem
(SSCPLP) is to minimize the total cost for opening a plant at each selected location
and assigning the customers to those plants in such a way that the demand of each
customer is served from a single plant and the total demand supplied from each plant
does not exceed its capacity.

Let nl denote the number of potential locations to open the plants, nc the number
of customers, fj the cost of opening a plant at location j, cij the cost of assigning
customer i to the plant located at j, di the demand of customer i, and bj the capacity
of the plant located at j.

Defining the variables

yj =

{
1 if a plant is opened at location j
0 otherwise

∀j ∈ {1, . . . , nl} and

xij =

{
1 if customer i is assigned to the plant located at j
0 otherwise

∀i∈{1, . . . , nc},∀j∈{1, . . . , nl},

the SSCPLP can be formulated as follows:

Min

nl∑
j=1

fjyj +

nc∑
i=1

nl∑
j=1

cijxij

subject to

nl∑
j=1

xij = 1 ∀i ∈ {1, . . . , nc},

nc∑
i=1

dixij ≤ bjyj ∀j ∈ {1, . . . , nl},

yj ∈ {0, 1} ∀j ∈ {1, . . . , nl},

xij ∈ {0, 1} ∀i ∈ {1, . . . , nc},∀j ∈ {1, . . . , nl}.

(6.1)

Exact algorithms for the SSCPLP are based on column generation procedures
and Lagrangian relaxations; see [3, 5, 16, 23], among others.

Table 6.5

Problem dimensions.

Problems nl nc

p1-p6 10 20
p7-p17 15 30
p18-p25 20 40
p26-p33 20 50

In this section we present the computational results obtained when applying three
different branch-and-cut algorithms to several SSCPLP instances. These instances can
be downloaded from website http://www-eio.upc.es/˜elena/sscplp/index.html. Table
6.5 contains their dimensions.
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The purpose of these computational experiments is not to find a branch-and-
cut algorithm that uses maximal covers and can compete against the current exact
algorithms for the SSCPLP, but to show that maximal cover identification can improve
the performance of the traditional branch-and-cut method.

The implementation platform is Microsoft Visual C++ v5.0, CPLEX v7.0 (see
[17]), and Pentium III, 667 Mhz, 320 Mb RAM.

We have run the CPLEX mixed integer optimizer by using the default rules,
except that generation of any type of cover cuts has not been allowed, a higher priority
has been assigned to variables y1, . . . , ynl

in the branching process, the relative and
absolute optimality tolerances have been set to zero, and a time limit of 30 minutes
has been imposed.

We have followed three different strategies to apply the CPLEX branch-and-cut
algorithm to the SSCPLP instances.

The first strategy is to run CPLEX alone, without identifying maximal covers.
The related computational results are given in column “CPLEX alone” of Table 6.6.

Table 6.6

Comparative computational results.

CPLEX alone CPLEX + Alg. 1 CPLEX + Alg. 2

Prob. Nodes Time Best Val. Nodes Time Best Val. M. Cov. Nodes Time Best Val. M. Cov.

p1
p2
p3
p4
p5
p6

p7
p8
p9
p10
p11
p12
p13
p14
p15
p16
p17

p18
p19
p20
p21
p22
p23
p24
p25

p26
p27
p28
p29
p30
p31
p32
p33

482322
250771

5539
349132
311654

1533

1273177
1253406
1143537
837850
748924
80999
69235

577505
1174835
1146998
187097

830052
126844
831332
839309
654600
29186
6174
337

646726
42795

456869
648881
680870
620110

2250
705161

405.13
224.98

4.07
244.36
230.91

1.54

>1800
>1800
>1800

1053.86
980.64
95.29
78.71

589.62
>1800
>1800
223.77

>1800
223.28
>1800
>1800

1402.64
56.19
12.14
1.64

>1800
89.36

1028.10
1465.69
>1800
>1800

5.93
>1800

2014
4251
6051
7168
4551
2269

• 4552
• 8455
• 2509
23112
3447
3711
3760
5965

• 7827
11543
9884

• 16799
18683

• 28382
• 8013

3271
6036
6327
8947

• 4738
10921
11117
9832

• 11757
• 4725

9881
• 41796

326
580
212
672

4397
174

165489
108733
10890
47188
14905
14607
4876

52276
7273
3029

77856

95851
39961
87011
55011
21251
3964
1726

58

159662
4278

73131
110364
66112

101200
3392

72696

1.98
3.68
1.16
2.20

15.33
1.26

>1800
>1800
63.38

359.54
97.55
43.94
14.00

188.12
51.57
24.66

286.22

>1800
132.70
>1800
>1800
114.74
14.78
5.99
0.55

>1800
13.18

203.83
>1800
>1800
>1800
10.88

>1800

2014
4251
6051
7168
4551
2269

• 4407
• 8457

2480
23112
3447
3711
3760
5965
7816

11543
9884

• 16902
18683

• 28499
• 7848

3271
6036
6327
8947

• 4855
10921
11117
• 9925

• 11314
• 4664

9881
• 43170

132
214
98

138
283
89

173
448
410
373
436
197
165
436
371
301
174

578
117
686
943
230
117
79
15

200
50
36

261
811
268
26

1073

857
1022
219
723

1316
168

5136
7831
4808
1586
5551
1352
2223

12001
8490
5259
4509

7162
519

23584
24909

879
2467
214
239

25392
2422

20368
25006
19189
11330
4829

20221

3.73
4.94
1.43
3.46
5.87
0.99

76.79
161.26
44.22
12.08
80.46
13.51
17.52

199.10
91.73
65.19
41.68

195.53
5.82

>1800
>1800
13.18
37.18
2.53
3.79

>1800
21.42

416.83
676.07
>1800
334.77
66.51

>1800

2014
4251
6051
7168
4551
2269

4366
7926
2480

23112
3447
3711
3760
5965
7816

11543
9884

15607
18683

• 26724
• 7379

3271
6036
6327
8947

• 4684
10921
11117
9832

• 11162
4466
9881

• 41343

117
189
92

214
223
56

815
976
456
276
686
391
414

1448
685
649
564

1067
162

2694
1698
315
511
86
64

2640
39

1088
1097
2523
1235
322

3222
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The second strategy is to generate a maximal cover pool whose induced inequali-
ties will be used as cutting planes. This pool is generated before starting the branch-
and-cut method. Since the 0-1 knapsack constraints

∑nc

i=1 dixij ≤ bj ∀j ∈ {1, . . . , nl}
are valid for the feasible region of problem (6.1), Algorithm 1 is applied to these
constraints imposing an upper bound on the number of maximal covers that is al-
lowed to identify for the pool in such a way that the number of maximal covers
obtained from each constraint will be approximately the same. (The Quicksort pro-
cedure has been used for sorting the coefficients d1, . . . , dnc

in nondecreasing order;
see routines “sort” and “indexx” in sections 8.2 and 8.4 of [26], respectively.) At each
branch-and-cut node, CPLEX appends to the formulation the inequalities induced
by the maximal covers from the pool that are violated by the optimal solution to
the current LP subproblem. For the instances under consideration, the best gen-
eral computational results have been obtained allowing a maximum of 6nlnc identi-
fied maximal covers for the pool. These computational results are given in column
“CPLEX + Alg. 1” of Table 6.6.

Finally, the third strategy is to apply Algorithm 2 at each branch-and-cut node
to the 0-1 knapsack constraints

∑nc

i=1 dixij ≤ bj ∀j ∈ {1, . . . , nl} to identify max-
imal covers from the set of covers implied by these constraints whose induced in-
equalities are violated by the optimal solution to the current LP subproblem, say,(
(yj)j∈{1,... ,nl}, (xij)i∈{1,... ,nc}, j∈{1,... ,nl}

)
. Whenever a maximal cover is identified,

CPLEX appends to the formulation its induced inequality. For the instances un-
der consideration, the best general computational results have been obtained taking
α = 0.95, applying Algorithm 2 only to the constraints such that

∑nc

i=1 dixij = bjyj
and yj = 1, allowing at most one identified maximal cover from each constraint at
each branch-and-cut node, and imposing a limit of 400 iterations per constraint for
setting each index jk. These computational results are given in column “CPLEX +
Alg. 2” of Table 6.6.

The headings in Table 6.6 are as follows: Nodes is the number of branch-and-cut
nodes evaluated; Time is the CPU time expressed in seconds; Best Val. is the value
of the objective function at the incumbent solution (a value preceded by • indicates
that the incumbent solution is not proved to be optimal); and M. Cov. is the number
of maximal covers whose induced inequalities have been appended to the original
formulation.

We can observe from Table 6.6 that for most of the instances under consideration,
the second and third strategies outperform the first strategy. In fact, there is only
one instance (p32) in which the first strategy is the fastest one. For those instances in
which the second strategy is the fastest (p1, p2, p3, p4, p13, p14, p15, p16, p23, p25, p27,
p28), the difference between the CPU times required by the second and third strategies
is, in general, quite small. However, for those instances where the third strategy is the
fastest (p5, p6, p7, p8, p9, p10, p11, p12, p17, p18, p19, p22, p24, p29, p31), this difference
is much bigger. Moreover, for those instances that cannot be solved to optimality
by any of the three strategies (p20, p21, p26, p30, p33), the best incumbent solution is
given by the third strategy. Thus, we propose to use the third strategy.

In the above computational experimentation, the inequalities induced by the iden-
tified maximal covers have only been used as cutting planes in a branch-and-cut frame-
work. It is likely that if they were also used in other ways for tightening the original
models (see section 2), the efficiency of our maximal covers would increase.

On the other hand, it can be expected that if the inequalities induced by our
maximal covers are treated in a similar fashion as the constraints generated in [3],
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they will also lead to a tightening of the bounds given by Lagrangian-relaxation-based
methods. If so, maximal covers could help to improve the performance of the current
exact algorithms for the SSCPLP.

7. Conclusions. In this paper a new procedure for identifying all maximal cov-
ers from the set of covers implied by a 0-1 knapsack constraint has been presented.
It does not require one to check explicitly whether a characterization for this type
of covers is satisfied; it only requires one to check whether the initial covers that it
determines are minimal with respect to the knapsack constraint under consideration.

It is well known that cover inequalities have numerous applications in 0-1 model
tightening. Therefore, our procedure can be very useful for this purpose.

A modification of this procedure to identify only maximal covers whose induced
inequalities are violated by a given fractional solution has been also presented.

Some computational experiments with randomly generated knapsack constraints
have been reported. They show that, in general, due to its large cardinality, the whole
set of maximal covers from the set of covers implied by a knapsack constraint can only
be stored when the number of variables is small enough. Consequently, we propose
to impose a limit on the number of covers that our procedure is allowed to identify
(this limit will be problem dependent). In this way, we manage to get a considerable
quantity of maximal covers with practically null computational effort.

Some computational experiments with single source capacitated plant location
problem instances have been also reported. The optimization engine CPLEX v7.0
has been used to check the efficiency of treating the inequalities induced by certain
maximal covers as cutting planes in a branch-and-cut framework. We believe that the
results show promise in solving 0-1 linear programming problems.

The utilization of our maximal covers for constraint tightening, redundancy, and
infeasibility detection and variable fixing is an area of future research.

Appendix A. Proofs of Propositions 4.8 and 4.13.

Proof of Proposition 4.8. Suppose that
∑

j∈Ā(A0
kC

) aj > b. In this case the cover

Ā(A0
kC

) is previous to A0
kC

, which contradicts Lemma 4.2. Accordingly, we must have∑
j∈Ā(A0

kC
) aj ≤ b.

Let l0 ∈ {0, . . . , pkC
− 1} and suppose that

∑
j∈Ā(A

l0
kC

)
aj ≤ b. If it can be shown

that
∑

j∈Ā(A
l0+1
kC

)
aj ≤ b, then by induction it will follow that

∑
j∈Ā(Al

kC
) aj ≤ b ∀l ∈

{0, . . . , pkC
}.

Let Al0
kC

= {j1, . . . , jkC+1} and Al0+1
kC

= {j∗1 , . . . , j∗kC+1}. By the definition of

Al0+1
kC

we have that j∗k = jk ∀k ∈ {1, . . . , k∗(Al0
kC

) − 1} and j∗
k∗(A

l0
kC

)
= j

k∗(A
l0
kC

)
+ 1.

• If j∗k + 1 = j∗k+1 ∀k ∈ {k∗(Al0
kC

), . . . , kC}, then k∗(Al0+1
kC

) = k∗(Al0
kC

) − 1

and j∗k ≤ jk ∀k ∈ {k∗(Al0
kC

) + 1, . . . , kC + 1}. Therefore
∑k∗(A

l0
kC

)−1

k=1 aj∗k =∑k∗(A
l0
kC

)−1

k=1 ajk , aj∗
k∗(A

l0
kC

)

= aj
k∗(A

l0
kC

)
+1 ≤ aj

k∗(A
l0
kC

)+1
−1,

∑kC

k=k∗(A
l0
kC

)+1

aj∗k ≤
∑kC

k=k∗(A
l0
kC

)+1
ajk and aj∗

k∗(A
l0+1
kC

)+1
−1 = aj∗

k∗(A
l0
kC

)
−1 = aj

k∗(A
l0
kC

)
.

Hence, by the definition of Ā(Al0+1
kC

), we have
∑

j∈Ā(A
l0+1
kC

)
aj ≤

∑k∗(A
l0
kC

)−1

k=1

ajk + aj
k∗(A

l0
kC

)+1
−1 +

∑kC

k=k∗(A
l0
kC

)+1
ajk + aj

k∗(A
l0
kC

)
=

∑
j∈Ā(A

l0
kC

)
aj ≤ b.
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• If ∃ k ∈ {k∗(Al0
kC

), . . . , kC} with j∗k + 1 < j∗k+1, then j∗
k∗(A

l0+1
kC

)+1
− 1 >

j∗
k∗(A

l0
kC

)
, from which m

k∗(A
l0
kC

)
(Ā(Al0+1

kC
)) = m

k∗(A
l0
kC

)
(Al0+1

kC
). Consequently,

taking C = Al0
kC

and C ′ = Ā(Al0+1
kC

) in Lemma 4.4, we can conclude that∑
j∈Ā(A

l0+1
kC

)
aj ≤ b.

Proof of Proposition 4.13. By Theorem 2.11 and Propositions 2.6 and 2.8, the
inequality induced by C is X(C) ≤ |C ′| − 1, where C ′ is the unique minimal cover
with respect to constraint (2.1) such that E(C ′) = C.

(1) Suppose that ∃ k ∈ C ′ with
∑

j∈C′\{k} aj < b. In this case, taking xj =

1 ∀j ∈ C ′ \ {k}, xj = 0 ∀j ∈ J \C ′ and xk ∈
(
0,

b−
∑

j∈C′\{k} aj

ak

]
we obtain a solution

in [0, 1]n that satisfies constraint (2.1) but not the inequality induced by C, which
is a contradiction. Consequently, we must have

∑
j∈C′\{k} aj = b ∀k ∈ C ′, hence∑

j∈C′\{γ(C′)} aj + ak > b ∀k ∈ J0 \ C and, by Theorem 2.12, it follows that C = J0.

(2) Considering that E(C ′) = C = J0, we get that C ′ = {1, . . . , |C ′|}. On the
other hand, by the proof of claim (1) above we have that

∑
j∈C′\{k} aj = b ∀k ∈ C ′,

from which aj = b
|C′|−1 ∀j ∈ C ′.

If C ′ ⊂ J0, then
∑n0−1

j=1 aj ≥
∑

j∈C′aj > b; therefore, j = n0 + 1 and k = −1 +

max {k ∈ J0 |
∑k

j=2 aj ≤ b} = |C ′| − 1. If C ′ = J0, then j = 1 and k = max {k ∈
{1, . . . , n0 − 1} |

∑n0

j=n0−(k−1)aj ≤ b} = |C ′| − 1. Accordingly, it follows that aj =
b
k

∀j∈{1, . . . , k + 1}.
(3) If k = k, then

∑n0

j=n0−(k−1)
aj ≤ b and, since aj = b

k
∀j ∈ {1, . . . , k + 1},

we have that aj ≥ b
k

∀j ∈ J0, hence
∑n0

j=n0−(k−1)
aj ≥ k b

k
= b. Therefore,∑n0

j=n0−(k−1)
aj = b, and, thus, aj = b

k
∀j ∈ {n0 − (k − 1), . . . , n0}, from which

aj = b
k

∀j ∈ J0.

Appendix B. Steps of Algorithm 1 in Example 3.
Algorithm 1 proceeds as follows when it is applied to constraint (4.1):
Step 1. k = 2, j = 8, k = 4, h = 0, j0 = 0, kC = 2.
Step 2. k0 = 1.
Step 3. j1 = 2, j2 = 6, j3 = 7, C = {2, 6, 7}.
Step 4. h = 1, C1 = {2, 6, 7}.
Step 7. k∗(C) = 1, j1 = 3, k0 = 2.
Step 3. j2 = 6, j3 = 7, C = {3, 6, 7}.
Step 4. h = 2, C2 = {3, 6, 7}.
Step 7. k∗(C) = 1, j1 = 4, k0 = 2.
Step 3. j2 = 6, j3 = 7, C = {4, 6, 7}.
Step 4. h = 3, C3 = {4, 6, 7}.
Step 7. k∗(C) = 1, j1 = 5, C = {5, 6, 7}.
Step 4. h = 4, C4 = {5, 6, 7}.
Step 8. kC = 3.
Step 2. k0 = 1.
Step 3. j1 = 1, j2 = 2, j3 = 6, j4 = 7, C = {1, 2, 6, 7}.
Step 7. k∗(C) = 2, j2 = 3, k0 = 3.
Step 3. j3 = 6, j4 = 7, C = {1, 3, 6, 7}.
Step 7. k∗(C) = 2, j2 = 4, k0 = 3.
Step 3. j3 = 5, j4 = 6, C = {1, 4, 5, 6}.



766 S. MUÑOZ

Step 4. h = 5, C5 = {1, 4, 5, 6, 7}.
Step 7. k∗(C) = 1, j1 = 2, k0 = 2.
Step 3. j2 = 3, j3 = 5, j4 = 6, C = {2, 3, 5, 6}.
Step 4. h = 6, C6 = {2, 3, 5, 6, 7}.
Step 7. k∗(C) = 2, j2 = 4, C = {2, 4, 5, 6}.
Step 4. h = 7, C7 = {2, 4, 5, 6, 7}.
Step 7. k∗(C) = 1, j1 = 3, C = {3, 4, 5, 6}.
Step 4. h = 8, C8 = {3, 4, 5, 6, 7}.
Step 8. kC = 4.
Step 2. k0 = 1.
Step 3. j1 = 1, j2 = 2, j3 = 3, j4 = 5, j5 = 6, C = {1, 2, 3, 5, 6}.
Appendix C. Steps of Algorithm 2 in Example 4.
Algorithm 2 proceeds as follows when it is applied to constraint (4.1) taking

x1 = x2 = 1, x3 = 0, x4 = 1, x5 = 2
5 , x6 = 1, x7 = 0, and α = 0:

Step 1. k = 2, j = 8, k
′
= 4, h = 0, j0 = 0, kC = 2.

Step 2. k = 1, kα = 2.
Step 3. j1 = 2.
Step 5. k = 2.
Step 3. j2 = 6.
Step 9. k = 1, j1 = 3.
Step 5. k = 2.
Step 3. j2 = 6.
Step 9. k = 1, j1 = 4.
Step 5. k = 2.
Step 3. j2 = 6.
Step 9. k = 1, j1 = 5.
Step 16. kC = 3.
Step 2. k = 1, kα = 3.
Step 3. j1 = 1.
Step 5. k = 2.
Step 3. j2 = 2.
Step 5. k = 3.
Step 3. j3 = 6.
Step 9. k = 2, j2 = 3.
Step 5. k = 3.
Step 3. j3 = 6.
Step 9. k = 2, j2 = 4.
Step 5. k = 3.
Step 3. j3 = 5.
Step 5. k = 4.
Step 3. j4 = 6.
Step 6. C = {1, 4, 5, 6}.
Step 10. h = 1, C1 = {1, 4, 5, 6, 7}.
Step 13. k∗(C) = 1.
Step 14. j1 = 2, k = 1.
Step 5. k = 2.
Step 3. j2 = 3.
Step 5. k = 3.
Step 3. j3 = 5.
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Step 9. k = 2, j2 = 4.
Step 5. k = 3.
Step 3. j3 = 5.
Step 5. k = 4.
Step 3. j4 = 6.
Step 6. C = {2, 4, 5, 6}.
Step 10. h = 2, C2 = {2, 4, 5, 6, 7}.
Step 13. k∗(C) = 1.
Step 14. j1 = 3.
Step 16. kC = 4.
Step 2. k = 1, kα = 4.
Step 3. j1 = 1.
Step 5. k = 2.
Step 3. j2 = 2.
Step 5. k = 3.
Step 3. j3 = 3.
Step 5. k = 4.
Step 3. j4 = 5.
Step 9. k = 3, j3 = 4.
Step 5. k = 4.
Step 3. j4 = 5.
Step 5. k = 5.
Step 3. j5 = 6.
Step 6. C = {1, 2, 4, 5, 6}.
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MINIMAL-TIME k-LINE BROADCASTING∗

I. GABER†

Abstract. Broadcasting refers to the process of sending a message from a source to an entire
communication network. Line broadcasting (defined by Farley [Networks, 10 (1980), pp. 59–70])
assumes that members may “switch-through” any number of calls during a time unit. Namely, two
members of the network may communicate with each other through a path as long as no link is
involved in more than one call at the same time unit. Two paths may intersect, during a given time
unit, only in vertices. A generalization of that model is the k-line-broadcasting model, which has
the same properties as the line-broadcasting model with the additional constraint that the distance
between two communicating members is at most k. The parameters to the problem are the network,
the originator, and k.

In this paper we generalize Farley’s algorithm into the k-line-broadcasting model. An algorithm
is presented which produces a k-line-broadcasting scheme for any given tree and source vertex which
consumes O(D

k
+ log2 n) time units, where n is the number of vertices and D is the distance of the

furthest vertex from the originator. This asymptotically achieves the lower bound provided.

Key words. broadcasting, k-line broadcasting

AMS subject classifications. 68W05, 94A40

DOI. 10.1137/S0895480101386620

1. Introduction. The general synchronous broadcasting problem refers to the
process of message dissemination in a communication network. One member of the
network, the originator, initiates a message that should be transmitted to all members
of the network. In local broadcasting a member can send a message (make a call) only
to an adjacent member. In line broadcasting a member that is already informed of
the message may call any other member using the communication links of any simple
path between the two with the restriction that no link is used in more than one call
at a given time unit.

The solution to the broadcasting problem is given in the form of a broadcasting
scheme. A broadcasting scheme for a network is a specification of which calls are made
during each time unit and which communication paths are used to make the calls.

When no member is involved in more than one communication call in any given
time unit and each call is completed during one time unit, the number of informed
members can at most double during each time unit. Therefore, at least �log2 n� time
units are needed for broadcasting in a network of n members. In the local broadcasting
model it is not always possible to inform all members of a network in a time of �log2 n�
(called minimum time). However, Farley [3] showed that there is a minimum-time
line-broadcasting scheme for any originator in any connected network.

In this paper a modification to the above question is raised, namely, How fast
can an originator inform a given network under the line communication model while
limiting the length (number of occupied edges) of a call by some given k?

This new model was proposed by Fujita and Farley [5]. In their paper they
constructed minimal broadcast graphs in terms of Δ (the maximum degree) and k.
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This call-length constraint is reasonable from an implementation standpoint; long-
distance calls utilize more network resources, can be more difficult to complete, are
more likely to fail, and can cause bottlenecks for other competing communication
processes.

The input to the problem is the graph, G, and k. It is natural to consider the given
graph in terms of n, the number of members, and d(G), its diameter (the maximum
distance between any pair of members) to make the upper and lower bounds tight. It
is obvious that minimum-time k-line broadcasting is not always possible. It suffices to
look at a path on n members and to put k to be 2. This paper presents an algorithm
that accomplishes the task in minimal time given the topology of the network and k.

Define the cost of a call to be the number of lines on the path between the caller
and the receiver. The cumulative cost of a line-broadcasting scheme is the sum of
the costs of all calls involved in the scheme. The problem of finding a minimum-
time line-broadcasting scheme was first introduced by Farley [3], who studied general
trees. He presented a minimum-time line-broadcasting scheme on any given tree on
n members. The cumulative cost of his scheme is at most (n− 1)�log2 n�. Following
his work, other researchers focused on specific graphs whose structure was known
in advance and presented minimum-time schemes that minimize the cumulative cost.
Specifically, Kane and Peters [6] studied the cycle on n members. Fujita and Farley [4]
discussed minimum-cost line broadcast in paths. Averbuch, Roditty, and Shoham [2]
obtained efficient line-broadcast algorithms in a d-dimensional grid, which produce a
linear cumulative cost in n, and Averbuch, Gaber, and Roditty [1] showed minimum-
time line-broadcast schemes for complete binary trees, for which the cumulative cost
is less than 2n.

2. Preliminaries. Let G = (V,E) be a connected undirected graph with n
vertices, where V and E represent the set of vertices and the set of edges of G,
respectively. For any u, v ∈ V , let d(u, v) denote the length of the shortest path
connecting u and v in the graph G, where d(u, v) is called the distance between u and
v in G. Denote by d(G) the diameter of the graph, i.e., the maximal distance between
any pair of vertices. Formally,

d(G) = max{d(u, v) | u, v ∈ G}.

For other graph theoretical concepts see [8]. All trees in this paper are assumed
to have n ≥ 2 vertices.

Definition 2.1. Let k be a positive integer (possibly a function of n). A k-line
communication is a communication model defined as follows:

1. All communications act synchronously according to a global clock.
2. At any given time, each vertex can call at most one other vertex at distance

no more than k.
3. A call succeeds if it shares no edges with another call placed at that time unit.

Note that one-line communication is equivalent to local broadcasting in which a
call can be made only between adjacent vertices and that (n−1)-line communication is
equivalent to the general line-broadcasting model in which calls may be made between
nonadjacent vertices of any distance.

Definition 2.2. A broadcast scheme in G on n vertices is said to be a minimum-
time k-line-broadcast scheme if it requires �log2 n� time units under the k-line com-
munication model.

This paper deals with given trees and designated originators. For the upper
bound for a connected graph this is sufficient, since any connected graph contains a
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spanning tree.
The following simple lemma states that a minimum-time k-line-broadcast scheme

in a tree is not always possible for a given originator.
Lemma 2.3. Let T be a tree on n vertices. Under the k-line communication

model,
1. a minimum-time broadcast scheme is always possible when d(T ) ≤ k;
2. there always exists an originator such that a minimum-time broadcast scheme

is not possible for d(T ) ≥ 2k + 1.
Proof. The first claim is trivial. If calls at distance k are allowed, then any

minimum-time line-broadcast scheme is a minimum-time k-line-broadcast scheme,
and such a scheme always exists according to Farley [3]. For the second claim, let
T be any tree on n = 2r vertices with d(T ) ≥ 2k + 1. Suppose that there exists a
minimum-time broadcast scheme. Put d = d(T ). Since n is a power of 2, every vertex
upon receiving the message must transmit it at all time units until the last one, r.
Let P = u0, u1, . . . , ud be a path of d + 1 vertices (such P always exists). The edge
(u� d

2 �
, u� d

2 �+1) cuts the original tree into two subtrees. Denote the subtrees obtained

from T by deleting the edge (u� d
2 �
, u� d

2 �+1) T� d
2 �

and T� d
2 �+1, respectively. Without

loss of generality, assume that T� d
2 �

is larger in terms of number of vertices and make

ud the originator. (Otherwise, make u0 the originator). Clearly, after the first time
unit, there are two informed vertices, both on the smaller part of the tree. Since the
edge (u� d

2 �
, u� d

2 �+1) can be used only once every time unit, by induction it is easy to

see that the number of informed vertices at the subtree rooted at u0 is always at least
two less than the number of informed vertices at the subtree rooted at ud, and hence
minimum-time line broadcast cannot be achieved.

In this paper a general graph, the originator, and the parameter k ≥ 2 are an
input to the problem. For k = 1 an optimal broadcast algorithm for trees is presented
in [7]. An algorithm is given in the next section producing a k-line-broadcast scheme
that runs in time O( d

k +log2 n). This asymptotically achieves the lower bound, which
is given in the following lemma.

Lemma 2.4. There exist networks G for which no k-line-broadcast scheme can

end before Ω(d(G)
k + log2 n) time units.

Proof. Put d = d(G) and consider a graph which is a path of length d − 1,
v0, . . . , vd−1, where the end-vertex vd−1 is a center of a star with n − d end-vertices.
Let the originator be v0. Clearly, it takes Ω( d

k ) time units for the message to reach
vd−1; after that, informing the vertices of the star takes �log2(n − d)� more time
units.

Note that if k = d we get Ω(log2 n), as proved by Farley [3].

3. k-line-broadcast scheme.

3.1. Algorithm outline. Given a tree on n vertices, a designated originator,
and a parameter k > 1, we present a k-line-broadcast scheme.

The intuition behind the algorithm is the following. The message proceeds “fast”
to “distant” parts of the network. Once there is a copy of the message “near” each
vertex, broadcast can be completed in a minimum time, since every informed vertex
is part of a group with a diameter at most k.

Definition 3.1. Given a network and an originator, let D be the distance of the
furthest vertex from the originator.

The algorithm for finding the scheme starts by partitioning the tree into levels
between 0 and D, denoted l0, . . . , lD, using the breadth first search (BFS) algorithm.
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Fig. 1. An example of three superlevels and four clusters.

Level 0 contains only the originator. Then, the levels are divided into groups of �k
2 �+1

successive BFS levels each, called superlevels, such that the first superlevel contains
levels l0, . . . l� k

2 �
, the second contains levels l� k

2 �
, . . . , l2� k

2 �
, etc., except, perhaps, for

the last group, which may not be full. Note that there is an intersection between
the highest level of a superlevel and the lowest level of its successive superlevel (see
Figure 1). The number of the superlevels is � D

� k
2 �
�. Formally, for 0 ≤ i ≤ � D

� k
2 �
�,

SLi = li� k
2 �

. . . l(i+1)� k
2 �
.

Within each superlevel, there are clusters, which are defined as follows.

For each vertex u at the lowest level of a superlevel SLi, add all the neighbors
of u at the next levels within the superlevel; i.e., a cluster is a subtree rooted at u,
containing all its descendants (see Figure 2).

Formally, for every u ∈ li·� k
2 �

define S
(i)
u as follows:

S(i)
u

def
=

{
v | v ∈ lj ∧ dist(u, v) = j −

(
i ·
⌊
k

2

⌋)
;

(
i ·
⌊
k

2

⌋)
+ 1 < j ≤ (i+ 1) ·

⌊
k

2

⌋}
.

Another way to view this definition is to consider a superlevel as a directed graph,
in which the edges are all directed from lower to higher levels. In such a setting, a

cluster at a superlevel SLi, S
(i)
u , includes all the vertices reachable from u.

This construction guarantees that each vertex at the highest level has an ancestor
at the lowest level, such that the path between them is contained within the cluster.

After building the clusters in all the superlevels, the result is a directed tree
of clusters: T (V,E). The vertices of the tree, V, are the clusters, and an edge

(S
(i)
u , S

(i+1)
v ) ∈ E exists if the root of cluster S

(i+1)
v is a leaf of S

(i)
u . The cluster S

(i)
u

is called the parent of S
(i+1)
v , and S

(i+1)
v is called the child of S

(i)
u .
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Fig. 2. An example of a weighted tree.

The next stage is giving each cluster a weight. The weight of a cluster is the
number of clusters in its subtree, i.e., the number of its descendants including the
node itself.

Definition 3.2. Let c ∈ V be a cluster in T . Define Tc to be the subtree rooted
at c produced by deleting the edge connecting c and its parent. Define W(c) to be the
number of vertices in Tc, namely, W (c) =| Tc |.

This weight function acts as a priority function: according to the weights, the
cluster chooses which group of its children gets the message first, which gets it second,
and so on. This is done using the informing-children procedure described below. The
procedure produces a scheme for informing a group of x children in �log2(x+1)� time
units.

Once there is at least one informed vertex at each cluster, broadcast can be done
in parallel using the minimum-time line-broadcast scheme presented by Farley [3].
Note that each cluster’s diameter is at most k; therefore, any broadcast scheme is
a k-line-broadcast scheme inside a cluster. Also, since the clusters are edge-disjoint,
no line-use conflicts occur. The broadcast scheme for each cluster’s root is composed
of two processes: passing the message to its children according to their weights and
informing the rest of the cluster’s vertices. The next subsections explain the different
stages of the algorithm. Section 3.2 specifies the scheme of informing a cluster’s
children, and section 3.3 gives the scheme in detail.

3.2. Informing-children procedure. This procedure receives a tree T , with a
known diameter which is at most k, such that any line broadcast scheme is a k-line
broadcast scheme on it. The root of the tree is the originator that knows the message.
Given a group of leaves of size x, the goal is to inform all the leaves in minimum time,
i.e., �log2(x + 1)� time units.

Assume, for simplicity, that the number of involved vertices, the root and the
group of leaves, is a power of 2, i.e., x + 1 = 2r, r ≥ 0. (This is also the case in the
proposed broadcast scheme.) The procedure is composed of r steps, such that in each
step the number of informed vertices is doubled.
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Definition 3.3. A step of the scheme is the collection of calls taking place in
a single time unit. An active vertex in a given step of the scheme is a vertex that
participates in the calls that take place during that time unit. An idle vertex is a
nonactive vertex.

The algorithm for producing the scheme starts at the last step, r. The algorithm
repeatedly applies the coupling procedure, which is described in detail below, each
time reducing the number of active vertices by half, until there is one remaining
vertex in T , the root. Every instance of the coupling procedure divides the active
vertices into couples while avoiding line-use conflicts; i.e., no edge may belong to
more than one call at the same time unit. Each of the couples is designated for a call
at the next time unit of the scheme. After each step, the algorithm arbitrarily picks
one of each couple to be active (the root must always be active), and the other to be
idle, and calls the procedure again.

The actual scheme begins at step 1. A call at step i between a couple chosen by
the coupling procedure is actually a call between an active vertex of step i − 1 and
an idle vertex of step i− 1, meaning the active one already has received the message
and is informing the other vertex at time unit i.

3.2.1. The coupling procedure.
input : tree T containing active and idle vertices
output : A list of pairs of active vertices

make an empty list
while (T not empty)

1. If there is an idle leaf—prune it from the tree.
2. If there is an even-size group of active leaves sharing the same parent with

no nonleaf siblings—
• Divide the leaves arbitrarily into couples.
• Add the couples to the list.
• Prune the leaves from the tree.

3. If there is an odd-size group of active leaves sharing the same parent with no
nonleaf siblings—

• Divide the leaves arbitrarily into couples until there is one leaf with no
pair.

• Add the couples to the list.
• Prune the couples from the tree.
• If the parent is an active vertex—Couple the remaining active leaf with

the parent, add them to the list and prune them both from the tree.
Otherwise—exchange the leaf with its parent and remove the edge that
connects them.

3.2.2. The informing-children scheme. Mark x leaves and the root in T as
active, and the rest of the vertices as idle. For i:= r to 1 do

1. list[i]=Coupling (T ).
2. Schedule all couples in list[i] to make calls during the ith time unit.
3. Pick one from each couple and mark it idle.

The next sections deal with the correctness of the scheme.

3.2.3. Proof of correctness.
Lemma 3.4. The coupling procedure ends and outputs all active vertices divided

into couples, with no line-use conflicts.
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Proof. It is easily seen that in each move of the coupling procedure we can
always find at least one of the cases described above. Moreover, in every stage of the
algorithm we prune vertices until we remain with an empty tree and the procedure
ends.

Note that whenever we prune two leaves that share the same parent (cases 2 and
3), the two edges that connect them to the parent are used only for the communication
between the two members. Also, in the case in which we match a leaf with its active
parent (case 3), the edge between them is used only for the call made between them.

Finally, when we switch an active leaf with its idle parent (case 3), the edge that
connects them is not needed for any other pair; therefore, once we find a match for
the leaf, this edge will be used by that pair only. In summing, no line-use conflicts
occur in the scheduling scheme.

Lemma 3.5. The main procedure produces a legal k-line-broadcast scheme that
terminates after all vertices of the tree know the message.

Proof. The algorithm starts with one active vertex, the root. At every stage, the
number of active vertices is doubled. Therefore, after time unit i (1 ≤ i ≤ r) there are
indeed 2i informed vertices. Recall as well that the procedure is applied to a cluster
with a known diameter, which is at most k; therefore any line-broadcast scheme is a
k-line-broadcast scheme on it.

Remark. In the case where 2r−1 < x + 1 < 2r vertices, we add fictitious vertices
(x+2), . . . , 2r arbitrarily to one of the leaves. The first step of the scheme may couple
fictitious vertices with regular ones. In case a vertex is coupled with a fictitious vertex
it does nothing during this time unit. Note that starting from step 2 the number of
active vertices is a power of 2, namely, 2r−1, so the algorithm continues normally.
The number of time units needed is therefore �log2(x + 1)�.

3.3. The k-line-broadcast scheme. Given a tree T , the preprocessing of it
produces a tree, T , of weighted clusters, each with a diameter of at most k.

Every cluster starts by sorting its children from the child with the maximal weight
to the child with the minimal weight, W (c1) ≥ W (c2) ≥ W (c3), etc. Then, it divides
the children into groups. The “heaviest” child, namely c1, belongs to G0. If there are
more children, the next 3 children, c2, c3, c4, belong to G1, G2 contains the next 15
children, and so on. In general, |Gi| = 22i − 1, except, of course, for the last group,
which may not be full.

The groups receive the message one after the other using the informing-children
scheme, which is applied as many times as the number of groups, which can be no
more than log2 log2 n.

Summing up, the scheme for a root of a cluster contains two stages upon receiving
the message:

1. Inform the children, from group G0 on, using the scheme of the informing-
children procedure.

2. Inform the other vertices of the cluster using minimum-time line-broadcast
scheme (see [3]).

A vertex which is not a root of a cluster, upon receiving the message, acts ac-
cording to the minimum-time line-broadcast scheme within its cluster.

3.4. Computing the total time of the broadcast scheme. In this section
we prove our main result.

Theorem 3.6. The proposed k-line-broadcast scheme ends within at most O(Dk +
log2 n) time units.
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The proof is divided into two parts. Every cluster is shown to receive the message
after O(Dk +log2 n) time units, and once the root of a cluster has received the message,
the cluster can complete broadcast within O(log2 n) more time units.

The first part is proved by induction on the height of the tree, � D
� k

2 �
�. Let m be

the number of clusters. Since m < n, the final result uses n as the parameter. The
next lemma refers to the clusters tree assumed to have m vertices.

Lemma 3.7. The proposed broadcast scheme applied on a tree of m vertices and
height h ends after at most 4(h + �log2 m�) time units.

Proof. For the base of the induction consider a tree on m vertices and height 1.
This is a tree with one root and m− 1 children, a star.

Using the scheme, the children are divided into groups such that |Gi| = 22i − 1
(except, perhaps, for the last group, which may be not full), and the number of groups
is therefore less than or equal to �log2 log2 m�.

The informing-children scheme applied on a group of x children ends after �log2(x+
1)� time units.

Thus, informing Gi takes at most 2i time units. Summing the time units needed
to inform all children, we get

∑
i

Time(Gi) ≤
log2 log2 m∑

i=0

2i < 2 log2 m < 4(1 + �log2 m�).

Assume the claim is true for some height h− 1 and consider a tree on m vertices
and height h. Let c be the one child of the root that needs the largest number of time
units to finish broadcast in its subtree. That is, the last of the leaves to receive the
message is a descendant of c. Let c ∈ Gi for some i.

If i = 0 (c is the heaviest child, c1), according to the induction assumption the
child, which is a tree of height h − 1 and m − 1 children finishes broadcast after at
most 4(h− 1) + 4�log2(m− 1)� time units, adding the time unit it takes for the root
to pass the message to c the total time is less than 4h+ 4�log2 m� time units and the
claim holds.

Otherwise i ≥ 1. The number of children that receives the message before c (and

obviously their weight is greater than that of c) is therefore at least
∑i−1

j=0 |Gj | =∑i−1
j=0(2

2j − 1) > 22i−1 − 1, meaning the number of vertices in c’s subtree is at most
m

(22i−1−1)
.

Given the induction assumption, the total time for c to finish is therefore 4(h −
1) + 4�log2(

m

(22i−1−1)
)� ≤ 4h− 4 + 4�log2 m� − 2i+1 + 4 = 4h + 4�log2 m� − 2i+1.

Now, since c ∈ Gi, the worst case is that it gets the message last of its group,
and certainly after the previous groups. Therefore the time units it takes until the
message reaches c is at most

i∑
j=0

Time(Gj) =

i∑
j=0

2j < 2i+1.

Adding both results, the last vertex to receive the message gets it at most by time

4h + 4�log2 m� − 2i+1 + 2i+1 = 4h + 4�log2 m�.

Proof of Theorem 3.6. Lemma 3.7 proves that the root of every cluster receives
the message after at most 4(h + �log2 m�) time units. Since h = � D

� k
2 �
�, it means
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that a cluster receives the message after O(Dk + log2 n) time units. Now, since every
cluster contains at most n vertices (the worst case is that there is one cluster in the
tree), using the minimum-time line broadcast, broadcast has be shown to take �log2 n�
time units (see [3]). Once every cluster receives the message, all clusters’ roots can
broadcast in parallel within the clusters with no line-use conflicts. The total time of
the scheme is therefore O(Dk + log2 n) time units.

Acknowledgments. I would like to thank my advisors, Professor Amir Aver-
buch and Professor Yehuda Roditty, for their great help in writing this paper.
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HYPERCUBES AS DIRECT PRODUCTS∗
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Abstract. Let G be a connected bipartite graph. An involution α of G that preserves the
bipartition of G is called bipartite. Let Gα be the graph obtained from G by adding to G the natural
perfect matching induced by α. We show that the k-cube Qk is isomorphic to the direct product
G×H if and only if G is isomorphic to Qα

k−1 for some bipartite involution α of Qk−1 and H = K2.

Key words. direct product, hypercube, automorphism, involution
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1. Introduction. This paper is concerned with hypercubes and the direct prod-
uct of graphs. The main result is the characterization of all graphs G for which G×K2

is a hypercube and the proof of the fact that there are no other factorizations of the
hypercube with respect to the direct product.

The paper was motivated by the problem of representing median graphs—that is,
retracts of hypercubes—as direct products [2]. In this context the first question per-
tains to the possibility of decomposing the hypercube itself. The original proof of the
result was unwieldy and long but could be considerably simplified by the application
of ideas connected with the density of subgraphs of sparse graphs, together with the
concept of the Cartesian skeleton [10, 11], which was introduced for the investigation
of the direct product.

The paper illustrates the importance and applicability of Graham’s density lemma
and adds to the numerous interesting properties of the hypercube, which plays a
prominent role in many areas of mathematics and computer science; see, e.g., the
papers [8, 16, 20] on networks, routings, and flows, respectively. It may also shed some
light on the decomposition of bipartite graphs with respect to the direct product.

The direct product, together with the Cartesian, the strong, and the lexicographic
product, is one of the four standard graph products [11]. It is the natural product in
the category of graphs [7] and harbors intriguing and challenging problems. Foremost
of all is Hedetniemi’s conjecture, which asserts that the chromatic number of the
direct product is the minimum of the chromatic numbers of its factors. It is the big
open problem in the area and has led to many different approaches and new concepts;
cf. surveys [17, 21]. More generally, the direct product is a widely used tool in the
area of graph colorings; see, for instance, [6, 22, 23]. It is also replete with interesting
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ideas and concepts relating to other areas of graph theory, for example to matching
theory [1, 9] and stability in graphs [3, 13].

This product has been introduced and studied from several points of view and
is known under many different names, for instance as the cardinal product, the Kro-
necker product, and the categorical product. Moreover, it is universal in the sense
that every graph is an induced subgraph of a suitable direct product of complete
graphs [15].

In 1971 McKenzie [14] proved that finite, nonbipartite, connected graphs have
unique prime factor decomposition (UPFD) with respect to the direct product in the
class of undirected graphs with loops. Many years later, in 1998, this result was
extended in [10] by showing that the UPFD can be found in polynomial time. For
disconnected graphs or bipartite graphs the prime factorizations need not be unique.
It is also not unique for finite nonbipartite graphs in the class of simple graphs without
loops.

Despite the extensive and deep investigations of the direct product, factorizations
of bipartite graphs have rarely been investigated. If a bipartite graph is a direct
product of two graphs, one factor must be bipartite, but not the other. (The direct
product of two connected bipartite graphs consists of two connected (bipartite) com-
ponents [19].) This also holds for the hypercube, and we cannot directly apply the
above results to our problem. Nevertheless, the concept of the Cartesian skeleton
that proved useful in the nonbipartite case can be fruitfully applied here, too. In the
nonbipartite case the Cartesian skeleton is connected, but not in the bipartite one,
and this accounts for the nonuniqueness of the factorizations.

In the remainder of the section we fix terminology and notation. All graphs
considered here are undirected, finite graphs that may contain loops.

The direct product G × H of two graphs G and H is defined on the Cartesian
product V (G) × V (H) of the vertex sets of the factors. Its edge set is the set of all
pairs of vertices (a, x), (b, y) ∈ V (G) × V (H), where ab ∈ E(G) and xy ∈ E(H). It is
commutative and associative, and the one-vertex graph with a loop is a unit.

The Cartesian product G�H has the same vertex set as the direct product. Its
edge set consists of all pairs (a, x), (b, y) with ab ∈ E(G) and x = y, or a = b and
xy ∈ E(H). It is also commutative and associative. Its unit is K1.

The subgraph of G�H induced by the vertices (a, x), x ∈ V (H), is called an
H-layer of G�H and denoted by H(a,x). Note that any H-layer is isomorphic to H.
Analogously one defines G-layers. The d-dimensional hypercube or d-cube Qd is the
Cartesian product of d copies of the complete graph K2 on two vertices. So Q1 = K2

and we also set Q0 = K1. Let Qd−1�K2 be an arbitrary factorization of Qd. The
edges between the two Qd−1-layers are said to be of the same color or parallel in Qd.

Let V (Qd) = X + Y be the bipartition of Qd. Then the halved cube Q′
d is the

graph with V (Q′
d) = X, where u is adjacent to v in Q′

d if u and v have a common
neighbor in Qd. A subgraph H of G is called spanning if V (H) = V (G).

The concept of layers is defined analogously for the direct product. In the case
of the direct product the layer H(a,x) is isomorphic to H only if a carries a loop (in
G); otherwise the edge-set of H(a,x) is empty.

2. Graham’s density lemma for hypercubes. At a first glance the hyper-
cube looks simple, and from many points of view this is true. Nevertheless, it has a
rich subgraph structure. For example, if one subdivides every edge of a given graph
G on n vertices into a path of length two and adds a vertex that is adjacent to the
original n vertices of G, then the resulting graph can be isometrically embedded into
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Qn; see [12]. This ambivalence between simplicity and structure definitely adds to its
attractiveness.

As the number |Qk| of vertices of Qk is 2k and the number of edges k2k/2, the
density of Qk; that is, the quotient |E(Qk)|/|Qk| is k/2. This is rather small if one
considers the fact that the complete graph on the same number of vertices as Qk has
density (2k − 1)/2. More important, this sparseness is inherited by the subgraphs of
the hypercube.

Before formulating the lemma, we note that the statement |E(Qk)| = 1
2 |Qk| ·

log2 |Qk| is equivalent to the assertion that the density of Qk is k/2.
We are now ready for Graham’s density lemma from [5]. We include a proof

(modelled after the proof given in [11]) because its main idea appears again in the
proof of Lemma 2.

Lemma 1 (density lemma). Let G be a subgraph of a hypercube. Then

|E(G)| ≤ |G|
2

log2 |G|,(2.1)

with equality holding if and only if G is a hypercube.
Proof. The proof is similar to that of [11, Proposition 1.24]. Let G be a subgraph

of Qk. We proceed by induction on k. The assertions of the lemma are true for k = 1
and 2. Suppose they are true for k ≥ 2 and that G is a subgraph of Qk+1 = Qk�K2.
If G meets only one Qk-layer, then the assertion is true by the induction hypothesis.
Thus both intersections G1 and G2 of G with the Qk-layers are nonempty. Let the
notation be chosen such that x = |G1| ≥ |G2| = y ≥ 1. Again by the induction
hypothesis |E(G1)| ≤ x

2 log2 x and |E(G2)| ≤ y
2 log2 y. Since every vertex of G2 has

at most one neighbor in G1 the number z of edges between G1 and G2 is at most y.
We thus have

|E(G)| ≤ x

2
log2 x + z +

y

2
log2 y.(2.2)

Since z ≤ y and 1
2 (x + y) log2(x + y) = 1

2 |G| log2 |G| it suffices to show that

x

2
log2 x + y +

y

2
log2 y ≤ x + y

2
log2(x + y)(2.3)

and that equality holds in (2.1) if and only if G is a hypercube.
We show the validity of inequality (2.3) first. It is clearly true for x = y; in this

case the equality sign holds. We now fix y and increase x. Comparing the partial
derivatives with respect to x on both sides of (2.3) we arrive at the inequality

1

2
log2 x +

1

2
log2 e <

1

2
log2(x + y) +

1

2
log2 e.

This means that the right side grows strictly faster than the left and in (2.3) equality
only holds for x = y.

Now, suppose |E(G)| = 1
2 |G| log2 |G|. Then the equality sign must hold every-

where, z = y and x = y. Also, |E(G1)| must be x
2 log2 x, just as |E(G2)| must be

y
2 log2 y. By the induction hypothesis both G1 and G2 are hypercubes. Since x = y
they have the same dimension, and z = y implies that G is the Cartesian product of
a hypercube of dimension log2 x by a K2, with the layers G1 and G2.

This completes the proof, because equality clearly holds in (2.1) if G is a hyper-
cube.
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This result has been generalized by Squier, Torrence, and Vogt [18] to Cartesian
products of complete graphs. They prove that subgraphs G of the k-fold Cartesian
product of Kp have at most 1

2 (p − 1)|G| logp |G| edges, with equality holding if and
only if G is a Cartesian power of Kp.

3. Factorizations of hypercubes. We continue with the investigation of the
structure of the graphs G with Qk = G×K2. It is easy to see that every hypercube Qk

of dimension k > 0 can be represented as a nontrivial direct product G×K2, where
G is obtained from Qk−1 by addition of a loop to every vertex. This is a special case
of the following lemma.

Lemma 2. Let Qk = G×K2. Then G has a spanning hypercube.
Proof. Let V (K2) = {b, w}. For convenience we color b black, w white, and assign

the same colors to the vertices of Qk that are mapped into b and w, respectively.
Moreover, for x = (g, b) and y = (g, w) we set x′ = y and y′ = x.

We proceed by induction on the size of G. It suffices to show that Qk has a
factorization Qk−1�K2 such that both Qk−1-layers are mapped injectively into G.
Clearly the theorem is true for Q1. In this case G is the graph on one vertex with a
loop and Qk−1 in the decomposition Qk−1�K2 is Q0 = K1.

Suppose it is true for all Qi with 1 ≤ i < k. Let Qk = G × K2 be a given
factorization. We consider all decompositions Q�K2 of the given Qk, where Q is a
(k − 1)-dimensional hypercube. Without loss of generality we can assume that Q is
a subgraph of Qk. In the rest of the proof let pG denote the projection map onto G.
If pG projects Q injectively into G there is nothing to show. Furthermore, since the
color classes in a regular bipartite graph have the same size, the numbers of black and
white vertices of Q are equal.

Suppose there is a Q whose projection pGQ meets exactly half the vertices of G.
By induction Q has a (k− 2)-dimensional subcube H that is mapped injectively into
pGQ. Let Hb be the set of the black vertices of H and Hw be its set of white ones.
Note that H ′

b ∪H ′
w also spans a subcube of Q with dimension k− 2. We denote it by

H ′; it is the other H-layer in the decomposition H�K2.
Let Q be the second Q-layer of Qk and F be the set of edges between Q and Q;

we color them blue. The blue edges induce matchings between H and H and between
H ′ and H ′. With every edge uv from a vertex u ∈ H to a vertex v ∈ H the pair u′v′

is an edge from H ′ to H ′. Hence pGH = pGH ′. Since the union of these projections
is pGQ all three projections are equal. Thus pG(H ∪H) = V (G) and H ∪H induces
a hypercube of dimension k − 1.

In the remaining case there is a nonempty part A of Q with pGAb = pGAw and
a nonempty part B that maps injectively into G. In other words, the sets pGBb

and pGBw are disjoint and at least one of them is nonempty. Since Q has the same
number of vertices as G this means that there is a further nonempty part C of Qk

with pGCb = pGCw. Of course this is only possible if k ≥ 3, which we will assume
henceforth. A simple calculation shows that |A| = |C|. The corresponding situation
of this last case is schematically shown in Figure 1.

We wish to show now that A and B are hypercubes of dimension k − 2. We
introduce the notation x = |A|, y = |B| and show first that the number of edges
between A and B is at most min(x, y). By the definition of the direct product the
number of edges between A and B is the same as the number of edges between A′

(which is A) and B′.
For an estimate we consider Q, the second layer of Q. It is spanned by the union

of B′ and C. This means that the number of edges between A and B′—they are part
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A
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Fig. 1. Situation from the proof; Q = [A ∪B] is brighter and Q = [B′ ∪ C] darker.

of the matching between Q and Q—is at most min(x, y).
By the density lemma 1

2x log2 x+ min(x, y) + 1
2y log2 y is an upper bound for the

number of edges in Q, but the latter equals 1
2 (x+y) log2(x+y) since Q is a hypercube.

We thus arrive at the inequality

x

2
log2 x + min(x, y) +

y

2
log2 y ≥ x + y

2
log2(x + y).

As the proof of the density lemma shows this is only possible if both sides are equal,
x = y, and both A and B are hypercubes.

Thus, A and B have the same size x and are hypercubes of dimension k − 2.
Moreover, there are exactly x edges between them and they form a matching. We
color them red. By the matching between Q and Q they correspond to edges in Q
that we also color red; cf. Figure 1, which schematically shows the matchings of red
edges by unbroken lines. The edges of the matching between Q and Q we color blue.
These edges have the same projections into G as the red ones and are indicated in
the picture by broken lines.

By the induction hypothesis there is a color in A, call it green, whose removal
decomposes A into two hypercubes that are projected injectively into G by pG. Let us
remove all edges from Qk that are parallel to the green edges in A. The resulting graph
consists of two hypercubes of dimension k−1. Let H∗ be one of these components. We
wish to show that H∗ projects injectively into G. To see this, we consider A∗ = A∩H∗

and extend it to B∗ = B ∩ H∗ by the matching induced by the red edges and to
B′∗ = B′ ∩H∗ by the matching induced by the blue ones. The matching to C∗ can
then be effected either from B∗ by blue edges or B′∗ by red ones; cf. Figure 2.

Note that Ab \ A∗ and A∗
w have the same projections into G. Since the red and

blue edges also have the same projections into G one sees that B′
b \B′∗ and B∗

b have
the same projections too, from which we infer that B′∗

b and B∗
b have different ones.

Continuing this way it is easily seen that H∗ projects injectively into G.
An involution of a graph is an automorphism of order two. For a bipartite graph

G with bipartition V (G) = X + Y we call an involution α bipartite if α(X) = X. For
a bipartite involution α we let Gα denote the graph obtained from G by addition of
the perfect matching {uv | u = α(v), v ∈ V (G)}.

Theorem 3. The hypercube Qk is representable as a product of the form G×K2

if and only if G is isomorphic to Qα
k−1 for some bipartite involution α of Qk−1.
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B'
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C

Fig. 2. Situation from the proof; H∗ is indicated brighter.

Proof. Recall that the vertices of Qk can also be represented as strings from
{0, 1}k and that all vertices with an even number of 1’s form one of the bipartition
sets of Qk. Clearly, any two such vertices have even distance.

Suppose that G×K2 is a k-cube. By Lemma 2, G contains Qk−1 as a spanning
subgraph; we denote it by S. Then S ×K2 is a subgraph of G×K2 that consists of
two disjoint hypercubes Qk−1, say S1 and S2. As G ×K2 is isomorphic to Qk, each
vertex x of S1 is incident with an edge from (G×K2)\ (S×K2) that connects x with
a vertex y of S2. Hence the distance in S between pG(x) and pG(y) must be even.
Moreover, the edges between S1 and S2 induce an isomorphism between S1 and S2,
so their projections to G induce an automorphism α of Qk−1 which maps each vertex
v to a vertex α(v) with even distance from v. Also, the projections of the edges from
(G×K2) \ (S ×K2) form a perfect matching of G. We conclude that α is a bipartite
involution of G.

For the converse it suffices to show that every Qα
k−1 × K2 is isomorphic to

Qk.

If we are interested only in simple graphs G that factor Qk with respect to the
direct product, it suffices to restrict attention to fixed point free involutions α. We
state this as a corollary.

Corollary 4. The hypercube Qk is representable as a direct product G×K2 of
a simple graph G by K2 if and only if G is isomorphic to Qα

k−1 for some fixed point
free bipartite involution α of Qk−1.

4. The direct product representations of Qk. To find all representations of
Qk as a direct product we first note that no two vertices of Qk have the same set of
neighbors. Such graphs are called thin; their prime factorizations with respect to the
direct product are similar to the prime factorizations of graphs with respect to the
Cartesian product. For any thin graph G one can show the existence of a Cartesian
skeleton H. It is defined on the vertex set of G, is invariant under automorphisms of G,
and, most important, to any decomposition G1×G2 of G corresponds a decomposition
H1�H2 of H such that the vertex-sets of the Gi-layers of G are the vertex-sets of the
Hi-layers of H. In particular, this means that G is prime with respect to the direct
product if its Cartesian skeleton H is prime with respect to the Cartesian product.

The Cartesian skeleton was introduced in [10] (see also [11]) to investigate the
decomposition properties of graphs with respect to the direct product. It led to a
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polynomial algorithm for the prime factorization of nonbipartite connected graphs
with respect to the direct product and to a new proof of the uniqueness of this
decomposition for such graphs. It generalizes ideas of Feigenbaum and Schäffer [4],
who presented a polynomial algorithm for the prime factorization of connected graphs
with respect to the strong product and a new proof of its uniqueness.

For Qk we cannot apply the result in full strength, because the Cartesian skele-
ton of bipartite graphs is disconnected, whereas it is connected in the nonbipartite
case. However, we can use the results of [11, Lemmas 5.34 and 5.35], which hold for
Cartesian skeletons in general.

In particular, we can apply the fact from [11, Lemma 5.35] that two vertices x
and y are an edge of the Cartesian skeleton if the intersection N(x, y) = N(x)∩N(y)
of the neighborhoods N(x) of x and N(y) of y is strictly maximal in the set N (x) =
{N(x, y) |N(x, y) �= ∅}.

Proposition 5. The Cartesian skeleton of Qk consists of two (isomorphic)
halved cubes H1 and H2.

Proof. Any two vertices x and y with intersecting neighborhoods N(x) and N(y)
have distance two; the intersection N(x, y) = N(x) ∩N(y) has exactly two elements
(for k > 1) and N(x, y) = N(x, z) if and only if x = y. This implies that every
N(x, y) is strictly maximal in the set N (x) = {N(x, y) |N(x, y) �= ∅}. Therefore xy
is an edge of the Cartesian skeleton H of Qk if and only if d(x, y) = 2. Thus the
Cartesian skeleton H of Qk consists of the two halved cubes H1 and H2.

Clearly H is disconnected because Qk is bipartite. Nevertheless, every factoriza-
tion of Qk with respect to the direct product induces a factorization of H with respect
to the Cartesian product. This means that Qk cannot be a product of more factors
with respect to the direct product than H with respect to the Cartesian one. We
therefore decompose H first.

Either any two edges ab and ac of a halved cube are in a triangle abc or there
are two triangles abd and adc (with the common edge bd). This implies that every
halved cube is prime with respect to the Cartesian product. Thus, the only possible
factorization of H with respect to the Cartesian product is H1�D2, where D2 is the
graph on two vertices without edges or loops.

For Qk this implies that it can only be decomposed into a product G×K of two
factors, where K is a graph on two vertices: where V (H1) projects onto one vertex of
K and V (H2) onto the other. Since no pair of vertices in either H1 or H2 is adjacent
in G, we infer that K cannot have loops.

Moreover, both G and K must be connected because Qk is. We thus show the
following proposition.

Proposition 6. Every factorization of Qk with respect to the direct product is
of the form G×K2. All such graphs G are prime with respect to the direct product.

Together with Theorem 3 we can summarize our findings in the following theorem.

Theorem 7. Every decomposition of the hypercube Qk into a direct product has
exactly two factors. One factor is always K2 and the other one any of the graphs
Qα

k−1 for a bipartite involution α of Qk−1.

It would be interesting to enumerate the bipartite involutions of Qk as well as the
factorizations of Qk with respect to the direct product. These questions are open.

We wish to conclude with the remark that nonunique factorizations can easily be
found, also for factors different from K2. For example, the direct product of a path
Pn with a triangle is isomorphic to the product of Pn by a path of length two with
loops added to the endpoints; cf. Figure 3 where an isomorphism is indicated for the
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case n = 5.

1 1

2 2

3 3

4

4

5 5

6

67 7

8 8

9 9

10

10

11 11

12

1213 13

14 14

15 15

Fig. 3. Isomorphic direct products.
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[15] J. Nešetřil, Representations of graphs by means of products and their complexity, in Math-

ematical Foundations of Computer Science, 1981 (Štrbské Pleso, 1981), Lecture Notes in
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SMALL CONTINGENCY TABLES WITH LARGE GAPS∗

SETH SULLIVANT†

Abstract. We construct examples of contingency tables on n binary random variables where the
gap between the linear programming lower/upper bound and the true integer lower/upper bounds
on cell entries is exponentially large. These examples provide evidence that linear programming may
not be an effective heuristic for detecting disclosures when releasing margins of multiway tables.

Key words. disclosure limitation, integer programming, Gröbner basis, contingency table
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1. Introduction. A fundamental problem in data security is to determine what
information about individual survey respondents can be inferred from the release of
partial data. The particular instance of this problem we are interested in concerns
the release of margins of a multidimensional contingency table. In particular, given
a collection of margins of a multiway table, can individual cell entries in the table be
inferred? This type of problem arises when statistical agencies like census bureaus
release summary data to the public, but are required by law to maintain the privacy
of individual respondents.

Many authors [1, 2, 3] have proposed that an individual cell entry is secure if,
among all contingency tables with the given fixed marginal totals, the upper bound
and lower bound for the cell entry are far enough apart. In general, solving the integer
programs associated with finding the sharp integer upper and lower bounds on a cell
entry is known to be NP-hard. A heuristic which has been suggested for approxi-
mating these upper and lower bounds is to solve the appropriate linear programming
relaxations. Based on theoretical results for 2-way tables and practical experience for
some small multiway tables, some authors have suggested that the linear programming
bounds and other heuristics [1, 2, 5] should always constitute good approximations to
the true bounds for cell values.

In this paper, we attempt to refute the claim that the linear programming bounds
are, in general, good approximations to the true integer bounds. In particular, we
will show the following theorem.

Theorem 1. There is a sequence of contingency tables on n binary random
variables and a collection of margins such that the gap between the linear programming
lower (upper) bounds and the integer programming lower (upper) bounds for a cell
entry grows exponentially in n.

For instance, on 10 binary random variables, our construction produces an in-
stance where this difference is more than 100. This constitutes a significant discrep-
ancy between the heuristic and reality, in a problem of size which is quite small from
the practical standpoint. In previous work with Develin [4] we constructed a family
of examples which imply that the gap grows at least linearly in the number of random
variables.

∗Received by the editors May 25, 2004; accepted for publication (in revised form) September 16,
2004; published electronically May 13, 2005.

http://www.siam.org/journals/sidma/18-4/44409.html
†Department of Mathematics, University of California, Berkeley, CA 94720–3840 (seths@math.
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The outline of this paper is as follows. In the next section we review hierarchical
models and the algebraic techniques that we will use to construct our examples. The
third section is devoted to the explicit construction, and in the fourth section we
discuss practical consequences of our examples.

2. Hierarchical models, Gröbner bases, and Graver bases. A hierarchical
model is given by a simplicial complex Δ on the n-element set [n] := {1, 2, . . . , n}
together with an integer vector d = (d1, . . . , dn). In the setting of probabilistic
inference, a hierarchical model is intended to encode interactions between a collection
of n discrete random variables: the number of states of the ith random variable is
di and there is an interaction factor between the set of random variables indexed
by each F ∈ Δ (see, for example, [9] for an introduction). From the standpoint of
data security, n is the number of dimensions of a multiway contingency table, the di
represent the number of levels in each dimension, and the elements F ∈ Δ index the
particular margins that are released. For the rest of this paper di = 2 for all i; that
is, we are considering dichotomous tables or binary random variables.

Computing the Δ-margins of a multiway table is a linear transformation. We
denote by AΔ the matrix in the standard basis that computes these margins. An
explicit description of the construction of these matrices appears, for example, in [8].

Example 2. Consider the simplicial complex Γ4 on [3], Γ4 = {{1}, {2}, {3}}. In
other words, this simplicial complex consists of three isolated points; however, we
could also describe this as the union of the boundary of a 1-simplex and an isolated
point. The second interpretation plays a crucial role in the proof of the main theorem.

The 6 × 8 matrix AΓ4 computes all the 1-way margins of a 3-way table. It is the
following matrix:

AΓ4 =

⎛⎜⎜⎜⎜⎜⎜⎝

000 001 010 011 100 101 110 111

{1}, 0 1 1 1 1 0 0 0 0
{1}, 1 0 0 0 0 1 1 1 1
{2}, 0 1 1 0 0 1 1 0 0
{2}, 1 0 0 1 1 0 0 1 1
{3}, 0 1 0 1 0 1 0 1 0
{3}, 1 0 1 0 1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠.

Finding the minimum value for the (0, 0, . . . , 0) = 00 · · · 0 = 0 cell entry given
the Δ-margins b amounts to solving the following integer program, which we denote
IPΔ:

Minimize u0 subject to AΔu = b,u ≥ 0, and u integral.

The linear programming relaxation drops the integrality condition. We denote it by
LPΔ:

Minimize u0 subject to AΔu = b and u ≥ 0.

The integer programming gap gap−(Δ) is the largest difference between the optimal
solution of IPΔ and LPΔ over all feasible marginals b [6]. Explicitly computing the
integer programming gap is a difficult problem, even for quite small models Δ. How-
ever, using properties of Gröbner bases, it is sometimes possible to produce nontrivial
lower bounds on this gap. Here is a rough definition of a Gröbner basis.

Definition 3. A reduced Gröbner basis GΔ,c of AΔ with respect to the cost
vector c is a minimal set of improving vectors that solves the integer program IPΔ,c

for any feasible right-hand side b.
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In the literature of discrete optimization, Gröbner bases are often called test sets.
A lower bound on gap−(Δ) is given by inspecting the coordinates of the Gröbner
basis with respect to the cost vector c = e00···0.

Theorem 4 (see [6, Corollary 4.3]). The value gap−(Δ) is greater than or equal
to one less than the largest coordinate g00···0 of any element in the reduced Gröbner
basis GΔ,c of AΔ.

The precise definition of the Gröbner basis with respect to a cost vector c can be
found in [11]; however, we will restrict ourselves to a special family of models where
the Gröbner basis elements we need have a simpler description. For this, we will need
to recall the definition of the Graver basis. Note that any integer vector u can be
written uniquely as u = u+ − u−, where u+ and u− are nonnegative with disjoint
support.

Definition 5. A nonzero integer vector u ∈ ker(AΔ) is called primitive if there
does not exist an integer vector v ∈ ker(AΔ)\{0,u} such that v+ ≤ u+ and v− ≤ u−.
The set of vectors Gr(AΔ) = {u ∈ ker(AΔ)|u is primitive} is called the Graver basis
of AΔ.

Given a simplicial complex Γ on [n− 1] there is a natural construction of a new
simplicial complex Δ = logit(Γ) on [n] which corresponds to taking the logit model
with a binary response variable. The new model is defined as

logit(Γ) := {S ∪ {n}|S ∈ Γ} ∪ 2[n−1],

where 2[n−1] is the set of all subsets of [n− 1].
Example 6. Let Γ4 = {{1}, {2}, {3}} the simplicial complex on [3] from example

2. The new simplicial complex is

Δ4 = logit(Γ4) = {{1, 4}, {2, 4}, {3, 4}, {1, 2, 3}},

where we list only the facets in Δ4.
After a suitable reordering of its rows and columns (see [8] or [10]), the matrix

for Alogit(Γ) takes the form

Alogit(Γ) =

⎛⎝ AΓ 0
0 AΓ

I2n−1 I2n−1

⎞⎠ ,

where I2n−1 is the 2n−1×2n−1 identity matrix. In particular, Alogit(Γ) is the Lawrence
lifting of AΓ [10]. Note that ker(AΓ) and ker(Alogit(Γ)) are isomorphic as vector
spaces, and there is a natural identification: u ∈ ker(AΓ) if and only if (u,−u) ∈
ker(Alogit(Γ)). A fundamental fact about Lawrence liftings (and hence, logit models)
is that their Gröbner bases are easy to describe in terms of the Graver basis of AΓ,
as seen in the following theorem.

Theorem 7 (see [11, Theorem 7.1]). Let Γ be a model and Δ = logit(Γ); then
1. Gr(AΔ) = {(u,−u)|u ∈ Gr(AΓ)},
2. {g ∈ Gr(AΔ)|c · g > 0} ⊆ GΔ,c.

Note that Theorem 7 is only true when the response variable is binary. We now
have all the tools in hand to construct our example.

3. The construction. Our main result is the following theorem.
Theorem 8. For each n ≥ 3, there is a hierarchical model Δn on n-binary

random variables such that

gap−(Δn) ≥ 2n−3 − 1.
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A similar statement about exponential growth of the gap for upper bounds can
be derived by an analogous argument.

Proof. Our strategy will be to construct a hierarchical model Δn which has
a Gröbner basis element whose 0 entry is large. This will force the large gap by
Theorem 4.

Let Bn be the hierarchical model on n− 2 random variables

Bn = {S|S ⊂ [n− 2], S �= [n− 2]}

and let Γn be the hierarchical model on n− 1 random variables

Γn = Bn ∪ {{n− 1}}.

That is, Γn is the union of the boundary of an n−3 simplex together with an isolated
point. Take Δn = logit(Γn).

To show the theorem with respect to Δn, it suffices to show that AΓn
has an

element in its Graver basis that has a large entry in its 0 coordinate, by Theorem 7.
Consider the vector

fn = 2n−3e(0,0) +
∑

i|i �=0,
∑

ijeven

e(i,1) − (2n−3 − 1)e(0,1) −
∑

i|
∑

ijodd

e(i,0).

Here e(i,k) denotes the standard unit vector whose index is (i, k) ∈ {0, 1}n−1; that
is, e(i,k) is the integral table whose only nonzero entry is a one in the (i, k) position.
Note that i ∈ {0, 1}n−2 is an index on the first n− 2 random variables.

We will now show that fn is a primitive vector in ker(AΓn). First we must show
that fn ∈ ker(AΓn). This amounts to showing that the margin of fn is zero for all
F ∈ Γn. Given a subset F ⊆ [n− 1], we denote by fn|F the F -marginal of fn. Given
a multiway table presented as the sum of standard unit vectors the F -marginal is
computed by deleting the indices in [n− 1] \ F . Thus we have

fn|{n−1} = 2n−3e0 +
∑

i|i �=0,
∑

ijeven

e1

−(2n−3 − 1)e1 −
∑

i|
∑

ijodd

e(0)

= 2n−3e0 + (2n−3 − 1)e1 − (2n−3 − 1)e1 − 2n−3e0 = 0.

Now we must show that fn|F = 0 for each F ∈ [n− 2] with F �= [n− 2]. Since fn
is symmetric with respect to permuting the indices on [n− 2], it suffices to show that
the margin fn|[n−3] is zero. We compute

fn|[n−3] = 2n−3e(0,0)|[n−3] +
∑

i|i �=0,
∑

ijeven

e(i,1)|[n−3]

−(2n−3 − 1)e(0,1)|[n−3] −
∑

i|
∑

ijodd

e(i,0)|[n−3]

= 2n−3e0 +
∑

i∈{0,1}n−3|i �=0

ei − (2n−3 − 1)e0 −
∑

i∈{0,1}n−3

ei = 0.
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We have shown that fn|F = 0 for each F ∈ Γn; hence fn ∈ ker(AΓn
).

Now we must show that fn is a primitive vector in ker(AΓn). Suppose to the
contrary that there was some nontrivial integral gn ∈ ker(AΓn) such that g+

n ≤ f+
n

and g−
n ≤ f−n . First note that gn ∈ ker(AΓn) implies gn|[n−2] ∈ ker(ABn). This

follows because if F ⊂ [n − 2], then gn|F = gn|[n−2]|F . However, by Theorem 2.6 in
[7], we know that ker(ABn

) is spanned by the single vector

hn =
∑

i|
∑

ijeven

ei −
∑

i|
∑

ijodd

ei,

so gn|[n−2] is an integral multiple hn. An arbitrary integral vector u whose [n − 2]
marginal is equal to a · hn is a vector which can be written in the form

u =
∑

i|
∑

ijeven

(a+ bi)e(i,0) −
∑

i|
∑

ijeven

bie(i,1) −
∑

i|
∑

ijodd

(a+ bi)e(i,0) +
∑

i|
∑

ijodd

bie(i,1)

for 2n−2 arbitrary parameters bi. In particular, gn has this form. Since g+
n ≤ f+

n and
g−
n ≤ f−n , it must be the case that the support of gn is contained in the support of

fn. This allows us to deduce that the coefficient of e(i,0) is zero whenever
∑

ij is even
and not zero and the coefficient of e(i,1) is zero whenever

∑
ij is odd. This, in turn,

forces bi = 0 for all i �= 0. Thus, we can see that gn has the form

gn = (a + b0)e(0,0) +
∑

i|i �=0,
∑

ijeven

ae(i,1) − b0e(0,1) −
∑

i|
∑

ijodd

ae(i,0).

Since gn ∈ ker(AΓn) we must have gn|{n−1} = 0. From this condition, we deduce
that b0 = (2n−3 − 1)a and, hence, that gn = afn. Since g+

n ≤ f+
n and g−

n ≤ f−n , we
must have a = 0, 1, which contradicts our assumption about the nontriviality of gn

and implies that fn is primitive.
To explicitly construct an example of a set of margins b with respect to Δn where

the gap between the LP and IP optima is 2n−3 − 1, just take

u = (2n−3 − 1)e(0,0,0) +
∑

i|i �=0,
∑

ijeven

e(i,1,0) + (2n−3 − 1)e(0,1,1) +
∑

i|
∑

ijodd

e(i,0,1),

and b = AΔnu. It follows that u cannot be improved to a nonnegative integer table
with smaller (0, 0, 0) coordinate by appealing to the Gröbner basis. However, the
nonnegative rational vector

v = u − 2n−3 − 1

2n−3
(fn,−fn)

has the same margins b as u but has (0, 0, 0) coordinate 0. Furthermore, u is the
only nonnegative integral vector with these margins, so a heuristic which relies solely
on the LP bounds would be inclined to declare the 0 cell entry safe (the LP upper
and lower bounds differ by at least 2n−3 − 1), whereas the integer bounds show that
the entry is disclosed.

Example 9. In the case n = 5, the 4-way array f5 can be represented “in the
plane” as a partitioned 4 × 4 array:

f5 =

⎛⎜⎜⎝
4 −1 −1 0
−1 0 0 −1
−3 0 0 1
0 1 1 0

⎞⎟⎟⎠ .
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The 5-way table u described above whose gap is equal to three is represented by
two partitioned 4 × 4 arrays:

u =

⎛⎜⎜⎝
3 0 0 0
0 0 0 0
0 0 0 1
0 1 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 1 1 0
1 0 0 1
3 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

An LP optimal table v for the associated marginal constraint AΔ5
v = AΔ5

u is the
5-way table:

v =

⎛⎜⎜⎝
0 3

4
3
4 0

3
4 0 0 3

4
9
4 0 0 1

4
0 1

4
1
4 0

⎞⎟⎟⎠
⎛⎜⎜⎝

3 1
4

1
4 0

1
4 0 0 1

4
3
4 0 0 3

4
0 3

4
3
4 0

⎞⎟⎟⎠ .

4. Discussion. In this paper, we constructed an example to show that the gap
between the linear programming lower bounds and the integer programming lower
bounds for a cell entry can be exponentially large in the number of binary random
variables of a hierarchical model. Previous explicit constructions of this type [4] gave
gaps that were linear in the number of random variables.

There are a number of possible modifications to our result which can be made
to produce examples of different flavors. For instance, small modifications of our
argument can be used to produce exponential gaps between the linear programming
and integer programming upper bounds for cell entries. Furthermore, by adding extra
dimensions by subdividing Δ and using some of the techniques in [4], one can produce
instances of purely graphical models with these exponential growth properties.

While it is not clear how often one should expect to encounter the exponentially
large gaps we have demonstrated, we believe that for problems on large sparse tables,
large gaps between the LP and IP solutions will be not be exceptional. This feeling
is based on the observation that if any particular gap value can occur, then so can
all the integer values smaller than this gap. This suggests that research needs to be
done to determine better heuristics for approximating bounds on cell entries in large
sparse tables.

Acknowledgment. The author is grateful to an anonymous referee whose com-
ments greatly improved the paper.
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ON THE BEHAVIOR OF A FAMILY OF META-FIBONACCI
SEQUENCES∗

JOSEPH CALLAGHAN† , JOHN J. CHEW III† , AND STEPHEN M. TANNY†

Abstract. A family of meta-Fibonacci sequences is defined by the k-term recursion

Ta,k(n) :=

k−1∑
i=0

Ta,k(n− i− a− Ta,k(n− i− 1)), n > a + k, k ≥ 2,

with initial conditions Ta,k(n) = 1 for 1 ≤ n ≤ a + k. Some partial results are obtained for a ≥ 0
and k > 1. The case a = 0 and k odd is analyzed in detail, giving a complete characterization of
its structure and behavior, marking the first time that such a parametric family of meta-Fibonacci
sequences has been solved. This behavior is considerably more complex than that of the more familiar
Conolly sequence (a = 0, k = 2). Various properties are derived: for example, a certain difference of
summands turns out to consist of palindromic subsequences, and the mean values of the functions on
these subsequences are computed. Conjectures are made concerning the still more complex behavior
of a = 0 and even k > 2.

Key words. Hofstadter, iterated recursion, meta-Fibonacci, Q sequence

AMS subject classifications. 11B37, 11B39, 11B99

DOI. 10.1137/S0895480103421397

1. Introduction. In this paper, all values are integers and defining equations
use the “:=” operator. For a sequence T and an integer d, we write ΔdT (n) :=
T (n) − T (n− d).

Hofstadter’s Q sequence Q(n), illustrated in Figure 1.1, first mentioned in [7] and
defined by the “self-referencing” recursion

Q(n) := Q(n−Q(n− 1)) + Q(n−Q(n− 2)), n > 2,(1.1)

and initial conditions Q(1) := Q(2) := 1 is the most famous example of a so-called
meta-Fibonacci sequence. This sequence, recently renamed U(n) by Hofstadter and
his collaborators [9], remains the focus of ongoing investigation in [8] and elsewhere,
although to date very little has been proven about its enigmatic behavior.

At the same time, various authors have examined seemingly close relatives to the
above recursion, which have turned out to be far better behaved and about which a
great deal can be demonstrated. In [3], Conolly introduced the following very well-
behaved variant of the Q-sequence recursion, illustrated in Figure 1.2:

F (n) := F (n− F (n− 1)) + F (n− 1 − F (n− 2)), n > 2,(1.2)

with initial conditions {F (1) = 0, F (2) = 1} or {F (1) = 1, F (2) = 1}. He notes that
for n > 2 the recursion yields the same sequence whether F (1) = 0 or F (1) = 1.

Much can be said about this sequence. For example, Conolly shows that if F (1) =
0 and n = 2i + j with i ≥ 1 and 0 ≤ j < 2i, then

F (n) = 2i−1 + F (j + 1).(1.3)

∗Received by the editors January 16, 2003; accepted for publication (in revised form) November
3, 2004; published electronically May 13, 2005.
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†Department of Mathematics, University of Toronto, Toronto, ON, M5S 3G3, Canada
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Fig. 1.1. Hofstadter’s Q sequence.

Fig. 1.2. Conolly’s F sequence.

Tanny [14] and Higham and Tanny [5, 6] developed a considerably more extensive
analysis of the very similar recursion, illustrated in Figure 1.3, defined by

T (n) := T (n− 1 − T (n− 1)) + T (n− 2 − T (n− 2)), n > 2,(1.4)

with initial conditions T (0) := T (1) := T (2) := 1, which generates a sequence with
highly analogous properties. Detailed results were provided concerning the structure
and behavior of this sequence, and of some other sequences generated by (1.4) but
with alternative choices for the initial conditions.

In [5], a k-term generalization of (1.4) was suggested:

Tk(n) :=

k∑
i=1

Tk(n− i− Tk(n− i)), n > k.(1.5)

It was proven there that with the initial conditions Tk(0) := Tk(1) := 1 and
Tk(i) := i− 1, 2 ≤ i ≤ k, the sequence generated by (1.5) behaves in very much the
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Fig. 1.3. Tanny’s T sequence.

same way as the sequence generated by (1.4) with initial conditions T (0) := T (1) :=
T (2) := 1. That is, it is monotone, its consecutive terms increase by either 0 or 1,
and it hits every positive integer. Further, we can determine explicit formulae that
characterize its behavior.

The work cited above with (1.5) demonstrates that recursions expressible as ho-
mogeneous sums may be approachable even when the sums have many terms. Moti-
vated by this success, we introduce an even more general formulation of the Conolly
recursion (1.2) that incorporates all of the specific variants discussed above.

For a ≥ 0 and k ≥ 2 consider the family of recursions

Ta,k(n) :=

k−1∑
i=0

Ta,k(n− i− a− Ta,k(n− i− 1)), n > a + k.(1.6)

Equation (1.6) reduces to (1.2) when a = 0 and k = 2, to (1.4) when a = 1 and
k = 2, and to (1.5) when a = 1. For k = 2 and arbitrary (even negative) a, Elzinga [4]
reports that some analogues of certain results of (1.5) appear to hold, although no
proof is provided; again, for k = 2 and a ∈ {−1,−2}, he describes the behavior of
(1.6) for a substantial number of sets of initial conditions in an attempt to identify a
behavioral classification scheme. For k = 3 and a = 0, Allenby and Smith [1] present
some initial results and conjectures.

As is typical for meta-Fibonacci recursions, the behavior of the individual mem-
bers of this family is highly sensitive to the choice of the parameters a and k and
to the initial conditions. Some choices lead to sequences with identifiable and regu-
lar (though potentially very complex) patterns, while others generate highly chaotic
sequences or even cause the sequence Ta,k(n) to fail to be defined for some n.

For example, consider the choice of initial values for the sequence T0,3. If we
require that each of the three summands that make up the recursive definition (1.6)
of T0,3(4) evaluates to one of the chosen initial values, then the three conditions
1 ≤ 4− i−T0,3(3− i) ≤ 3, i ∈ {1, 2, 3}, allow 27 possible sets of initial values ranging
lexicographically from (T0,3(1), T0,3(2), T0,3(3)) = (−1, 0, 1) to (1, 2, 3). Four of the
27 choices—(−1, 0, 2), (−1, 0, 3), (−1, 2, 3), and (1, 0, 3)—give a T0,3(n) which is not
well defined for some 5 ≤ n ≤ 7. In the other 23 cases, we have verified empirically
that T0,3(n) is defined at least up to n = 10,000.
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Fig. 1.4. T0,3 with initial values (0, 0, 2).

Fig. 1.5. T0,3 with initial values (0, 0, 1).

Four of the remaining 23 cases—(0, 0, 2), (0, 0, 1), (1, 1, 1), and (−1, 0, 1)—are
graphed and tabulated in Figures 1.4, 1.5, 1.6, and 1.7 and illustrate the wide range
of possible behavior for these sequences. Observe that the first and third sequences
visibly bifurcate into an even subsequence and an odd subsequence, each of which
is monotonic even though the full sequence is not. The second sequence appears to
be very similar to Conolly’s sequence, while the fourth sequence looks completely
chaotic.

It is also typical of meta-Fibonacci recursions that alternative choices for the
parameters and initial conditions can lead to essentially the same sequence. In this
vein, it is not difficult to show that if T (n) is always well defined and positive, and
some other T ∗(n) defined according to (1.6) satisfies T ∗(N + p) = T (p) for an N ≥ 0
and 1 ≤ p ≤ a + k, then T ∗(N + p) = T (p) for all p ≥ 1. For instance, setting a = 0,
k = 3, and {T (n)}n=1,2,3 = (−1, 1, 2) or (1, 1, 1) gives two sequences that are identical
except that one has four extra values at its start. We also note that we may replace
n by n′ + x in (1.6) to shift a sequence x places.
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Fig. 1.6. T0,3 with initial values (1, 1, 1).

Fig. 1.7. T0,3 with initial values (−1, 0, 1).

In this paper, we analyze the general family defined by (1.6) and initial conditions
Ta,k(n) = 1 for 1 ≤ n ≤ a + k. We choose this set of initial values because, as shown
in Figure 1.6, its bifurcated, undulating behavior is complex enough to be interesting
while still structured enough to be amenable to rigorous analysis.

In section 2 we prove that for general a, the sequence generated by each recursion
in the family can be decomposed into k disjoint subsequences, each of which begins
with 1 and increases monotonically in increments of 0 or k − 1. Further, for all odd
k, the differences Ta,k(n)− Ta,k(n− 2) are also always either 0 or k− 1. This finding
substantially generalizes an earlier result of this type for (1.4) appearing in Higham
and Tanny [5, 6].

In sections 3 and 4, we apply and extend the results of section 2 to derive a
detailed characterization of the behavior of (1.6) in the special case a = 0, k = 3 and
explore the many interesting properties and beautiful symmetries that it exhibits.
This case illustrates well the additional complexity that occurs once k is increased
beyond 2, yet remains manageable for expository purposes. In the course of our work,
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Table 2.1

T0,7(n).

n n

1 2 3 4 5 6 1 2 3 4 5 6

T(n+ 0) 1 1 1 1 1 1 T(n+ 60) 49 49 49 55 55 55
T(n+ 6) 1 7 7 7 7 7 T(n+ 66) 55 55 55 61 55 61
T(n+ 12) 7 7 13 13 13 13 T(n+ 72) 61 61 61 67 61 67
T(n+ 18) 13 13 19 13 19 19 T(n+ 78) 61 67 67 73 67 73
T(n+ 24) 19 19 25 19 25 19 T(n+ 84) 67 73 67 79 73 79
T(n+ 30) 25 25 31 25 31 25 T(n+ 90) 73 79 73 85 73 85
T(n+ 36) 31 25 31 31 37 31 T(n+ 96) 79 85 79 91 79 91
T(n+ 42) 37 31 37 37 37 37 T(n+ 102) 79 91 85 97 85 97
T(n+ 48) 43 37 43 43 43 43 T(n+ 108) 85 97 85 103 91 103
T(n+ 54) 43 43 49 49 49 49 T(n+ 114) 91 103 91 109 91 109

we considerably extend the results on this case that appear in [1] and settle all the
conjectures stated there.

While the case a = 0, k = 3 is interesting in its own right, what is more exciting
is that the behavior in this case appears to provide a roadmap for understanding and
characterizing the detailed behavior of the sequences for all odd k. This is the content
of section 5, where we prove that certain key results derived for a = 0, k = 3 hold for
all odd k. On this basis, we show that the detailed structure for all odd k is analogous
to that shown for k = 3. To the best of our knowledge, this is the first instance in the
area of meta-Fibonacci recursions where such broadly based behavioral results have
been shown to hold for sequences with such complex behavior.

For even k ≥ 4 the behavior of T (n) is much more complicated and erratic than for
odd k (the case k = 2, the Conolly sequence discussed earlier, is completely understood
and quite straightforward). There is evidence that the same kind of approaches that
we used for odd k can be adapted for even k, although we have not yet investigated
this very far. In section 6, we conclude with some conjectures relating to even k.

2. A family of meta-Fibonacci sequences. In this section, we prove some
results concerning the general recursion

(1.6) Ta,k(n) :=

k−1∑
i=0

Ta,k

(
n− i− a− Ta,k(n− i− 1)

)
, n > a + k,

Ta,k(n) := 1, 1 ≤ n ≤ k + a,(2.1)

which for brevity’s sake we will refer to simply as T (n).
Table 2.1 lists some values of T (n) for the case a = 0, k = 7 and lets us observe a

few of its properties: T (n) ≡ 1 (mod k−1); T (n) is not monotonic but is composed of
k−1 interleaved monotonic subsequences {T ((k−1)i+j)}∞i=0, j = 1, . . . , k−1; and each
of these subsequences includes every possible value subject to the modulo constraint.
That is, Δk−1T (n) := T (n) − T (n − k + 1) ∈ {0, k − 1} for all n ≥ k. Furthermore,
in the case of odd k, we will find that ΔdT (n) := T (n)− T (n− d) ∈ {0, k− 1} for all
even d ∈ [0, k − 1].

We begin our analysis of T (n). In the case of an ordinary Fibonacci sequence,
the recursive definition of a sequence member refers simply to immediately preceding
sequence members. In the meta-Fibonacci sequence T (n), the recursive summands are
usually much earlier sequence members, whose distance from the current n can vary
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Table 2.2

U0,7(n).

n n

1 2 3 4 5 6 1 2 3 4 5 6

U(n + 0) − 1 1 1 1 1 U(n + 60) 7 7 7 13 7 7
U(n + 6) 1 1 1 1 1 1 U(n + 66) 7 7 7 13 7 13
U(n + 12) 1 1 7 1 1 1 U(n + 72) 7 7 7 13 7 13
U(n + 18) 1 1 7 1 7 1 U(n + 78) 7 13 7 13 7 13
U(n + 24) 1 1 7 1 7 1 U(n + 84) 7 13 7 19 7 13
U(n + 30) 7 1 7 1 7 1 U(n + 90) 7 13 7 19 7 19
U(n + 36) 7 1 7 7 7 1 U(n + 96) 7 13 7 19 7 19
U(n + 42) 7 1 7 7 7 7 U(n + 102) 7 19 7 19 7 19
U(n + 48) 7 1 7 7 7 7 U(n + 108) 7 19 7 25 7 19
U(n + 54) 7 7 7 7 7 7 U(n + 114) 7 19 7 25 7 25

considerably within the sum. We therefore need to examine these summands more
closely and reword the definition (1.6) of Ta,k(n) to label two functions of subsequent
interest:

Ta,k(n) =

k−1∑
i=0

Ua,k(n− i), n > a + k,(2.2)

where
Ua,k(n) := Ta,k(Ra,k(n)), n > a + 1,

Ra,k(n) := n− a− Ta,k(n− 1), n > 1.

As with T (n), we abbreviate Ua,k(n) to U(n) and Ra,k(n) to R(n) wherever the
understood subscripts are clear. Returning to the case a = 0, k = 7, Table 2.2 lists
the first 119 values of U(n) and shows that it has the same modulo and subsequence
properties that T (n) has; that is, Δk−1U(n) takes on only the two values 0 and k−1.1

Table 2.3 lists the first 119 values of R(n), which also shares all of these properties
with T (n) and U(n).

Note 2.1. We can make a stronger observation for Δ6U(n) that turns out to
generalize to any k: every pair of 6’s in this difference sequence appears to be separated
by at least seven zeros. The following are the first 88 values of Δ6U(n), listed with a
break before each 6: {Δ6U(n)}95

n=8 = {0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0, 6,
0,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0, 6,0,0,0,0,
0,0,0, 6,0,0,0,0,0,0,0, 6,0,0,0,0,0,0,0}.

Since Δk−1T (n) =
∑k−1

i=0 Δk−1U(n− i), it follows that if we can fully describe
Δk−1U(n), then we have described its double sum T (n). In fact we will demonstrate
that, as is illustrated in Note 2.1, Δk−1U(n) has a beautiful, highly regular structure
for general k from which many properties of Δk−1T (n) and hence T (n) can readily be
deduced. For example, if Note 2.1 is generally true for k = 7, then Δ6T (n) also takes
on only the values 0 and 6. We may thus conclude that (unlike many meta-Fibonacci
sequences) T (n) is well defined for all n.

We now show that this is true for general k.
Proposition 2.2. The following differences are all either 0 or k− 1: Δk−1T (n)

for n ≥ k, Δk−1R(n) for n > k, and Δk−1U(n) for n > k + a. As a result, the

1Δ2U0,3(n) is what Allenby and Smith [1] call a pairing, though they neither explicitly define
the sequence {Δ2U0,3(n)} nor make it the focus of their analysis as we do here.
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Table 2.3

R0,7(n).

n n

1 2 3 4 5 6 1 2 3 4 5 6

R(n + 0) - 1 2 3 4 5 R(n + 60) 12 13 14 15 10 11
R(n + 6) 6 7 2 3 4 5 R(n + 66) 12 13 14 15 10 17
R(n + 12) 6 7 8 3 4 5 R(n + 72) 12 13 14 15 10 17
R(n + 18) 6 7 8 3 10 5 R(n + 78) 12 19 14 15 10 17
R(n + 24) 6 7 8 3 10 5 R(n + 84) 12 19 14 21 10 17
R(n + 30) 12 7 8 3 10 5 R(n + 90) 12 19 14 21 10 23
R(n + 36) 12 7 14 9 10 5 R(n + 96) 12 19 14 21 10 23
R(n + 42) 12 7 14 9 10 11 R(n + 102) 12 25 14 21 10 23
R(n + 48) 12 7 14 9 10 11 R(n + 108) 12 25 14 27 10 23
R(n + 54) 12 13 14 9 10 11 R(n + 114) 12 25 14 27 10 29

following sequence values are all (well) defined: T (n) for n > 0, R(n) for n > 1, and
U(n) for n > a + 1.

Proof. We begin an inductive proof by verifying that the proposition holds for
n ≤ 2k + a.

T (n) = 1 for 1 ≤ n ≤ k + a by (2.1). It is easy to compute using (1.6) and
(2.1) that T (n) = k for k + a < n ≤ 2k + a. Δk−1T (n) is thus either 0 or k − 1 for
k ≤ n ≤ 2k + a.

R(n) := n− a− T (n− 1) is n− a− 1 for 2 ≤ n ≤ k + a + 1 and is n− a− k > 0
for k+ a+ 1 < n ≤ 2k+ a+ 1. Δk−1R(n) = k− 1−Δk−1T (n− 1) is either 0 or k− 1
for k + 1 ≤ n ≤ 2k + a + 1.

U(n) := T (R(n)). When k + a + 1 ≤ n ≤ 2k + a, we have 1 ≤ R(n) ≤ k.
When 1 ≤ k ≤ n, we have T (n) = 1. So when k + a + 1 ≤ n ≤ 2k + a, we have
U(n) = T (R(n)) = 1. Thus, Δk−1U(n) = 0 is for k + a + 1 ≤ n ≤ 2k + a.

Now let n > 2k + a and proceed assuming that the proposition holds for all
lesser n.

R(n) := n− a− T (n− 1) is defined.
Δk−1R(n) = k − 1 − Δk−1T (n − 1) is either k − 1 or 0, since Δk−1T (n − 1) is

either 0 or k − 1.
U(n) := T (R(n)). To confirm that U(n) is well defined, we need to show that

R(n) is well defined (which we just did) and that T is well defined at R(n). That is,
we require that 0 < R(n) < n. Let m ∈ [k+a+2, 2k+a+1] with m ≡ n (mod k−1).
Then R(n) = R(m)+Δk−1R

(
m+k−1

)
+Δk−1R

(
m+2(k−1)

)
+ · · · +Δk−1R

(
n). The

first summand is positive and the rest are all either 0 or k − 1, so R(n) is positive.
Likewise, T (n) > 0, so R(n) := n − a − T (n − 1) < n. Therefore, we can apply
induction to find that U(n) is defined.

Δk−1U(n) = T (R(n))−T (R(n−k+1)). We just showed that R(n)−R(n−k+1) =
Δk−1R(n) is either 0 or k−1. If this difference is 0, then so is Δk−1U(n). If it is k−1,
then Δk−1U(n) = (Δk−1T )(R(n)), which is 0 or k − 1 by the induction assumption.

From (2.2), we have T (n) = T (n− 1) +U(n)−U(n− k), so T (n) is well defined.

Δk−1T (n) =
∑k−1

i=0 Δk−1U(n− i) from (2.2) and the linearity of the difference
operator. If all the summands are zero, then so is Δk−1T (n) and we are done. If
not, let j be the largest integer in [n − k + 1, n] for which k − 1 = Δk−1U(j) =
T (R(j)) − T (R(j − k + 1)). Then Δk−1R(j) = k − 1 and 0 = k − 1 − Δk−1R(j) =

Δk−1T (j−1) =
∑k−1

i=0 Δk−1U(j − 1 − i). Therefore at most one of Δk−1U(n−k+1),
. . . , Δk−1U(n) can have the value k − 1 while the others must be 0, so their sum
Δk−1T (n) is either 0 or k − 1.
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Note that other choices of initial values for T will prevent the initial conditions
of the induction from being satisfied and that in such cases Δk−1U(n) and Δk−1T (n)
may belong to a larger finite set (see Figure 1.4, or the case a = 0, k = 3 with initial
values {0, 2, 1}) or take on an infinite number of different values (see Figure 1.7).

Corollary 2.3. For n > 2k+a+1, if Δk−1T (n) = 0, then Δk−1U(n−k+1) =
Δk−1U(n− k + 2) = · · · = Δk−1U(n) = 0.

Proof. If 0 = Δk−1T (n) =
∑k−1

j=0 Δk−1U(n− j) and each summand is either 0 or
k − 1, each summand must be zero.

Corollary 2.4. For each j in [1, k], the subsequence {T ((k−1)i+ j)}∞i=0 begins
with 1 and increases monotonically in increments of 0 or k − 1.

Proof. The result follows immediately from the initial conditions for T and what
we have shown about the differences Δk−1T (n).

Corollary 2.5. In the sequence Δk−1U(n), n > a+k, there are at least k zeros
between each pair of nonzero values.

Proof. We showed in the proof of Proposition 2.2 that Δk−1U(n) = 0 for k+ a <
n ≤ 2k + a and if for some j > 2k + a the jth member of Δk−1U is nonzero, then it
is preceded by at least k zeros.

The preceding corollary describes the fine structure of Δk−1U(n) and helps ex-
plain why that sequence attracts our interest. We conclude this section by formally
defining the blocks that make up the structure of the Δk−1U(n) sequence.

Definition 2.6. A p-block is a consecutive subsequence of length p in {Δk−1U(n)},
consisting of an initial nonzero value together with all of the zeros which follow it.

Example 2.7. The values of Δ6U(n) listed in Note 2.1 constitute seven zeros,
followed by two 8-blocks, one 9-block, and seven more 8-blocks.

3. The structure of a three-term recursion. We move now from general
observations about properties of our family of difference functions to the specific case
k = 3; observe that this is a three-term generalization of Conolly’s sequence (1.2).
This case illustrates the increased structural complexity that occurs for k > 2. It also
demonstrates concretely the behavior typical of odd k, to be elaborated in section 5.2

In (1.6), set a = 0, k = 3 and assume the initial conditions T0,3(n) = 1 for
n = 1, 2, 3. For the remainder of this section and in the next section, we refer to this
sequence as T (n), to R0,3(n) as R(n), and to U0,3(n) as U(n):

T (n) := U(n) + U(n− 1) + U(n− 2), n > 3,

U(n) := T (R(n)), n > 1,

R(n) := n− T (n− 1), n > 1.

(3.1)

Table 3.1 lists values of T (n), U(n), and R(n) for small n.
Note 3.1. For future reference, we list the values of {Δ2U(n)}97

n=4 = {0,0,0,
2,0,0,0,0, 2,0,0,0, 2,0,0,0, 2,0,0,0,0, 2,0,0,0,0, 2,0,0,0,0, 2,0,0,0, 2,0,0,0, 2,0,0,0, 2,0,0,0,
2,0,0,0, 2,0,0,0,0, 2,0,0,0,0, 2,0,0,0,0, 2,0,0,0,0, 2,0,0,0, 2,0,0,0,0, 2,0,0,0, 2,0,0,0,0,
2,0,0,0,0}.

We completely describe the behavior of T , as well as the related sequences U
and R. As is the case with many other meta-Fibonacci sequences, the T sequence
can be naturally decomposed into strings of consecutive terms called generations.
The generational structure is clearly visible in Figure 1.6, where the end of each

2Using very different methods, Allenby and Smith [1] analyze this recursion together with several
other, less complicated, meta-Fibonacci recursion variants. In this and the next section, we extend
considerably the results proven in [1] and settle all the conjectures stated therein.
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Table 3.1

T (n), U(n), R(n) for a = 0, k = 3.

n 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

T(n) 1 1 3 5 7 7 9 9 11 11 13 13 15 17 17 19 19 21 23 25
T(n + 1) 1 3 3 5 5 7 9 11 13 15 17 17 19 19 21 23 23 25 25 27

U(n) − 1 1 3 3 3 3 3 3 3 3 3 5 5 5 5 5 7 7 9
U(n + 1) 1 1 1 1 1 3 3 5 5 7 7 7 7 7 9 9 9 9 9 9

R(n) − 2 2 4 4 6 6 6 6 6 6 6 8 8 10 10 10 12 12 14
R(n + 1) 1 3 3 3 3 5 5 7 7 9 9 11 11 11 13 13 15 15 15 15

generation is marked by several points of intersection of the two curves. The lengths
of the generations increase geometrically, and properties of the sequence recur from
generation to generation giving a structure which might be described as logarithmic-
periodic.

To describe completely the behavior of T (n) it is sufficient to characterize fully
the behavior of Δ2U(n), since T (n) can be reconstructed as a double sum of Δ2U(n).
Indeed, the generational structure of T (n) is mirrored in a surprising way in a corre-
sponding generational structure in the Δ2U(n) sequence. Even further, we will show
that each of these corresponding generations in Δ2U is in turn made up of substrings
we call lines and subsubstrings we call feet. That is, we will show how Δ2U(n) consists
of feet, concatenations of which form lines, and how consecutive lines complete the
generation. We also show that the feet in each generation in Δ2U(n) are determined
by (and in fact are in the one-to-one correspondence shown in Figure 3.1 with) the
values of Δ2T in the immediately preceding generation. In this way, the preceding
generation of T determines new feet, which make up new lines; these new lines make
up a new generation in Δ2U , which further determines the new generation of T .

From Note 3.1, we empirically observe (and will show below in Proposition 3.3)
that from n = 7 onward Δ2U(n) appears to consist only of 4-blocks and 5-blocks.
We will see that the interesting values of n are those which start a 4-block, start a
5-block, or end a 5-block, and that it is logical then to look at Δ2U as consisting
mostly of subsequences {2, 0, 0, 0} with the occasional extra {0}.

Perhaps not surprisingly, the ancient Greeks [2, 11] had words for such patterns
(feet) of one stressed beat followed by three unstressed beats (a first paeon), for a
sequence of such patterns (a line), and for an extra unstressed beat at the end of a
sequence (a hypercatalectic). While Greek prosodists were concerned with long and
short syllables in poetry and we are dealing with 2’s and 0’s in an iterated recursion,
the analogy is precise, and so we borrow their terminology to define our first type of
subsequence.

Definition 3.2 (foot). A paeon is a sequence {2,0,0,0} of consecutive values
of Δ2U(n). A hypercatalectic is a singleton sequence {0}, immediately preceded in
{Δ2U(n)} by a paeon. A foot is either a paeon or a hypercatalectic. For convenience,
we will write {P} interchangeably with {2, 0, 0, 0} and likewise {H} with {0} when
listing values of Δ2U . We also define ϕ(n) as the symbol P if Δ2U(n) = 2 begins a
paeon and H if Δ2U(n) = 0 is a hypercatalectic, and we leave it undefined otherwise.

So ϕ(7) = ϕ(12) = ϕ(16) = ϕ(20) = P , ϕ(11) = ϕ(24) = H and ϕ(n) is not
defined for other 7 ≤ n ≤ 24.

Proposition 3.3. {Δ2U(n)}∞n=7 consists only of feet.
Proof. By Definition 3.2, this is equivalent to saying that there are no p-blocks

of length p > 5 in Δ2U(n) or that if Δ2U(n) = 2 and Δ2U(n + 4) = 0, then
Δ2U(n + 5) = 2.
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We proceed to prove the latter by induction. The enumeration in Note 3.1 shows
that the proposition holds for n = 7. In particular, Δ2U(7) = Δ2U(12) = 2 and
Δ2U(11) = 0. Assume that the proposition is true for all n less than some N > 7,
that Δ2U(N) = 2, and that Δ2U(N + 4) = 0. Corollary 2.5 and induction tell us
that for some nonnegative q, Δ2U(N) = Δ2U(N − 4) = · · · = Δ2U(N − 4q) =
Δ2U(N−4q−5) = 2 and Δ2U(i) = 0 for all other i in the interval [N−4q−5, N +4].

We can compute differences of T by expanding into these known values of Δ2U :
T (N + 4)− T (N + 2) = Δ2T (N + 4) =

∑N+4
i=N+2 Δ2U(i) = 0, T (N − 4q− 2)− T (N −

4q−4) = Δ2T (N−4q−2) =
∑N−4q−2

i=N−4q−4 Δ2U(i) = 0, and T (N+2)−T (N−4q−2) =∑2q+2
i=1 Δ2T (N − 2i + 4) =

∑2q+2
i=1

∑2
j=0 Δ2U(N − 2i− j + 4) = 4q + 4.

So T (N + 4) = T (N − 4q − 4) + 4q + 4, R(N + 5) = N + 5 − T (N + 4) =
2 +N + 3− T (N + 2) = R(N + 3) + 2, R(N + 5) = N − 4q + 1− T (N − 4q− 4) < N,
and R(N + 5) = 2 + N − 4q − 1 − T (N − 4q − 2) = R(N − 4q − 1) + 2.

Let y := R(N + 5). Then Δ2T (y− 2) = Δ2U(N − 4q− 1) = 0. By Corollary 2.3,
Δ2U(y− 2) = Δ2U(y− 3) = Δ2U(y− 4) = 0. By induction, Δ2U(y− 1) and Δ2U(y)
cannot both be zero, or else Δ2U would have five consecutive zeros somewhere before
N , at y−4, y−3, y−2, y−1, and y. Therefore, Δ2U(y)+Δ2U(y−1)+Δ2U(y−2) =
2 = Δ2T (y) = U(N + 5) − T (R(N + 5) − 2) = U(N + 5) − U(N + 3) = Δ2U(N + 5)
as required.

Note that as with Proposition 2.2, other choices of initial values for T (such as
{T (n)}3

n=1 := {1, 2, 1}) will render false the initial conditions for the induction in
the proof of Proposition 3.3. In such cases, the spacing between nonzero members of
{Δ2U(n)} can grow without bound.

We now use our results so far to create Table 3.2, a tabulation of six of our
functions over the course of a paeon beginning at n0, followed possibly by a hyper-
catalectic. We express the values of the functions in terms of the boxed parameters
t0, t1, r0, r1, and d4. (The paeon is followed by a hypercatalectic iff d4 = 0, that is,
ϕ(n0 + 4) = H iff d4 = 0.)

This description of the intricate local relationship among the T , R, and U se-
quences tells us how to easily compute the parameter values in one foot of Δ2U from
the parameter values in the preceding foot. Further, it will be fundamental to an
understanding of how the occurrence of feet in Δ2U relates to much earlier values of

Table 3.2

Function values over a paeon.

n T(n) Δ2T(n) R(n) Δ2R(n) Δ2U(n) ϕ(n)

n0 − 3 t1 − 2 2 ? 0 0 −
n0 − 2 t0 − 2 ? r0 − 2 0 0 −
n0 − 1 t1 − 2 0 r1 ? 0 ?

n0 t0 2 r0 2 2 P

n0 + 1 t1 2 r1 0 0 −
n0 + 2 t0 + 2 2 r0 0 0 −
n0 + 3 t1 0 r1 0 0 −
n0 + 4 t0 + d4 + 2 d4 r0 + 2 2 d4 P or H

n0 + 5 t1 + 2 2 r1 + 2 − d4 2 − d4 2 − d4 − or P

n0 + 6 t0 + d4 + 4 2 r0 + 2 0 0 −
n0 + 7 t1 − d4 + 4 2 − d4 r1 + 2 − d4 0 0 −
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Δ2T . This then constitutes the first of our three structural theorems.

Theorem 3.4 (foot pattern theorem). Suppose the parameters n0, t0, t1, r0, r1,
and d4 satisfy all of the following conditions: n0 ≥ 7, T (n0) = t0, T (n0 + 1) = t1,
R(n0) = r0, R(n0 + 1) = r1, Δ2U(n0) = 2, and Δ2U(n0 + 4) = d4. Then T (n),
Δ2T (n), R(n), Δ2R(n), Δ2U(n), and ϕ(n) have the values shown in Table 3.2.

Proof. Use Proposition 3.3 and Corollary 2.5 to calculate Δ2U(n). Apply the Δ2

operator to (2.2) to calculate Δ2T (n) (and Proposition 3.3 for Δ2T (n0 − 3)). Use
Δ2R(n) = 2−Δ2T (n− 1) to calculate Δ2R(n). Use the definition of Δ2 to calculate
R(n) and T (n).

Since Δ2U(n) := T (R(n)) − T (R(n− 2)), the preceding theorem shows that the
reason Δ2U(n0 + 1) = Δ2U(n0 + 2) = Δ2U(n0 + 3) = 0 is not because the values
of T (n) at two distinct arguments of T happen to be equal, but rather because T
is being evaluated at two equal values of R(n), respectively, r1, r0, and r1. For
this reason, these three zero terms immediately following any two in {Δ2U(n)} are
rather uninteresting. Note that these three zeros in each paeon of Δ2U(n) correspond
precisely to those terms for which Δ2R(n) = 0, or equivalently the ones for which
ϕ(n) is undefined.

Conversely when Δ2R(n) = 2, that is, when ϕ(n) is defined,

Δ2U(n0) = T (r0) − T (r0 − 2) = Δ2T (r0)

Δ2U(n0 + 4) = T (r0 + 2) − T (r0) = Δ2T (r0 + 2),

and so in both cases we obtain the key correspondence,

Δ2U(n) = (Δ2T )(R(n)) = T
(
R(n)

)
− T

(
R(n) − 2

)
.(3.2)

We could also give an alternate definition: ϕ(n) = P if Δ2U(n) + Δ2R(n) = 4,
and ϕ(n) = H if Δ2U(n)+Δ2R(n) = 2. Or also equivalently, ϕ(n) = P if Δ2T (n) = 2
and Δ2T (n− 1) = 0, and ϕ(n) = H if Δ2T (n) = 0 and Δ2T (n− 1) = 0.

Note 3.5. Δ2T (n), Δ2U(n), and Δ2R(n) exhibit a recursive symmetry, just as do
many other meta-Fibonacci sequences in the literature (e.g., in [12, 10]). As a result,
there is a natural partition of their domain into generations (finite, consecutive strings
of increasing length) such that certain function values within one generation can be
expressed elegantly in terms of function values in preceding generations. We show in
Theorem 3.14 that (3.2) will express Δ2U in one generation in terms of Δ2T in the
preceding generation.

Definition 3.6 (generation). For any g > 0, let mg := 1
2 (3g+1+5) = 3+

∑g
i=0 3i

and call the interval [mg,mg+1 − 1] the gth generation, written as gen(g). We parti-
tion the gth generation into two nonconsecutive subsequences: the gth even semigen-
eration sg0(g) := {n ∈ gen(g) | n ≡ mg (mod 2)} and the gth odd semigeneration
sg1(g) := {n ∈ gen(g) | n �≡ mg (mod 2)}. For any sequence s(n), we will refer
to the subsequence {s(n) | n ∈ gen(g), s(n) defined} as the gth generation of s and
similarly for semigenerations. An even (odd) foot is one that starts in an even (odd)
semigeneration.

Note that because the length 3g+1 of gen(g) is odd, mg and mg+1 always have
opposite parity. The foot that follows a paeon is always of the same parity, because
the paeon has even length; while the foot that follows a hypercatalectic is always of
opposite parity, because the hypercatalectic has odd length.

We list for future reference the first five values of mg: 7, 16, 43, 124, 367.
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Table 3.3

Function values over a line.

n− n0 T(n) Δ2T(n) R(n) Δ2R(n) Δ2U(n) ϕ(n)

−2 t0 − 2 ? r0 − 2 0 0 −
−1 t1 − 2 0 r1 ? 0 ?
.........................................................................................................................................................

0 t0 2 r0 2 2 P
1 t1 2 r1 0 0 −
...

...
...

...
...

... −
4q − 4 t0 + 4q − 4 2 r0 + 2q − 2 2 2 P
4q − 3 t1 + 2q − 2 2 r1 0 0 −
4q − 2 t0 + 4q − 2 2 r0 + 2q − 2 0 0 −
4q − 1 t1 + 2q − 2 0 r1 0 0 −

4q t0 + 4q − 2 0 r0 + 2q 2 0 H
.........................................................................................................................................................

4q + 1 t1 + 2q 2 r1 + 2 2 2 P
4q + 2 t0 + 4q 2 r0 + 2q 0 0 −

Now we refine further our description of the structure of Δ2U(n) within a gen-
eration. Once again we borrow from the terminology of Greek poetry, here to name
sequences of feet with no internal hypercatalectics.

Definition 3.7 (line). A line is a maximal subsequence of consecutive paeons
and hypercatalectics in a generation, none of whose paeons is preceded by one of
its hypercatalectics. We write a line as an overlined sequence of P ’s and H: e.g.,
PPP . . . PH. An even (odd) line is one that starts in an even (odd) semigeneration,
that is, one whose feet are all even (odd).

Proposition 3.3 tells us that a line is either a nonempty sequence of paeons followed
by a hypercatalectic or a sequence of paeons at the end of a generation.

Example 3.8. The first generation of Δ2U begins at Δ2U(7), ends at Δ2U(15),
and consists of the 9 numbers {Δ2U(n)}n∈gen(1) = {2,0,0,0, 0, 2,0,0,0}, the 3 feet
{ϕ(n)}n∈gen(1)∩Domϕ = {P,H, P} that form the first generation of ϕ, or the 2 lines

{PH, P}. The second generation of Δ2U continues on from Δ2U(16) and consists of
the 27 numbers {Δ2U(n)}n∈gen(2) = {2,0,0,0, 2,0,0,0, 0, 2,0,0,0, 0, 2,0,0,0, 0, 2,0,0,0,

2,0,0,0} or the 4 lines {PPH, PH, PH, PP}. The third generation of Δ2U consists
of the 10 lines {PPPPH, PH, PH, PH, PPH, PPH, PH, PH, PH, PPPP}.

As was the case with feet, there is an intricate relationship among the values of
the T , R, and U sequences on the paeons and hypercatalectic that make up a line.
This is captured in the second of our three structural theorems.

Theorem 3.9 (line pattern theorem). Suppose T (n0) = t0, T (n0 + 1) = t1,
R(n0) = r0, R(n0 + 1) = r1, and Δ2U(n0) is the beginning of a line of q paeons
and a hypercatalectic, ending therefore at Δ2U(n0 + 4q). Then T (n), Δ2T (n), R(n),
Δ2R(n), Δ2U(n), and ϕ(n) have the following values shown in Table 3.3.

Proof. By Definition 3.7, Δ2U(n0) = Δ2U(n0 + 4) = · · · = Δ2U(n0 + 4q − 4) =
Δ2U(n0 + 4q + 1) = 2 and all other intervening values of Δ2U are zero. The first two
rows of the table depend on whether or not the line begins a generation (and hence
whether or not the preceding foot is a paeon or a hypercatalectic), and its values can
be computed using Foot Pattern Theorem 3.4. The rest of the result follows from q
applications of Foot Pattern Theorem 3.4, setting n0 successively to the start of each
of these paeons.
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We observe that the feet within a line all have the same parity, and the lines
within a generation alternate in parity. Further, the lines within a generation are
essentially symmetric about the middle of the generation; for example, in the third
generation, the fifth and sixth are identical, as are the fourth and seventh, third
and eighth, and second and ninth. The first and tenth lines have identical paeons,
but the first line ends in a hypercatalectic while the tenth does not. In fact, it is
precisely this symmetry that led us to the specification of mg as the start of the gth
generation.

We will show in Theorem 3.15, to which we are now building, that a generation
consists entirely of lines, with no excess terms. Further, the proof of that theorem will
demonstrate how the values of Δ2U(n) in the gth generation are determined by the
values of Δ2T (n) in the (g − 1)st generation. This provides an understanding of how
successive generations interrelate. In order to get there, we require some additional
background.

We mentioned in Note 3.5 that the gth generation of Δ2U would be expressed in
terms of the (g − 1)st generation of Δ2T . It turns out that the natural restriction of
the function R to those n in the gth generation that start a foot is one to one onto the
(g−1)st generation; for each such n, the value of R(n) is the unique r in the (g−1)st
generation for which Δ2T (r) = Δ2U(n). We can then use the inverse of this map to
construct a beautiful correspondence from the (g − 1)st generation to the gth, as we
will soon show.

Example 3.10. We illustrate this inverse map of R with a simple example. Gen-
eration 2 begins at n = 16 and ends at n = 42. We know from Note 3.1 and Theorems
3.4 and 3.9 that the feet of Δ2U in generation 2 begin at n = 16, 20, 24, 25, 29, 30, 34,
35, and 39. From Table 3.1 we have R(16) = 7, R(20) = 9, R(24) = 11, R(25) = 8,
R(29) = 10, R(30) = 13, R(34) = 15, R(35) = 12, and R(39) = 14. Observe that all
of these values of R(n) are distinct and that they include all of the integers from 7 to
15, which is precisely the first generation. So the inverse of R, evaluated on the first
generation, gives the beginnings of all of the feet in the second generation of Δ2U . In
this way, the successive generations of T are interrelated.

We now show that the invertibility property holds.

Proposition 3.11. Let E be the set of even numbers and D = Domϕ. Then
R|D∩E begins with 5 and increases (strictly) only by 2, while R|D\E begins with 4 and
also increases only by 2.

Proof. By (3.1) and Note 3.1, R(7) = 4, R(12) = 5. The result follows from the
values of R(n0 + 4) and R(n0 + 5) given in Foot Pattern Theorem 3.4.

We do not know yet that Ran(R|Domϕ) is all of [4,∞). This will be established
after we show in Theorem 3.15 that each generation of Δ2U(n) has at least one
hypercatalectic, so Ran(R|Domϕ) flips parity infinitely often. We now name the inverse
of this restriction of R.

Definition 3.12. For n ∈ Domϕ, let f(R(n)) = n. That is, if Δ2R(n) = 2,
then f(R(n)) = n.

In Example 3.10, we had f(7) = 16, f(8) = 25, f(9) = 20, and so on. Also,
since f is bijective by construction, R(f(r)) = r when f(r) is defined. Observe that
R(f(7)) = R(16) = 7 and f(7) = 16 and R(7) = 4 so f(7) ≡ R(7) �≡ 7 (mod 2).

Corollary 3.13. When f(r) is defined, f(r) ≡ R(r) �≡ r (mod 2). If r ∈
RanR, then f(n) is defined for all n ≡ r (mod 2) in [4, r]. f(r) is the smallest
member of the set R−1(r).

Proof. By Proposition 3.11, R(n) is even when n is odd, and vice versa. Since f
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is the inverse of a restriction of R, f(r) is odd when r is even, and vice versa.

Also by Proposition 3.11, the range of R|D∩E is a consecutive sequence of odd
numbers starting at 5 with no gaps; so if an odd r ∈ RanR, then RanR also includes
all lesser odd numbers down to 5; and similarly for even r.

By Theorem 3.4, Δ2R(n) is 2 at the beginning of a foot in Δ2U and 0 elsewhere.
Therefore, among all the n for which R(n) is equal to a particular r, it is the smallest
one which belongs to Domϕ.

We are now close to demonstrating that our partition of the domains of our
functions into generations is a natural one, by showing that the values of functions on
one generation depend solely on the values of functions in the immediately preceding
generation. As we illustrated in Example 3.10, if n belongs to the gth generation,
then R(n) belongs to the (g − 1)st generation. Therefore, if r belongs to the gth
generation, then f(r) belongs to the (g + 1)st generation.

It turns out though that f does much more than simply map one generation into
the next. If for some r in the gth generation Δ2T (r) = 2, then f(r) is the beginning
of a paeon in the (g + 1)st generation of Δ2U : that is, ϕ(f(r)) = P . Conversely if
Δ2T (r) = 0, then f(r) is the beginning of a hypercatalectic of Δ2U and ϕ(f(r)) = H.
Thus f establishes a correspondence between each member of one generation and each
foot of Δ2U in the next generation, incidentally accounting for how the successive
generations grow.

Figure 3.1 displays this correspondence for the first two generations and elaborates
on the consequences of the parity principle of Corollary 3.13. As shown in Example 3.8,
the first generation of Δ2U consists of the feet {P,H, P}. According to Foot Pattern
Theorem 3.4, it follows that the first generation of Δ2T must be {2, 2, 2, 0; 0; 2, 2, 2, 0},
where semicolons indicate the ends of the feet in Δ2U . In Figure 3.1 we show the four
entries of Δ2T that correspond to each paeon of Δ2U enclosed in a parallelogram, and
the single (zero) entry of Δ2T that corresponds to a hypercatalectic of Δ2U enclosed
in a triangle.

The action of f on members of the first generation determines the structure of the
second generation. If we have r such that Δ2T (r) = 2, then f(r) marks the beginning
of a paeon in Δ2U : that is, ϕ(f(r)) = P , as indicated by the dashed lines in the
figure. Likewise dashed lines connect the points at which Δ2T (r) = 0 to the points
where ϕ(f(r)) = H.

Successive integers in the first generation alternate in parity. By Corollary 3.13,
their images under f must also alternate in parity. However, since all of the feet in
a line must have the same parity, the image under f of the integers corresponding to
a paeon in Δ2U lie in two separate lines of opposite parity. The lines in the second
generation are enclosed in boxes, and arrows indicate the intertwined order in which
they are to be concatenated to form the second generation.

Observe that we can now easily count the number of feet and lines in each succes-
sive generation. Since each foot in the first generation of Δ2U ends at a point where
Δ2T is zero, it corresponds to a line-ending hypercatalectic in the second generation
of Δ2U . So, the number of hypercatalectics in one generation is the same as the
number of feet in the preceding generation. And hence, the number of lines in one
generation is one more (taking into account the last line that lacks a hypercatalectic)
than the number of feet in the preceding generation.

The following theorem proves the correspondence between 0’s and 2’s and H’s
and P ’s and will be the foundation for much of the rest of the paper.
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Fig. 3.1. How successive generations correspond.

Theorem 3.14 (generational correspondence theorem). The diagram

Dom f
f−−−−→←−−−−
R

Ran f

Δ2T

⏐⏐� ϕ

⏐⏐�
{0, 2} 0 �→H−−−−→

2 �→P
{H,P}

commutes. That is, for 4 ≤ r ∈ Dom f , ϕ(f(r)) = P iff Δ2T (r) = 2.
Proof. If ϕ(f(r)) = P , then by (3.2), 2 = Δ2U(f(r)) = Δ2T (R(f(r))) = Δ2T (r).

If ϕ(f(r)) = H, then 0 = Δ2U(f(r)) = Δ2T (R(f(r))) = Δ2T (r).
We are now ready to present the last of our three structural theorems, which will

rely on Theorem 3.14 to express each generation in terms of its predecessor. This
will prove that the correspondence illustrated in Figure 3.1 does map each generation
exactly onto the next.

Theorem 3.15 (generation pattern theorem). The gth generation of Δ2U con-
sists entirely of 3g−1 + 1 lines. Its last line consists only of (odd) paeons, the last
of which has Foot Pattern Theorem 3.4 parameters n0 = mg+1 − 4, t0 := T (n0) =
3g+1−2, t1 := T (n0+1) = 3g+1, r0 := R(n0) = mg−2, and r1 := R(n0+1) = mg−1.
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Table 3.4

Function values near the end of a generation.

n T(n) Δ2T(n) R(n) Δ2R(n) Δ2U(n) ϕ(n)

mg − 4 3g − 2 2 mg−1 − 2 2 2 P
mg − 3 3g 2 mg−1 − 1 0 0 −
mg − 2 3g 2 mg−1 − 2 0 0 −
mg − 1 3g 0 mg−1 − 1 0 0 −
..........................................................................................................................

mg 3g + 2 2 mg−1 2 2 P
mg + 1 3g + 2 2 mg−1 − 1 0 0 −
mg + 2 3g + 4 2 mg−1 0 0 −

Proof. The values of T and Δ2U necessary to verify the result for g = 1 and g = 2
have been listed above in Note 3.1. We proceed to larger g by induction, assuming
that the results hold for all generations before the gth. In particular, applying Foot
Pattern Theorem 3.4 to the last foot of the (g− 1)st generation gives us the first four
rows of the key function values shown in Table 3.4.

To obtain the last three of the rows, we need to show that the gth generation
begins with a paeon and not a hypercatalectic. Observe that by induction the (g−1)st
generation begins with a paeon, so the Foot Pattern Theorem 3.4 applied to n0 =
mg−1 − 4 gives us T (mg−1) = 3g−1 + 2 and Δ2T (mg−1) = 2. Since Δ2U(mg) begins
a foot, (3.2) tells us that Δ2U(mg) = Δ2T (mg−1) = 2 and the start of the first
foot in the gth generation of Δ2U corresponds with the first term in the (g − 1)st
generation of Δ2T , as desired. Apply Theorem 3.4 to n0 = mg to fill in the rest of the
values.

Next, we show that f maps gen(g − 1) onto gen(g) ∩ Domϕ, as shown for g = 2
in Figure 3.1. By Corollary 3.13 and the fact that all generations have odd length,
we will know then that f maps sgi(g − 1) onto sgi(g) ∩ Domϕ for i = 0, 1.

We begin at R(mg) = mg−1, so f(mg−1) = mg, for which Theorem 3.14 with
r = mg−1 gives us a correspondence between Δ2T (mg−1) = 2 and ϕ(f(mg−1)) = P .
We claim that if we continue on through all of the (g − 1)st generation of Δ2T , the
values of f will not overrun the end of the gth generation. To check this, we have to
carefully count 2’s, 0’s, paeons, and hypercatalectics.

We look first at the 2’s and 0’s in the (g − 1)st generation of Δ2T . In the
even case,

∑
n∈sg0(g−1) Δ2T (n) = T (mg − 1) − T (mg−1 − 2) = 3g − 3g−1 = 2 · 3g−1

and (mg − 1) − (mg−1 − 2) = 3g + 1, so Δ2T (n) has the value two 3g−1 times
and zero the remaining 1

2 (3g + 1) − 3g−1 = 1
2 (3g−1 + 1) times. In the odd case,∑

n∈sg1(g−1) Δ2T (n) = T (mg − 2)−T (mg−1 − 1) = 3g − 3g−1 = 2 · 3g−1 and (mg − 2)

− (mg−1 − 1) = 3g − 1, so Δ2T (n) is two 3g−1 times and zero the remaining 1
2 (3g −

1) − 3g−1 = 1
2 (3g−1 − 1) times.

Using the correspondence of Theorem 3.14, we conclude that in the gth generation
the 1

2 (3g−1 +1) even hypercatalectics outnumber the 1
2 (3g−1−1) odd hypercatalectics

by one. Thus, the correspondence ends (after a total of 3g−1 + 1 lines) with an even
hypercatalectic followed by a run of odd paeons. There are 3g−1 even paeons and
3g−1 odd paeons. Adding together the lengths of all the paeons and hypercatalectics
gives 4 ·3g−1 +4 ·3g−1 + 1

2 (3g−1 +1)+ 1
2 (3g−1−1) = 3g+1, which is exactly the length

of the gth generation.

Finally, we need to calculate the Foot Pattern Theorem 3.4 parameters when n0 =
mg+1 − 4 at the end of the gth generation. Let P0 = P1 = 3g−1, H0 = 1

2 (3g−1 + 1),



ON THE BEHAVIOR OF A FAMILY OF META-FIBONACCI SEQUENCES 811

and H1 = 1
2 (3g−1 − 1) be, respectively, the number of even paeons, odd paeons, even

hypercatalectics, and odd hypercatalectics in the gth generation. Then by repeated
application of Line Pattern Theorem 3.9, r0 = (mg−1−1)+2H0 +2(P1−1) = mg−1−
1+3g−1 +1+2 ·3g−1−2 = mg−1 +3g−2 = mg−2, r1 = mg−1 +2H1 +2P1 = mg−1,
t0 = (3g + 2) + 4P0 + 2P1 − 4 = 3g+1 − 2, and t1 = (3g + 2) + 4P0 + 2P1 − 2 =
3g+1.

4. Some interesting properties of the three-term case. We continue to
use T , U , and R as defined in (3.1). In this section we explore a variety of interesting
properties of the T sequence, as well as of the Δ2T and Δ2U difference sequences.

Before we proceed, we need to present a short technical lemma concerning the
relationship between differences in the T sequence and differences in the U sequence.

Lemma 4.1. ΔdT (n) =
∑k−1

i=0 ΔdU(n− i) =
∑d−1

i=0 ΔkU(n− i).
Proof. Rearrange the summation and difference operators as follows:

ΔdT (n) =

k−1∑
i=0

ΔdU(n− i) =

k−1∑
i=0

U(n− i) −
k−1∑
i=0

U(n− d− i)

=
k+d−1∑
i=0

U(n− i) −
d−1∑
i=0

U(n− k − i) −
k−1∑
i=0

U(n− d− i)

=

d−1∑
i=0

U(n− i) −
d−1∑
i=0

U(n− k − i) =

d−1∑
i=0

ΔkU(n− i).

Allenby and Smith [1] first observed that there is no n for which T (n) = T (n−2) =
T (n− 4), or equivalently, for which Δ2T (n) = Δ2T (n− 2) = 0. This follows directly
from Foot Pattern Theorem 3.4.

Proposition 4.2. There do not exist n for which Δ2T (n) = Δ2T (n− 2) = 0.
Proof. The proof follows directly from Foot Pattern Theorem 3.4.
In fact, Proposition 4.2 is equivalent to Proposition 3.3: if Δ2T (n) = Δ2T (n−2) =

0, then by Corollary 2.3, Δ2U(n) = Δ2U(n − 1) = · · · = Δ2U(n − 4) = 0; while if
Proposition 4.2 holds, then for any n, 0 �= Δ4T (n) = Δ2T (n) + Δ2T (n − 2) =
Δ2U(n) + Δ2U(n− 1) + 2Δ2U(n− 2) + Δ2U(n− 3) + Δ2U(n− 4), so Δ2U never has
five consecutive zeros.

One of the more interesting properties of Conolly’s sequence (1.2), our case k = 2,
is that it consists of a monotonically increasing sequence of integers whose frequency
counts form the Gray binary sequence (Sloane Sequence A001511 [13]), omitting its
first term. We can prove the analogous property concerning the frequency counts of
T (n) for k = 3 and in so doing answer a conjecture given in Allenby and Smith [1].

Theorem 4.3. T (n) = T (n + 1) = T (n + 2) iff n = mg − 3 for some g.
Proof (First conjectured in Allenby and Smith [1]). The Foot Pattern Theo-

rem 3.4 parameters proven in Generation Pattern Theorem 3.15 give us the required
equality when n = mg − 3. We need to show then that equality does not occur
elsewhere.

Suppose n∗ is a minimal counterexample. That is, n∗ + 3 is not the start of a
generation, t := T (n∗) = T (n∗ + 1) = T (n∗ + 2), and no smaller counterexamples
exist. By Theorem 3.4, ϕ(n∗ − 1) = P , R(n∗ + 1) = R(n∗ − 1) = n∗ − t + 1, and
R(n∗ + 2) = R(n∗) = R(n∗ − 2) = n∗ − t + 2. By Lemma 4.1, 0 = Δ1T (n∗ + 2) =
Δ3U(n∗ + 2) = T (n∗ − t + 2) − T (n∗ − t + 1) = Δ1T (n∗ − t + 2).

By Theorem 3.4, Lemma 4.1, and (3.1), we have 2 = Δ2U(n∗−1) = (Δ2T )(R(n∗−
1)) = (Δ2T )(R(n∗+1)) = (Δ2U)(R(n∗+1))+(Δ2U)(R(n∗+1)−1)+(Δ2U)(R(n∗+
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1) − 2) = Δ2U(n∗ − t + 1) + Δ2U(n∗ − t) + Δ2U(n∗ − t − 1). Exactly one of these
three terms is equal to 2: but which?

If Δ2U(n∗ − t − 1) = 2, then by Theorem 3.4, T (n − t) = T (n − t + 2); and
since we have already observed that T (n − t + 1) = T (n − t + 2), we can invoke the
minimality of n∗ to conclude that there must be a g such that mg = n∗ − t + 3. But
then R(n∗ − 1) = mg − 2 and n∗ − 1 = f(mg − 2) = mg+1 − 4, so n∗ = mg+1 − 3, in
contradiction to our hypothesis.

If Δ2U(n∗ − t + 1) = 2, then there must be a g such that mg = n∗ − t + 1 and
similarly n∗ = mg+1 + 1, which contradicts the observation in Generation Pattern
Theorem 3.15 that the second and third members of any generation of T differ.

Finally, if Δ2U(n∗ − t) = 2, then there must be a g such that mg = n∗ − t + 4.
R(mg+1 − 6) = mg − 4 and R(mg+1) = mg, so by monotonicity R attains the value
mg − 2 at most twice, which contradicts R(n∗ − 2) = R(n∗) = R(n∗ + 2) = mg − 2.

So none of the three choices is possible, and the original assumption of a coun-
terexample must have been false.

Corollary 4.4. There is no n for which T (n) = T (n+1) = T (n+2) = T (n+3).
Proof. This is proven directly in Allenby and Smith [1] but follows simply from

Proposition 4.3.
In fact, it turns out that even two consecutive terms of T are rarely equal. Looking

back at Figure 1.6, we can see that the points at which the two lines intersect all occur
near the ends of generations.

Corollary 4.5. T (n) = T (n + 1) iff there is a g such that n ∈ {mg − 5,mg −
3,mg − 2,mg}.

Proof. If n ∈ {mg − 5,mg − 3,mg − 2,mg}, then by the Generation Pattern
Theorem 3.15, T (n) = T (n + 1). Conversely, suppose T (n) = T (n − 1) and consider
where the nearest paeon starts. If ϕ(n) = P , then by Foot Pattern Theorem 3.4,
T (n − 3) = T (n − 2) = T (n − 1) = T (n) − 2 and by Theorem 4.3, n = mg for some
g. If ϕ(n + 1) = P , then similarly n = mg − 5. If ϕ(n + 2) = P , then n = mg − 2.
Otherwise, T (n) = T (n + 1) = T (n + 2) and n = mg − 3.

Corollary 4.6. There are infinitely many n for which T (n) = T (n + 1) and
T (n + 2) = T (n + 3).

Proof. This was conjectured in Allenby and Smith [1] and follows from Corollary
4.5. The values of n for which this holds are precisely those that can be written as
n = mg−2 for some g. It is shown in [1] that such n must satisfy {Δ1T (n−1),Δ1T (n+
5)} = {−2, 2} (in some order), which follows from the Generation Pattern Theorem
3.15. This theorem also tells us that if T (n) = T (n+1), then either T (n−2) = T (n−1)
or T (n + 2) = T (n + 3).

Corollary 4.7. There is no n for which T (n) = T (n+1), T (n+2) = T (n+3),
and T (n + 4) = T (n + 5).

Proof. This is proven directly in Allenby and Smith [1] but follows simply from
Corollary 4.5.

Theorem 4.3 and the four corollaries that follow from it provide the characteriza-
tion of the frequency counts that we seek. Because the case k = 3 gives a nonmono-
tonic sequence (unlike Conolly’s k = 2), its repeated values can be either consecutive
or nonconsecutive. We define the consecutive repeated values of a sequence

{
n1︷ ︸︸ ︷

a1, . . . , a1,

n2︷ ︸︸ ︷
a2, . . . , a2, . . . ,

nm︷ ︸︸ ︷
am, . . . , am},

where a1 �= a2, a2 �= a3, . . . , am−1 �= am in the obvious way as the sequence
{n1, . . . , nm}. Then we can summarize these results in the following proposition.
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Proposition 4.8. The consecutive repeated values of the gth generation of T are

{2,
3g+1−7︷ ︸︸ ︷
1, . . . , 1, 2, 3}.

Proof. This is a restatement of Corollary 4.5.
In section 3 we showed the crucial role played by the Δ2U sequence that leads to

our understanding of the detailed structure of the T sequence. It turns out that the
Δ2U sequence has many fascinating properties, including beautiful symmetries both
within and between generations, that make it of independent interest.

We begin by giving a more detailed description of the structure of each generation
of Δ2U . By Generation Pattern Theorem 3.15, the gth generation of Δ2U consists
entirely of 3g−1 + 1 lines.

Definition 4.9. For g > 0 and i ∈ [0, 3g−1] let qi,g be the number of paeons in
the ith line (numbered starting with the zeroth) of the gth generation of Δ2U .

In Example 3.8 we showed that q0,1 = q1,1 = 1; q0,2 = 2, q1,2 = q2,2 = 1, q3,2 = 2;
q0,3 = 4, q1,3 = q2,3 = q3,3 = 1, q4,3 = q5,3 = 2, q6,3 = q7,3 = q8,3 = 1, and q9,3 = 4.

Proposition 4.10. The sequence consisting of the number of paeons in each
even line in the (g + 1)st generation of Δ2U can be expressed in terms of the number
of paeons in the lines in the gth generation of Δ2U as follows:

{ 2q0,g,

q1,g︷ ︸︸ ︷
1, . . . , 1, 2q2,g,

q3,g︷ ︸︸ ︷
1, . . . , 1, 2q4,g,

q5,g︷ ︸︸ ︷
1, . . . , 1, . . . , 2q3g−1−1,g,

q3g−1,g︷ ︸︸ ︷
1, . . . , 1 }.

Proof. Generational Correspondence Theorem 3.14 (see Figure 3.1), together with
Generation Pattern Theorem 3.15, shows that each even (odd) paeon in a generation
produces two paeons in the next even (odd) semigeneration and a paeon and a hyper-
catalectic in the next odd (even) semigeneration, while an even (odd) hypercatalectic
simply produces an even (odd) hypercatalectic. Thus each paeon contributes a single
paeon line (i.e., PH) to the next subgeneration of opposite parity and two paeons
(PP ) to the next subgeneration of equal parity. The number of even paeons in each
even line in the gth generation therefore appears doubled in the (g + 1)st even semi-
generation, alternating with runs of single-paeon lines.

Recall that a sequence is palindromic if it has reflective symmetry. Two basic
transformations that preserve palindromicity are that of replacing every occurrence
of a member of a sequence by a palindromic subsequence, and that of applying any
transformation to the lengths of consecutive runs of identical members in a sequence.
For example, the string “AABABAA” is palindromic and changing every “AA” to
“A” and every “B” to “CDC” gives “ACDCACDCA,” which remains palindromic.
We use these palindromicity-preserving transformations and Foot Pattern Theorem
3.4 to show the following generational palindromicity property, which we can use to
find qi,g for odd i.

Theorem 4.11. Each generation of Δ2U(n) consists of a palindromic sequence
of feet.

Proof. The result is true for the first generation, which consists of {P,H, P}; see
Example 3.8. We proceed by induction, assuming that it is true for all generations
before the gth.

By induction, the (g − 1)st generation of Δ2U is a palindromic sequence of feet.
Transforming that sequence using {P �→ 02220, H �→ 0} followed by {000 �→ 00, 00 �→
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0} gives us a palindromic sequence, which Foot Pattern Theorem 3.4 lets us recog-
nize as the (g − 1)st generation of Δ2T , preceded by a zero. Because the length of
every generation is odd, it follows that the (g − 1)st even semigeneration of Δ2T (n)
is the reverse of the (g − 1)st odd semigeneration of Δ2T (n), followed by a zero.
Then by Generational Correspondence Theorem 3.14 (see Figure 3.1), the sequence
{q0,g, q2,g, q4,g, . . . } is the reverse of {q1,g, q3,g, q5,g, . . . }. Thus, the entire sequence
{qi,g}3g

i=0 is palindromic and all the feet in the gth generation form a palindromic
sequence.

Corollary 4.12. Each generation of Δ2T (n) consists of a palindromic sequence
of 2’s and 0’s, followed by an extra 0.

Proof. The proof follows from Theorem 4.11 by application of Foot Pattern
Theorem 3.4.

Proposition 4.13. qi,g is always a power of 2.

Proof. The proposition is true for g = 1, since q0,1 = q1,1 = 1. Assume inductively
that the proposition is true for all generations preceding the gth. Proposition 4.10
tells us that qi,g for even i is a power of 2, and Theorem 4.11 tells us that the qi,g for
odd i have the same (power of 2) values in reverse order.

We now use what we have learned about the structure of our sequences to obtain
some quantitative properties of the sequences.

Proposition 4.14. For positive g and 0 ≤ x ≤ mg+1 − 4, the sum T (mg +
x) + T (mg+1 − 4 − x) = 3g + 3g+1 is constant. For 0 ≤ y ≤ mg+1 − 6, the sum
U(mg + y) + U(mg+1 − 6 − y) = 3g−1 + 3g is constant.

Proof. The proof follows readily from palindromicity of Δ2T (n) and Δ2U(n)
within the gth generation.

Proposition 4.15. The mean value of the gth generation of T (n) is 2 · 3g + 1.
The mean value of the gth generation of U(n) is 2 · 3g−1 + 5

9 .

Proof. The proof follows from Proposition 4.14 and the values indicated by Gen-
eration Pattern Theorem 3.15 and Foot Pattern Theorem 3.4 for the last few values
in the gth generations of T (n) and U(n).

Corollary 4.16. The asymptotic value of T (n)
n is 2

3 .

Proof. The mean value of n in the gth generation is (mg + mg+1 − 1)/2 =
(3g+1 + 5 + 3g+2 + 5 − 2)/4 = 3g+1 + 2 = 3 · 3g + 2. By Proposition 4.15, the mean
value of T in the same generation is 2 · 3g + 1. The ratio (2 · 3g + 1)/(3 · 3g + 2)
approaches 2

3 as g approaches infinity.

Proposition 4.17. The mean value of the gth generation of Δ2T (n) is 4
3 . The

mean value of the gth generation of Δ2U(n) is 4
9 .

Proof. In the proof of the Generation Pattern Theorem 3.15, we counted 2 ·
3g−1 paeons in the gth generation, which has length 3g+1. Recall from Foot Pattern
Theorem 3.4 that at a hypercatalectic, Δ2T (n) = Δ2U(n) = 0, while each paeon
contributes 6 to the sum of Δ2T and 2 to the sum of Δ2U .

We conclude this section with an observation whose generalization will play a key
role in the next section.

Proposition 4.18. Δ4U(n) ∈ {0, 2}.
Proof. The result is easily verified for small n. Expand Δ6U(n) in two ways to

obtain Δ4U(n) = Δ4U(n− 2) + (Δ2U(n) − Δ2U(n− 4)). By Foot Pattern Theorem
3.4, Δ6U has period 2 (alternating between the values 2 and 0) on any run of paeons
and is 0 at a hypercatalectic.

To date, we have not yet succeeded in proving that no closed form exists for T (n).
Nonetheless, the tools that we have created have facilitated the analysis which nor-
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mally follows from the discovery of a closed form, namely, a complete characterization
of the structure of the sequence, the computation of mean and asymptotic values, and
the rapid calculation of large values of the sequence.

5. The structure for general odd k. In the preceding two sections, we exam-
ined the case k = 3 in great detail. In this section, we find that most of our results
generalize to greater odd k. In the recursion (1.6) we again set a = 0 and assume the
initial conditions T0,k(n) = 1 for 1 ≤ n ≤ k with k odd. We will refer to this sequence
as T (n), to R0,k(n) as R(n), and to U0,k(n) as U(n):

T (n) := U(n) + U(n− 1) + · · · + U(n− k + 1), n > k,

U(n) := T (R(n)), n > 1,

R(n) := n− T (n− 1), n > 1.

(5.1)

When k = 3, the behavior of the recursion can largely be characterized in terms of
the pattern of feet in the values of Δk−1U , most of which have length k+1 = 4, with
the occasional hypercatalectic. For general odd k, we find that Δk−1U follows the
same pattern, consisting mostly of paeons now of length k+1, with a hypercatalectic
of length 1 every now and then.

In order to prove that there is only one zero or hypercatalectic between runs
of paeons in Δk−1U—which is not the case for even k—we will need to prove an
additional property of these runs of paeons. This is that paeons always come in
groups of k−1

2 , a property which was trivial for k = 3, where k−1
2 = 1.

It happens that Δk+1U has repeating patterns resembling feet of length k − 1, also
with the occasional extra term resembling a hypercatalectic. We will show that the
hypercatalectics in Δk−1U always coincide with the analogous disruptions in Δk+1U .
This gives the recursion an additional level of structure: paeons always come grouped
in polypaeons of length lcm(k − 1, k + 1) = 1

2 (k2 − 1). That is, a polypaeon consists

of k−1
2 consecutive paeons.

We begin by generalizing our previous definitions and defining what we mean by
a polypaeon.

Definition 5.1. A paeon is a sequence

{k − 1,

k︷ ︸︸ ︷
0, . . . , 0}

of k + 1 consecutive values of Δk−1U(n). A hypercatalectic is a singleton sequence
{0}, immediately preceded in {Δk−1U(n)} by a paeon. A foot is either a paeon or
a hypercatalectic. A polypaeon is a sequence of 1

2 (k − 1) consecutive paeons. For
convenience, we will write {P} interchangeably with the paeon {k − 1, 0, . . . , 0} and
likewise {H} with the hypercatalectic {0} when listing values of Δk−1U . We also
define ϕ(n) on a subset of the natural numbers as the symbol P if Δk−1U(n) = k− 1
begins a paeon and H if Δk−1U(n) = 0 is a hypercatalectic, and we leave it undefined
otherwise.

We now generalize Proposition 2.2 to facilitate proving the polypaeon structure.

Proposition 5.2. For fixed odd k > 1, all even d ∈ [0, k − 1], and any n > k,
both |ΔdU(n)| and ΔdT (n) belong to the set {0, k − 1}.

Proof. The case k = 3 was already proven in Proposition 2.2, and the case d = 0
is trivial. We assume therefore in what follows that k > 3 and d > 0.
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As in the proof of Proposition 2.2, we proceed by induction and leave it to the
reader to verify that the result holds for n ≤ 2k. Assume then that n > 2k and that
the result holds for lesser n and all relevant d.

ΔdU(n) := T (R(n)) − T (R(n − d)) = (ΔxT )(R(n)), where x = ΔdR(n) =
d − ΔdT (n − 1). By the induction assumption, ΔdT (n − 1) ∈ {0, k − 1}, so x ∈
{d, d − k + 1}. In either case, |x| is even and in [0, k − 1] and the greater of R(n)
and R(n − d) is strictly less than n, so we can apply induction again to find that
|(ΔxT )(R(n))| ∈ {0, k − 1} and hence |ΔdU(n)| ∈ {0, k − 1}.

Observe that ΔdT (n) + Δk−1−dT (n − d) = Δk−1T (n). By Proposition 2.2,
Δk−1T (n) ∈ {0, k − 1}; and by induction, Δk−1−dT (n − d) ∈ {0, k − 1}. There-
fore, |ΔdT (n)| ∈ {0, k−1}. We need to rule out the case ΔdT (n) = 1−k. We expand
ΔdT (n) as a telescoping sum:

ΔdT (n) =
∑

i even
∈[0,d)

Δ2T (n− i).(5.2)

By induction, when i > 0, Δ2T (n− i) ∈ {0, k− 1}. To prove that ΔdT (n) ≥ 0, it
therefore suffices to show that the first summand Δ2T (n) ≥ 0, that is, Δ2T (n) �= 1−k.
Write

Δ2T (n) = Δk−1T (n) − Δk−3T (n− 2).(5.3)

We will assume that Δ2T (n) = 1−k and show that a contradiction ensues. From
(5.3) it follows that 0 = Δk−1T (n) and k − 1 = Δk−3T (n− 2). But Δk−3T (n− 2) =
Δk−1T (n − 2) − Δ2T (n − k + 1), and by the same reasoning 0 = Δ2T (n − k + 1),
which will be contradicted below.

By Lemma 4.1, 1−k = Δ2T (n) = ΔkU(n)+ΔkU(n−1) = Δk+1U(n)+Δk−1U(n−
1) = Δ2U(n) + Δk−1U(n− 2) + Δk−1U(n− 1). Since by Proposition 2.2 the last two
terms are nonnegative, Δ2U(n) = 1 − k. Δ2R(n) = 2 − Δ2T (n− 1) ∈ { 2, 3 − k } by
induction, but if it were 2, then Δ2U(n) would be equal to (Δ2T )(R(n)) ∈ {0, k− 1},
contradicting our earlier assumption. Thus Δ2T (n− 1) = k− 1 and Δ2R(n) = 3− k.
By (5.2), Δk−1T (n− 1) = k − 1.

So Δk−1T (n − 1) − Δk−1T (n) = (k − 1) − 0, and if we expand this using (5.1)
and gather terms, k − 1 = Δk−1U(n − k) − Δk−1U(n), and by Proposition 2.2,
k − 1 = Δk−1U(n − k). By Corollary 2.5, (5.1), and the properties of the difference

operator (respectively), 0 =
∑2k

i=k+1 Δk−1U(n− i) = Δk−1T (n−k−1) = Δk−3T (n−
k − 1) + Δ2T (n − 2k + 2), both of whose last terms are thus zero, while by (1.6),
k − 1 ≥ Δk−1T (n− k + 1) ≥ Δk−1U(n− k) = k − 1.

But then Δ2T (n − k + 1) = Δk−1T (n − k + 1) − Δk−3T (n − k − 1) = k − 1, a
contradiction. Thus, Δ2T (n) ∈ {0, k − 1} and the induction is complete.

The polypaeon structure can be viewed as arising from the difference identity

Δk+1Δk−1U(n) = Δk−1Δk+1U(n).(5.4)

This elementary difference equation causes periodicity with period k ± 1 in the
sequences Δk∓1U(n) to mutually reinforce each other: Δk−1U(n) is periodic with
period k + 1 on an interval (i.e., the left-hand side of (5.4) is zero) iff Δk+1U(n) is
periodic on that interval with period k − 1 (i.e., the right-hand side of (5.4) is zero).

Recall Note 2.1, which lists values of Δ6U(n) when k = 7. We can now recognize
the values beginning with n = 15 as forming three paeons, then a hypercatalectic,
then seven more paeons. Δ6U(n) is therefore periodic with period 8 on the interval
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from n = 15 to n = 38, and again from n = 40 to n = 95. This means that according
to (5.4), Δ8U(n), whatever its values may be, is periodic with period 6 on those two
ranges of n. The reader may verify that in fact Δ8U(n) = 0, except at the beginning
of each period, when it is equal to 6.

For general odd k, we will show that the periods in Δk+1U(n) behave similarly
to the case k = 7: the difference sequence is 0 except at the beginning of each period
of length k − 1, where it has the value k − 1. So we have two difference sequences,
Δk−1U(n) and Δk+1U(n), which are mostly zero but almost periodically equal to
k − 1 (with different periods). In what follows, we will need to discuss the phase
difference between these sequences, which we now define.

Definition 5.3. Let n mark the beginning of a paeon in Δk−1U(n), that is,
ϕ(n) = P . The phase difference θ(n) between the sequences Δk±1U(n) is the smallest
nonnegative value for which Δk+1U(n + θ(n)) �= 0.

Since the periods in Δk+1U are shorter than the periods in Δk−1U by 2, the phase
difference θ(n) decreases by 2 (modulo k− 1) with each successive consecutive paeon
in Δk−1U . We will also find that because of the way in which the periodicity in the
two difference sequences is mutually reinforcing, the only time that a hypercatalectic
can occur in Δk−1U is when the phase difference is about to drop from 2 to 0, θ(n)
returns to zero at the beginning of each polypaeon and Δk+1U(n) is zero except where
it is k − 1. We will use these ideas in the following proof of the polypaeon structure
of Δk−1U(n), which while lengthy illustrates well the added complexity of the case of
general odd k.

Proposition 5.4 (polypaeon structure of Δk−1U(n)).

(I) Along each polypaeon, Δk+1U consists of k+1
2 copies of the k − 1 integers

(k−1, 0, . . . , 0). Formally, suppose ϕ(n) = P marks the start of a polypaeon, and n ≤
m < n + k2−1

2 . Then Δk+1U(m) = k − 1 if m ≡ n (mod k − 1), and Δk+1U(m) = 0
otherwise.

(II) At a hypercatalectic, Δk+1U vanishes. Formally, if ϕ(n) = H, then we have
Δk+1U(n) = 0.

(III) Polypaeons are followed by either polypaeons or hypercatalectics. Formally,

if ϕ(n− k2−1
2 ) = P marks the start of a polypaeon, then that polypaeon is followed at

n by either another polypaeon or a hypercatalectic.

(IV) Hypercatalectics are followed by polypaeons. Formally, if ϕ(n−1) = H, then
a polypaeon starts at n.

Proof. It is laborious, but not difficult, to verify directly that there is a polypaeon
which starts at 2k + 1 and is followed by a hypercatalectic at 1

2 (k2 + 4k + 1), along
both of which Δk+1U has the required values.

We proceed by induction, assuming that all four statements hold for all lesser n.
In what follows, we will use statements (I) and (II) to compute values of Δk+1U that
precede n, and use statements (III), (IV) and the above-mentioned presence of the
initial polypaeon starting at 2k + 1 and hypercatalectic at 1

2k
2 + 4k + 1 to ensure

the polypaeon-hypercatalectic structure that immediately precedes n. We begin by
proving statement (I).

By (5.4) on the commutativity of the difference operator, Δk+1U(n) = Δk+1U(n−
k+1)+Δk−1U(n)−Δk−1U(n−k−1). By induction, Δk+1U(n−k+1) = Δk−1U(n−
k − 1), with both being equal to zero if n is preceded by a hypercatalectic and equal
to k− 1 if n is preceded by a paeon. Δk−1U(n) = k− 1 by assumption, so Δk+1U(n)
is also equal to k − 1. The rest of statement (I) follows by induction (to obtain
earlier values of Δk+1U) and the periodicity that (5.4) and the repeated paeons in
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the polypaeon impose on Δk+1U .

Proving statement (II) simply consists of using (5.4) and induction to compute
Δk+1U(n) = Δk+1U(n− k + 1) + Δk−1U(n) − Δk−1U(n− k − 1) = 0 + 0 − 0 = 0.

Statement (III) is more difficult to prove. It follows directly from Corollary 2.5
and Definition 5.1 that what follows the last paeon of a polypaeon must be either a
hypercatalectic (if Δk−1U(n) = 0) or a paeon (if Δk−1U(n) = k − 1). We assume
therefore the latter case. It is not obvious at the outset that the paeon at n is the
first paeon of a full polypaeon. We will prove this in fact true by showing (i) that
θ(n) = 0, (ii) that θ drops by 2 modulo k − 1 with each successive paeon, and (iii)
that the only time the next hypercatalectic can occur is when θ would drop from 2
to 0.

In our proof above of statement (I), we showed that ϕ(n) = P implies that
Δk+1U(n) = k − 1, and showed how to use periodicity to calculate the values of
Δk+1U(n) that are induced by consecutive paeons, showing (ii). Since Δk+1U(n) =
k− 1, we have θ(n) = 0. And since the (k− 1)’s in Δk+1U recur with period k− 1 as
long as we continue to have consecutive paeons at n′ ∈ {n, n+k+1, n+2(k+1), . . . },
then θ(n′) drops by 2 modulo k − 1 with each successive paeon.

To obtain (iii), we need to determine whether the next foot after the paeon at
some n′ is a paeon or a hypercatalectic. We calculate

Δk−1U(n′ + k + 1) = 0 + · · · + 0 + Δk−1U(n′ + k + 1)

=

k−1∑
i=0

Δk−1U(n′ + k + 1 − i)

= Δk−1T (n′ + k + 1)

=
∑

0≤j even<k−1

Δ2T (n′ + k + 1 − j) by (5.2).

(5.5)

If θ(n′) > 2, then Δ2T (n′ + θ(n′)) is one of these summands, which we can then
compute as follows:

Δ2T (n′ + θ(n′)) =

k−1∑
i=0

Δ2U(n′ + θ(n′) − i), which telescopes to

= Δk+1U(n′ + θ(n′)) + Δk−1U(n′ + θ(n′) − 1)

= (k − 1) + 0 = k − 1.

(5.6)

It is worth noting in passing that (5.6) shows that Δ2T (n′) = k − 1 whenever
Δk+1U(n′) = k − 1.

We now consider three cases separately: θ(n′) > 2, θ(n′) = 0, and θ(n′) = 2.

In the first case, if θ(n′) > 2, then (5.6) shows that Δk−1U(n′ + k + 1) = k − 1
starts a paeon.

In the second case, if θ(n′) = 0, then by the same argument used in the proof
of (I) above, Δk+1U(n′ + k − 1) = k − 1. And by the same argument used in (5.6),
substituting k − 1 for θ(n′), we have Δ2T (n′ + k − 1) = k − 1. This value of Δ2T is
among the summands in the last line of (5.5), so Δk−1U(n′ + k + 1) = k− 1 begins a
paeon.

It is therefore only in the third case, θ(n′) = 2, that a hypercatalectic can occur.
This completes the proof of statement (III). All that remains now is statement (IV).
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We know from Proposition 2.2 that Δk−1U(n) is either 0 or k−1. If Δk−1U(n) =
k−1, then we can use the preceding proof of statement (III) to show that it marks the
beginning of a polypaeon. What we need to show then is simply that Δk−1U(n) �= 0.

To do so, we generalize the proof of Proposition 3.3, relying on the polypaeon
property to ensure that the number of preceding paeons is a multiple of k−1

2 , so that
we can compute some key differences of T .

By induction and the presence of a first hypercatalectic at n = 1
2k

2 + 4k + 1,
we know that the hypercatalectic at n − 1 is preceded by some positive number
of polypaeons, the first of which is itself preceded by a hypercatalectic. For some
positive q = r k−1

2 then, Δk−1U(n − k − 2) = Δk−1U(n − 2(k + 1) − 1) = · · · =
Δk−1U(n− q(k+ 1)− 1) = Δk−1U(n− (q + 1)(k+ 1)− 2) = k− 1 and Δk−1U(i) = 0
for all other i in the interval [n− (q + 1)(k + 1) − 2, n− 1].

Use these known values of Δk−1U , the distributivity of the difference operator
over the definition of T in (5.1), and the equation ΔdR(n) = d − ΔdT (n − 1) to
compute four important differences of R:

Δ2R(n) = 2 − Δ2T (n− 1)
= 2 − Δk+1T (n− 1) + Δk−1T (n− 3)

= 2 −
k−1∑
i=0

Δk+1U(n− 1 − i) +

k−1∑
i=0

Δk−1U(n− 3 − i)

= 2 − (k − 1) + (k − 1) = 2.

(5.7)

The preceding sums are evaluated by using induction to find the values of the dif-
ferences of U and observing that exactly one summand in each range is nonzero. The
following three equations are derived similarly, using in addition a parity argument
for (5.10):

Δk−1R(n) = k − 1,(5.8)

Δk−1R(n− q(k + 1) − 2) = k − 1,(5.9)

Δk−1R(n− i(k − 1) − 2) = 0 for 0 ≤ i ≤ r
k + 1

2
.(5.10)

By definition, Δk−1U(n) = U(n) − U(n − k + 1) = T (R(n)) − T (R(n − k + 1)).
Since Δk−1R(n) = k− 1, we can continue the equation T (R(n))− T (R(n− k + 1)) =

T (R(n)) − T (R(n) − k + 1) = (Δk−1T )(R(n)) =
∑k−1

i=0 (Δk−1U)(R(n) − i). We need
to show that this last sum is equal to k−1. We claim that this is so because one of its
first two terms is k−1 and the rest are all zero. By the inductive assumption that the
sequence preceding n consists of feet, it suffices to show that (Δk−1U)(R(n) − i) = 0
for i ∈ [2, k + 1], forcing one of the two following differences (i = 0 or i = 1) of U to
be the nonzero start of a paeon:

k+1∑
i=2

(Δk−1U)(R(n) − i) = (Δk−1T )(R(n) − 2)

= (Δk−1T )(R(n− 2)) by (5.7)

= (Δk−1T )

(
R(n− r

k + 1

2
(k − 1) − 2)

)
by (5.10)

= (Δk−1T )(R(n− q(k + 1) − 2))

= (Δk−1U)(n− q(k + 1) − 2) by (5.9)

= 0.
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Table 5.1

Function values over a paeon for odd k.

n T(n) Δk−1T(n) R(n) Δk−1R(n) Δk−1U(n) ϕ(n)

n0 − k tk−2 − k + 1 k − 1 ? 0 0 −
n0 − k + 1 t0 − k + 1 k − 1 r0 − k + 1 0 0 −

...
...

...
...

...
...

...

n0 − 3 tk−4 − k + 1 k − 1 ? 0 0 −
n0 − 2 tk−3 − k + 1 ? r0 − 2 0 0 −
n0 − 1 tk−2 − k + 1 0 r1 ? 0 ?

n0 t0 k − 1 r0 k − 1 k − 1 P

n0 + 1 t1 k − 1 r1 0 0 −
...

...
...

...
...

...
...

n0 + k − 2 tk−2 k − 1 rk−2 0 0 −
n0 + k − 1 t0 + k − 1 k − 1 r0 0 0 −
n0 + k t1 0 r1 0 0 −

n0 + k + 1 t2 + d d r2 + k − 1 k − 1 d P or H

n0 + k + 2 t3 + k − 1 k − 1 r3+
k−1−d

k − 1 − d k − 1 − d − or P

n0 + k + 3 t4 + k − 1 k − 1 r4 0 0 −

All the summands are therefore zero, and so one of (Δk−1U)(R(n) − 1) and
(Δk−1U)(R(n)) must be k − 1 and we are done.

The fundamental result that Δk−1U consists of polypaeons separated by at most
one zero (constituting a hypercatalectic) now follows as a direct consequence.

Corollary 5.5 (a generalized version of Proposition 3.3). {Δk−1U(n)}∞n=2k+1

consists only of feet, and each of its paeons occurs within a run of polypaeons.

Proof. The proof follows immediately from Proposition 5.4.

Since the remainder of the results in this section may be proven by straightforward
generalizations of the corresponding earlier propositions, we state them here without
proof.

Theorem 5.6 (a generalized version of Foot Pattern Theorem 3.4). Suppose the
parameters n0, t0, . . . , tk−2, r0, . . . , rk−2 and d satisfy all of the following conditions:
n0 ≥ 2k + 1, Δk−1U(n0) = k − 1, Δk−1U(n0 + k + 1) = d, and for 0 ≤ i ≤
k − 2, T (n0 + i) = ti, and R(n0 + i) = ri. Then T (n), Δk−1T (n), R(n), Δk−1R(n),
Δk−1U(n), and ϕ(n) have the values shown in Table 5.1.

Definition 5.7 (generation). For any g > 0, let mg := 1
k−1 (kg+1 + k2 − k −

1) = k +
∑g

i=0 k
i and call the interval [mg,mg+1 − 1] the gth generation, written as

gen(g). We partition the gth generation into two nonconsecutive subsequences: the
gth even semigeneration sg0(g) := {n ∈ gen(g) | n ≡ mg (mod 2)} and the gth odd
semigeneration sg1(g) := {n ∈ gen(g) | n �≡ mg (mod 2)}. For any sequence s(n), we
will refer to the subsequence {s(n) | n ∈ gen(g), s(n) defined} as the gth generation
of s and similarly for semigenerations. An even (odd) foot is one that starts in an
even (odd) semigeneration. Note that because the length kg+1 of gen(g) is odd, mg

and mg+1 always have opposite parity.

Theorem 5.8 (a generalized version of Generation Pattern Theorem 3.15). The
gth generation of Δk−1U consists entirely of kg feet, which make up kg−1 + 1 lines.
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Its last line consists only of (odd) paeons, the last of which has Foot Pattern Theorem
5.6 parameters n0 = mg+1 − k − 1, t0 = kg+1 − k + 1, t1 = · · · = tk−2 = kg+1,
r0 = mg − 2, r1 = mg − 1 and for 2 ≤ i ≤ k − 2, ri = mg + i− 2.

At this point, we have generalized all of section 3 for odd k, describing the gen-
erational structure of the sequences. The remaining results in this section generalize
the indicated propositions and theorems about properties of the sequences, proven for
k = 3 in section 4.

Proposition 5.9 (a generalized version of Proposition 4.10). The sequence
consisting of the number of paeons in each even line in the (g + 1)st generation of
Δ2U is

{
k + 1

2
q0,g,

q1,g︷ ︸︸ ︷
k − 1

2
, . . . ,

k − 1

2
, . . . ,

k + 1

2
qkg−1−1,g,

qkg−1,g︷ ︸︸ ︷
k − 1

2
, . . . ,

k − 1

2

}
.

Theorem 5.10 (a generalized version of Theorem 4.11). Each generation of the
sequence Δk−1U(n) consists of a palindromic sequence of feet.

Proposition 5.11 (a generalized version of Proposition 4.13). qi,g is always k−1
2

times a power of k+1
2 .

Proposition 5.12 (a generalized version of Proposition 4.14). For positive g
and 0 ≤ x ≤ mg+1 − k− 1, the sum T (mg + x) + T (mg+1 − k− 1− x) = kg + kg+1 is
constant. For 0 ≤ y ≤ mg+1−2k, the sum U(mg +y)+U(mg+1−2k−y) = kg−1 +kg

is constant.
Proposition 5.13 (a generalized version of Proposition 4.15). The mean value

of the gth generation of T (n) is 1
2 (kg+1 + kg + k − 1).

Corollary 5.14 (a generalized version of Corollary 4.16). The asymptotic value

of T (n)
n is k−1

k .
Proposition 5.15 (a generalized version of Proposition 4.17). The mean value

of the gth generation of Δ2T (n) is 2(k−1)
k . The mean value of the gth generation of

Δ2U(n) is 2(k−1)
k2 .

We conclude this section with a few conjectures based on empirical evidence.
This paper does not for the most part discuss the case of a �= 0, but the following
observation seems closely enough related to the palindromicity property proven in
section 4 to be worth mentioning here.

Conjecture 5.16 (a generalized version of Proposition 4.11). For general a and
odd k, Δk−1U has a palindromic generational structure, but there are k extra zeros
after each generation.

We have observed the following curious property, which describes a surprising
way in which the even and odd q sequences dovetail together.

Conjecture 5.17. For a = 0, odd k, and sufficiently large g, the number of
consecutive times that qi,g has the value k−1

2 is always k.
As in the case of k = 3, maximal runs of identical values in the T (n) sequence

tend to occur at the ends of generations. This appears to be true for any odd k.
Conjecture 5.18 (a generalized version of Theorem 4.3). For a = 0 and odd

k, T (n− k) = · · · = T (n− 1) iff n = mg for some g.
We conclude this section with two open questions suggesting avenues for further

research, and welcome correspondence concerning them.
Question 5.19. What can be said of the sequences generated by other initial

values? In particular, which initial values give sequences which are well defined, and
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which ones lead to a generational structure of the sort described in this paper?
Question 5.20. Let a = 0 and k be odd. The palindromic symmetry property

means that the values of each sequence at odd integers can be simply expressed in
terms of the values at even integers, and vice versa. Is there a simple recurrence for
T (2n) in terms of T at other even integers?

6. Conjectures for even k. Figure 6.1 shows T0,4(n) with the usual initial val-
ues (1, 1, 1, 1). Unlike when k is odd, we do not see a bifurcation into two intertwined
subsequences; rather, the sequence stays close to the expected line T = 3

4n.
Nonetheless, because of Corollary 2.5, we know that the sequence Δ3U0,4(n) has

a block structure of runs of paeons separated by one or more zeros (resembling hy-
percatalectics). These zeros can appear singly or (unlike when k is odd) multiply:
there are two zeros in a row at n = 87 and n = 88 following the paeon that runs
from n = 82 to n = 86. Still, if we make a minor change in our definition of feet to
allow for consecutive hypercatalectics, we can define feet, lines, and generations in a
natural way that fits our empirical observations.

Definition 6.1. Let a = 0 and k be even. A paeon is a sequence

{k − 1,

k︷ ︸︸ ︷
0, . . . , 0}

of k + 1 consecutive values of Δk−1U(n). A hypercatalectic is a singleton sequence
{0} in {Δk−1U(n)} that is not part of a paeon. A foot is either a paeon or a hy-
percatalectic. For convenience, we will write {P} interchangeably with the paeon
{k − 1, 0, . . . , 0} and likewise {H} with the hypercatalectic {0} when listing values
of Δk−1U . We also define ϕ(n) as the symbol P if Δk−1U(n) = k − 1 begins a
paeon, H if Δk−1U(n) = 0 is a hypercatalectic, and leave it undefined otherwise. For
any g > 0, let mg := 1

k−1 (kg+1 + k2 − k − 1) = k +
∑g

i=0 k
i and call the interval

[mg,mg+1 − 1] the gth generation, written as gen(g). For any sequence s(n), we will
refer to the subsequence {s(n) | n ∈ gen(g), s(n) defined } as the gth generation of s
and similarly for semigenerations. An even (odd) foot is one that starts in an even
(odd) semigeneration.

We say that this definition is a natural one, because it allows some of the sequence

Fig. 6.1. T0,4(n) with initial values (1, 1, 1, 1).
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properties we observed earlier for odd k to continue to hold for even k. For example,
there is always a run of equal values of T (n) at the end of each generation, as can be
seen in Figure 6.1 preceding n = m2 = 25 and n = m3 = 89.

In light of this definition, it is instructive to look back at the case k = 2 (Conolly’s
sequence), which is completely understood, in light of this definition. In its cor-
responding Δ1U sequence, beginning with the second generation at n = m2 = 9,
paeons always occur in pairs, and the number of consecutive hypercatalectics that
occur between pairs of paeons forms the previously mentioned Gray binary sequence
1, 2, 1, 3, 1, 2, 1, 4, . . . , with an extra hypercatalectic at the end of each generation.

We believe that all of section 3 can be generalized to even k. We do not, however,
observe palindromic symmetry or polypaeon structure, so not all of section 4 can be
carried over to this case. For example, when k = 4, the first generation of Δ2U con-
sists of the feet {P, P, P,H}; the second generation is {P, P, P, P, P,H, P, P, P, P, P,H,
P, P,H,H}; the third generation begins with a copy of the second generation, includes
a run of eight paeons, and ends with three consecutive hypercatalectics. None of the
generations are palindromic, and consecutive paeons appear in varying and relatively
prime numbers.

The following four conjectures state how we believe our results of section 3 will
generalize to even k, based on empirical evidence.

Conjecture 6.2. For a = 0, even k, and the usual initial conditions T0,k(n) = 1
for 1 ≤ n ≤ k, implicitly define f(R(n)) := n for n ∈ Domϕ. Then f is well defined
on its domain and f(r) is the least n for which r = R(n).

Conjecture 6.3 (a generalized version of Foot Pattern Theorem 5.6). Let
a = 0, k be even, and assume the usual initial conditions T0,k(n) = 1 for 1 ≤ n ≤ k.
Suppose the parameters n0, t0, . . . , tk−2, r0, . . . , rk−2 and d satisfy all of the following
conditions: n0 ≥ 2k + 1, Δk−1U(n0) = k − 1, Δk−1U(n0 + k + 1) = d, and for
0 ≤ i ≤ k − 2, T (n0 + i) = ti, and R(n0 + i) = ri. Then T (n), Δk−1T (n), R(n),
Δk−1R(n), Δk−1U(n), and ϕ(n) have the values shown in Table 5.1.

Conjecture 6.4 (a generalized version of Generational Correspondence Theo-
rem 3.14). Let a = 0 and k be even. Then the diagram

Dom f
f−−−−→←−−−−
R

Ran f

Δk−1T

⏐⏐� ϕ

⏐⏐�
{0, k − 1} 0 �→H−−−−−→

k−1 �→P
{H,P}

commutes. That is, for k + 1 ≤ r ∈ Dom f , ϕ(f(r)) = P iff Δk−1T (r) = k − 1.
Conjecture 6.5 (a generalized version of Generation Pattern Theorem 3.15).

Let a = 0 and k be even. Then the gth generation of Δk−1U consists entirely of kg

feet, which make up kg−1 lines. The generation ends with g hypercatalectics preceded
by a paeon, and if we let n0 := mg+1 −k−1, then for 0 ≤ i ≤ k−2, T (n0 + i) = kg+1

and R(n0 + i) = mg − k − 1 + i.
While we do not have palindromic symmetry when k is even, the existence of

f appears to be sufficient to generalize the following sequence property observed in
section 5.

Conjecture 6.6 (a generalized version of Proposition 5.15). For a = 0 and any

(not necessarily odd) k, the mean value of the gth generation of Δ2T (n) is 2(k−1)
k .

The mean value of the gth generation of Δ2U(n) is 2(k−1)
k2 .
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As in the case of odd k described in Conjecture 5.18, it is also true for even k
that maximal runs of identical values in the T (n) sequence tend to occur at the ends
of generations.

Conjecture 6.7 (a generalized version of Theorem 4.3). For a = 0, even k and
any g, T (mg+1 − k − g) = · · · = T (mg+1 − 1) and there are no earlier runs of k + g
identical consecutive values of T (n).

In a forthcoming communication, we hope to resolve the above conjectures in the
broader context of the determination of the complete structure of our sequences for
even k.
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Abstract. The motivation for identifying codes comes from maintenance of multiprocessor
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1. Introduction and preliminaries. Assume that G = (V,E) is an undirected
and connected graph. We denote the (graphic) distance by d(u, v); that is, d(u, v) is
the number of edges in any shortest path between u ∈ V and v ∈ V . For v ∈ V , the
ball

Br(v) = {u ∈ V | d(u, v) ≤ r}.

If d(x, y) ≤ 1, we say that x and y cover each other. An edge {x, y} ∈ E is
denoted by xy, and we say that x (resp., y) is an endvertex of xy and that x (resp.,
y) is incident with xy.

A code is a nonempty subset of V , and its elements are called codewords.
Let C be a code. For all X ⊆ V , we denote

Ir(G,C;X) = Ir(X) := C ∩
( ⋃

x∈X

Br(x)

)
.

This is called the I-set of X. Whenever convenient, we omit the arguments G and/or
C from Ir(G,C;X). In this paper, mostly r = 1, we then drop the subscript and
write Ir(X) = I(X). We also denote Ir(v1, . . . , vs) = Ir({v1, . . . , vs}), where vi ∈ V
for all i = 1, . . . , s.

A code C ⊆ V is called (r,≤ l)-identifying (in G) if the sets Ir(G,C;X) are
distinct for all X ⊆ V , where |X| ≤ l.

Notice that if C is (r,≤ l)-identifying, then Ir(X) = ∅ if and only if X = ∅.
The concept of identifying codes was introduced by Karpovsky, Chakrabarty, and

Levitin [11] in 1998. Next we describe an application [11] of identifying codes to fault
diagnosis of multiprocessor architectures.

Suppose that each vertex of G contains a processor and that an edge is a commu-
nication link between two processors. Some of the processors (but at most l of them)
can be malfunctioning, and we wish to locate them in the following way. We choose a
code C ⊆ V , i.e., a subset of processors, and each codeword is assigned the following

∗Received by the editors February 9, 2004; accepted for publication (in revised form) August 27,
2004; published electronically May 20, 2005. This research was supported by the Academy of Finland
under grant 207303.

http://www.siam.org/journals/sidma/18-4/44075.html
†Department of Mathematics, University of Turku, 20014 Turku, Finland (terolai@utu.fi).
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task. The codeword, say c ∈ C, checks all the processors in Br(c) and sends a single
bit value “1” to the host if it detects any problems and “0” if everything is fine in the
ball. Based on the bits coming from the codewords (in other words, knowing Ir(X))
the host must be able to determine where the faulty processors lie (i.e., determine
X). This can be done if the codewords form an (r,≤ l)-identifying code. Of course,
we would like to find a code with the smallest possible (i.e., optimal) cardinality.

Identification has been widely studied for such graphs G as the binary Hamming
space (i.e., the binary hypercube), the square lattice, the triangular grid, the hexag-
onal mesh, and the king grid (see, e.g., [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15] and the
references therein).

In [6], Honkala, Karpovsky, and Levitin considered codes that remain identifying
although I-sets can be corrupted. They examined (for l = 1) the following extensions
of identifying codes.

The symmetric difference A � B = (A \ B) ∪ (B \ A). Denote by
(
V
2

)
the set of

unordered pairs of V .
Definition 1 (see [11, 13]). A code C ⊆ V is t-edge-robust (r,≤ l)-identifying

(in G) if C is (r,≤ l)-identifying in every graph G′ = (V,E′), where E′ = E � E1

and E1 ⊆
(
V
2

)
has size at most t.

In this case, some communication links can be deleted from E and some new links
added to E. The total number of erased and added links must be together at most t.

Notice that the vertices covered by a vertex may change from G to G′, and hence
I-sets can alter.

Definition 2. A code C ⊆ V is t-vertex-robust (r,≤ l)-identifying (in G) if for
any two different sets X,Γ ⊆ V , where |X|, |Γ| ≤ l, we have

Ir(X) � A 	= Ir(Γ) � B

for any A,B ⊆ C with |A|, |B| ≤ t.
In this variant, some codewords can be missing from an I-set or some new added

to it (together again at most t changes).
If Ir(x) = {c1, . . . , c2t} for x ∈ V , then choosing Γ = ∅, A = {c1, . . . , ct}, and

B = {ct+1, . . . , c2t}, one obtains

Ir(x) � A = {ct+1, . . . , c2t} = Ir(Γ) � B.

According to this, a t-vertex-robust (r,≤ l)-identifying code satisfies (if l ≥ 1)

|Ir(x)| ≥ 2t + 1(1.1)

for all x ∈ V .
Definition 2 (for l = 1) is slightly different from the following definition of [6]

(and also different from the one in [16]): A subset C ⊆ V is called a t-vertex-robust
r-identifying code (in G) if |Ir(v)| ≥ t + 1 for all v ∈ V and if for all u, v ∈ V , u 	= v,
and A,B ⊆ C with |A|, |B| ≤ t, we have Ir(u) � A 	= Ir(v) � B.

The advantage of Definition 2 is that we can always separate, by virtue of (1.1), the
situation where there exist faulty processors from the situation where every processor
is fine.

A code satisfying (only) the definition from [6] (or the definition of [16]) cannot
distinguish, for example, between the cases X = {x} (one faulty processor), where
Ir(x) = {c1, . . . , ct+1}, and Γ = ∅ (no faulty processors), because choosing A =
{c1, . . . , ct} and B = {ct+1} gives Ir(x) � A = Ir(∅) � B.
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We consider in this paper exclusively binary Hamming spaces (i.e., binary hyper-
cubes) defined as follows. Denote the binary field by F = {0, 1}. The vertex set (a
vertex is also called a word) is the n-fold Cartesian product Fn = F ×F × · · · ×F of
F . The Hamming distance between x ∈ Fn and y ∈ Fn is the number of coordinate
positions in which they differ. There exists an edge between two words if and only
if the Hamming distance equals one. The set of edges is denoted by En. We denote
the obtained graph by Gn = (Fn, En). Notice that the Hamming distance and the
graphic distance coincide in Gn. If C ⊆ Fn, then n is called the length of C.

In what follows, we will often utilize the following easy lemma. We denote Si(x) =
{y ∈ Fn | d(x, y) = i}, where the distance is always with respect to Gn.

Lemma 1. Consider the graph Gn.
(i) For a, b ∈ Fn we have

|B1(a) ∩B1(b)| =

⎧⎨⎩
n + 1 if a = b,
2 if d(a, b) = 1 or 2,
0 otherwise.

(ii) The intersection of three different balls of radius one consists of a unique point
if the intersection is nonempty.

(iii) Let x ∈ Fn. If a, b ∈ Si(x), a 	= b, for some i, 0 < i < n − 1, then
B1(a) ∩B1(b), if nonempty, contains a unique point in Si−1(x) and in Si+1(x).

(iv) Let x ∈ Fn. If a, b ∈ Si(x), a 	= b for some i, 0 < i ≤ n, then |B1(a) ∩
Si−1(x)| = i. Moreover, B1(a) ∩B1(b) ∩ Si(x) = ∅.

A code C ⊆ Fn is called a μ-fold r-covering (with respect to Gn) if for every word
x of Fn we have |Ir(Gn, C;x)| ≥ μ. For coverings consult, for instance, [4, Chapter
14].

Theorem 1 (see [4, Theorem 14.2.4]). A μ-fold 1-covering of length n and
smallest possible cardinality μ ·2n/(n+1) exists if and only if there are integers i ≥ 0,
μ0 > 0 such that μ0 | μ, μ ≤ 2iμ0 and n = μ02

i − 1.
In the next section, we give infinite sequences of optimal t-edge-robust (1,≤ l)-

identifying codes for l ≥ 3 and t ≥ 1 and also for l = 2 and t ≥ 2 (for the case
l = 2 and t = 1, see [13]). If l = 1 and t ≥ 1, no infinite optimal families are known.
Interesting asymptotic behavior of the size of such codes is given in [6].

In the last section, infinite families of optimal t-vertex-robust (1,≤ l)-identifying
codes are provided for l ≥ 2 and t ≥ 1 and for l = 1 and t ≥ 2.

2. On edge-robust identification. We consider edge-robust identification in
Gn. Theorem 2 is from [13]. Apart from this theorem the results of [13] are exclusively
for l = 2 and t = 1. If t = 1, we can “fix” the added or deleted edge, but if t > 1 (as
mainly in this paper), we use a different approach (see Fact 3 of Theorem 3 below).

Theorem 2 (see [13]). Let l ≥ 2, t ≥ 1, and 2l + t ≤ n + 2. Any t-edge-robust
(1,≤ l)-identifying code C ⊆ Fn is a (2l+ t− 1)-fold 1-covering (with respect to Gn).
Thus

|C| ≥
⌈
(2l + t− 1)

2n

n + 1

⌉
.

The next theorem shows that, if l ≥ 2, then in many cases the reverse statement
is also true.

Theorem 3. If

l ≥ 3 and t ≥ 1
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or

l = 2 and t ≥ 3,

then a (2l + t − 1)-fold 1-covering C ⊆ Fn (with respect to Gn) is also t-edge-robust
(1,≤ l)-identifying (in Gn).

Proof. Let C ⊆ Fn be a (2l+ t− 1)-fold 1-covering. In order to see that C is also
t-edge-robust (1,≤ l)-identifying, we need to show that I(G;X) 	= I(G; Γ) for any two
distinct sets X,Γ ⊆ Fn of cardinality at most l each, where G is Gn or any G′

n—here
G′

n is obtained from Gn by adding and/or deleting together at most t edges. Assume
to the contrary that I(G;X) = I(G; Γ).

Without loss of generality we can assume |X| ≥ |Γ|. Thus we have x ∈ X such
that x /∈ Γ. Let us denote the changes in edges from Gn to G as in Definition 1 by
E1

n. We shall next show that our assumption I(G;X) = I(G; Γ) implies the following.
Fact 1. I(Gn;x) ∩ I(Gn; γ) 	= ∅ for all γ ∈ Γ.
Fact 2. |X| = |Γ| = l, and 2l + t− 1 ≤ |I(Gn;x)| ≤ 2l + t.
Fact 3. There exist at least t − 1 edges in E1

n such that each one of them has
as an endvertex an element of I(Gn;x) \ I(Gn; Γ). The other endvertex belongs to
Γ ∪ {x}. We denote this set of at least t − 1 edges by P . Since |E1

n| ≤ t, there is at
most one edge e not having such endvertices, i.e., e ∈ E1

n \ P .
We know that |I(Gn, C;x)| ≥ 2l + t − 1 and, trivially, I(G;x) ⊆ I(G;X). With

the aid of En any element of Γ can cover (see Lemma 1(i)) at most 2 codewords of
I(Gn;x). Since |Γ| ≤ l, there are at least t− 1 codewords left in I(Gn;x) \ I(Gn; Γ).
However, I(G;X) = I(G; Γ), so each codeword c ∈ I(Gn;x) \ I(Gn; Γ) must be an
endvertex of an edge in E1

n such that if c belongs to I(G; Γ) (resp., does not belong
to I(G; Γ)), then Γ contains the other endvertex (resp., the other endvertex equals x)
and the edge is added to (resp., deleted from) En. This gives Fact 3.

If there is γ ∈ Γ for which I(Gn;x) ∩ I(Gn; γ) = ∅ or if |Γ| < l or if |I(Gn;x)| ≥
2l + t + 1, then I(G;x) contains at least one codeword not in I(G; Γ). Indeed, there
exist at least t+ 1 codewords in I(Gn;x) \ I(Gn; Γ), but |E1

n| ≤ t. This gives the first
two facts.

By Fact 1, we know that Γ ⊆ S1(x) ∪ S2(x). Recall that the notation Si(x) is
with respect to Gn. We denote Si = Si(x) and S≥k = ∪i≥kSi.

If X contains an element y ∈ S≥3, then always I(G;X) 	= I(G; Γ). This can be
seen as follows. Obviously, then |I(Gn, C; y)∩S≥4| ≥ 2l+t−5 by Lemma 1(iv). Since
Γ ⊆ S1 ∪ S2, its elements do not cover, using En, any of these codewords. By Fact 3
we conclude that also none of P is incident with these codewords. The possible edge
e ∈ E1

n \P can either add at most one of the codewords to I(G; Γ) or remove at most
one from I(Gn; y). Therefore, I(G; y) contains at least 2l+ t− 6 codewords which do
not belong to I(G; Γ). Since the assumptions of the theorem give 2l + t − 6 ≥ 1, we
can assume that X \ {x} is a subset of S1 ∪ S2.

Fact 2 implies the existence of an element α ∈ Γ \X and we know α ∈ S1 ∪ S2.
(i) First, let α ∈ S2. Then |I(Gn;α) ∩ S3| ≥ 2l + t− 4 by Lemma 1(iv).
We know that X \{x} ⊆ S1∪S2. If y ∈ X∩S2, we get by Lemma 1(iii) that it can

cover in Gn at most one of the codewords of I(Gn;α)∩S3 because y 	= α. If y ∈ S1, it
cannot cover, using En, any such codewords. Fact 3 implies that none of the edges in P
is incident with an element of I(Gn;α)∩S3. Moreover, the one possible edge e ∈ E1

n\P
can remove (resp., add) at most one of the elements from (I(Gn;α) ∩ S3) \ I(Gn;X)
(resp., to I(G;X)). Thus there are at least (2l + t − 4) − 1 − |X \ {x}| = l + t − 4
codewords left in I(G;α) ∩ S3 ⊆ I(G; Γ) which are not contained in I(G;X). Apart
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from the case l = 3 and t = 1, the assumptions of the theorem yield l+ t− 4 ≥ 1 and
we are done.

Let l = 3 and t = 1. Denote X = {x, y, z}. If α /∈ C, then I(Gn;α) ∩ S3

contains at least four codewords, and we are done as above. Let α ∈ C. We can
write I(Gn;α) ∩ S3 = {c1, c2, c3}. Without loss of generality, we may assume that
c1 ∈ I(Gn, y), c2 ∈ I(Gn, z) and that the only edge e in E1

n belongs to the set
{c3v | v ∈ X} (if it is added) or equals αc3 (if it is deleted). However, now y, z ∈ S2

and hence α ∈ I(G; Γ) do not belong to I(G;X).
(ii) Let α ∈ S1. Then I(Gn;α) ∩ S2 contains at least 2l + t − 3 codewords (see

Lemma 1(iv) again).
An element in X \{x} ⊆ S1∪S2 covers, using En, at most one of these codewords.

There can be at most one codeword in I(Gn;α)∩S2 which is incident with an edge (or
edges) in P . Indeed, by Fact 3, such codewords must belong to Γ and, if there are at
least two of them, then Γ covers, using En, at most 2l− 2 codewords of I(Gn;x) and,
since |E1

n| ≤ t, there is at least one element in I(G;X)\ I(G; Γ) because (2l−2)+ t <
2l+t−1 ≤ |I(Gn;x)|. Thus the edges of P and e ∈ E1

n\P can add or remove together
at most two elements (and at most one if t = 1) from (I(Gn;α)∩S2)\I(Gn;X). Unless
l = 3 and t = 1, the assumptions of the theorem give (2l+t−3)−2−|X \{x}| ≥ l+t−
4 ≥ 1 and we are done. If l = 3 and t = 1, then (2l+t−3)−1−|X\{x}| ≥ l+t−3 ≥ 1.
Hence always I(G;X) 	= I(G; Γ).

The following infinite families of optimal t-edge-robust (1,≤ l)-identifying codes
are obtained by applying Theorem 1 to the previous theorem and Theorem 2.

Theorem 4. Let

l ≥ 3 and t ≥ 1

or

l = 2 and t ≥ 3.

The smallest possible cardinality of a t-edge-robust (1,≤ l)-identifying code equals

(2l + t− 1)
2n

n + 1

for the lengths n = μ02
i−1, where the integers i ≥ 0 and μ0 > 0 satisfy μ0 | (2l+t−1)

and 2l + t− 1 ≤ 2iμ0.
If l = 2 and t = 2, then all 5-fold 1-coverings are not 2-edge-robust (1,≤ 2)-

identifying. This case is considered next.
Theorem 5. Suppose C ⊆ Fn is a 5-fold 1-covering for which there do not exist

four distinct codewords x′, y′, α′, and β′ such that

I(Gn, C;x′) = {x′, c1, c2, c3, c4},
I(Gn, C; y′) = {y′, c5, c6, c7, c8},(2.1)

I(Gn, C;α′) = {α′, c1, c2, c5, c6}, and

I(Gn, C;β′) = {β′, c3, c4, c7, c8}.

Then C is 2-edge-robust (1,≤ 2)-identifying.
Proof. Let C be a code satisfying the assumptions of the theorem. We need to

verify that I(G;X) 	= I(G; Γ) for all X,Γ ⊆ Fn (X 	= Γ, |X| ≤ 2, |Γ| ≤ 2), where G
is Gn or any G′

n where at most two edges have been deleted from or added to En or
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one is added and another deleted. Assume to the contrary that I(G;X) = I(G; Γ).
Facts 1 to 3 of Theorem 3 are again valid (where l = t = 2). By Fact 2, we can
assume X = {x, y}, x 	= y, and Γ = {α, β}, α 	= β. Let x ∈ X \ Γ and α ∈ Γ \ X.
Fact 1 implies again Γ ⊆ S1 ∪ S2 (recall the notations Si and S≥k from the proof of
Theorem 3). Furthermore, we denote a set of edges incident with w and having the
other endvertex in A ⊆ Fn by wA := {wv | v ∈ A}.

If y ∈ S3∪S4, then without loss of generality we can assume that I(Gn; y)∩S≥4 =
{a} for some a ∈ C (a can be equal to y). Indeed, Γ covers nothing in S≥4 using
En, the edges in P are not incident with words in S≥4, and e ∈ E1

n \ P can remove
(resp., add) at most one element from I(Gn; y)∩S≥4 (resp., to I(G; Γ)). In addition,
by Lemma 1(iv), |I(Gn; y) ∩ S≥4| ≥ 1. Consequently, a is an endvertex of e ∈ E1

n \ P
and

e = ay if e is deleted from En, a 	= y,
e ∈ aΓ if e is added to En.

(2.2)

We examine separately the cases α ∈ S2 and α ∈ S1.
Case 1. Assume first that α ∈ S2. Since I(Gn;α) ∩ S3 contains at least two

codewords by Lemma 1(iv), y must cover, using En ,at least one of them, because e can
either add at most one element to I(G;X) or remove at most one from I(Gn;α)∩ S3

(and P none). Thus y ∈ S2 ∪ S3 ∪ S4.
(i) Suppose that y does not cover, using En, all the codewords of I(Gn;α) ∩ S3;

say c is not covered. Since I(G;X) = I(G; Γ), necessarily c is incident with e (notice
that an edge in P cannot be incident with c).

If y ∈ S3 ∪ S4, then e = ac by (2.2). However, c 	= y and c /∈ Γ, a contradiction.
Let y ∈ S2. If α /∈ C, then |I(Gn;α)∩S3| ≥ 3 but y can cover, using En, at most

one by Lemma 1(iii), and e can either add or remove at most one (and P none), so
we are done. Thus α ∈ C. Neither y nor x can cover α using En. In addition, e = αc
or e ∈ cX so it does not help. Therefore, f ∈ P (now P = {f}) is incident with α,
and further, the only choice is f = αx. If y = β, then by Lemma 1(iii) the words α
and β cover, using En, a common word in S1 (the other common word is in S3) and
two others in S1 by Lemma 1(iv). But |I(Gn;x)| ≥ 5, so I(G;x) contains an element
not in I(G; Γ). Let y 	= β. Then α covers, using E′

n = En � E1
n, at most two words

of I(Gn; y), and f and e do not help β to cover the at least three codewords left in
I(Gn; y) which now lie also in I(G;X); so β can use only En, and thus by Lemma 1(ii)
we obtain y = β, which is a contradiction.

(ii) Assume next that y covers all of the codewords in I(Gn;α) ∩ S3 using En.
Because y 	= α, we obtain by Lemma 1(ii) that I(Gn;α)∩S3 consists of two elements,
say c5 and c6. Furthermore, y ∈ S4 by Lemma 1(iii). Thus (2.2) is valid and,
moreover, I(Gn; y) ∩ S3 consists of four elements (notice that more than four is not
possible according to Lemma 1(iv)). Hence we write I(Gn; y) = {a, c5, c6, c7, c8} for
some c7, c8 ∈ C ∩ S3. Since neither e nor f ∈ P is incident with a word in S3, in
particular, not with c7 and c8, they must be covered by β using En. Hence, β ∈ S2

and the set I(Gn;β)∩S3 consists of c7 and c8 (we are done if there are more than two
codewords in the set). This implies that β ∈ C and that there exist two codewords, say
c3 and c4, in I(Gn;β)∩S1. We can also assume that |I(Gn;α)∩S3| = 2 and, similarly,
α ∈ C and there exist two codewords, say c1 and c2, in I(Gn;α) ∩ S1. Therefore,
{c1, c2, c3, c4} ⊆ I(Gn;x). Because α, β /∈ I(Gn;X) (but α, β ∈ I(G; Γ)) and both e
and f can be incident with at most one of α and β, we can assume, by symmetry,
that α is an endvertex of f and that β is an endvertex of e. Consequently, e = yβ and
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Fig. 1. The solid lines denote edges in En and the dashed ones edges in E1
n.

f = xα or we are done. Thus y = a. Furthermore, it suffices to assume that I(Gn;x) =
{x, c1, c2, c3, c4}. Now I(Gn;α) = {α, c1, c2, c5, c6} and I(Gn;β) = {β, c3, c4, c7, c8},
so (see Figure 1) the assumption of the theorem gives the contradiction (setting x = x′,
y = y′ and so on).

Case 2. Assume that α ∈ S1.
Suppose first that β /∈ I(Gn;α) ∩ S2. Then an edge of P is not incident with

any word of I(Gn;α) ∩ S2 and so only e can add or remove one of the at least three
codewords in I(Gn;α) ∩ S2. Thus y must cover, using En, two of them (more is not
possible) giving y ∈ S3 and one element in (I(Gn;α) ∩ S2) \ I(Gn; y), say c, must be
incident with e. However, this is not possible since (2.2) applies and c 	= y and c /∈ Γ.

Assume finally that β ∈ I(Gn;α)∩S2. Then P = E1
n because there exist at least

two elements in I(Gn;x) \ I(Gn,Γ). Thus at most one of the at least three elements
of I(Gn;α) ∩ S2 can be incident with an edge of P and we get again y ∈ S3, but
this would require an edge satisfying (2.2), which does not exist due to the fact that
P = E1

n.
Example 1. Let H be the [7, 4, 3]-Hamming code [4, p. 8]. It is easy to check

(with a computer) that the code

H ∪ (1000000 + H) ∪ (0100000 + H) ∪ (0010000 + H) ∪ (0001000 + H)

in F 7 satisfies the conditions of the previous theorem and so it is 2-edge-robust (1,≤
2)-identifying. The cardinality 80 is optimal by Theorem 2.

Next we consider a construction (cf. [4, p. 67]), which gives us an infinite se-
quence of optimal 2-edge-robust (1,≤ 2)-identifying codes starting from the code of
the example. Let π(u) equal 0 (resp., 1) if the number of ones in u ∈ Fn is even
(resp., odd).

Theorem 6. Let C ⊆ Fn be 2-edge-robust (1,≤ 2)-identifying in Gn. Then
D = {(π(u), u, u + c) | u ∈ Fn, c ∈ C} ⊆ F 2n+1 is 2-edge-robust (1,≤ 2)-identifying
in G2n+1.
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Proof. We show that the code D ⊆ F 2n+1 is 2-edge-robust (1,≤ 2)-identifying by
checking the conditions of the previous theorem. Because C is a 5-fold 1-covering, we
know, by [4, Theorems 3.4.3 and 14.4.3], that the code D is as well. Assume that there
exist four codewords x, y, α, β ∈ D such that (2.1) is satisfied, i.e., I(G2n+1, D;x) =
{x, c1, c2, c3, c4}, I(G2n+1, D; y) = {y, c5, c6, c7, c8}, I(G2n+1, D;α) = {α, c1, c2, c5, c6},
and I(G2n+1, D;β) = {β, c3, c4, c7, c8}.

For a codeword a ∈ D we use the notation a = (π(ua), ua, ua + ca), where ca ∈ C.
Obviously, for any a ∈ D,

I(G2n+1, D; a) = {(π(ua), ua, ua + c) | c ∈ C, d(c, ca) ≤ 1},

where the distance is with respect to Gn. Note that the first n + 1 coordinates are
the same in all of the words of I(G2n+1, D; a).

Now |I(G2n+1, D;x) ∩ I(G2n+1, D;α)| = 2. Therefore, looking at the first n + 1
coordinates in these I-sets of x and α, we obtain ux = uα. Analogously, ux = uβ

and uy = uβ . Since α 	= x 	= β 	= y, we must have cα 	= cx 	= cβ and cy 	= cβ .
But we shall see next that this leads to a contradiction. To this end, we observe first
that if I(G2n+1, D; a) = {(bi, ti, si) | i = 1, . . . , k}, where a ∈ D, then I(Gn, C; ca) =
{ti + si | i = 1, . . . , k}. Applying this, we obtain

I(G,C; {cx, cy}) = I(G,C; {cα, cβ}),

where G is obtained from Gn adding to En two edges cxcα and cycβ . Because C is
2-edge-robust (1,≤ 2)-identifying, necessarily {cx, cy} = {cα, cβ}. But now cx = cα or
cx = cβ , a contradiction. This completes the proof.

Combining the previous theorem and the example with Theorem 2, we obtain the
following result.

Corollary 2.1. The optimal cardinality of a 2-edge-robust (1,≤ 2)-identifying
code of length 2r − 1, r ≥ 3, equals 5 · 22r−r−1.

3. On vertex-robust identification. Next we consider vertex-robust identifi-
cation in Gn. Notice that now the underlying graph does not change.

Theorem 7. Let

l ≥ 2 and t ≥ 1

or

l = 1 and t ≥ 2.

Furthermore, let 2l+2t ≤ n+2. A code C ⊆ Fn is t-vertex-robust (1,≤ l)-identifying
(in Gn) if and only if it is a (2l + 2t− 1)-fold 1-covering.

Proof. (⇒) Let C be t-vertex-robust (1,≤ l)-identifying. By (1.1), the cases l = 1
and t ≥ 2 are immediately clear.

Then let l ≥ 2 and t ≥ 1. Suppose that there is a word x ∈ Fn such that
|I(x)| ≤ 2l+2t− 2. Let pi’s (i = 1, . . . , 2l+2t− 2) be distinct elements of B1(x) such
that I(x) ⊆ {pi | i = 1, . . . , 2l + 2t− 2} and p2l+2t−2 = x if x ∈ I(x), and pi ∈ S1(x)
for all i = 1, . . . , 2l+2t−2 if x /∈ I(x). Denote yi = x+p2i−1 +p2i for i = 1, . . . , l−1.
Thus yi (	= x) covers p2i−1 and p2i. Let A = {pi | i = 2l − 1, . . . , 2l + t − 2} and
B = {pi | i = 2l + t− 1, . . . , 2l + 2t− 2}. Then

I(y1, . . . , yl−1) � (A ∩ C) = I(y1, . . . , yl−1, x) � (B ∩ C),
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which is not allowed because |A| = |B| = t. Thus |I(x)| ≥ 2l + 2t− 1 for all x ∈ Fn,
and C is a (2l + 2t− 1)-fold 1-covering.

(⇐) Let C be a (2l + 2t− 1)-fold 1-covering. Suppose that

I(X) � A = I(Γ) � B(3.1)

for two distinct sets X,Γ ⊆ Fn of cardinality at most l each, where A,B ⊆ C and
|A|, |B| ≤ t. Without loss of generality, we can assume that |X| ≥ |Γ| and x ∈ X \ Γ.
Denote again Si and S≥k as in the proof of Theorem 3.

By Lemma 1(i), the set I(x) contains at least 2t − 1 codewords which do not
belong to I(Γ). By virtue of (3.1), we immediately see that A ∪ B contains these
codewords and, further, |A| = t and |B| ≥ t − 1, or symmetrically, |B| = t and
|A| ≥ t− 1. Thus |(A∪B)∩S≥2| ≤ 1. Furthermore, Γ ⊆ S1 ∪S2 and |Γ| = |X| = l or
else I(X) contains at least 2t+ 1 codewords not in I(Γ), which is impossible because
|A|, |B| ≤ t. Let α ∈ Γ \X.

All other cases except l = 2 and t = 1: First we show that X ∩ S≥3 = ∅. For
l = 1 this is trivial, so let l ≥ 3 and t ≥ 1 or l = 2 and t ≥ 2. If y ∈ S≥3,
then |I(y) ∩ S≥4| ≥ 2l + 2t − 5 by Lemma 1(iv) and none of them belongs to I(Γ).
In addition, A ∪ B can contain at most one of these codewords. Hence I(X) � A
contains a codeword not in I(Γ) � B, because 2l + 2t ≥ 7. Thus X \ {x} ⊆ S1 ∪ S2.

Consequently, any element of X \ {x} covers at most one of I(α) ∩ S2 (resp.,
I(α) ∩ S3) if α ∈ S1 (resp., if α ∈ S2). Because |(A ∪ B) ∩ S≥2| ≤ 1 and l + 2t ≥ 5,
the set I(Γ) � B contains at least one codeword not in I(X) � A. Thus (3.1) cannot
hold.

The case l = 2 and t = 1: Let X = {x, y}. If y ∈ S≥3, then it is enough to assume
that I(y) ∩ S≥4 = {c} ⊆ A ∪B.

Let |I(α) ∩ S2| ≥ 3 (resp., |I(α) ∩ S3| ≥ 3) for α ∈ S1 (resp., α ∈ S2). By
Lemma 1(i), y can cover at most two of these words, so there exists c′ among these at
least three codewords such that c′ /∈ I(X) and hence c′ ∈ A ∪B. In addition, y must
cover more than one of the at least three codewords and therefore y ∈ S≥3. But now
c 	= c′ gives the contradiction.

Since |I(α)∩S2| ≥ 3 always for α ∈ S1, it suffices to check the case |I(α)∩S3| = 2
(less than two is not possible) for α ∈ S2. Consequently, α ∈ C. Denote {c1, c2} =
I(α)∩S3. Since |(A∪B)∩S≥2| ≤ 1, the word y must cover at least one of c1 and c2.
Suppose first that c1 is not covered by y. Evidently, c1 ∈ A ∪ B. Now y must cover
c2 and α. Therefore, it suffices to assume that y = c2. But then y ∈ S3. Now c 	= c1
leads to a contradiction. Assume next that y covers both c1 and c2, which requires
that y ∈ S4. Necessarily, α ∈ A ∪B, but c 	= α, so (3.1) is not possible.

Therefore, C is t-vertex-robust (1,≤ l)-identifying in Gn for the given parameters
t and l.

Combining the previous theorem with Theorem 1, we get the following.
Theorem 8. Let

l ≥ 2 and t ≥ 1

or

l = 1 and t ≥ 2.

The smallest possible cardinality of a t-vertex-robust (1,≤ l)-identifying code equals

(2l + 2t− 1)
2n

n + 1
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for the lengths n = μ02
i − 1, where the integers i ≥ 0, μ0 > 0 are such that μ0 |

(2l + 2t− 1) and 2l + 2t− 1 ≤ μ02
i.

The case l = 1 and t = 1 is different in its nature and will not be treated in this
paper.
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Abstract. It was recently shown that just five characters (functions on a finite set X) suffice
to convexly define a trivalent tree with leaf set X. Here we show that four characters suffice which,
since three characters are not enough in general, is the best possible.
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1. Introduction. The field of phylogenetics compares observable characteristics
of (biological) species in order to reconstruct and analyze their evolutionary history.
Generally this history is represented by a tree, with leaves labeled by the species. If
each of the comparisons between the species involve just two possible character states
(for example, “wings” vs. “no-wings”) and each state has evolved only once, then there
is a direct equivalence between such data and leaf-labeled trees. This equivalence was
described by Peter Buneman in his classic paper [4] from 1971. More recently there
has been considerable interest, from both computer scientists and mathematicians,
in extending these results to data in which there may be many character states—so-
called “multistate characters” [1], [7], [8], [10]. Recent whole genome data has given
rise to extensive data sets of multistate characters, often with a large number of states
(such as those obtained by comparing gene order between species).

This leads to the natural question of how many multistate characters are required
to completely determine an underlying evolutionary tree, under the assumption that
each state has evolved just once. In a surprising result, the authors of [10] recently
showed that just five such characters suffice, regardless of the number of species (we
describe this result more precisely in section 5). Their result applied a graph-theoretic
argument involving chordal graphs to a specific edge-coloring of trees based on the
cyclic group of order 5. However, the tantalizing question of whether this five char-
acter result could be improved to four characters was left as a posed problem [10,
Problem 6.2], as the methods used in that paper did not seem to readily apply.

In this paper we employ a different approach, and show that four characters are
indeed sufficient, a result that is optimal since three characters are not sufficient to
completely define all trees [10]. We reproduce the tree topology in [10] that illustrates
four as lower bound for Figure 1. In particular, we describe an edge-coloring of a tree
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Fig. 1. The figure depicts an evolutionary tree on the set X = {a, b, . . . , l} that cannot be
convexly defined by three characters (see [10] for more details).

using four colors, which induces characters in the same way as the edge coloration
using five colors in [10]. To establish that the induced characters can be used to com-
pletely reconstruct the tree, we consider a set of small subtrees (each with four leaves)
that are generated by the edge-coloring, and show that these subtrees determine the
tree. This then allows us to establish that the characters induced by the edge-coloring
determine the underlying tree.

The structure of this paper is as follows. In section 2, we introduce some termi-
nology for trees and describe a closure operation on subtrees. Next, in section 3, we
describe an edge-coloring of trees that produces subtrees on which this closure oper-
ation is applied. In section 4, we establish our main technical tool (Theorem 4.1),
and in section 5, we use this result to show that four characters suffice to completely
reconstruct a tree (Theorem 5.2).

2. Quartet trees and semidyadic closure. Throughout the paper, X denotes
a nonempty finite set and n = |X|. A phylogenetic tree (on X) is a tree T that has
X as its set of labeled leaves and interior vertices that are unlabeled and of degree at
least three. If each interior vertex has degree exactly three, we say that T is trivalent.
Two phylogenetic trees for X are isomorphic if the identity map on X induces a graph
isomorphism on the underlying tree.

A (qualitative or discrete) character on X is a function χ from X into a set C of
character states. Suppose that T is a phylogenetic tree on X, and let χ : X → C be
a character on X. For each state α in χ(X), let Tα denote the minimal subtree of T
containing the leaves that are assigned state α by χ. We say that χ is convex on T
if the subtrees in {Tα

∣∣ α ∈ χ(X)} are pairwise disjoint (see Figure 2). A collection
of characters C on X is compatible if there is a phylogenetic tree T such that each
character in C is convex on T . If, in addition, T is the only phylogenetic tree on X
with this property, we say that C convexly defines T . The biological relevance of these
concepts is explained further in [10] and [11].

We call a trivalent phylogenetic tree on a 4-set a quartet tree. If T is a quartet
tree on the set {i, j, k, l} and removal of the interior edge e of T results in the sets
{i, j} and {k, l} labeling the different components of T \{e}, then we denote T by
ij|kl. Now, given a phylogenetic tree T on X and a subset Y of X, let T |Y denote
the minimal subtree of T that connects the leaves in Y , in which any resulting degree
2 vertices are suppressed. In particular, T |Y is a trivalent phylogenetic tree on Y
and we say that T displays T |Y . Given a collection Q of quartet trees, we say that a
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Fig. 2. For X = {a, b, c, d, e, f, g} and C = {α, β, γ}, the character χ : X → C with χ−1(α) =
{a, b, e}, χ−1(β) = {c, d} and χ−1(γ) = {f, g} is convex on the phylogenetic tree depicted in the
figure.

phylogenetic tree T displays Q precisely if T displays each quartet tree in Q. For a
trivalent phylogenetic tree T on X, let Q(T ) = {T |Y : Y ⊆ X, |Y | = 4} be the set of
all

(
n
4

)
quartet trees displayed by T .

For Q a set of quartet trees, let scl2(Q) be the semidyadic closure of Q, that is,
the minimal set of quartet trees that contains Q and for which we have

ab|cd, ac|de ∈ scl2(Q) ⇒ ab|ce, ab|de, bc|de ∈ scl2(Q).

The following lemma summarizes some straightforward properties of the semi-
dyadic closure that are part of the folklore (see [2], [5], [6], and [12]).

Lemma 2.1. For any set Q of quartet trees and any subsets A,B ⊆ Q,
(i) A ⊆ scl2(A),
(ii) A ⊆ B ⇒ scl2(A) ⊆ scl2(B),
(iii) scl2(scl2(A)) = scl2(A),
(iv) scl2(A ∪B) = scl2(scl2(A) ∪B).
(v) If Q = Q(T ) for some trivalent phylogenetic tree T , then scl2(Q) = Q.
We recall one further useful property of the semidyadic closure that will be of

use later. Suppose i, j is a cherry (a pair of leaves that are adjacent to a common
vertex) of a trivalent phylogenetic T and select leaves u, v as shown in Figure 3(a).
Let T ′ = T |(X − {j}) be the tree as shown in Figure 3(b). Then T is the only
phylogenetic tree that displays both T ′ and ij|uv and so, by [3, Lemma 3], we have
the following result.

Lemma 2.2. For a trivalent phylogenetic tree T ′ and quartet tree ij|uv as de-
scribed,

scl2(Q(T ′) ∪ {ij|uv}) = Q(T ).

For a set Q of quartet trees let co(Q) be the set of phylogenetic trees on X (up
to isomorphism) that display Q. We close this section with a lemma that summarizes
an easily established property of co(Q).

Lemma 2.3. If Q is a set of quartet trees and scl2(Q) = Q(T ) for some trivalent
phylogenetic tree T , then co(Q) = {T }.

3. Quartet trees from handy edge-colorings. An edge-coloring of a graph
is an assignment of colors to the edges of the graph so that two adjacent edges are
assigned different colors. We begin this section by giving a method for edge-coloring
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a trivalent phylogentic tree T on X with four colors R,R′, L, L′. This edge-coloring
is similar to the edge-coloring in [10] based on five colors.

Choose any leaf r of T and regard T as a rooted directed tree with r as its root
and all edges directed away from r. Color the edge containing r by R. Given any
vertex v of T with degree 3 that is at the end of an even (respectively, odd) length
edge path starting at r and ending at v, arbitrarily color the two edges coming out of
v by L and R (respectively, L′ and R′). This gives an edge-coloring of T by the colors
R,R′, L, L′, and we call any edge-coloring produced in this way a handy edge-coloring
of T .

Now, given a handy edge-coloring of T , we describe how to associate a quartet
tree with leaves in X to each interior edge of T (see Figure 4). Assume e = (u, v) is
an interior edge of T colored by R (we will consider the cases where e is colored by
L,R′, or L′ below). The edge coming into u is colored by either (i) R′ or (ii) L′. In
case (i), we associate the quartet tree ab|cd to edge e as follows: a is the last vertex
in the directed path that starts at v and has first edge colored R′ and all subsequent
edges colored alternately by L and L′; b is the last vertex of the directed path that
starts at v and has edges colored alternately by L′ and L; c is the last vertex of the
directed path that starts at u and has edges colored alternately by L and L′; d is the
last vertex of the undirected path that starts at u and has first edge colored R′ and all
subsequent edges colored alternately by L′ and L. In case (ii), a, b, c are all obtained
in the same way and d is the last vertex of the undirected path that starts at u, has
first two edges colored L′ and R′, respectively, and has all subsequent edges colored
alternately by L and L′.

In case the edge e = (u, v) is labeled by R′, the quartet tree ab|cd is obtained
in a similar way by following the four distinct paths whose first vertices are either u
or v and whose last edges are alternately colored using only the colors L and L′. In
case the edge e = (u, v) is labeled by either L or L′, a similar procedure is followed
in which colors L and R and L′ and R′ are interchanged so that, in particular, the
quartet tree ab|cd is obtained by following the four distinct paths whose first vertices
are either u or v and whose last edges are alternately colored using only the colors R
and R′.

We denote the collection of n − 3 quartet trees obtained in this way by Q0(T ).
Note that in all cases the paths obtained are colored always by at most three colors.
Whenever we picture a phylogenetic tree with a handy edge-coloring, we always regard
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Fig. 4. The figure depicts the two cases for associating a quartet tree ab|cd to an interior edge
e of T , here in bold, that is labeled by R.

edges below a particular vertex to be colored with R or R′ when they are on the right
or L or L′ when they are on the left.

4. Q0(T ) determines Q(T ) via semidyadic closure. Suppose that T is a
trivalent phylogenetic tree on X with a handy edge-coloring. In the next section we
describe (at most) four characters that convexly define T and come from the handy
edge-coloring of T . The proof that these four characters convexly define T is based
on the following result.

Theorem 4.1. Suppose that T is a trivalent phylogenetic tree on X. Then

scl2(Q0(T )) = Q(T ).

Proof. We use induction on n. It is easily checked that the result holds when
n = 4, since in this case Q0(T ) = Q(T ) = {T }.

Suppose the theorem holds for any trivalent phylogenetic tree on X with strictly
less than n ≥ 5 leaves. Suppose also that T is a trivalent phylogenetic tree on X with
n leaves. Select a cherry i, j whose central vertex is at maximal edge distance from
the reference leaf. If we now consider the handy edge-coloring of T , then there are
four cases (plus their mirror images) for the local tree structure around the cherry
i, j, as depicted in Figure 5.

Note that in case (b) we could have instead selected the cherry k, l and this
produces (the mirror image of) case (a) so we can “transform” case (b) into (a). It thus
suffices to consider only cases (a), (c), and (d). For these cases, let T ′ = T |(X−{j}).
Note that the edge-coloring of T induces a valid handy edge-coloring of T ′, where the
color assigned to the edge containing i is the same as that assigned to the edge in T
adjacent to the cherry i, j.

First consider cases (a) and (c). It is straightforward to check using the definition
of a handy edge-coloring that the only interior edge of T yielding a quartet tree in
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Q0(T ) that contains j is the interior edge that is adjacent to the cherry i, j. Moreover,
every interior edge of T ′ corresponds to an interior edge of T and each of these
edges gives rise to the same quartet tree in Q0(T ′) as it does in Q0(T ). From these
observations it easily follows that

Q0(T ′) = Q0(T ) − {ij|kx}(1)

for some x ∈ X (and with x 	= l in case (a)).
Now, by the induction hypothesis applied to T ′,

scl2(Q0(T ′)) = Q(T ′)

and by Lemma 2.1 (iv) and Lemma 2.2,

scl2(Q0(T ′) ∪ {ij|kx}) = Q(T ).

Thus, by (1),

scl2(Q0(T )) = Q(T ),

and so the induction step is established for cases (a) and (c).
Thus it suffices to consider now just case (d). The edge e coming into the cherry

i, j induces the quartet tree ij|ku ∈ Q0(T ) and the edge e′ incident to e but not
containing k induces the quartet tree jk|uv ∈ Q0(T ), for some pair of leaves u, v ∈ X
(see Figure 6).

Thus,

scl2({ij|ku, jk|uv}) ⊆ scl2(Q0(T )).
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But ik|uv ∈ scl2({ij|ku, jk|uv}) and so

ik|uv ∈ scl2(Q0(T )).(2)

Now, it is straightforward to check using the definition of a handy edge-coloring
that the only interior edges of T yielding quartet trees in Q0(T ) that contain j are
the edges e and e′. Moreover, every interior edge of T ′ corresponds to an interior
edge of T and each of these gives rise to the same quartet tree in Q0(T ′) as it does
in Q0(T ) except e′, which gives rise to ik|uv in Q0(T ′). From these observations it
easily follows that

Q0(T ′) = (Q0(T ) − {ij|ku, jk|uv}) ∪ {ik|uv}.(3)

Combining (2), (3), and Lemma 2.1 (parts (i), (ii), and (iii)) we have

scl2(Q0(T ′) ∪ {ik|uv}) ⊆ scl2(Q0(T )).(4)

On the other hand, if we apply Lemma 2.2, the induction hypothesis for T ′, and
Lemma 2.1 (iv), we obtain (respectively) the following three equalities:

Q(T ) = scl2(Q(T ′) ∪ {ik|uv})
= scl2(scl2(Q0(T ′)) ∪ {ik|uv})
= scl2(Q0(T ′) ∪ {ik|uv}).

Combining these equalities with (4) gives

Q(T ) ⊆ scl2(Q0(T )).

However, this implies Q(T ) = scl2(Q0(T )) in view of Q0(T ) ⊆ Q(T ) and using
Lemma 2.1 (parts (ii) and (v)). This establishes the induction step and thereby
completes the proof of Theorem 4.1.

5. Handy edge-colorings convexly define trees. We now relate characters
and quartet trees. Given a character χ : X → C on X, we denote by π(χ) the
partition {χ−1(α) : α ∈ C} of X. Suppose that T is a phylogenetic tree on X and
that C is a set of characters on X. We say that T displays C if each character in C
is convex on T . Note that T displays C precisely if for each χ ∈ C there exists some
set E of edges of T such that, for all distinct A,B ∈ π(χ), A and B are subsets of
different connected components of T \E .
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For any collection C of characters on X, let

Q(C) = {ij|kl : there exists some χ ∈ C and some

A,B ∈ π(χ) such that i, j ∈ A and k, l ∈ B}.

Lemma 5.1. Let C be a collection of characters on X, and suppose that T is
a trivalent phylogenetic tree that displays C. If there exists some Q1 ⊆ Q(C) with
scl2(Q1) = Q(T ), then C convexly defines T .

Proof. Note that Lemma 2.1 (ii) gives scl2(Q1) ⊆ scl2(Q(C)). Thus,

Q(T ) ⊆ scl2(Q(C)).(5)

On the other hand, since each character in C is convex on T , we have Q(C) ⊆ Q(T )
and so

scl2(Q(C)) ⊆ Q(T ),(6)

by Lemma 2.1 (parts (ii), (iii), and (v)). Combining (5) and (6) gives scl2(Q(C)) =
Q(T ), and so, by Lemma 2.3 we have co(Q(C)) = {T }. But from [12, Proposition
2(1)], if co(Q(C)) = {T }, then C convexly defines T . This completes the proof.

We now specialize to a set of (at most four) characters that are induced by any
handy edge-coloring of a trivalent phylogenetic tree T on X and show that these
characters convexly define T .

Suppose that we are given a handy edge-coloring of T . To each color F ∈
{L,L′, R,R′} that is assigned to at least one edge of T , we associate a character
on X in the following way. Denote by ∼F the equivalence relation on X defined by
x ∼F y (x, y ∈ X) if the path in T from x to y does not contain an edge that is
assigned color F . Let πF denote the partition of X that arises from the equivalence
classes of ∼F and let χF denote the character on X for which π(χF ) = πF . We denote
by C(T ) the (at most) four characters induced by this edge-coloring.

The main result from [10] is that, for any trivalent phylogenetic tree T on X, there
exists a set C of at most five characters on X, such that T is the only phylogenetic
tree on X that displays C. The following theorem shows that, by taking C = C(T ),
we can improve the result by replacing “five” with “four.”

Theorem 5.2. Suppose that T is a trivalent phylogenetic tree on X. Then the
(at most) four characters in C(T ) convexly define T .

Proof. First note that each character in C(T ) is convex on T . Note also that since
Q0(T ) is the set of quartet trees corresponding to the handy edge-coloring of T , we
have

Q0(T ) ⊆ Q(C(T )).

Also, by Theorem 4.1, scl2(Q0(T )) = Q(T ). Thus, since T displays C(T ) we may
apply Lemma 5.1 to deduce that C(T ) convexly defines T .

Note that the proof of this result shows how to construct T from C(T ) in poly-
nomial time using the semidyadic closure operation. Alternatively, since |Q0(T )| =
|X| − 3 the “split-closure” approach described by Semple and Steel [9] would also
apply. It can also be shown that C(T ) “strongly” defines T in the sense of [10].

Acknowledgment. The authors thank Charles Semple for some helpful com-
ments on an earlier version of this manuscript.
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ON THE OPTIMALITY OF COLORING WITH A LATTICE∗

YAEL BEN-HAIM† AND TUVI ETZION‡

Abstract. For z1, z2, z3 ∈ Z
2, the tristance d3(z1, z2, z3) is a generalization of the L1-distance

on Z
2 to a quality that reflects the relative dispersion of three points rather than two. In this paper

we prove that at least 3k2 colors are required to color the points of Z
2, such that the tristance between

any three distinct points, colored with the same color, is at least 4k. We prove that 3k2 + 3k + 1
colors are required if the tristance is at least 4k + 2. For the first case we show an infinite family of
colorings with 3k2 colors and conjecture that these are the only colorings with 3k2 colors.

Key words. coloring, lattice, Lee sphere, tristance

AMS subject classifications. 05C15, 11H31, 52C15
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1. Introduction. Consider the grid graph G = (V,E) whose vertex set is V = Z
2

and {(x1, y1), (x2, y2)} ∈ E if |x1−x2|+ |y1−y2| = 1. A coloring F is an onto function
F : Z

2 → {1, 2, . . . , χ}, where χ is the number of colors. We ask the following question:
Given a positive integer t, what is the smallest number of colors required to color Z

2,
such that for any three points colored with the same color, the size of the minimum
spanning tree which connects them is at least t?

This problem has an application in two-dimensional cluster error-correcting codes
[1], [3]. For each color ϕ we assign a two-error-correcting code to the points colored
with ϕ. We obtain an array which corrects any number of errors, if there exists a
cluster of size t, which contains all the errors.

The problem has also combinatorial interest, as the coloring structure obtained
is a generalization of perfect codes of Z

2 in the L1-metric and tiling of Z
2 with Lee

spheres (see [4]).
Lee spheres and lattices have an important role in our discussion.
The L1-distance between two elements of Z

2, z1 = (x1, y1), z2 = (x2, y2), is
defined by

d2(z1, z2) = |x1 − x2| + |y1 − y2|.

Clearly, the length of the shortest path which connects z1 and z2 in G is d2(z1, z2).
For a given element ς ∈ Z

2, the Lee sphere of radius k, Sk(ς) (or S(ς) if k is
known), is defined by [4]

Sk(ς) = {z : d2(ς, z) ≤ k}.

Clearly, |Sk(ς)| = 2k2 + 2k + 1.
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A lattice of Z
2 is a linear subspace of Z

2. A lattice Λ with dimension two is
defined by Λ = {a1v1 + a2v2 : a1, a2 ∈ Z}, where v1 = (v11, v12), v2 = (v21, v22) are
two linearly independent vectors in Z

2, called the basis of Λ. The matrix

G =

(
v11 v12

v21 v22

)
having these vectors as rows is said to be a generator matrix of Λ. It is well known
that |detG| is the number of cosets of Λ in Z

2, i.e., |Z2
�Λ| = |detG|. A lattice Λ

with dimension two defines a coloring as follows: The points of each distinct coset of
Λ are colored with the same color. Thus, there are |detG| distinct colors.

The solution for the following simpler question is known [1]:
Given a positive integer t, what is the smallest number of colors required to color

Z
2, such that for any two points colored with the same color, the length of the shortest

path which connects them is at least t?
If t = 2k+ 1, then the number of colors is 2k2 + 2k+ 1 [1]. A coloring is given by

a lattice whose generator matrix is(
1 2k + 1
0 2k2 + 2k + 1

)
.

This lattice defines also a tiling of Z
2 with Lee spheres of radius k [1], [4]. If t = 2k,

then the number of colors is 2k2 [1]. A coloring is given by a lattice whose generator
matrix is (

k k
0 2k

)
.

Let z1, z2, z3 ∈ Z
2. The tristance d3(z1, z2, z3) is a generalization of the L1-

distance. d3(z1, z2, z3) is defined as the number of edges in a minimum spanning tree
of z1, z2, z3 in the grid graph G. It is known [3] that if z1 = (x1, y1), z2 = (x2, y2), z3 =
(x3, y3), then

d3(z1, z2, z3) =

(
max
1≤i≤3

xi − min
1≤i≤3

xi

)
+

(
max
1≤i≤3

yi − min
1≤i≤3

yi

)
.

For a coloring F : Z
2 → {1, 2, . . . , χ}, d3(F) is defined by

d3(F) = min
F(z1)=F(z2)=F(z3)

|{z1,z2,z3}|=3

d3(z1, z2, z3).

For a given t, a coloring F will be called a t-coloring if d3(F) ≥ t.
Etzion and Vardy [3] proved that if t = 4k (t = 4k + 2), then any t-coloring

defined by a lattice has at least 3k2 (3k2 + 3k + 1) colors. Schwartz and Etzion [6]
proved that if t = 4k + 1 (t = 4k + 3), then any t-coloring defined by a lattice has at
least 3k2 + 2k (3k2 + 5k + 2) colors. For each t an optimal lattice coloring was given
in [3].

In this paper we prove that if t = 4k (t = 4k + 2), then any t-coloring (and not
just t-coloring defined by a lattice) has at least 3k2 (3k2 + 3k + 1) colors. The result
for t = 4k is proved in section 2. In section 3 we show an infinite family of optimal
colorings which we believe are the only optimal colorings. We conclude in sections 4
and 5 with extensions, some related questions, and problems for further research.
There are also three appendices. In Appendix A we give a short description of the
various types of geometric shapes used in our proofs. In Appendices B and C we give
the detailed proofs of some of our results.
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Fig. 1. S1((α, β)) in the grid graph and in the array.

2. Optimality of the coloring. The main result of this paper is the following
theorem.

Theorem 1. If F is a 4k-coloring of Z
2, then the number of colors in F is at

least 3k2.
As the proof is very detailed, we first sketch the outline of the proof. For the

simplicity of our presentation we will use an infinite array instead of the grid graph.
Each element of Z

2 is mapped into a corresponding cell of the array (see Figure 1).
Let C be the set of cells in Z

2 which are colored with the first color. These cells will
be called black cells. For each black cell ς we define a neighborhood which contains ς.
Each neighborhood contains either one black cell or two black cells, and two different
neighborhoods are disjoint. We will prove that the size of a neighborhood with one
black cell is at least 3k2 and the size of a neighborhood with two black cells is greater
than 6k2. These properties will lead to an immediate proof of the theorem.

Hence the main part of the proof includes the definition of a neighborhood and
the computation of its size. For this purpose, in what follows we consider all the Lee
spheres with radius k whose centers are exactly all the black cells. Each one of these
spheres, S(ς), satisfies one of the following:

• If the sphere does not intersect another sphere, then the neighborhood of ς
includes S(ς) and additional cells above S(ς).

• S(ς) intersects other spheres, and any such intersection with another sphere
contains cells which are on the same diagonal line, as depicted in Figure 2(a).
This type of intersection will be called a line-intersection. The neighborhood
of ς in this case includes S(ς) (except maybe some of the intersection) and
additional cells above S(ς).

• S(ς) intersects exactly one sphere, S(ς1), on more than one diagonal line,
as depicted in Figure 2(b). This type of intersection will be called a deep-
intersection. In this case we define a neighborhood which includes the union
of S(ς) and S(ς1) and additional cells above this union.
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•

•

•

(a) Line-intersections

•

•

• •

(b) Deep-intersections

Fig. 2. Various types of intersections. (a) Line-intersections. (b) Deep-intersections.

2.1. Intersections of spheres. For two black cells ς1, ς2, let I(ς1, ς2) = S(ς1)∩
S(ς2). By the definition of spheres with radius k we clearly have the following lemma.

Lemma 1. Given two black cells ς1, ς2,

(a) I(ς1, ς2) = ∅ if and only if d2(ς1, ς2) > 2k;
(b) I(ς1, ς2) is a line-intersection if and only if d2(ς1, ς2) = 2k;
(c) I(ς1, ς2) is a deep-intersection if and only if d2(ς1, ς2) < 2k.

The next lemma is an immediate result from the definition of the tristance.

Lemma 2. Let t be a positive integer, and let z0 = (0, 0), z1 = (α, β), z2 = (x, y)
be three cells in Z

2 such that α, β ≥ 0 and α + β < t. The tristance d3(z0, z1, z2) < t
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α+β−4k α+β−3k 0 α 3k−β 4k−β

α+β−4k

α+β−3k

0

β

3k−α

4k−α

Fig. 3. The polygon P(ς0, ς1) for (α, β) = (3, 5) and k = 4.

iff

(1)

α + β − t < x < t− β,
α + β − t < y < t− α,
α + β − t < x + y < t,

β − t < y − x < t− α.

Note that if z0 and z1 are black cells, then there is no black cell inside the polygon
defined by (1), i.e., inside the area defined by ∗ (inclusive) in Figure 3.

Let z1, z2 be two distinct black cells such that d2(z1, z2) < 3k. We define P(z1, z2)
to be the set of cells such that for each cell ς, if P(z1, z2)∩S(ς) �= ∅, then d3(z1, z2, ς) <
4k.

Lemma 3. Let ς0 = (0, 0), ς1 = (α, β) be two black cells such that |α| ≤ 2k, 0 ≤
β ≤ 2k, d2(ς0, ς1) = |α| + β < 3k.

If α ≥ 0, then

P(ς0, ς1) =

⎧⎪⎪⎨⎪⎪⎩(x, y) :

α + β − 3k < x < 3k − β
α + β − 3k < y < 3k − α
α + β − 3k < x + y < 3k

β − 3k < y − x < 3k − α

⎫⎪⎪⎬⎪⎪⎭ .

If α < 0, then

P(ς0, ς1) =

⎧⎪⎪⎨⎪⎪⎩(x, y) :

β − 3k < x < 3k − |α| − β
|α| + β − 3k < y < 3k − |α|

β − 3k < x + y < 3k − |α|
|α| + β − 3k < y − x < 3k

⎫⎪⎪⎬⎪⎪⎭ .
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The cells of P(ς0, ς1) are inside the bold lines in Figure 3. If |α| + β < 3k −
1, |α|, β > 0, then P(ς0, ς1) is an octagon, as depicted in Figure 3. If |α|+β < 3k− 1
and either α = 0 or β = 0, then P(ς0, ς1) is a hexagon. If |α| + β = 3k − 1, then
P(ς0, ς1) is a rectangle whose opposite vertices are ς0 and ς1. Note that P(ς0, ς1)
always contains the rectangle whose opposite vertices are ς0 and ς1. P(ς0, ς1) will be
called the polygon of ς0 and ς1.

Corollary 1. If ς1, ς2, ς3 are three distinct black cells, then P(ς1, ς2) ∩ S(ς3) =
∅.

Corollary 2. Let ς1, ς2, ς3 be three distinct black cells. If I(ς1, ς2) is a deep-
intersection, then P(ς1, ς2) ⊃ S(ς1) ∪ S(ς2).

Corollary 3. Let ς1, ς2, ς3 be three distinct black cells. If I(ς1, ς2) is a deep-
intersection, then (S(ς1) ∪ S(ς2)) ∩ S(ς3) = ∅.

Corollary 4. Let ς1, ς2, ς3 be three distinct black cells. If I(ς1, ς2) and I(ς2, ς3)
are line-intersections, then one of the following holds:

1. |I(ς1, ς2)| = |I(ς2, ς3)| = 1.
2. I(ς1, ς2) is on the line x + y = l1 and I(ς2, ς3) is on the line x + y = l2 for

some l1, l2 such that |l1 − l2| = 2k.
3. I(ς1, ς2) is on the line y − x = l1 and I(ς2, ς3) is on the line y − x = l2 for

some l1, l2 such that |l1 − l2| = 2k.

2.2. Definition of neighborhood. In this subsection we define the neighbor-
hood N (ς) for any given black cell ς. First, we give some definitions concerning the
sphere of a black cell. The right (left) tip of the sphere is the rightmost (leftmost)
cell in the sphere. The top (bottom) of the sphere is the highest (lowest) cell in the
sphere. A cell is called free if it is not contained in any sphere. For each black cell
ς = (α, β) we define a set

U(ς) = {(x, y) : |x− α| ≤ k − 1, β + 2 ≤ y ≤ β + k, (x, y) /∈ S(ς)} .

An example of U(ς), ς = (0, 0), is depicted in Figure 4. We partition U(ς) into two
subsets Ul(ς) and Ur(ς), where

Ur(ς) = {(x, y) : 0 < x− α ≤ k − 1, β + 2 ≤ y ≤ β + k, (x, y) /∈ S(ς)} .

If S(ς) has a deep-intersection with another sphere S(ς1), then N (ς) = N (ς1);
i.e., ς and ς1 have a joint neighborhood. In any other case each black cell has its own
neighborhood. Note that by Corollary 3, if I(ς, ς1) is a deep-intersection, then no
other sphere intersects S(ς) ∪ S(ς1).

The definition of N (ς) will be done by assigning each cell in Z
2 to at most one

neighborhood. This assignment of a cell z0 = (a, b0) is done as follows:
1. If z0 is not a free cell

• If z0 belongs to exactly one sphere S(ς), then z0 ∈ N (ς).
• If z0 ∈ I(ς1, ς2) and I(ς1, ς2) is a deep-intersection, then z0 ∈ N (ς1) =

N (ς2).
• If z0 ∈ I(ς1, ς2), ς1 = (α, β), ς2 = (γ, δ), β < δ, and I(ς1, ς2) is a

line-intersection, then z0 ∈ N (ς2).
• If z0 ∈ I(ς1, ς2), ς1 = (α, β), ς2 = (γ, β), α < γ, and I(ς1, ς2) is a line-

intersection, then z0 ∈ N (ς1) (note that z0 is the right tip of S(ς1) and
the left tip of S(ς2)).

2. If z0 is a free cell, then let z1 = (a, b1), b1 < b0, be a cell in a sphere such
that all the cells in the set {(a, d) : b1 < d < b0} are free. If such a cell z1

does not exist, then z0 does not belong to any neighborhood.
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−k 0 k

0

k

•

Fig. 4. U(ς), where ς is located at (0, 0).

• If z1 is not a tip of any sphere and z1 ∈ S(ς), then z0 ∈ N (ς).
• If z1 is a tip of two spheres, S(ς1) and S(ς2), such that ς1 = (α, β) and
ς2 = (α + 2k, β), then z0 ∈ N (ς2).

• If z1 is a tip of exactly one sphere, S(ς), then let z2 = (a, b2), b2 < b1, be
a cell in a sphere such that all the cells in the set {(a, d) : b2 < d < b1}
are free. If such a cell z2 does not exist, then z0 ∈ N (ς).

– If z2 is a cell of two distinct spheres, then z0 ∈ N (ς).
– If z2 is a cell of exactly one sphere S(ς1) and U(ς1)∩S(ς) = ∅, then

z0 ∈ N (ς).
– If z2 is a cell of exactly one sphere S(ς1) and U(ς1)∩S(ς) �= ∅, then

z0 ∈ N (ς1) if z0 ∈ P(ς1, ς) and z0 ∈ N (ς) if z0 /∈ P(ς1, ς).

Note that in all cases, except one, z0 is assigned to some neighborhood. The
case analysis of the definition makes it clear that z0 is assigned to at most one neigh-
borhood. We would like to clarify that if z0 is a free cell and z1 is not a tip, then
z1 ∈ I(ς1, ς2), ς1 �= ς2, only if I(ς1, ς2) is a deep-intersection and hence z0 is assigned
to exactly one neighborhood, N (ς1) = N (ς2), in this case. Thus we have the following
lemma.

Lemma 4. Each cell z0 in Z
2 belongs to at most one neighborhood.

Corollary 5. For two distinct black cells ς1, ς2, N (ς1)∩N (ς2) = N (ς1) = N (ς2)
iff I(ς1, ς2) is a deep-intersection, and N (ς1) ∩ N (ς2) = ∅ iff I(ς1, ς2) is not a deep-
intersection.

As a consequence of Corollary 5, we will denote by N (ς1, ς2) the common neigh-
borhood of two black cells ς1, ς2 for which I(ς1, ς2) is a deep-intersection.

Lemma 5. If S(ς1) ∩ S(ς2) is a tip, where ς1 = (α, β), ς2 = (α + 2k, β), then
(α + k, β) ∈ N (ς1) and (α + k, β + 1) ∈ N (ς2).

Proof. By the definition of N (ς1) it is obvious that (α + k, β) ∈ N (ς1). By
Lemma 12 (see Appendix B), (α + k, β + 1) ∈ P(ς1, ς2); therefore by Corollary 1 we
have that (α + k, β + 1) is a free cell. Thus, by the definition of N (ς2) we have that
(α + k, β + 1) ∈ N (ς2).

2.3. The size of a neighborhood. In this subsection we give a lower bound on
the sizes of the neighborhoods defined in subsection 2.2. We first sketch the outline
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of the proof. There are two cases:
• If ς is a black cell for which S(ς) does not have a deep-intersection with

another sphere, we want to show a lower bound of 3k2 on |N (ς)|. If all the
cells of U(ς) are free, then |N (ς) ∩ S(ς)| + |U(ς)| is sufficient to obtain the
bound. If U(ς)∩S(ς1) �= ∅ (w.l.o.g. Ur(ς)∩S(ς1) �= ∅) for some black cell ς1,
then |N (ς)∩P(ς, ς1)|+ |Ul(ς)\P(ς, ς1)| is sufficient to obtain the bound. This
will complete the proof in most cases. If Ul(ς)∩S(ς2) �= ∅ for some black cell
ς2, then in some cases we consider |N (ς) ∩ (P(ς, ς2) \ P(ς, ς1))|.

• If ς1, ς2 are black cells for which I(ς1, ς2) is a deep-intersection, then we have to
show a lower bound of 6k2 on |N (ς1, ς2)|. In this case we consider |N (ς1, ς2)∩
P(ς1, ς2)| + |(U(ς1) ∪ U(ς2)) \ P(ς1, ς2)|. This will complete the proof in most
cases. If U(ς1)∩ S(ς3) �= ∅ (or U(ς2)∩ S(ς4) �= ∅) for some black cell ς3 (ς4),
then we consider |N (ς1, ς2)∩ (P(ς1, ς3) \P(ς1, ς2))| (or |N (ς1, ς2)∩ (P(ς2, ς4) \
P(ς1, ς2))|).

Each case will be proved in a separate lemma. For the proof of the first lemma,
we also need the following result, which can be easily verified.

Lemma 6. Let ς1 = (α, β), ς2 = (γ, δ) be two black cells such that I(ς1, ς2) is not
a deep-intersection. If U(ς1) ∩ S(ς2) �= ∅, then the following three conditions hold:

2k ≤ |γ − α| + |δ − β| < 3k,
0 < |γ − α| < 2k,
2 ≤ δ − β ≤ 2k.

Let F (ς) denote the set of free cells in N (ς).
Lemma 7. If k ≥ 2, and if ς is a black cell for which S(ς) does not have a

deep-intersection with another sphere, then |N (ς)| ≥ 3k2.
Proof. Let ς be a black cell for which S(ς) does not have a deep-intersection with

another sphere. W.l.o.g. we can assume that ς is located at (0, 0). We distinguish
between two cases.

Case 1. S(ς) does not intersect any other sphere S(ς1).
We have to compute the number of free cells in the neighborhood of ς. For this

computation we first consider the set of cells U(ς), defined earlier and depicted in
Figure 4. We distinguish between the following subcases.

Case 1.1. All the cells of U(ς) are free.
Therefore all the cells of U(ς) belong to the neighborhood of ς. Hence N (ς) ⊇

S(ς) ∪ U(ς) and

|N (ς)| ≥ (2k2 + 2k + 1) + k(k − 1) = 3k2 + k + 1 > 3k2

as required.
In the following two subcases there is a sphere S(ς1), ς1 = (α, β), which intersects

the set U(ς). W.l.o.g. we can assume that if S(ς2), ς2 = (γ, δ), also intersects U(ς),
then |γ| ≥ |α|. W.l.o.g. we can also assume that α > 0.

Case 1.2. α ≤ k.
We claim that the number of cells in the union of the sphere of ς with the free

cells of N (ς) inside the polygon of ς and ς1, P(ς, ς1), is at least 3k2, i.e.,

|(F (ς) ∩ P(ς, ς1)) ∪ S(ς)| ≥ 3k2.

The set (F (ς) ∩ P(ς, ς1)) ∪ S(ς) (an example is given in Figure 5), which is only a
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Fig. 5. Case 1.2 with (α, β) = (4, 12) and k = 7.

subset of N (ς), contains the following disjoint subsets of cells:

(1) The sphere of ς, S(ς), whose size is 2k2 + 2k + 1.
(2) The free cells of N (ς) whose columns are between the top of S(ς) and the

bottom of S(ς1) (exclusive). This set of cells,

{(x, y) : 0 < x < α, k < x + y < α + β − k} ,

defines a parallelogram whose size is (α− 1)(α + β − 2k − 1).
(3) The free cells of N (ς) inside P(ς, ς1) whose columns are between the left

column of P(ς, ς1) and the left tip of S(ς1) (inclusive). This set of cells,

{(x, y) : α + β − 3k + 1 ≤ x ≤ α− k, k < y − x < 3k − α} \ {(α− k, β)},

defines a parallelogram with a missing cell, (α − k, β), which is the left tip
of S(ς1). The size of this set is (2k − β)(2k − α − 1) − 1 if β < 2k and 0 if
β = 2k.

(4) The free cells of N (ς) whose columns are between the left tip of S(ς1) (ex-
clusive) and the top of S(ς) (inclusive). This set is an arithmetic progression
whose size is (k − α)(β − k − 2).

(5) The free cells of N (ς) whose columns are between the bottom of S(ς1) (inclu-
sive) and the right tip of S(ς) (exclusive). This set is an arithmetic progression
whose size is (k − α)(β − k − 2).
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Fig. 6. Case 1.3 with (α, β) = (14, 7) and k = 9.

Note that all the sets in (2) through (5) are indeed contained in P(ς, ς1). Therefore

|(F (ς) ∩ P(ς, ς1)) ∪ S(ς)|
≥ 2k2 + 2k + 1

+ (α− 1)(α + β − 2k − 1)

+ (2k − β)(2k − α− 1) − 1

+ 2(k − α)(β − k − 2)

= 4k2 − 2k(α + 1) + (α + 1)2.

The minimum of 4k2 − 2k(α + 1) + (α + 1)2 is when α + 1 = k, and hence

|N (ς)| ≥ |(F (ς) ∩ P(ς, ς1)) ∪ S(ς)| ≥ 3k2

as claimed.
Case 1.3. α > k.
In a similar way to Case 1.2 we consider the set (F (ς)∩P(ς, ς1))∪S(ς) (an example

is given in Figure 6) and compute its size. We obtain

|(F (ς) ∩ P(ς, ς1)) ∪ S(ς)| ≥ 5k2

2
+

k

2
(2α− 1) +

1

2
(−α2 + α + 2).

Next, we consider Ul(ς) \ P(ς, ς1), which contains the following isosceles right
triangle (depicted in Figure 6):

TR1 = {(x, y) : −k + 1 ≤ x, y ≤ k − 1, y − x ≥ 3k − α} .

The size of TR1 is 1
2 (α− k)(α− k− 1). If all the cells in Ul(ς) \P(ς, ς1) are free, then

they are clearly free cells of N (ς). Hence

|N (ς)| ≥ |(F (ς) ∩ P(ς, ς1)) ∪ S(ς)| + |TR1| ≥ 3k2 + 1.
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Fig. 7. Case 1.3 with (α, β) = (14, 7), (γ, δ) = (−16, 5), k = 9. The cells marked by “2” belong
to TR2.

To complete the proof we have to consider the case of a black cell ς2 = (γ, δ) such that
S(ς2) ∩ (Ul(ς) \ P(ς, ς1)) is not empty. By the minimality of α we have |γ| ≥ α and
hence |γ| > k. We consider now another isosceles right triangle (depicted in Figure 7):

TR2 = {(x, y) : γ + k + 1 ≤ x, y ≤ 3k − |γ| − 1, y − x ≥ 3k − α} .

Note that TR2 ⊂ P(ς, ς2) since α ≤ |γ| and TR2 does not intersect P(ς, ς1) ∪ S(ς2).
Hence, all the cells of TR2 are free cells of N (ς). The size of TR2 is 1

2 (α−k)(α−k−1) =
|TR1|. Therefore

|N (ς)| ≥ |(F (ς) ∩ P(ς, ς1)) ∪ S(ς)| + |TR2| ≥ 3k2 + 1,

which completes the proof of this case.
Case 2. S(ς) intersects other spheres and any such intersection is a line-intersec-

tion.
The proof is very similar to the proof of Case 1. If each cell (x, y), |x| + y = k

and y > 0, belongs only to S(ς) (and not to other spheres), then by the definition of
N (ς) and Lemma 5 we have S(ς) ⊂ N (ς) or (S(ς) ∪ {(−k, 1)}) \ {(−k, 0)} ⊂ N (ς),
and hence the proof is identical to the one of Case 1.

Therefore, we assume that there exists (x, y) ∈ I(ς, ς1), ς �= ς1, ς1 = (α, β), y > 0,
and |x|+y = k. W.l.o.g. we assume that α ≥ 0. We distinguish between the following
subcases.

Case 2.1. α = 0.
By Lemma 1(b) we have β = 2k and hence U(ς) ⊂ P(ς, ς1) by Lemma 3. It follows

by Corollary 4 and the definition of N (ς) that N (ς) ⊃ (S(ς)∪U(ς))\{(0, k), (−k, 0)}.
Thus, as in Case 1.1 we have |N (ς)| ≥ 3k2 + k − 1 > 3k2, as required.

Case 2.2. 0 < α ≤ k.
The reasonings are identical to the ones in Case 1.2 with the following exceptions:
• The value in (2) is negative since it represents part of I(ς, ς1) rather than

free cells, which should be substracted from S(ς) and, as a consequence, from
N (ς).
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• Also in (4) one cell belongs to I(ς, ς1), which causes the arithmetic progression
to start in −1. The same is true for (5).

• By Corollary 4, S(ς) can intersect another sphere S(ς2). If I(ς, ς2) is a tip
of both spheres, then we can always assume for the sake of the proof that
I(ς, ς2) ⊂ N (ς) by Lemma 5. By Corollary 4 and the definition of N (ς),
I(ς, ς2) ⊂ N (ς) also if I(ς, ς2) is not a tip. Therefore, we compute the size of
S(ς) as part of the size of N (ς) and substract I(ς, ς1) from N (ς) in (2), (4),
and (5).

∗ The only case where the computation is different is when α = k. In this case
the values in (4) and (5) should be −1 and not 0. In (1) the left tip of S(ς1),
(0, k), does not belong to the set of cells, and hence the size of the set should
be k(k − 1) and not k(k − 1) − 1.

Therefore,

|N (ς)| ≥ 4k2 − 2k(α + 1) + (α + 1)2 − 1 = 3k2.

Case 2.3. α > k.
In a similar way to Cases 1.3 and 2.2 we consider the set (F (ς)∩P(ς, ς1))∪ (S(ς)\

I(ς, ς1)) and compute its size. We obtain

|(F (ς) ∩ P(ς, ς1)) ∪ (S(ς) \ I(ς, ς1))| ≥
5k2

2
+

k

2
(2α− 1) +

1

2
(−α2 + α).

By Lemmas 13, 14, and 15 (see Appendix B), we have that

|F (ς) \ P(ς, ς1)| ≥
1

2
(α− k)(α− k − 1)

and hence

|N (ς)| ≥ |(F (ς) ∩ P(ς, ς1)) ∪ (S(ς) \ I(ς, ς1))| + |F (ς) \ P(ς, ς1)| ≥ 3k2.

This completes the proof of the lemma.
Note that Case 1.3 can be solved similarly to Case 2.3, but the proof given in

Case 1.3 is much simpler.
The proof of the following lemma has some similarity to the proof of Lemma 7.

It is also very detailed, and hence it will be given in Appendix B.
Lemma 8. If k ≥ 2, and if ς1 and ς2 are two black cells such that I(ς1, ς2) is a

deep-intersection, then |N (ς1, ς2)| > 6k2.
Proof of Theorem 1. If k = 1, the proof is trivial, and we leave it to the reader.

Therefore, we assume that k ≥ 2. Let A(n) be any n× n subarray of Z
2. For a color

i let μi be the density of the cells in Z
2 colored by i, i.e.,

μi = lim
n→∞

sup
|F−1(i) ∩A(n)|

n2
.

Let χ be the number of colors in F . Clearly,
∑χ

i=1 μi = 1, and by Lemmas 7 and 8
μi ≤ 1

3k2 for each i, 1 ≤ i ≤ χ. Hence, 1 =
∑χ

i=1 μi ≤ χ
3k2 , and thus χ ≥ 3k2.

3. An infinite family of optimal coloring. In this section we consider again
only 4k-colorings. We already know that any such coloring requires 3k2 colors. We
would like to identify all the optimal 4k-colorings, i.e., 4k-colorings with 3k2 colors.
First, note that the size of a neighborhood is at least 3k2.

Conjecture 1. In an optimal 4k-coloring each neighborhood has size 3k2.
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Remarks.
1. Note that a neighborhood can be defined for each cell of Z

2 and not just for
black cells.

2. The idea contained in Conjecture 1 is that in an optimal 4k-coloring the
“average” size of a neighborhood for each cell is 3k2. This idea is preserved if
we rephrase the conjecture as “In an optimal 4k-coloring each neighborhood
with one black cell has size 3k2, and each neighborhood with two black cells
has size 6k2.” However, by Lemma 8, the size of a neighborhood with two
black cells is greater than 6k2. Hence, we consider only the case where all the
neighborhoods have size 3k2.

A coloring will be called strongly optimal if it satisfies the conjecture. One optimal
coloring defined by a lattice ΛR was given in [3]. The generator matrix of this lattice
is

GR =

(
k k
0 3k

)
.

An isomorphic lattice ΛL which also defines an optimal coloring has the generator
matrix

GL =

(
−k k
0 3k

)
.

The cells of a given color in a strongly optimal coloring have a certain structure,
as will be proved in what follows. Examples are depicted in Figure 8. We define the
following sets:

DR
0 = {(i, i) : i ∈ Z},

DR
j = (0, j) + DR

0 , j ∈ Z,

DL
0 = {(−i, i) : i ∈ Z},

DL
j = (0, j) + DL

0 , j ∈ Z.

A shift vector −→s = (. . . ,−→s (−1),−→s (0),−→s (1), . . . ) is a function −→s : Z → {0, 1, . . . ,
k − 1}. For each shift vector and integer h, 0 ≤ h ≤ 3k − 1, we define two one-to-one
functions, TR−→s ,h

: ΛR → Z
2, TL−→s ,h

: ΛL → Z
2, as follows:

TR−→s ,h((ik, 3jk + ik)) = (ik + −→s (j), h + 3jk + ik + −→s (j)),

TL−→s ,h((−ik, 3jk + ik)) = (−ik −−→s (j), h + 3jk + ik + −→s (j)).

The images TR−→s ,h
(ΛR) and TL−→s ,h

(ΛL) will be called templates.
Lemma 9. If F is a strongly optimal coloring and ϕ is one of its colors, then the

set of cells colored with ϕ, i.e., F−1(ϕ), is a template.
The proof of Lemma 9 is given in Appendix C. Examples of templates are given

in Figure 8. ΛR and ΛL are templates with h = 0 and an allzero shift vector. Other
templates are obtained from ΛR in two steps:

• We lift the lattice by h; i.e., we obtain the set (0, h) + ΛR.
• We shift the cells of (0, h) + ΛR in the diagonal DR

h+3jk by −→s (j) to the right.

Similar templates are obtained from ΛL.
Given a color ϕ, we say that ϕ is R-oriented (L-oriented) if the set of cells colored

with ϕ is a template obtained from ΛR (ΛL).
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Fig. 8. Lattices and templates.

Corollary 6. An R-oriented (L-oriented) color ϕ appears in the diagonal DR
j

(DL
j ) iff it appears in the diagonal DR

j+3k (DL
j+3k).

Lemma 10. All the colors of the cells in the lattice Δ2k = {(ik, jk) : i + j ≡ 0
(mod 2)} have the same orientation (R-oriented or L-oriented).

Proof. Let ς1 = (α, β) ∈ Δ2k; W.l.o.g. we assume that ϕ1 = F(ς1) is R-oriented.
By definition also (α + k, β + k) is colored with ϕ1. Let ς2 = (α + k, β − k) and
ϕ2 = F(ς2). If ϕ2 is L-oriented, then (α, β) is also colored with ϕ2, a contradiction.
Hence, ϕ2 is R-oriented, and it can be easily verified that all the colors of the cells in
Δ2k have the same orientation.

Corollary 7. For (α, β) ∈ Z
2 all the colors of the cells in the set (α, β) + Δ2k

have the same orientation.
There are 2k2 disjoint cosets of Δ2k. By Corollary 7, all the colors of the cells

in a given coset have the same orientation. We say that the coset (α, β) + Δ2k is R-
oriented (L-oriented) if the colors of the cells in the coset are R-oriented (L-oriented).
We say that a cell (α, β) ∈ Z

2 is R-oriented (L-oriented) if it belongs to an R-oriented
(L-oriented) coset. One can easily verify that a possible set of coset representatives
is the set {(−j + i, j + i) : 0 ≤ i, j < k} ∪ ((0, 1) + {(−j + i, j + i) : 0 ≤ i, j < k}).
Note that the coset representative (−j + i, j + i) lies in the intersection of the lines
y = x + 2j and y = −x + 2i (an example is depicted in Figure 9). Clearly, we have
the following lemma.
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Fig. 9. The set of coset representatives for k = 3. The coset representative marked by ∗ is
(1, 4) = (−1+2, 1+2+1); it lies in the intersection of the lines y = x+2 ·1+1 and y = −x+2 ·2+1.

Lemma 11. The number of R-oriented (L-oriented) colors on the diagonal DR
j

(DL
j ) is equal to the number of R-oriented (L-oriented) cosets of Δ2k which intersect

DR
j (DL

j ).

Since (0, 2k) ∈ Δ2k, it follows from Lemma 11 that the number of R-oriented
(L-oriented) colors on the diagonal DR

j (DL
j ) is equal to the number of R-oriented

(L-oriented) cosets of Δ2k which intersect DR
j−2k (DL

j−2k). Hence, by Corollary 6, we
have the following corollary.

Corollary 8. The number of R-oriented (L-oriented) cosets of Δ2k which in-
tersect DR

j (DL
j ) is equal to the number of R-oriented (L-oriented) cosets of Δ2k which

intersect DR
j+k (DL

j+k).

Since the number of cosets of Δ2k which intersect DR
j (DL

j ) is exactly k, we have
the following corollary.

Corollary 9. The number of R-oriented (L-oriented) cosets of Δ2k which in-
tersect DL

j (DR
j ) is equal to the number of R-oriented (L-oriented) cosets of Δ2k which

intersect DL
j+k (DR

j+k).

An example for possible assignment of orientations to the cosets as forced by
Corollaries 8 and 9 is given in Figure 10. Once the orientation of each coset is
determined, we can color Z

2. We first color all the R-oriented cells. Consider the
parallelogram MR = {(x, y) : 0 ≤ x < k, 0 ≤ y − x < 3k}. By Lemma 9, each R-
oriented color appears exactly once in MR. Let ψ be the number of colors which are
R-oriented. We assign the ψ R-oriented colors arbitrarily to R-oriented cells in MR.
By Lemma 9, F((α, β)) = F((α + k, β + k)), and hence we have an assignment of
colors to all the R-oriented cells in the strip {(x, y) : 0 ≤ y − x < 3k}. By Corollary 6,
DR

j and DR
j+3k have the same R-oriented colors, but the assignment of the R-oriented

colors in one diagonal is independent in the assignment in the other diagonals; i.e.,
in each diagonal DR

j the order of the R-oriented colors along the diagonal can be
different. In the same way we assign the L-oriented colors to the L-oriented cells, by
using a parallelogram ML = {(x, y) : 0 ≤ x < k, 0 ≤ x + y < 3k}.

We will now give a procedure which will enable us to determine all the possible
assignments of orientations to the 2k2 cosets of Δ2k. Recall that each coset (−j +
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Fig. 10. A possible assignment of orientations to the coset representatives for k = 3, which
satisfies Corollaries 8 and 9.

i, j + i) (or (−j + i, j + i+ 1)) is associated with the lines y = x+ 2j (y = x+ 2j + 1)
and y = −x + 2i (y = −x + 2i + 1).

We define a bipartite graph G(V,E) (coset orientation graph) as follows: V =
V L ∪ V R, where

V L = {(2i + b, L) : i ∈ Zk, b ∈ Z2},
V R = {(2j + b,R) : j ∈ Zk, b ∈ Z2},
E = {{(2i + b, L), (2j + b,R)} : i, j ∈ Zk, b ∈ Z

2}.

The edge {(2i+ b, L), (2j+ b,R)} corresponds to the coset representative (−j+ i, j+
i + b), which lies on the intersection of the lines y = x + 2j + b and y = −x + 2i + b.

Each edge will get an assignment of either R or L, where the assignment will
indicate the orientation of the corresponding coset. The only constraints on any
assignment of orientations are Corollaries 8 and 9. For a vertex v ∈ V , let degL[v]
(degR[v]) denote the number of L-oriented edges incident to v. Note that degL[v] +
degR[v] = k for each v ∈ V . Corollary 8 implies that for v = (ξ, L), 0 ≤ ξ ≤
k−1, degL[(ξ, L)] = degL[(ξ+k, L)], and Corollary 9 implies that for v = (ξ,R), 0 ≤
ξ ≤ k − 1, degL[(ξ,R)] = degL[(ξ + k,R)].

The procedure given below is not deterministic. It will produce all possible as-
signments. However, note that most of the assignments can be generated by different
choices of the procedure.

The assignment procedure.

• Initialization: degL[v] = 0 for all v ∈ V .
(P.1) If degL[v] = k for all v ∈ V , then stop.

Either goto (P.2) or goto (P.5).
(P.2) Let v1 = (ξ, L) and v2 = (ξ + k, L) be two vertices such that degL[v1] < k.

Let side := R.
(P.3) Let u1 = (ξ1, side) be a vertex such that degL[u1] < k.

Assign L to the edge {v1, u1}; increase degL[v1] and degL[u1].
Let u2 = (ξ2, side) be a vertex such that degL[u2] < k.
Assign L to the edge {v2, u2}; increase degL[v2] and degL[u2].
If u1 �= u2 and ξ1 ≡ ξ2 (mod k), then goto (P.1).
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(P.4) v1 := (ξ1 + k (mod 2k), side).
v2 := (ξ2 + k (mod 2k), side).
If side = R, then side := L, else side := R.
Goto (P.3).

(P.5) Assign R to all the edges which have not been assigned.
Note that the constraints of Corollaries 8 and 9 are satisfied since after (P.3)

is performed either degL[(ξ, L)] = degL[(ξ + k, L)] for all ξ, 0 ≤ ξ ≤ k − 1, or
degL[(ξ,R)] = degL[(ξ + k,R)] for all ξ, 0 ≤ ξ ≤ k − 1. Whenever (P.1) is reached
both conditions hold.

From the discussion we have, it is clear that all the strongly optimal colorings are
derived from “the assignment procedure.” If Conjecture 1 is true, then these are all
the optimal colorings. Hence we have the following conjecture.

Conjecture 2. All the optimal 4k-colorings are derived from “the assignment
procedure.”

4. Some related results.

4.1. t-colorings with t �= 4k.
Theorem 2. If F is a (4k+ 2)-coloring of Z

2, then the number of colors in F is
at least 3k2 + 3k + 1.

Proof. Assume that for some k there exists a (4k + 2)-coloring F of Z
2 with

3k2 + 3k colors. Let A be the set of 3k2 + 3k colors of F . We define the following
coloring F ′ : Z

2 → A× Z4:

F ′((x, y)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
F
(⌊

x
2

⌋
,
⌊
x
2

⌋)
, 0
)
, x, y even,(

F
(⌊

x
2

⌋
,
⌊
x
2

⌋)
, 1
)
, x even, y odd,(

F
(⌊

x
2

⌋
,
⌊
x
2

⌋)
, 2
)
, x odd, y even,(

F
(⌊

x
2

⌋
,
⌊
x
2

⌋)
, 3
)
, x, y odd.

F ′ is an (8k + 4)-coloring of Z
2 with 12k2 + 12k colors. However, by Theorem 1

an (8k + 4)-coloring requires at least 3(2k + 1)2 = 12k2 + 12k + 3 colors, a contradic-
tion.

Conjecture 3.

• If F is a (4k + 1)-coloring of Z
2, then the number of colors in F is at least

3k2 + 2k.
• If F is a (4k + 3)-coloring of Z

2, then the number of colors in F is at least
3k2 + 5k + 2.

Colorings defined by lattices which attain the bounds of Theorem 3 and Conjec-
ture 3 were given in [3]. A proof for Conjecture 3 will imply the optimality of colorings
in a graph similar to the grid graph (see [6]).

4.2. Colorings in finite arrays. A t-coloring F can be defined similarly on
finite arrays. Theorem 1 can be also proved on finite arrays.

Theorem 3. If F is a 4k-coloring of a large enough m×n array, then the number
of colors in F is at least 3k2.

Proof. Let L = 3k − 1, R = 3k − 1, D = 3k − 1, and U = 4k − 2, and let m,n be
integers such that

0 < m− U −D,(2)

0 < n−R− L,(3)

3k2 − 1 < 3k2 (m− U −D) (n−R− L)

mn
.(4)
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Let A be an m× n array and F be a 4k-coloring of A with χ colors. W.l.o.g. A
is bounded by the cells (−L,−D), (−L,−D + m), (−L + n,−D + m), (−L + n,−D).
Let B be the (m − U − D) × (n − R − L) subarray of A, which is bounded by the
cells (0, 0), (0,m−U −D), (n−R−L,m−U −D), (n−R−L, 0). Note that by the
detailed proofs of Lemmas 7 and 8, the neighborhood of any cell in B is contained in
A.

For each color i, let ai be the number of cells in B colored by i. By Lemmas 7
and 8, 3k2ai ≤ mn for each color i. Obviously,

χ∑
i=1

ai = (m− U −D) (n−R− L) .

Hence

3k2 (m− U −D) (n−R− L) = 3k2

χ∑
ϕ=1

aϕ ≤ χmn,

3k2 − 1 < 3k2 (m− U −D) (n−R− L)

mn
≤ χ.

Clearly, Theorem 1 is an immediate consequence of Theorem 3, and hence we
have an alternative proof of Theorem 1.

5. Conclusions. We have proved that the number of colors in a 4k-coloring is at
least 3k2. We have shown an infinite family of 4k-colorings which attain this bound.

The original question can be asked more generally.
Given a positive integer r and a positive integer t, t ≥ r, what is the smallest

number of colors required to color Z
2, such that for any r points colored with the

same color, the size of the minimum spanning tree which connects them is at least t?
In this paper we discussed the case r = 3. Colorings with lattices for r = 2 are

discussed in [1] and for r ≥ 3 are discussed in [3]. For r = 2 all the optimal colorings
can be identified with techniques which are similar to those used in section 3. Any
generalization of the results in this paper for r > 3 would be very interesting. If a
coloring defined by a lattice satisfies certain conditions, then the technique presented
in section 3 can be used to obtain an infinite family of colorings with the same number
of colors. Some of the colorings defined by lattices and conjectured to be optimal in
[3] satisfy these conditions.

Appendix A. In the proofs of Lemmas 7 and 8 we use the areas of some geometric
shapes. As these shapes are in fact polyominoes, their size is not necessarily equal to
the size of the standard geometric shape.

• Parallelogram. The size of the parallelogram in Figure 11(a) is ab.
• Isosceles right triangle. The size of the isosceles right triangle in Figure 11(b),

with legs of length a, is a(a+1)
2 .

• Right trapezoid. In all the right trapezoids which are considered, the difference
between any two consecutive columns is one. The size of the trapezoid in

Figure 11(c) is a(a+2b−1)
2 .

Note that the size of all these shapes can be computed as the sum of arithmetic
progression. We also consider some arithmetic progressions with difference two be-
tween consecutive elements.
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↑

↓

b

← →a

(a) A parallelogram.

← →a

(b) An isosceles right triangle.

↑

↓
b

← →a

(c) A right trapezoid.

Fig. 11. Geometric shapes.

Appendix B. In this appendix we will prove Lemma 8. First, we will give a few
lemmas, some of which are also used in the proof of Lemma 7.

Lemma 12. Let ς1 = (α, β), ς2 = (γ, δ) be two black cells such that |γ − α| ≤
2k, 0 ≤ δ − β ≤ 2k, d2(ς1, ς2) = |γ − α| + δ − β < 3k.

If γ − α ≥ 0, then

P(ς1, ς2) =

⎧⎪⎪⎨⎪⎪⎩(x, y) :

γ + δ − β − 3k < x < 3k + α + β − δ
γ + δ − α− 3k < y < 3k + α + β − γ

γ + δ − 3k < x + y < 3k + α + β
δ − α− 3k < y − x < 3k + β − γ

⎫⎪⎪⎬⎪⎪⎭ .

If γ − α < 0, then

P(ς1, ς2) =

⎧⎪⎪⎨⎪⎪⎩(x, y) :

α− β + δ − 3k < x < 3k + β + γ − δ
α− γ + δ − 3k < y < 3k − α + β + γ

α + δ − 3k < x + y < 3k + β + γ
δ − γ − 3k < y − x < 3k − α + β

⎫⎪⎪⎬⎪⎪⎭ .

Lemma 13. Let ς0 = (0, 0) and ς1 = (α, β), α > k, β ≥ 0, be two black cells. If
I(ς0, ς1) �= ∅, then |Ul(ς0) \ P(ς0, ς1)| ≥ 1

2 (α− k)(α− k + 1).
Proof.

Ul(ς0) \ P(ς0, ς1) ⊇ {(x, y) : x ≥ −k + 1, y ≤ k, y − x ≥ 3k − α} ,

which is an isosceles right triangle with legs of length α− k.
An example for Lemma 13 is depicted in Figure 12.
Lemma 14. Let ς0 = (0, 0) and ς1 = (α, β), α > k, β ≥ 0, be two black cells,

such that I(ς0, ς1) �= ∅, and let ς2 = (γ, δ) be a black cell such that Ul(ς0)∩S(ς2) �= ∅.
If |γ| ≥ k, then |N (ς0) ∩ (P(ς0, ς2) \ P(ς0, ς1))| ≥ 1

2 (α− k + 1)(α− k) − 1.
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Fig. 12. An example for Lemma 13 with (α, β) = (10, 2) and k = 7.

Proof. We consider the set of free cells of N (ς0) inside P(ς0, ς2) and above P(ς0, ς1).
This set contains the following two disjoint subsets V1 and V2:

V1 = {(x, y) : 1 ≤ x, y ≥ 3k − α, x + y ≤ 3k + γ − 1} ,
V2 = {(x, y) : γ + k ≤ x ≤ 0, y ≤ 3k − |γ| − 1, y − x ≥ 3k − α} \ {(γ + k, δ)}.

If α > |γ|+ 1, then V1 is an isosceles right triangle and V2 is a right trapezoid with a
missing cell, as depicted in Figure 13(a). If α ≤ |γ| + 1, then V1 is an empty set and
V2 is an isosceles right triangle with a missing cell, as depicted in Figure 13(b). In
both cases

|N (ς0) ∩ (P(ς0, ς2) \ P(ς0, ς1))| ≥ |V1| + |V2| =
1

2
(α− k + 1)(α− k) − 1.

Lemma 15. Let ς0 = (0, 0) and ς1 = (α, β), α > k, β ≥ 0, be two black cells, such
that I(ς0, ς1) �= ∅, and let ς2 = (γ, δ) be a black cell such that Ul(ς0) ∩ S(ς2) �= ∅. If
|γ| < k, then |N (ς0) ∩ (P(ς0, ς2) \ P(ς0, ς1))| ≥ 1

2 (α− k)(α− k − 1).

Proof. Since Ul(ς0) ∩ S(ς2) �= ∅ it follows that δ ≤ 2k. If δ < 2k, we consider the
set of free cells of N (ς0) inside P(ς0, ς2) and above P(ς0, ς1). This set contains the
following two disjoint subsets V1 and V2:

V1 = {(x, y) : x ≤ γ + k, y ≥ 3k − α, y − x ≤ δ − γ − k − 1} ,
V2 = {(x, y) : γ + k + 1 ≤ x ≤ 3k + γ − δ − 1, y ≥ 3k − α, x + y ≤ 3k + γ − 1} .

V1 is an isosceles right triangle and V2 is a right trapezoid, as depicted in Figure 14,
and hence

|N (ς0) ∩ (P(ς0, ς2) \ P(ς0, ς1))| ≥ |V1| + |V2| =
1

2
(α− k)(α− k − 1).
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(b) (γ, δ) = (−16, 8)

Fig. 13. Lemma 14 applied on (α, β) = (14, 2) and k = 9.

If δ = 2k, then P(ς0, ς2) does not include cells of the form (γ + k, y), and hence
the set V1 as defined above is not contained in P(ς0, ς2). Moreover, |Ul(ς0)∩S(ς2)| = 1
and N (ς0) ∩ P(ς0, ς2) ⊃ Ul(ς0) \ S(ς2). Hence, it follows by Lemma 13 that

|N (ς0)∩ (P(ς0, ς2)\P(ς0, ς1))| ≥ |Ul(ς0)\P(ς0, ς1)|−1 =
1

2
(α−k+1)(α−k)−1.
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Fig. 14. Case 2.3 with (α, β) = (15, 3), (γ, δ) = (−8, 15), k = 9. The cells of V1 and V2 are
marked “1” and “2.”

Note that in Lemmas 13, 14, and 15, if I(ς0, ς1) is a deep-intersection, then
N (ς0) = N (ς0, ς1).

We now proceed to prove more results which will be useful in the proof of
Lemma 8. In what follows we assume that ς0 = (0, 0) and ς1 = (α, β), α, β ≥ 0,
are black cells for which I(ς0, ς1) is a deep-intersection, i.e., α + β < 2k. First, we
have to compute the size of |I(ς0, ς1)|. We have found a few different methods to com-
pute |I(ς0, ς1)|; none of them is elegant. Therefore we leave the proof of the following
lemma to the reader.

Lemma 16.

|I(ς0, ς1)| =

⎧⎨⎩ 2(k − β + 1)k − β +
⌊
β2−α2

2

⌋
+ 1 if α < β,

2(k − α + 1)k − α +
⌊
α2−β2

2

⌋
+ 1 if β ≤ α.

For a black cell ς = (γ, δ), let

Tl(ς) = {(γ − k, y) : y > δ, (γ − k, η) is a free cell for δ + 1 ≤ η ≤ y} ,
Tr(ς) = {(γ + k, y) : y > δ, (γ + k, η) is a free cell for δ + 1 ≤ η ≤ y} .

An example is depicted in Figure 15.
Lemma 17. If α + β ≤ k + 1, then Tl(ς0) ⊂ N (ς0, ς1) and |P(ς0, ς1) ∩ Tl(ς0)| =

2k − α− 1.
Proof. A cell z ∈ Tl(ς0) does not belong to N (ς0, ς1) if there exists a black

cell ς2 such that U(ς2) ∩ S(ς0) �= ∅ and z ∈ P(ς2, ς0). Assume that such a cell
ς2 = (γ, δ) exists. Clearly, γ, δ < 0. d3(ς0, ς1, ς2) = α − γ + β − δ ≥ 4k, and hence
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Fig. 15. Tl(ς) and Tr(ς).

|γ|+ |δ| = −(γ + δ) ≥ 4k− (α+ β) ≥ 3k− 1. By Lemma 6, if |γ|+ |δ| > 3k− 1, then
U(ς2) ∩ S(ς0) = ∅. If |γ| + |δ| = 3k − 1 and U(ς2) ∩ S(ς0) �= ∅, then P(ς2, ς0) is a
rectangle and z /∈ P(ς2, ς0), a contradiction.

Thus, such a black cell ς2 does not exist, Tl(ς0) ⊂ N (ς0, ς1), and one can easily
verify that |P(ς0, ς1) ∩ Tl(ς0)| = 2k − α− 1.

Lemma 18. If α ≤ k + 1, α + β ≥ k + 1, then |N (ς0, ς1) ∩ P(ς0, ς1) ∩ Tl(ς0)| ≥
3k − 2α− β.

Proof. A cell z ∈ Tl(ς0) does not belong to N (ς0, ς1) if there exists a black cell
ς2 such that U(ς2) ∩ S(ς0) �= ∅ and z ∈ P(ς2, ς0). Assume that such a cell ς2 = (γ, δ)
exists. Clearly, γ, δ < 0.

By the definition of P(ς2, ς0), if k < |γ| < 2k, then

N (ς2) ∩ Tl(ς0) = {(−k, y) : 1 ≤ y ≤ 3k − |γ| − |δ| − 1} ,

and if |γ| ≤ k, then N (ς2)∩Tl(ς0) = {(−k, y) : 1 ≤ y ≤ 2k − |δ| − 1}. Hence, |N (ς2)∩
Tl(ς0)| ≤ 3k − |γ| − |δ| − 1. It is easy to verify that |P(ς0, ς1) ∩ Tl(ς0)| = 2k − α − 1,
and therefore

|N (ς0, ς1) ∩ P(ς0, ς1) ∩ Tl(ς0)| ≥ |γ| + |δ| − α− k

= α + β + |γ| + |δ| − 2α− β − k

= d3(ς0, ς1, ς2) − 2α− β − k

≥ 3k − 2α− β.

Note that 3k − 2α− β ≥ 0 since α ≤ k + 1 and α + β < 2k.
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Lemma 19. If α ≤ k + 1, then Tr(ς1) ⊂ N (ς0, ς1) and |P(ς0, ς1) ∩ Tr(ς1)| =
2k − α− β − 1.

Proof. A cell z ∈ Tr(ς1) does not belong to N (ς0, ς1) if there exists a black cell
ς2 such that U(ς2) ∩ S(ς1) �= ∅ and z ∈ P(ς2, ς1). Assume that such a cell ς2 = (γ, δ)
exists. Clearly, α < γ and δ < β.

If δ > 0, then γ − α = d3(ς0, ς1, ς2) − α − β ≥ 4k − (α + β) > 2k, and therefore
by Lemma 6 we have U(ς2) ∩ S(ς1) = ∅, a contradiction. If δ ≤ 0, then |α − γ| +
|β − δ| = γ − α + β − δ = d3(ς0, ς1, ς2) − α ≥ 4k − α ≥ 3k − 1. By Lemma 6, if
|α− γ| + |β − δ| > 3k − 1, then U(ς2) ∩ S(ς1) = ∅. If |α− γ| + |β − δ| = 3k − 1 and
U(ς2) ∩ S(ς1) �= ∅, then P(ς2, ς1) is a rectangle and z /∈ P(ς2, ς1), a contradiction.

Thus, such a black cell ς2 does not exist, Tr(ς1) ⊂ N (ς0, ς1), and one can easily
verify that |P(ς0, ς1) ∩ Tr(ς1)| = 2k − α− β − 1.

Lemma 20. If α < β ≤ k, then Tr(ς0) ⊂ N (ς0, ς1) and |P(ς0, ς1) ∩ Tr(ς0)| =
β − α− 1.

Proof. A cell z ∈ Tr(ς0) does not belong to N (ς0, ς1) if there exists a black cell
ς2 such that U(ς2) ∩ S(ς0) �= ∅ and z ∈ P(ς2, ς0). Assume that such a cell ς2 = (γ, δ)
exists. Clearly, γ > 0 and δ < 0.

If γ ≤ α, then |δ| = d3(ς0, ς1, ς2)−α−β ≥ 4k− (α+β) > 2k, and by Lemma 6 we
have U(ς2) ∩ S(ς0) = ∅, a contradiction. If α < γ, then γ + |δ| = d3(ς0, ς1, ς2) − β ≥
4k − β ≥ 3k, and by Lemma 6 we have U(ς2) ∩ S(ς0) = ∅, a contradiction.

Thus, such a black cell ς2 does not exist, Tr(ς0) ⊂ N (ς0, ς1), and it is easy to
verify that |P(ς0, ς1) ∩ Tr(ς0)| = β − α− 1.

Lemma 21. If α < β and k < β, then |N (ς0, ς1) ∩ P(ς0, ς1) ∩ Tr(ς0)| ≥ k − α.
Proof. A cell z ∈ Tr(ς0) does not belong to N (ς0, ς1) if there exists a black cell

ς2 such that U(ς2) ∩ S(ς0) �= ∅ and z ∈ P(ς2, ς0). Assume that such a cell ς2 = (γ, δ)
exists. Clearly, γ > 0 and δ < 0.

By symmetry and similar arguments to those of Lemma 18 we have that |N (ς2)∩
P(ς0, ς1)∩Tr(ς0)| ≤ 2k−|δ|−1 if γ ≤ k and |N (ς2)∩P(ς0, ς1)∩Tr(ς0)| ≤ 3k−γ−|δ|−1
otherwise. Tr(ς0) = {(k, y) : 1 ≤ y ≤ β − α− 1}, and hence |Tr(ς0)| = β − α − 1.
Therefore, we have the following:

• If γ > α, then

|N (ς0, ς1) ∩ Tr(ς0)| ≥ (β − α− 1) − (3k − γ − |δ| − 1)

= d3(ς0, ς1, ς2) − α− 3k

≥ k − α.

• If γ ≤ α, then γ < k;

|N (ς0, ς1) ∩ P(ς0, ς1) ∩ Tr(ς0)| ≥ (β − α− 1) − (2k − |δ| − 1)

= d3(ς0, ς1, ς2) − 2α− 2k

≥ 2k − 2α

> k − α.

Note that k − α > 0 since α < β and α + β < 2k.
Lemma 22. If 0 < α < β, then

(5) |N (ς0, ς1)∩P(ς0, ς1)\(Tl(ς0)∪Tr(ς0)∪Tr(ς1))| = 6k2+(α−2)k−α2

2
+

3α

2
−αβ+3.

Proof. Let V = N (ς0, ς1) ∩ P(ς0, ς1) \ (Tl(ς0) ∪ Tr(ς0) ∪ Tr(ς1)). V is partitioned
into seven subsets Π1,Π2,Π3,Π4,Π5,Π6,Π7 as follows (see Figure 16):



868 YAEL BEN-HAIM AND TUVI ETZION

•

•

2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

6
6
6

6

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

4
4
4
4

4
4
4

5
5
5

5
5
5

5
5
5

5
5
5

5
5
5

5
5
5

7
7
7
7

−k α−k 0 α k α+k

0

β

3k−α

Fig. 16. Lemma 22 applied on (α, β) = (2, 8) and k = 7.

1. Π1 = S(ς0) ∪ S(ς1), and by Lemma 16

|Π1| = |S(ς0)| + |S(ς1)| − |I(ς0, ς1)| = 2k2 + 2(β + 1)k + β −
⌊
β2 − α2

2

⌋
+ 1.

2. Π2 = {(x, y) : −k + 1 ≤ x≤α− k, k + 1≤y − x ≤ 3k − α− 1}\{(α−k, β)}.
Π2 is a parallelogram with a missing cell and |Π2| = (2k − α− 1)α− 1.

3. Π3 = {(x, y) : α− k + 1 ≤ x ≤ 0, β − α + k + 1 ≤ y − x ≤ 3k − α− 1}. Π3

is also a parallelogram and |Π3| = (2k − β − 1)(k − α).
4. {(x, y) : 1 ≤ x ≤ α, β − α + k + 1 ≤ y − x, y ≤ 3k − α− 1}. Π4 is a right

trapezoid and |Π4| = (2k − β − α+3
2 )α.

5. Π5 = {(x, y) : α + 1 ≤ x ≤ α + k − 1, α + β + k + 1 ≤ x + y ≤ 3k − 1}. Π5

is a parallelogram and |Π5| = (2k − α− β − 1)(k − 1).
6. Π6 = {(x, y) : α− k + 1 ≤ x, k + 1 ≤ y − x, x + y ≤ α + β − k − 1}. Π6 is

an arithmetic progression and |Π6| = � (β−α−2)2

4 �.
7. Π7 = {(x, y) : x ≤ k − 1, k + 1 ≤ x + y, y − x ≤ β − α− k − 1} and clearly

|Π7| = |Π6|.
Therefore,

|V | =

7∑
i=1

|Πi| = 6k2 + (α− 2)k − α2

2
+

3α

2
− αβ + 3.

Lemma 23. If 0 < α < β and α + β ≤ k + 1, then |N (ς0, ς1)| > 6k2.
Proof. By Lemmas 17 and 19 we have that Tl(ς0)∪Tr(ς1) ⊂ N (ς0, ς1), |P(ς0, ς1)∩

Tl(ς0)| = 2k − α − 1, |P(ς0, ς1) ∩ Tr(ς1)| = 2k − α − β − 1, and hence by Lemma 22
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we have

(6) |N (ς0, ς1)| ≥ |(N (ς0, ς1)∩P(ς0, ς1))\Tr(ς0)| = 6k2+(α+2)k−α2

2
−α

2
−β(α+1)+1.

From (6) and since α + β ≤ k + 1 it follows that

|N (ς0, ς1)| ≥ 6k2 + (α + 2)k − α2

2
− α

2
− (k + 1 − α)(α + 1) + 1

= 6k2 + k +
α(α− 1)

2
> 6k2.

Lemma 24. If 0 ≤ β ≤ α, then

(7)
|(N (ς0, ς1) ∩ P(ς0, ς1)) \ (Tl(ς0) ∪ Tr(ς1))|

≥ 6k2 + (2α− β − 2)k + α + 2β−5α2−2αβ+β2

4 + 2.

Proof. Let V = (N (ς0, ς1)∩P(ς0, ς1)) \ (Tl(ς0)∪Tr(ς1)). V is partitioned into five
subsets Π1,Π2,Π3,Π4,Π5 as follows (see Figure 17):

1. Π1 = S(ς0)∪S(ς1), and by Lemma 16, |Π1| = 2k2+2(α+1)k+α−�α2−β2

2 �+1.
2. Π2 = {(x, y) : −k + 1 ≤ x ≤ 0 , k + 1 ≤ y − x ≤ 3k − α− 1}. Π2 is a paral-

lelogram and |Π2| = (2k − α− 1)k.
3. Π3 = {(x, y) : 1 ≤ x ≤ �α−β

2 �, k + 1 ≤ x + y, y ≤ 3k − α− 1}. Π3 is a right

trapezoid and |Π3| = 1
2 (4k − � 3α+β+3

2 �)�α−β
2 �.

4. Π4 = {(x, y) : �α−β
2 �+1 ≤ x ≤ α−1, β−α+k+1 ≤ y−x, y ≤ 3k−α−1}.

Π4 is a right trapezoid and |Π4| = 1
2 (4k − � 3α+3β+4

2 �)�α+β−1
2 �.

5. Π5 = {(x, y) : α ≤ x ≤ α + k − 1, α + β + k + 1 ≤ x + y ≤ 3k − 1}. Π5 is a
parallelogram and |Π5| = (2k − α− β − 1)k.

Therefore,

|V |=
5∑

i=1

|Πi| = 6k2 + (2α− β − 2)k + α +

⌊
2β − 3α2 − 2αβ − β2

4

⌋
−
⌊
α2 − β2

2

⌋
+ 2

≥ 6k2 + (2α− β − 2)k + α +
2β − 5α2 − 2αβ + β2

4
+ 2.

Lemma 25. If 0 ≤ β ≤ α and α + β ≤ k + 1, then |N (ς0, ς1)| > 6k2.
Proof. By Lemmas 17 and 19 we have that Tl(ς0)∪Tr(ς1) ⊂ N (ς0, ς1), |P(ς0, ς1)∩

Tl(ς0)| = 2k − α − 1, |P(ς0, ς1) ∩ Tr(ς1)| = 2k − α − β − 1, and hence by Lemma 24
we have

|N (ς0, ς1)| ≥ |N (ς0, ς1) ∩ P(ς0, ς1)|

≥ 6k2 + (2α− β + 2)k − α− β +
2β − 5α2 − 2αβ + β2

4
.(8)

A lower bound on |N (ς0, ς1)| for a fixed α and in the given range of β is obtained
for the largest possible value of β. We distinguish between two cases:

• If α ≥ k+1
2 , then the largest value of β is k−α+1. Substituting β = k−α+1

in (8) implies that

(9) |N (ς0, ς1)| ≥ 5
1

4
k2 + (2α + 1)k − α2

2
− 1

1

2
α− 1

4
.

A lower bound on |N (ς0, ς1)| in the given range of α is obtained for α = k+1
2 .

Substituting α = k+1
2 in (9) we obtain |N (ς0, ς1)| > 6k2.
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Fig. 17. Lemma 24 applied on (α, β) = (9, 2) and k = 7.

• If 1 ≤ α ≤ k
2 , then the largest value of β is α, and

(10) |N (ς0, ς1)| ≥ 6k2 + (α + 2)k − 3α(α + 1)

2
.

A lower bound on |N (ς0, ς1)| in the given range of α is obtained for α = 1
if k > 10 and for α =

⌊
k
2

⌋
if 2 ≤ k ≤ 10. Substituting α = 1 or α = k

2 ,
respectively, in (10) we obtain |N (ς0, ς1)| > 6k2.

Lemma 26. If α+β > k, then |Ur(ς1) \P(ς0, ς1)| = 1
2 (α+β− k)(α+β− k+1).

Proof.

Ur(ς1) \ P(ς0, ς1) = {(x, y) : x ≤ α + k − 1, y ≤ β + k, x + y ≥ 3k}

is an isosceles right triangle with legs of length α + β − k.
An example of Ur(ς1) \ P(ς0, ς1) is depicted in Figure 18.
Lemma 27. If ς2 = (γ, δ) is a black cell such that Ur(ς1) ∩ S(ς2) �= ∅, then

α + β > k.
Proof. By Lemma 6, α + β > γ + δ − 3k = d3(ς0, ς1, ς2) − 3k ≥ k.
Lemma 28. Let ς2 = (γ, δ) be a black cell such that Ur(ς1) ∩ S(ς2) �= ∅. If

γ ≥ α+ k, then |N (ς0, ς1)∩ (P(ς1, ς2) \P(ς0, ς1))| ≥ 1
2 (α+ β− k)(α+ β− k+ 1)− 1.

Proof. We consider the set of free cells of N (ς0, ς1) inside P(ς1, ς2) and above
P(ς0, ς1). This set contains the following two disjoint subsets V1 and V2 (see Figure 19):

V1 = {(x, y) : x ≤ α− 1, y ≥ 3k − α, y − x ≤ 3k − γ − 1 + β} ,
V2 = {(x, y) : α ≤ x ≤ γ − k, y ≤ 3k − γ − 1 + α + β, x + y ≥ 3k} \ {(γ − k, δ)}.

If γ < 2α+β−1, then V1 is an isosceles right triangle and V2 is a right trapezoid with
a missing cell, as depicted in Figure 19(a). If γ ≥ 2α+ β− 1, then V1 is an empty set
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Fig. 18. An example of Ur(ς1) \ P(ς0, ς1) with (α, β) = (9, 2) and k = 7.

and V2 is an isosceles right triangle with a missing cell, as depicted in Figure 19(b).
In both cases

|N (ς0, ς1)∩ (P(ς1, ς2)\P(ς0, ς2))| ≥ |V1|+ |V2| =
1

2
(α+β−k)(α+β−k+1)−1.

Lemma 29. Let ς2 = (γ, δ) be a black cell such that Ur(ς1) ∩ S(ς2) �= ∅. If
γ < α+ k, then |N (ς0, ς1)∩ (P(ς1, ς2) \P(ς0, ς1))| ≥ 1

2 (α+ β− k)(α+ β− k+ 1)− 2.
Proof. Since Ur(ς1) ∩ S(ς2) �= ∅, it follows that δ ≤ β + 2k. If δ < β + 2k, we

consider the set of free cells inside P(ς1, ς2) and above P(ς0, ς1). This set contains the
following four disjoint subsets V1, V2, V3, V4 (see Figure 20):

V1 ={(x, y) : x ≥ γ − k, y ≥ 3k − α, x + y ≤ γ + δ − k − 1} ,
V2 ={(x, y) : γ + δ − β − 3k + 1≤x≤γ − k − 1, y≥3k − α, y − x≤3k − γ −1+ β} ,
V3 =Tl(ς2) ∩ P(ς1, ς2) = {(γ − k, y) : δ + 1 ≤ y ≤ 2k + β − 1} ,
V4 ={(α + k − 1, y) : 2k − α + 1 ≤ y ≤ α + δ − γ − 2} .

V1 is a isosceles right triangle, V2 is a right trapezoid, and

|V1| + |V2| =
1

2
(α + β − k)(α + β − k − 1),

|V3| + |V4| = 2α + β − γ − 3 = α + β − (γ − α) − 3 ≥ α + β − k − 2.

Hence

|N (ς0, ς1)∩(P(ς1, ς2)\P(ς0, ς1))| ≥ |V1|+|V2|+|V3|+|V4| ≥
1

2
(α+β−k)(α+β−k+1)−2.

If δ = β+2k, then P(ς1, ς2) does not include cells of the form (γ−k, y), and hence
the set V1 as defined above is not contained in P(ς1, ς2). Moreover, |Ur(ς1)∩S(ς2)| = 1
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Fig. 19. Lemma 28 applied on (α, β) = (5, 7) and k = 7. The cells of V1 and V2 are marked
“1” and “2.”

and N (ς0, ς1) ⊃ Ur(ς1) \ S(ς2). Hence, it follows by Lemmas 26 and 27 that

|N (ς0, ς1) ∩ (P(ς1, ς2) \ P(ς0, ς1))| ≥ |Ur(ς1) \ P(ς0, ς1)| − 1

=
1

2
(α + β − k)(α + β − k + 1) − 1.



ON THE OPTIMALITY OF COLORING WITH A LATTICE 873

•

•

•

F
F
F
F
F
F
F
F

F
F
F
F
F
F
F
F

F
F
F
F
F
F
F
F

F
F
F
F
F
F
F
F

F

F
F
F
F
F
F

F
F
F
F
F
F

F
F
F
F
F
F

F
F
F
F
F

F
F
F
F

F
F
F

F
F F

F
F

F
F

F
F

2
2
2

2
2
2
2

1
1

1

4
4

3
3

0
γ+δ−β−3k

γ−k α γ α+k

0

β

δ

3k−α

β+2k

2k−α

α+δ−γ−2

Fig. 20. Lemma 29 applied on (α, β) = (5, 7), (γ, δ) = (10, 18), k = 7.

Lemma 30. If 0 < α < β ≤ k and α + β > k + 1, then |N (ς0, ς1)| > 6k2.
Proof. By Lemmas 18, 19, and 20 we have that

(11) |N (ς0, ς1) ∩ P(ς0, ς1) ∩ (Tl(ς0) ∪ Tr(ς0) ∪ Tr(ς1))| ≥ 5k − 4α− β − 2.

By Lemmas 26, 28, and 29 we have that

(12) |N (ς0, ς1) \ P(ς0, ς1)| ≥
1

2
(α + β − k)(α + β − k + 1) − 2.

Combining (5) with (11) and (12) we obtain

|N (ς0, ς1)| ≥ 6
1

2
k2 +

(
2
1

2
− β

)
k − 2α +

β2

2
− β

2
− 1.

Since α < β it follows that

(13) |N (ς0, ς1)| ≥ 6
1

2
k2 +

(
2
1

2
− β

)
k +

β2

2
− 5β

2
+ 1.

A lower bound on |N (ς0, ς1)| in the given range of β is obtained for β = k. Substituting
β = k in (13) we obtain |N (ς0, ς1)| ≥ 6k2 + 1.

Lemma 31. If 0 < α < β and k < β, then |N (ς0, ς1)| > 6k2.
Proof. By Lemmas 18, 19, and 21 we have that

(14) |N (ς0, ς1) ∩ P(ς0, ς1) ∩ (Tl(ς0) ∪ Tr(ς0) ∪ Tr(ς1))| ≥ 6k − 4α− 2β − 1.
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By Lemmas 26, 28, and 29 we have that

(15) |N (ς0, ς1) \ P(ς0, ς1)| ≥
1

2
(α + β − k + 1)(α + β − k) − 2.

Combining (5) with (14) and (15) we obtain

|N (ς0, ς1)| ≥ 6
1

2
k2 +

(
3
1

2
− β

)
k − 2α +

β2

2
− 3β

2
.

Since α < 2k − β it follows that

(16) |N (ς0, ς1)| ≥ 6
1

2
k2 −

(
1

2
+ β

)
k +

β2

2
+

β

2
+ 2.

A lower bound on |N (ς0, ς1)|, in the given range of β, is obtained for β = k + 1.
Substituting β = k + 1 in (16) we obtain |N (ς0, ς1)| ≥ 6k2 + 3.

Lemma 32. If α = 0, then |N (ς0, ς1)| > 6k2.

Proof. This case is the only one in which some of the cells in P(ς0, ς1) above the
left tip of ς0 belong to Tl(ς1). Thus we have the following variant of Lemma 22:

|N (ς0, ς1) ∩ P(ς0, ς1) \ (Tl(ς0) ∪ Tl(ς1) ∪ Tr(ς0) ∪ Tr(ς1))|

= 6k2 + (α− 2)k − α2

2
+

3α

2
− αβ + 4

= 6k2 − 2k + 4

since in the proof |Π2| = 0. On the other hand, Lemma 17 takes the following form:

If β ≤ k + 1, then Tl(ς0) ∪ Tl(ς1) ⊂ N (ς0, ς1) and |Tl(ς0) ∪ Tl(ς1)| = 2k − 2.

Lemma 18 takes the following form:

If β > k + 1, then |N (ς0, ς1) ∩ P(ς0, ς1) ∩ (Tl(ς0) ∪ Tl(ς1))| ≥ 3k − β − 1.

Therefore, |N (ς0, ς1)| > 6k2 as computed in Lemmas 23 and 31.

Lemma 33. If β ≤ α ≤ k + 1 and α + β > k + 1, then |N (ς0, ς1)| > 6k2.

Proof. By Lemmas 18 and 19 we have that

(17) |N (ς0, ς1) ∩ P(ς0, ς1) ∩ (Tl(ς0) ∪ Tr(ς1))| ≥ 5k − 3α− 2β − 1.

By Lemma 26, 28, and 29 we have that

(18) |N (ς0, ς1) \ P(ς0, ς1)| ≥
1

2
(α + β − k + 1)(α + β − k) − 2.

Combining (7) with (17) and (18) we obtain

(19) |N (ς0, ς1)| ≥ 6
1

2
k2 +

(
α− 2β + 2

1

2

)
k +

3β2 − 3α2 + 2αβ − 4β − 6α

4
− 1.

A lower bound on |N (ς0, ς1)| for a fixed α and in the given range of β is obtained for
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the largest possible value of β. We distinguish between three cases:
• If β ≤ α− 3, then the largest value of β is α− 3. Substituting β = α− 3 in

(19) implies that

(20) |N (ς0, ς1)| ≥ 6
1

2
k2 +

(
8
1

2
− α

)
k +

α2 − 17α

2
+ 8

3

4
.

A lower bound on |N (ς0, ς1)| in the given range of α is obtained for α = k+1.
Substituting α = k + 1 in (20) we obtain |N (ς0, ς1)| ≥ 6k2 + 3

4 .
• If α − 2 ≤ β ≤ α − 1, then the largest value of β is α − 1. Substituting

β = α− 1 in (19) implies that

(21) |N (ς0, ς1)| ≥ 6
1

2
k2 +

(
4
1

2
− α

)
k +

α2 − 9α

2
+

3

4
.

A lower bound on |N (ς0, ς1)| in the given range of α is obtained for α = k (note
that α+β < 2k). Substituting α = k in (21) we obtain |N (ς0, ς1)| ≥ 6k2 + 3

4 .
• If α = β, then

(22) |N (ς0, ς1)| ≥ 6
1

2
k2 +

(
2
1

2
− α

)
k +

α2 − 5α

2
− 1.

A lower bound on |N (ς0, ς1)| in the given range of α is obtained for α = k−1
(note that α+β < 2k). Substituting α = k−1 in (22) we obtain |N (ς0, ς1)| ≥
6k2 + 2.

Thus, |N (ς0, ς1)| > 6k2.
Lemma 34. If ς2 = (γ1, δ1) and ς3 = (γ2, δ2) are two black cells such that

Ul(ς0) ∩ S(ς2) �= ∅ and Ur(ς1) ∩ S(ς3) �= ∅, then P(ς0, ς2) ∩ P(ς1, ς3) = ∅.
Proof. P(ς0, ς1) ∩ S(ς2) = ∅ by Corollary 1, and hence δ1 − γ1 − k ≥ 3k − α, i.e.,

3k − |γ1| − δ1 − 1 ≤ α− k − 1.
P(ς0, ς1) ∩ S(ς3) = ∅ by Corollary 1, and hence γ2 + δ2 − k ≥ 3k, i.e., γ2 + δ2 −

β − 3k + 1 ≥ k − β + 1.
Since α + β < 2k, it follows that α− k − 1 < k − β + 1.
Therefore, 3k− |γ1| − δ1 − 1 < γ2 + δ2 − β − 3k + 1, and it can be readily verified

that P(ς0, ς2) ∩ P(ς1, ς3) = ∅ by Lemmas 3 and 12.
Lemma 35. If β ≤ α and α ≥ k + 2, then |N (ς0, ς1)| > 6k2.
Proof. By Lemmas 13, 14, 15, 26, 28, 29, and 34 we have that

|N (ς0, ς1)| \ P(ς0, ς1)| ≥
1

2
(α− k)(α− k − 1) +

1

2
(α + β − k + 1)(α + β − k) − 2.

Combining with (7) we obtain

(23) |N (ς0, ς1)| ≥ 7k2 − 2(β + 1)k + α + β +
3β2 − α2 + 2αβ

4
.

Since α+β < 2k and α ≥ k+2 it follows that β ≤ k−3. A lower bound on |N (ς0, ς1)|
for a fixed β and in the given range of α is obtained for the largest possible value of
α, i.e., 2k − 1 − β. Substituting α = 2k − 1 − β in (23) implies that

|N (ς0, ς1)| ≥ 6k2 + k − β − 1
1

4
≥ 6k2 + 1

3

4
.
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Proof of Lemma 8. W.l.o.g. we assume that ς1 = (0, 0) and ς2 = (α, β), α, β ≥ 0.
• If α + β ≤ k + 1, then by Lemmas 23, 25, and 32, |N (ς1, ς2)| > 6k2.
• If α+β > k+1 and α < β, then by Lemmas 30, 31, and 32, |N (ς1, ς2)| > 6k2.
• If α + β > k + 1 and α ≥ β, then by Lemmas 33 and 35 |N (ς1, ς2)| > 6k2.

Thus, |N (ς1, ς2)| > 6k2.

Appendix C. In this appendix we will prove Lemma 9. By considering the
various cases in the proof of Lemma 7, one can readily verify that in most cases
the size of the neighborhood is greater than 3k2. In some cases, where the formulas
indicate that the size of a neighborhood can be 3k2, we can find some cells in the
neighborhood which were not counted, e.g., above the tips. There are two cases
in which the size of the neighborhood of a given black cell ς = (α, β) can be 3k2,
depending on the position of the black cells surrounding it:

• Either (α + k, β + k) is a black cell or (α− k, β + k) is a black cell (Case 2.2
item marked with ∗ in Lemma 7).

• Either (α+ k + 1, β + k− 1) is a black cell or (α− k− 1, β + k− 1) is a black
cell (a specific value in Case 2.3 of Lemma 7).

In the latter case one can verify that the coloring cannot be strongly optimal. There-
fore, we have the following lemma.

Lemma 36. If F is a coloring for which all the neighborhoods have size 3k2, then
for each black cell (α, β), either (α + k, β + k) is a black cell or (α − k, β + k) is a
black cell.

W.l.o.g. we assume that (α, β) and (α+k, β +k) are black cells for some (α, β) ∈
Z

2.
Lemma 37. If (α, β) and (α+ k, β + k) are black cells, then (α+ ik, β + ik) is a

black cell for each i ≥ 0.
Proof. By Lemma 36, if (α+ k, β + k) is a black cell, then either (α+ 2k, β + 2k)

is a black cell or (α, β + 2k) is a black cell. But (α, β + 2k) cannot be a black cell
since d3((α, β), (α + k, β + k), (α, β + 2k)) = 3k < 4k.

For each i ≥ 0 let ςi = (α+ik, β+ik); by Lemma 12 we have the following lemma.
Lemma 38. All the cells on the line y − x = 2k + β − α − 1, where x > α − k,

are inside
⋃∞

i=0 P(ςi, ςi+1). None of the cells on the line y − x = 2k + β − α belongs
to

⋃∞
i=0 P(ςi, ςi+1).
Lemma 39. There exists j, − 2k + 1 ≤ j ≤ −k + 1, such that (α + j + ik, β +

3k + j + ik) are black cells for all i ≥ 0.
Proof. Recall that all the black cells satisfy Case 2.2 in the proof of Lemma 7.

Note that in this case if |N (ςi)| = 3k2, then N (ςi) ⊂ P(ςi, ςi+1)∪S(ςi), and hence all
the cells on the line y − x = 2k + β − α for x > α− k belong to some spheres whose
black cells are on the line y−x = 3k+β−α. In particular, the cell (α−k+1, β+k+1)
belongs to some sphere. Therefore, there is a black cell (α + j, β + 3k + j) for some
j, − 2k+1 ≤ j ≤ −k+1. The next black cell on the line y−x = 3k+β−α must be
either (α+ j+k, β+3k+ j +k) or (α+ j +k+1, β+3k+ j+k+1). Since the size of
the neighborhood of (α+ j, β+3k+ j) is 3k2, it follows that (α+ j+k, β+3k+ j+k)
is a black cell, and thus by Lemma 37, for each i ≥ 0, (α + j + ik, β + 3k + j + ik) is
a black cell.

Corollary 10. For each l ≥ 0 there exists jl,−2k + 1 ≤ jl ≤ −k + 1, such that
(α + Σl

m=1jm, β + 3kl + Σl
m=1jm) is a black cell.

Let Rα,β = {(x, y) : y ≥ 2k+1
k−1 (x− α) + β, y ≥ 2k+1

−k+1 (x− α) + β}.
Corollary 11. There exist a shift vector −→s and an integer h, 0 ≤ h ≤ 3k − 1,

such that TR−→s ,h
(ΛR) ∩Rα,β consists of all the black cells inside Rα,β.
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1

α
 

β
1

β
 

y=[(2k+1)/(−k+1)](x−α)+β
↓

y=[(2k+1)/(k−1)](x−α)+β
↓

Fig. 21. Corollary 11 with k = 2.

By Theorem 3, there exists a black cell (α1, β1) in the region{
(x, y) : y <

2k + 1

k − 1
(x− α) + β, y <

2k + 1

−k + 1
(x− α) + β

}
.

We can start our discussion in this appendix with (α1, β1) instead of (α, β). The
scenario is depicted in Figure 21.

Corollary 12. There exist a shift vector −→s and an integer h, 0 ≤ h ≤ 3k − 1,
such that either TR−→s ,h

(ΛR)∩Rα1,β1
or TL−→s ,h

(ΛL)∩Rα1,β1
consists of all the black cells

inside Rα1,β1
.

Note that Rα1,β1 ⊃ Rα,β ; we can define an infinite sequence of cells (αi, βi), i ≥ 0,
such that Rαi+1,βi+1

⊃ Rαi,βi
and Rαi,βi

→i→∞ Z
2, and hence Lemma 9 is proved

by Corollary 12.
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